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Abstract

We first propose two procedures for estimating the rejection probabilities of bootstrap
tests in Monte Carlo experiments without actually computing a bootstrap test for
each replication. These procedures are only about twice as expensive (per replication)
as estimating rejection probabilities for asymptotic tests. We then propose a new
procedure for computing bootstrap P values that will often be more accurate than
ordinary ones. This “fast double bootstrap” is closely related to the double bootstrap,
but it is far less computationally demanding. Simulation results for three different
cases suggest that this procedure can be very useful in practice.
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1. Introduction

The most appealing way to perform a bootstrap test is to calculate a bootstrap P value.
This may be done by seeing where the test statistic falls in the empirical distribution of
a number of bootstrap test statistics. The bootstrap P value is simply the proportion
of the bootstrap statistics that are more extreme than the actual test statistic. When
this P value is sufficiently small, we reject the null hypothesis.

Theory suggests that bootstrap tests will generally perform better in finite samples
than asymptotic tests, in the sense that they will commit errors that are of lower order
in the sample size n; see, among others, Hall (1992) and Davidson and MacKinnon
(1999b). A growing body of evidence from simulation experiments indicates that
bootstrap tests do indeed yield more reliable inferences than asymptotic tests in a
great many cases; see Davidson and MacKinnon (1999a, 2002a), MacKinnon (2002),
Park (2003), and Gonçalves and Kilian (2004), among many others.

Although bootstrap P values are often very reliable, this is certainly not true in every
case. For an asymptotic test, one way to check whether it is reliable is simply to use
the bootstrap. If the asymptotic and bootstrap P values associated with a given test
statistic are similar, we can be fairly confident that the former is reasonably accurate.
Of course, having gone to the trouble of computing the bootstrap P value, we may
well want to use it instead of the asymptotic one.

In a great many cases, however, asymptotic and bootstrap P values are quite different.
When this happens, it is almost certain that the asymptotic P value is inaccurate, but
we cannot be sure that the bootstrap one is accurate. One of the contributions of
this paper is a technique for computing modified bootstrap P values which will tend
to be similar to the ordinary bootstrap P value when the latter is reliable but more
accurate when it is unreliable. This technique is closely related to the double bootstrap
proposed in Beran (1988), but it is far less expensive to compute. We therefore call
it the fast double bootstrap, or FDB. The amount of computational effort needed to
compute an FDB P value, beyond that needed to obtain an ordinary (single) bootstrap
P value, is roughly equal to the amount needed to compute the latter in the first place.

In the next section, we discuss basic concepts of bootstrap testing. We emphasize the
distinction between symmetric and equal-tail bootstrap tests, which can be important
for tests based on statistics that can take either sign. Then, in Section 3, we review
some theoretical results on the properties of bootstrap tests. In Section 4, we propose
two computationally efficient ways to estimate the performance of bootstrap tests in
simulation experiments. In Section 5, we introduce the fast double bootstrap and
show how FDB P values may be computed with only twice as much effort as single
bootstrap P values. In Section 6, we discuss the relationship between the fast double
bootstrap and the double bootstrap itself. Then, in Sections 7, 8, and 9, we present
results from simulation experiments on three different types of hypothesis test. These
provide some evidence on how well the procedures proposed in this paper work in
practice. Section 10 draws some conclusions.
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2. Bootstrap Tests

Let τ denote a test statistic, and let τ̂ denote the realized value of τ for a particular
sample of size n. The statistic τ is assumed to be asymptotically pivotal, so that
the bootstrap yields asymptotic refinements, as we discuss in the next section. For a
test that rejects when τ̂ is in the upper tail, such as most tests that asymptotically
follow a χ2 distribution, the true P value of τ̂ is 1− F (τ̂), where F is the cumulative
distribution function, or CDF, of τ under the null hypothesis.

If we do not know F , we can often estimate it by using the bootstrap. We generate
B bootstrap samples, each of which is used to calculate a bootstrap test statistic τ∗j
for j = 1, . . . , B. We can then estimate F (τ̂) by F̂ ∗B(τ̂), where F̂ ∗B(τ) is the empirical
distribution function, or EDF, of the τ∗j . This EDF is often referred to as the bootstrap
distribution. Then the bootstrap P value is

p̂∗(τ̂) = 1− F̂ ∗B(τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂), (1)

that is, the fraction of the bootstrap samples for which τ∗j is larger than τ̂ . For a test
at significance level α, we reject the null hypothesis whenever p̂∗(τ̂) < α.

