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Abstract

~ This paper studies the optimal risky investment problem with fewer restrictions on
utilities, and more structure on risks, than does the current literature. It uses discrete
random variables defined on a common domain, hereafter called standardized variables, to
obtain new results without important loss of generality.

The optimal amount of investment in a single risky asset does not always decrease
as risk increases in the Rothschild-Stiglitz ([1970, 1971]; hereafter RS) sense. However, by
using standardized variables to define wealth dependent measures of risk and return, the
paper finds necessary and sufficient conditions on risks such that an increase in risk does
cause decreasing optimal risky investment. The paper thus complements the RS results. For
investment in two risky assets, the paper uses standardized variables to find conditions on
risks such that the riskier asset’s demand to decrease (increase) as the Arrow-Pratt absolute
risk aversion index increases (decreases), and thereby complements Ross’ [1981] results.

Presented to the Econometric Society Summer Meeting, Quebec City, 1994. This is the first
of two companion papers.



Standardized Variables and Optimal Risky Investment
Frank Milne and Edwin H. Neave
1. Introduction
1.1 Review of Literature

Properties of risky investment demand functions are usually established by imposing
restrictions on utilities. Rothschild and Stiglitz [1970, 1971] (hereafter RS) restrict the class
of concave utilities' to find conditions sufficient for increasing risk in the RS sense to imply
decreasing optimal investment in a single risky asset. Diamond and Stiglitz [1974] extend RS
to utility - compensated increases in risk. Ross [1981] considers optimal investment in two
risky assets. After showmg that risky investment need not decrease with an increase in
Arrow-Pratt risk aversion, Ross develops a more restrictive measure of risk aversion to
characterize asset demands.

The foregoing research program thus aims to define preferences with observable
portfoho choice implications. Since this program has expended relatively less effort
examining how investors might respond to further restriction of the risks themselves, the
present paper examines this approach. By placing fewer restrictions on utilities and
additional structure on risks, the paper obtains behavioral implications similar to those
obtained earlier. Thus, it both complements existing results and raises anew an old
question:? is observed behavior attributable to preferences or to probabilities?

1.2 Present Approach

This paper employs discrete random variables with a common domain, called
standardized variables, to develop new relations between dominance criteria, wealth
dependent risk - return tradeoffs, and conditional means. These properties are then applied
to characterizing optimal risky investment decisions. )

Unless either utilities or risks are appropriately restricted, optimal risky investment
need not decrease as risk increases in the RS sense. Nevertheless, the paper finds necessary
and sufficient conditions on risks such that any risk averse investor will decrease risky
investment in response to an increase in risk. Risks must satisfy a dominance related
restriction, but utilities must only be concave.

For optimal investment in two risky assets, the paper finds sufficient conditions for
the riskier asset’s demand to decrease (increase) as the Arrow-Pratt absolute risk aversion

'The RS conditions are i) decreasmg absolute risk aversion, ii) mcreasmg relative risk
aversion, and iii) relative risk aversion less than unity.

2See, for example, Ward Edwards [1953].
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index increases (decreases). The analysis shows both why Ross’ [1981] counterexample
frustrates a decrease in demand for the riskier investment and why demand for it will
decrease if the random variables satisfy a dominance related restriction.

In summary, the paper establishes:

i) new intérpretations of second degree dominance comparisons involving wealth dependent
risk and return effects;

ii) new interpretations of second degree dominance comparisons involving differences
between conditional means;

iii) necessary and sufficient conditions on a single risky asset such that any risk averter will
invest less in the asset as its risk increases;

iv) sufficient conditions on two risky assets such that an increase in absolute risk aversion
implies the investor will buy less of the riskier asset;

v) Given i) and ii), conditions iii) through and iv) can be expressed using any one of:
dominance criteria, risk - return relations or differences between conditional means.

In a companion paper (Milne-Neave [1994b]), we use the same technology to analyze the
expected utility effects of adding one risk to another, when the risks have fixed size.