When τ can take on either positive or negative values, as is the case whenever it has
the form of a t statistic, we often wish to perform a two-tailed test. In this case, there
are two ways to proceed. The first is to assume that the distribution of τ is symmetric
around zero in finite samples, just as it is asymptotically. This leads to the symmetric
bootstrap P value

p̂∗S(τ̂) =
1
B

B∑

j=1

I
(|τ∗j | > |τ̂ |). (2)

As before, we reject the null hypothesis when p̂∗S(τ̂) < α. There is evidently a close
relationship between (1) and (2). Suppose that τ is a t statistic, so that τ2 is asymp-
totically χ2(1). Then the P value for τ̂ based on (2) is identical to the P value for τ̂2

based on (1), when both are calculated using the same set of τ∗j .

The symmetry assumption may often be too strong, in which case we can instead base
a test on the equal-tail bootstrap P value

p̂∗ET(τ̂) = 2 min
(

1
B

B∑

j=1

I(τ∗j < τ̂),
1
B

B∑

j=1

I(τ∗j > τ̂)
)

. (3)

Here we calculate P values for one-tailed tests in each tail and reject if either of these
P values is less than α/2. Thus we reject when τ̂ either falls below the α/2 quantile
or above the 1−α/2 quantile of F̂ ∗B(τ). The leading factor of 2 is needed because it is
twice as likely that τ̂ will be far out in one or other tail of the bootstrap distribution
as that it will be far out in one specified tail.

– 2 –



The power of tests based on symmetric and equal-tail bootstrap P values against
certain alternatives may be quite different, as is shown in Section 8. Moreover, these
tests may have different finite-sample properties when the distribution of τ is not
symmetric around zero. There is reason to believe that the bootstrap may perform
better in finite samples for tests based on (2) than for tests based on (3), because
the order of the bootstrap refinement is often higher for two-tailed than for one-tailed
tests; see Hall (1992).

3. Inference from Bootstrap Tests

Beran (1988) shows that bootstrap inference is refined when the quantity bootstrapped
is asymptotically pivotal. We formalize the idea of pivotalness by means of a few formal
definitions. A data-generating process, or DGP, is any rule sufficiently specific to allow
artificial samples of arbitrary size to be simulated on the computer. Thus all parameter
values and all probability distributions must be provided in the specification of a DGP.
A model is a set of DGPs. Models are usually generated by allowing parameters and
probability distributions to vary over admissible sets. A test statistic is a random
variable that is a deterministic function of the data generated by a DGP and, possibly,
other exogenous variables.

A test statistic τ is a pivot for a model M if, for each sample size n, its distribution is
independent of the DGP µ ∈ M which generates the data from which τ is calculated.
The asymptotic distribution of a test statistic τ for a DGP µ is the limit, if it exists,
of the distribution of τ under µ as the sample size tends to infinity. The statistic
τ is asymptotically pivotal for M if its asymptotic distribution exists for all µ ∈ M
and is independent of µ. Most test statistics commonly used in econometric practice
are asymptotically pivotal under the null hypotheses they test, since asymptotically
they have distributions, like standard normal or chi-squared, that do not depend on
unknown parameters.

If τ is a pivot, then bootstrap inference is exact, even for finite B, provided that
α(B + 1), or (α/2)(B + 1) in the case of an equal-tail test, is an integer. Such a test
is often called a Monte Carlo test; see Dufour and Khalaf (2001). However, if τ is an
asymptotic pivot but not an exact pivot, its distribution depends on which particular
DGP µ generates the data used to compute it. In this case, bootstrap inference is
no longer exact in general. The bootstrap samples used to estimate the finite-sample
distribution of τ are generated by a bootstrap DGP, which is in general different from
the DGP that generated the original data.

Suppose that data are generated by a DGP µ0, which belongs to M, and used to
compute a realization τ̂ of the random variable τ . Then, for a test that rejects for
large values of the statistic, the P value we would ideally like to compute is

p(τ̂) ≡ Prµ0(τ > τ̂). (4)

This P value is by construction a drawing from the U(0, 1) distribution.
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In practice, (4) can be neither computed analytically nor estimated by simulation,
because the DGP µ0 that generated the observed data is unknown. If τ is an exact
pivot, this does not matter, since (4) can be computed using any DGP in M. However,
if τ is only an asymptotic pivot, the theoretical bootstrap P value is defined by

p∗(τ̂ , µ̂) ≡ Prµ̂(τ > τ̂), (5)

where µ̂ is a (random) bootstrap DGP in M, determined in some suitable way from
the same data as those used to compute τ̂ . We denote by µ∗ the random DGP of
which µ̂ is a realization. Observe that p∗(τ̂ , µ̂) is what the bootstrap P value p̂∗(τ̂)
defined in (1) converges to as B →∞.

Let the asymptotic CDF of the asymptotic pivot τ be denoted by F . Throughout
this paper, we assume that F is continuous and strictly increasing on its support. At
nominal level α, an asymptotic test that rejects for large values of the statistic does so
whenever the asymptotic P value 1−F (τ̂) < α. In order to avoid having to deal with
different asymptotic distributions, or tests which reject in the left-hand tail or in both
tails of the distribution, it is convenient to replace a raw statistic τ by its asymptotic
P value, of which the asymptotic distribution under the null is always U(0, 1) under
our assumption. For the remainder of this section, τ denotes a test statistic that is
asymptotically distributed as U(0, 1).

The rejection probability function, or RPF, provides a measure of the true rejection
probability of an asymptotic test for a finite sample. This function, which gives the
rejection probability under µ of a test at nominal level α, is defined as follows:

R(α, µ) ≡ Prµ(τ < α). (6)

It is clear that R(·, µ) is the CDF of τ under µ. For ease of the exposition, we assume
that, for all µ ∈M, R(·, µ) is continuous and strictly increasing on [0, 1], although this
is not true of a bootstrap distribution based on resampling from a finite number of
observations. In most such cases, the assumption is still a very good approximation.

The information contained in the function R is also provided by the critical value
function, or CVF, defined implicitly by the equation

Prµ

(
τ < Q(α, µ)

)
= α. (7)

Q(α, µ) is just the α quantile of τ under µ. It follows from (6) and (7) that

R
(
Q(α, µ), µ

)
= α, and Q

(
R(α, µ), µ

)
= α, (8)

from which it is clear that, for given µ, R and Q are inverse functions.

The bootstrap test rejects at nominal level α if τ < Q(α, µ∗), that is, if τ is smaller
than the α quantile of τ under the bootstrap DGP. By acting on both sides with
R(·, µ∗), this condition can also be expressed as

R(τ, µ∗) < R
(
Q(α, µ∗), µ∗

)
= α.
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This makes it clear that the bootstrap P value is just R(τ, µ∗). It follows that, if R
actually depends on µ∗, that is, if τ is not an exact pivot, the bootstrap test is not
equivalent to the asymptotic test, because the former depends not only on τ , but also
on the random DGP µ∗. If the true DGP is µ0, the actual rejection probability, or
RP, of the bootstrap test at nominal level α is

Prµ0

(
τ < Q(α, µ∗)

)
= Prµ0

(
R(τ, µ∗) < α)

)
. (9)

In Davidson and MacKinnon (1999b), it is shown that some bootstrap tests enjoy a
further refinement, over and above that due to the use of an asymptotic pivot, if τ and
µ∗ are asymptotically independent. In addition, such asymptotic independence makes
it possible to obtain an approximate expression for the RP of a bootstrap test. If τ
and µ∗ are fully independent under the true DGP, the RP (9) becomes

Eµ0

(
Prµ0

(
τ < Q(α, µ∗)

∣∣ µ∗
))

= Eµ0

(
R

(
Q(α, µ∗), µ0

))
. (10)

Although this is an exact result only if τ and µ∗ are independent, it is approximately
true whenever τ and µ∗ are only asymptotically independent. As we discuss in the
next section, (10) can easily be estimated approximately by simulation.

The asymptotic independence assumption is not very restrictive. A great many test
statistics are asymptotically independent of all parameter estimates under the null
hypothesis. This is generally true for extremum estimators where the estimates under
the null lie in the interior of the parameter space, and for many statistics including
all of the classical test statistics for models estimated by nonlinear least squares and
maximum likelihood; see Davidson and MacKinnon (1999b). However, it is usually
not true for inefficient estimators.

4. Approximating Bootstrap Rejection Frequencies

The conventional way to estimate the bootstrap RP (9) for a given sample size n by
simulation is to generate M samples of size n using the DGP µ0, where, for reason-
able accuracy, M must be large. For each replication, indexed by m = 1, . . . , M, a
realization τm of the statistic τ is computed from the simulated sample, along with
a realization µ̂m of the bootstrap DGP µ∗. Then B bootstrap samples are generated
using µ̂m, and bootstrap statistics τ∗mj , j = 1, . . . , B are computed. The realized
bootstrap P value for replication m is then

p̂∗m(τm) ≡ 1
B

B∑

j=1

I(τ∗mj < τm), (11)

where we continue to assume that the τm and the τ∗mj are in asymptotic P value form.
The estimate of (9) is then the proportion of the p̂∗m(τm) that are less than α. The
whole procedure requires the computation of M(B + 1) statistics. If B is not very
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large, what is estimated is not really (9), but rather the RP of a bootstrap test based
on just B bootstrap repetitions. The bootstrap statistics τ∗mj are realizations of a
random variable that we denote as τ∗.