The paper is organized as follows. Section 2 defines standardized variables and
relates dominance, risk - return measures, and conditional means. The findings of Section
2 are then used to establish the paper’s portfolio theoretic results. Section 3 finds necessary
and sufficient conditions under which all risk averters decrease their optimal risky
investment whenever asset risk increases. For investment in two risky assets, Section 4 finds
sufficient conditions implying that more risk averse investors (in the Arrow-Pratt sense)
purchase less of the riskier asset. Section 5 concludes.



2. Tools of Analysis

After defining standardized random variables, this section relates second degree
dominance criteria to risk - return effects and to conditional means.

2.1 Interpreting Dominance Criteria
Consider a family of discrete random variables, generically denoted X, with the

common domain® J, = { -k, -k+1,...,k }. If A and B are members of this family, A
stochastically dominates B in the second degree if and only if*

J=-

f:FA(i)aJ. <Y Fylde;smed,, (2.1)
k k

jg_
where Fy(j) is the distribution function of X. The standardized domain J, implies
§=j-(j-1)=1

and this simplification is used throughout the paper. If U is the class of strictly increasing
strictly concave utilities, (2.1) is equivalent to

E{ u(4) } >E{ uB) },u € U;
cf. Hadar-Russell [1969]. When E(4) = E(B), RS show that (2.1) implies:
B =4 + A, (2.2)
where the equality in (2.2) refers to equality in distribution® and
EAlA =j) =0;j € J,. : (2.3a)

If B satisfies (2.2) and (2.3a) it is termed riskier than A in the sense of RS. In the sequel it
will often prove convenient to think of the distributional equality in (2.2) as involving a sum

*Variables need not all have the same outcomes, since for a given variable an outcome
may obtain only with probability zero.

*To eliminate trivialities, (2.1) is assumed to hold strictly for at least one m € J,.

Two random variables are equal in distribution if they have the same outcomes with
the same probabilities, while two random variables are equal if all possible conditional
distributions have the same outcomes with the same probabilities; cf. Ross [1979].



of terms:
B=A4+%A,j€EJ, (2.3b)

where for each j, A; represents .a conditional variable with an expectation as defined in
(2.3a). We later express the individual conditional variables using sums of the probability
vectors defined next.

Given J, , X can be described by its probability vector x. The components of x will
be indexed according to outcome values

xX=(X4...., %) =0,
where ' denotes transpose, and
x=Pr{X=j}j€E. (2.4

where Pr means probability. Whenever j is not a realizable value of X, x; = 0. Moreover,
e'x = 1, where e is a (2k+1)-dimensional vector of ones.

At later points in the paper, we employ multiplicative transformations of variables,
e.g. 14, n € (0, 1). If A is defined on J, , then 54 is defined on J, , and, while the
corresponding probability vector na has exactly the same component values as a, the

outcomes to which na refers are scaled outcomes. Moreover, the realizations of 4 and 74
are perfectly positively correlated, and

PrifA =jnA =9} =Pr{fA=j} =Pr{nd =nj };j € J.
Given any two variables A and B defined on J,, let
d=Db-a. (2.5)
Then
d=Pr{B=j}-Pr{A=j}j€E]J,

and e'd = 0.

Dominance relations can now be expressed as linear transformations of probability
vectors. Given the standardized domain J,, (2.1) can be rewritten to show that A4

stochastically dominates B in the second degree if and only if (cf. Milne-Neave [1994a])

B =8d=5(8d) =0, (2.6)
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where § is a (2k+1) x (2k+1) matrix with ones on and below its main diagonal, zeroes
above. In addition §? = SS. Examples of S and $? are

—_— = = O
—_ - O ©°
—_ © © ©o

[ L

and

N = O O
-0 O ©

H W N e
W N =0

Inequality (2.6) means §8; = O for all j € J;,and B8; > O for at least one j € J,. Whether or
not (2.6) is satisfied, _

B = B. = E(4) - E(B). (2.8)
Properties (2.6), (2.7) and (2.8) will be used frequently below.