If one wishes to compare the RP of the bootstrap test with that of the underlying
asymptotic test, a simulation estimate of the latter can be obtained directly as the
proportion of the τm less than α. Of course, estimation of the RP of the asymptotic
test by itself requires the computation of only M statistics.

The fundamental idea of this paper is that it is possible to obtain a much less expensive
approximate estimate of the quantity (10), as follows. As before, for m = 1, . . . ,M,
the DGP µ0 is used to draw realizations τm and µ̂m. In addition, µ̂m is used to draw a
single bootstrap statistic τ∗m. The τ∗m are therefore IID realizations of the variable τ∗.
We estimate (10) as the proportion of the τm that are less than Q̂∗(α), the α quantile
of the τ∗m. This yields the following estimate of the RP of the bootstrap test:

R̂PA ≡ 1
M

M∑
m=1

I
(
τm < Q̂∗(α)

)
, (12)

where the “A” stands for “approximate” to remind us that (10) is generally valid
only as an approximation. As a function of α, R̂PA is an estimate of the CDF of the
bootstrap P value (5). Davidson and MacKinnon (1999b) propose a different procedure
for estimating the rejection probability of a bootstrap test. Since its performance is
almost always worse than that of the procedure proposed here, we do not discuss it.

The estimate (12) is only an approximate estimate of the RP of the bootstrap test not
only because it rests on the assumption of the full independence of τ and µ∗, but also
because its limit as B → ∞ is not precisely (10). Instead, its limit is something that
differs from (10) by an amount of a smaller order of magnitude than the difference
between (10) and the nominal level α.

In order to make this statement precise, we begin by obtaining an explicit expression
for the CDF of the random variable τ∗. Conditional on the bootstrap DGP µ∗, the
CDF of τ∗ evaluated at α is R(α, µ∗). Therefore, if µ∗ is generated by the DGP µ0,
the unconditional CDF of τ∗ is

R∗(α, µ0) ≡ Eµ0

(
R(α, µ∗)

)
. (13)

Denote the α quantile of the distribution of τ∗ under µ0 as Q∗(α, µ0). It is defined
implicitly by the equation R∗(Q∗(α, µ0), µ0) = α, that is,

Eµ0

(
R(Q∗(α, µ0), µ∗)

)
= α. (14)

We now make some assumptions about the bootstrap procedure under study. First,
we suppose that τ is an approximate pivot (in approximate P value form) for the the
null-hypothesis model M0. Thus, for any DGP µ ∈ M0, R(α, µ) − α is small in some
appropriate sense. Otherwise, it would not be sensible to use the given bootstrap
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procedure. Next, we assume that R is continuously differentiable with respect to its
first argument α for all µ ∈ M0. Thus the statistic τ has a continuous density for all
µ ∈ M0. Unlike the first assumption, this assumption is restrictive, but it is made in
order to simplify the following discussion, the result of which holds true under much
less restrictive conditions which are, however, harder to specify precisely. Finally, we
assume that R′(α, µ)− 1, where R′ denotes the derivative of R with respect to its first
argument, is small in the same sense as that in which R(α, µ)− α is small.

The assumption about the derivative R′ implies that Q(α, µ)− α is small for µ ∈M0.
The definition (13) implies that R∗(α, µ) − α is small, and so also Q∗(α, µ) − α. By
Taylor’s Theorem, we can see that

R
(
Q(α, µ∗), µ0

)−R
(
Q(α, µ0), µ0

)
= (1 + η1)

(
Q(α, µ∗)−Q(α, µ0)

)
, (15)

where η1 is a small random quantity. Similarly,

R
(
Q∗(α, µ0), µ∗

)−R
(
Q(α, µ∗), µ∗

)
= (1 + η2)

(
Q∗(α, µ0)−Q(α, µ∗)

)
, (16)

and

R
(
Q(α, µ0), µ0

)−R
(
Q∗(α, µ0), µ0

)
= (1 + η3)

(
Q(α, µ0)−Q∗(α, µ0)