Next, (2.6) can be rewritten to express the probability differences d as linear
transformations  of 8. Equations (2.6) have a solution®

d=578

(where 2 = (55)7); i.e.:

The numbers d;, j € J,, need not all be positive, but since both @ and b are
probabilities a - d = b = 0, a condition satisfied by (2.9).



¢ = By
d—k+1 = Bier - 26,

sz = Bisz- 2B 441 + By 2.9

1 = Bir - 2Bz + Bys
dy = Br- 2By + Biz = - Bii + Be.z -

The second equality in the last line of (2.9) follows from (2.8). An example of S is:

1 000
-2 100
1-2 10
01-21

2.2 Dominance and Risk - Return Tradeoffs

Conditions (2.9) further permit interpreting second degree dominance relations as
risk (noise) and return (mean shift) effects. To see this, rewrite (2.9) as

d=SB=08,+ ..+ 8, + 6., (2.10a)

where
O = (Op e’ 01, B;,-28;, By 5 Oy, -, O | (2.10b)
jE {k, ..., k-2}
and

01 = (04 vy Oy By s -Brt) ' (2.10c)

(The subscripts on the zeroes indicate which outcome probabilities are affected by a given
noise or mean shift term.) If ; > 0,j € {, ..., k-2}, the corresponding d; show that each
risk effect is the product of a scale factor B and a unit measure of increasing risk
conditional on the outcome 4 =j + 1. If §; < 0 A will no longer dominate B by second
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degree stochastic dominance, but §; can formally be interpreted as a risk reduction term.’

The effects of the term B, are next discussed, beginning with 8,, = 0. If B,, = 0,
E(A) = E(B) and, because B is riskier in the RS sense, A dominates B by SSD. This case
is closely related to the mean - variance criteria for portfolio selection, since o°(B) - ¢°(4)
is a linear function of S.
Lemma 2.1: *(B) - 0*(4) = 2e'8-B,,{ [ 2k + 3] - [ E(A) + EB) ] }.
Proof: For any 4 and B,

o’(B) - i*(A) = e'Kd - [(e'Kb)® - (e'Ka)? ]
where K is a diagonal matrix with elements -k, -k+1, ..., k. Then by (2.10b) and (2.8)
o(B) - °(4) =
e'K(o,+ ...+ 8,+8,)+Bu.u EB) +EA]
Noting that each of the first 2k-1 terms e’K?5; in (2.11) has the form
78, - 20+178; + (+25'8, = 28;,

we obtain |

(B) - *(4) =
2¢'8 - Buf [2k+3] - [ E(B) +E(4) ] }.W

Corollary: If E(A) = E(B), then
o’(B) - c*(4) = 2e'B.

Proof: The result follows immediately from the fact that E(4) = E(B) implies 8,, = O; cf.
Milne-Neave[1994a]. W

Lemma 2.1and its corollarly show the mean-variance criterion in effect suppresses
information related to differing levels of wealth (location information), since by definition
a variance weights all the terms of 8; equally. Thus, the mean-variance criterion does not

"Any term B; can also be interpreted as two shift effects, but in the applications we have
developed so far, interpretations as risk effects have been more useful.
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allow for the differing marginal utilities associated with the risk effects reflected in
B; = B, when j # £.1In contrast, this paper exploits these distinctions below.

Now consider B,; > 0, supposing also that 8, = O, ..., B, = 0 and that strict
inequality holds for at least -some j € {-k, ..., k-2}. In this case, E(A) > E(B). Since A is
also less risky than B, A dominates B by SSD

For the case B;; < 0, suppose as before that 8, = , Br.z = Oand that inequality
holds in at least one case. Now A cannot dominate B because E(A) < E(B), but at the same
time B cannot dominate® A because B is riskier in the RS sense.

2.3 Nlustrations
Suppose A and B are defined on J,and respectively have the probability vectors
a=1(0,1/2,0,1/2,0)';b=(1/4, 0,1/4, 1/2, 0)'.
Then
d= (1M1, -1/2, 1/4, 0,0)'; Sd = (1/4, 0,0, 0, 0)';

A dominates B in the second degree. In this case B =A + {A,|A = -1} (where the relation
is equality in distribution),

-1, with prob 1/2
{A, |4 =-1}=0; with prob 0
1; with prob 1/2

and o, = (1/4, -1/2, 1/4, 0, 0)'. For comparison’s sake, a probability tree relating A4 and
B is shown in Table 1.

®A risk averse investor who places considerable weight on mean returns would prefer
B, an investor who weighed risks more heavily would prefer A.



Table 1: Probability Tree Relating A and B
| -2; 1/4

-1; 172 <
i ~0;1/4

1; 12 —1;1/2
A B

Numbers in each cell indicate outcome
and probability of outcome.

Table 2 displays two ways of examining differences between two random variables
comparable by second degree dominance. Since the two examples assume that the variables
differ by the same probability vector d, we have that B =4 + A and B* = A4 + A*are
such that B = B*, where the equality is interpreted as equality in distribution. The
difference between the two sets of circumstances lies in the second case’s standardized
interpretation of risk differences. Note from this second interpretation that the marginal
utility of the second risk effect is less than the marginal utility of the first for any strictly
concave utility, and the two will thus have different impacts on portfolio choice, although
the RS measures of risk do not recognize these differences.

Table 2: Interpreting Second Degree Dominance

Non-Standard Interpretation Associated Probability Tree

-2;1/5
Jy -2 -1 0 1 2

-1;2/5

na 0 2 0 3 0 0: 2/5
A, 1 -2 0 0 1 1;3/5 1; 1/5
A, 0 0 2 -2 0

2;1/5
nb 1 0 2 1 1 A B

nS*b - a) 1 0 1 0 0

In this and the following examples it is often convenient to convenient to express the values
of x; as rational numbers of the form {;/n, and multiply by 7 so as to express probabilities
using integers £, In the present example, n=J. -
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Standardized Interpretation Associated Pfobability Tree

(Assumes equality in distribution
can be employed)

Ty 2 1 0 1 2 ' 2, 1/5
-1;2/5
na 0 2 0 3 0
0; 1/5+1/5
A, 1 2 1 0 0 _
nb* 10 2 1 1 5175
» A B*

As above, n = 5 in this example.
2.3 Dominance and Conditional Means

Dominance criteria are also related to conditional means. First, as is well known, the
first order dominance criterion is interpreted in terms of probability distribution functions:

Sx=Pr{X<j}j€E,

where S; is the j’th row of § (indexed according to the outcomes of X), and Pr{X <} is

the cumulative probability that X assumes a value no greater than j. Next, let K be defined
as in Section 2.2.Then

Lemma 2.3: (SK)x = Sj(Kx) =E{ X < j}Pr{X <j}.jE J, 2.12)

where (SK); refers to the j’th row of SK, and E{ X < j } is the expectation of X conditional
on X < j.

Proof: Follows immediately from the definitions of S and K.

Note that when E({4) = E(B), applying (2.12) to d and examining the k’th row shows
e'(Kd) = 0.

A similar relation can be established for the second order criterion:
Lemma24:(S)x =[G +1)-E{X <j}]Pr{X <j},]j€E. (2.13)

Proof: It can readily be verified that



11
$? + SK = (K + I)S,
and hence on a component-by-component basis
(S%)x + (SK)x = (G + 1)Sx, j € J,.1 (2.14)
Note that applying (2.13) to d and examining the k-1’st and k;th rows shows 8,; = B,.

The paper’s portfolio theoretic results are obtained using variants of the foregoing
conditions. The conditions $’d> 0 and SKd < 0 are invoked to extend RS, and

nSd =(,1,...,1,-1,-1)'
is used to extend Ross.

3. Optimal Risky Investment and Changes in Risk:
: The Single Risky Asset Case

ThlS section considers allocating funds between cash’ and a risky asset with future
payoffs C. For any u € U, the problem is

max, E{ uw - n + 9C) } = max, E{ uw + 9/C-1]) },
where w is initial, deterministic wealth.
3.1 Optimal Risky Investment

Substituting 4 for C-1, suppose (3.1) has a positive, unique interior solution'®
defined by:

E{ u'w +q,4)4 } =0, G.D)

where ’indicates a first derivative and 5, > O indicates the solution.! Similarly, let 5, > 0
be the optimal interior solution defined by

Making the interest rate on cash positive requires no essential modifications.

'°Two necessary conditions for an optimal interior solution are that the risky investment
must have at least one outcome inferior to investing in cash, and that the expected return
on risky investment exceed the (deterministic) return on cash. These restrictions imply that
neither asset can dominate the other by SSD; cf. Lemma 5.1 below.

"The paper assumes throughout that the appropriate derivatives of u exist.
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E{u'w + n,B)B} = 0. (3.2)
We assume:
i) A dominates B by SSD; and .
ii) E(4) = E(B).
Thus, in terms of the conventions of Section 2:
Sd =(By,....Biz,00) =0. (3.3)
Next, we seek additional conditions on the risks such that
E{ w'(w +n,B)B } <0; | (3.4)

i.e.,np <1, . Conditions (2.2), (2.5), (3.1) and (3.2) show that (3.4) is satisfied iff

E { u'(w+n B)B} - E { u/(w+n A)A }

k "
= ‘;k [u'(tf)+r| b, - u'(w+n Hta] 3.5)

k _
=Y W'+ nntd <0

t=-k

(Note that since (3.5) compares 7,4 and 7,B, the variables are both defined on the domain
Jk and are therefore related by equality in distribution as in section 2.) Section 3.2 restricts
changes in risk to find necessary and sufficient conditions for (3.5). Before obtaining these
results formally, it is instructive to note from (2.9) that (3.5) can be rewritten as

k
Y uw/(w+n @ 14B,,~2B,,+B )<0, (3.6)

t=-k

where B, = B,, = 0. Rearranging (3.6) gives

k-1 .
Y (W wen [s-1D(s-1) - 2u/(w+n s + w/(w+n [s+1])(s+1) )B,, < 0. B.7)
s=-k+1

The RS comparative statics result is obtained from sufficiency conditions for
u'(w + 1,2)z to be a strictly concave function of z, where z refers to any outcome of A4 or
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B. In effect, the RS conditions are sufficient to sign each term of the summation in (3.7).
But to find plausible comparative statics it is only necessary to sign the sum of terms, as
discussed next.

3.2 Changes in Risk

Since marginal utility decreases monotonically for u € U, both the last line of (3.5)
and (3.6) suggest that conditions reflecting both noise terms and wealth levels are needed
to capture the tradeoff between the marginal disutility of increasing risk and the marginal
utility of increasing mean return. The second degree dominance criterion cannot do so
because it gives the same weighting to noise terms conditional on different asset realizations.
However, the next Theorem shows that a suitable restriction is:

SKd = [(K + 1)S - §%ld < 0,
where S, §? , K, and d were defined in Section 2, and where I is an identity matrix.

Since the first k diagonal elements of K are negative and since $%d = 0 when 4
dominates B by SSD, the last condition will hold for at least some choices of A and B. The
condition can be interpreted either as an outcome-weighted first degree dominance
condition (the expression on the left of the equality) or as a vector of differences between
conditional means and the second degree dominance criterion (the expression on the right
of the equality). Intuitively, the condition assures that an increase in RS risk will occur at
levels of wealth low enough to ensure that the marginal disutility of the risk increase will
be greater, at the originally chosen optimum than the marginal utility of the mean increase
which accompanies it as optimal risky investment is varied. This interpretation is further
elaborated below.

Theorem 3.1: Let u € U, and suppose that

S%d = (B Bisss - » Bizr 0,0)' = 0.
Then SKd < 0 is a necessary and sufficient condition for (3.5) to be negative.
Proof: (Sufficiency). Let SKd = Sv = o < 0, and consider

v =S,
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whose solution has the explicit form:
Vi = 0y
Vi1 = Oy - 0

Vit2 = Opy2 = Opyg 3.9

Vieir = Qg = Oy
Vi = ooy =0- oy

cf. Milne-Neave [1994]. Using (3.3), (3.5) can be rewritten, first as

k k

—Z:k W(wen ) v, = _Zku’( wen,t) - (e, - @) (3.10)

where a,; = 0, and then as

k
YoLw(w+ng)-uw(w+n,@1))] e, <0, 3.11)
t=-k

where u'(tw + n,/k+1]) = 0. The inequality in (3.5) then follows from n, > 0, u’ strictly
decreasing, o < 0, and «o; < O for some j € J,.

(Necessity): Suppose the theorem’s hypotheses are not satisfied; i.e. suppose «, > O for
some m € J; .In this case (3.5) can be contradicted as next shown, establishing necessity.

Choose a piecewise linear, strictly increasing utility function y. Even though y & U,
it can be used to find y* € U by altering y while keeping the sign of (3.5) unchanged. As
a first step choose y,y & U such that

y'w+n,i) =20 =-k -k+1, ..., m,
and ' 3.12)
yw+nid) =1i=m+l,..,k

Substituting (3.12) in (3.11) shows that term m equals «, > 0, and that all other terms are
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zero. To find y* € U, alter conditions (3.12) so that
Y*¥'tw + i) = 2 + (m-i)e; i = -k, -k+1, ..., m,
and - . (3.13)
YW + ) =1 + mtI-de i = m+1, .. k,
where
0 <e <1/2k.
The resulting piecewise linear function y* can be regarded as a member of U, since it is

strictly increasing and strictly concave over more than an single outcome.'> Moreover, using
y* (3.5) can be rewritten as

m-1 k k
Yea, +a,+ Y ea,=1-e)a, +c) a, =(1-e)e, >0, (3.14)
t=-k t=m+1 t=-k

where the summation term after the first equality in (3.14) is zero because E(4) = E(B).
Hence, (3.14) gives the desired contradiction. ll

3.3 Examples

This section’s first example satisfies the conditions of Theorem 3.1 and implies
decreasing risky investment. The second violates the conditions and implies increasing risky
investment for some risk averters. Let"

k=21,J={-1,..,21} uw =-w,w=1I0,

and consider the variables A4, B, and B" distributed as in Table 3:

2The further modifications necessary to create a strictly decreasing marginal utility with
continuous derivatives are of formal interest, but can be ignored here.

BThe change in domain is for notational simplicity.
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Table 3: Examples

Outcomes: -1 0 1 es 19 20 21
na' 1 2 0 . ... 0 10 0
nb' 2 0 1 0 10 .0
nb*' 1 2 0 1 8 1

Note that E(4) = EB) = EB’) = 199/13. In these examples, n = 13.

Consider first the optimal investment in A, for which n, = 3.849243 satisfies (3.2). That is,
after multiplying by 13 (3.2) becomes

-(w - n,)% + 200+ (Ww+20y,)% = 0.000000.

Now, B is riskier than A4 in the RS sense and d = b - a satisfies the conditions of Theorem
3.1: ‘

13(SKad)' = (-1,-1,0, ..., 0).
At 7, the marginal disutility of increasing risk is exactly balanced against the marginal utility
of increasing return. Moreover, 7, will be less than 7, whenever the marginal disutility at
n, of increased risk (weighted by outcomes) exceeds the marginal utility of increased return.
Evaluating (3.4) now gives (again after multiplying by 13)
2ew-n)t+ W + )% + 200- (w+20n,)? = -0.021219

confirming that 7 <17, .

Finally, B* presents the same increase in RS risk as B, but the noise term is
conditional on a higher outcome and should therefore have a smaller marginal disutility.
Moreover, d* = b* - a does not satisfy the conditions of Theorem 3.1:

13(SKa*)' = (0, 0,0, ..., 0, 19, -21, 0).
Evaluating (3.4) gives
-W -n)% + 19 (w+199,)% + 160+ (w+20n,)2 + 21+ (w+2In,)?
= 0.000008,

implying 9. > 7, for the chosen utility function.
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4. Two risky investments

This section considers investing in two risky assets, 4 and and a riskier B = A4 + A.
The problem to be studied is

max, E{ v(w ‘+ (j-n)A +nB) } = max, E{ viw + A +24) } 4.1)

where v € U. In effect, the investor has an initial random wealth position w + A4, and by
choosing 7 optimally equates the marginal utility of increasing mean return with the
marginal disutility of increasing risk. If the optimal decision is to involve positive investments
in both 4 and B, neither A nor B can dominate the other in the second degree. To rule out
this possibility of second degree dominance we assume i) B is riskier than 4 in the RS sense

and ii) EB) > E(A).

4.1 Relations to Ross

Ross [1981] provides an example showing that for risks 4 and B = A + A’ (the
asterisks indicate a difference in approach to be elaborated shortly) there are utilities
u, v € U, v more risk averse than u, such that an investor with utility v purchases more of
a riskier asset than one with utility u. We seek more restrictive conditions on risks, such that
an investor with utility v will purchase less of the riskier asset B than will an investor with

utility u.

Our results are based on the restrictions illustrated in Table 4. Beginning with 4 and
B" = A + A" very similar to the variables used by Ross, we choose 4 and B = A4 + A, and
require A = A"in distribution.” Table 4 uses Ross’ variable A4, while A" represents
combinations of noise and mean shift terms similar, but not identical to those used by Ross.
The changes in the example permit a direct comparison with the present A.

“Since (4.1) shows the optimal choices of A and B depend on the form of A which
relates them, and since we use standardized forms of A, the optima we obtain differ from

Ross’.



Table 4: Relations to Ross [1981]

TWO RISKY INVESTMENTS

Amended Ross Example

Outcomes" -1 0012 3
8a 0 40 40
8A"|4=0 12010
8A'|A=I 0 0120
8b° 1 213 0
8d’ 1-21-10
85%d 1 0 0 -1 -2

Variables for Present Approach

Outcomes -1 01 2 3
8a 0 40 40
8A|A=0 12100
8A,|A=1 0 00-10
8b 1 213 0
8d 1-21-10
85%d 1 0 0 -1 -2

E() = 8/8, EB) = EMB") = 10/8

1

1
-2

Associated Probability Tree

-1;1/8
0; 4/8 0;2/8
1; 178
2;4/8 2; 1/8+2/8
4;1/8
A B

Associated Probability Tree

-1;1/8
0; 4/8 <O; 2/8

1;1/8
2; 4/8 2,38

4;1/8
A B*
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As shown in the next section, the relations between 4 and B’ do not satisfy the
conditions of Theorem 4.1,but those between A and B satisfy a generalization of them.'S

1“Since the outcomes -3 and -2 have zero probabilities, they are omitted for brevity.

%It is easier to establish Theorem 4.1for 8%d = (1, 1,..., 1, -1, -1)" first, then show how
these conditions can be generalized to take care of examples like the one just examined.



19

4.2 Optimal investment for a given class of risks

To proceed, consider variables 4 and B = A + A related by the unit effects:”

-1; with prob p
{A;14=j)=0; with prob 1-2p (4.22)
1, with prob p

forj € { -k+1, ..., k-1 } and

0 ; with prob 1- p
{A,lA=k-1}= (4.2b)
1; with prob p .

In (4.2a) the subscripts j are used to indicate risk terms A; conditional on the outcomes j €
{ -k+1, ..., k-1 }. In (4.2b) the subscript m is used to refer to the mean shift term A, ,
which is also conditional on outcome k-1. Conditions (4.2a) and (4.2b) are sufficient but not
necessary for:

nd =(1,-1,0,...,0-2,2)

and (4.2¢)
nsd =(,1,...1,-1,-1)".
Given the foregoing, problem (4.1) can now be written:
max_ {v(w-k)a_ +
k-1
Y I wai-n )p + W waj )(1-2p ) + W w+jsn )p Ja; + (4.3)
Jj=-k+1
+[W(w+k)1-p)+wWw+k+n)pla,l},

where

a = Prob{A =]}

"The results generalize in a straightforward way; the main cost of allowing the §; to
differ from unity is additional notation. We assume each of the unconditional probabilities
a; is large enough that the conditional changes in (4.2a) and (4.2b) do not violate the
condition b = 0.
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and p is a unit change in probability as defined in (4.2a) and (4.2b) and illustrated in the
second example of Table 4. Assuming the appropriate derivatives exist, the optimal solution
7, is given by

k-1

-vI( w+ + V/( wtj+
j‘_EMIV(WJn ) + VI(wj+n, ) 1 g 4.4)

+V(w+k+n,)pa, =0

Note that without the last, positive term in (4.4) there would be no interior solution: the
investor will not purchase both A4 and the riskier A + A unless the additional risk of the
latter is offset by a higher mean.

Next, let
viw) = G((uw)) 4.5)

where G(+) is a strictly increasing strictly concave function. The function v(w) is said to be
strictly more risk averse (in the Arrow - Pratt sense) than the function u(w); cf. Pratt [1964],
Huang-Litzenberger [1988].

Theorem 4.1: Suppose (4.2) is satisfied and that A, and A, are defined as in (4.2a) and
(4.2b). Let 9, > 0 and u, > O be the optimal solutions to (4.4) for uw) and v(w)
respectively. Then if v(iw) = G(u(w)) and G is a strictly increasing strictly concave function
as in (4.5),1, > 1, .

Proof: Rewrite (4.4), using 5, = 7 to minimize notation, as

k-1

Ek[ =G/ wj-n Du'(wej-n ) + G'u( wjsn Du'(wejsn ) o a; 4 ¢
o

+ G'(u( w+k+n )u'( w+k+n ) p a, = 0.

Since the bracketed terms in the first line of (4.6) are negative by diminishing marginal
utility,

k-1

Y Guw+j))[-ul(w+j-n)+u(w+j+n)lpa @.7)
j=-k )
+ G'w(w+k+nu(w+k+n)pa,=H>O0.

But the last line of (4.7) is positive and 5 > 0 as well, so that
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' k-1
Glluw + kDY [-w'(w+j-n)+u(w+j+n)lpag @.8)
j—k
+G’(u(w+k))u’(w+k+n)pak=I>H>O,

from which it follows that

k-1
Y - wej-n ) + w(wejsn ) a; + w(wekin ) pa, >0, (4.9
j=k

Thus, finally, 5, >, .H

Remark: The converse, that an increase in absolute risk aversion implies a decrease in
optimal risky investment, follows by similar reasoning. ll

Remark: Conditions (4.2a), (4.2b) and (4.3) can be relaxed so long as any mean shift effect
is conditional on an outcome at least as great as the largest outcome on which any risk
increases are conditioned; cf. (4.6) through (4.8). Moreover there can be more than a single
mean shift effect, neither mean shift terms nor risk terms need be of unit value, and the
conditional probabilities p can also differ.

5. Conclusions

This paper used standardized variables to characterize risks and to establish new
results for optimal risky investment decisions. The paper first extends RS, showing that a
dominance related criterion is necessary and sufficient for increasing risk to imply decreasing
risky investment for every risk averter. Second, the paper extends Ross, finding a class for
which a riskier asset’s demand decreases ifand only if the Arrow-Pratt absolute risk aversion
index increases (decreases).

By showing that restrictions on risks can have the same behavioral implications as the
literature’s preference restrictions, the paper raises a familiar question in descriptive
economics. Whenever the behaviors discussed here are encountered in practical contexts,
they may ultimately prove to be consequences of either preferences or probabilities.
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