)
, (17)

where η2 and η3 are also small random quantities. If we add equations (15), (16),
and (17) together, remembering the identity R(Q(α, µ), µ) = α, we see that

R
(
Q(α, µ∗), µ0

)
+

(
R

(
Q∗(α, µ0), µ∗

)− α
)
−R

(
Q∗(α, µ0), µ0

)

can be expressed as the sum of quantities that are the product of two small quantities.
Taking expectations under µ0 and using (14), we find that

Eµ0

(
R(Q(α, µ∗), µ0

))
= R

(
Q∗(α, µ0), µ0

)
(18)

plus the expectation of a sum of products of two small quantities. The left-hand side
of (18) is just the second expression in (10), while the right-hand side is the limit
of (12) as M → ∞. Thus the error in using (12) to estimate (10) is of smaller order
than the difference between the RP of the bootstrap test and the nominal level α.
This suggests that the R̂PA procedure will tend to be relatively accurate when the
bootstrap test works well and relatively inaccurate when it works poorly.

In practice, it is not necessary to convert test statistics to approximate P value form
in order to estimate rejection probabilities. Drawings of the statistics may be obtained
in whatever form is most convenient and then sorted in order from the most extreme
values to the least extreme. For each value of α of interest, it is then straightfor-
ward to compute the proportion of realizations of the statistic more extreme than the
realization of the bootstrap statistic in position αM in the sorted list.
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For given M, the R̂PA procedure requires about twice as much computational effort
as performing an experiment for the asymptotic test, since we need only 2M test
statistics, the τm and the τ∗m. However, more replications are required to achieve a
given level of accuracy. The R̂PA procedure results in drawings of τ and τ∗ that are
asymptotically independent if τ and µ∗ are asymptotically independent. Thus the
variance of the estimated RP for a bootstrap test with a given actual RP will always
be larger than the variance of the estimated RP for an asymptotic test with the same
actual RP. For the asymptotic test, the only source of error is the randomness of
the τm. For R̂PA, there is also the randomness of the τ∗m, which causes Q̂∗(α) to be
random. Thus more replications are needed to achieve a given level of accuracy.

A modified version of this procedure may be used to obtain positively correlated draw-
ings of τ and τ∗ and thus reduce the variance of the estimated RP of the bootstrap
test. This modified procedure works as follows. Once µ̂m has been obtained for repli-
cation m, a new set of random numbers, independent of those used to obtain µ̂m, is
drawn. These are then used to compute both τm and τ∗m, the former using µ0, the
latter using µ̂m. The resulting substantial positive correlation between the τm and
the τ∗m reduces the variance of the estimated RP. An additional advantage of this
method is that τ and µ∗ are genuinely, and not just asymptotically, independent. We
call this modified procedure R̃PA. It necessarily involves more computational cost per
replication than R̂PA, but it may require substantially fewer replications; see Section 7.

The R̂PA and R̃PA procedures proposed here can be used to estimate the power of
bootstrap tests as well as their size. The only thing that changes is that the τm are
calculated using data generated by a DGP, say µ1, which does not satisfy the null
hypothesis. These data are used to obtain the realizations µ̂m of the bootstrap DGP,
which in turn are used to generate the data from which the τ∗m are calculated. See
Davidson and MacKinnon (2006) for details.

5. Fast Double Bootstrap P Values

The procedures proposed in the previous section are useful only in the context of
Monte Carlo experiments. But any procedure that gives an estimate of the RP of a
bootstrap test, or, equivalently, of the CDF of the bootstrap P value, allows one to
compute a corrected P value. This is just the estimated RP for a bootstrap test at
nominal level equal to the uncorrected bootstrap P value. The idea behind the fast
double bootstrap is to bootstrap the R̂PA procedure of the previous section, replacing
the unknown true DGP µ0 by the bootstrap DGP µ̂. At least potentially, this leads to
more accurate inference than conventional procedures based on the bootstrap P values
(1), (2), or (3).

The details are as follows. For each of B bootstrap replications, two different bootstrap
statistics are generated. For bootstrap replication j, a bootstrap data set, denoted
by y∗j , is first drawn from the bootstrap DGP µ̂. In the same way as the original data
are used to obtain both the realized test statistic τ̂ and the realized bootstrap DGP µ̂,
the simulated data y∗j are used to compute two things: a bootstrap statistic, denoted
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by τ∗j , and a second-level bootstrap DGP, denoted by µ∗∗j . Next, a further simulated
data set, denoted by y∗∗j , is drawn using this second-level bootstrap DGP, and a
second-level bootstrap test statistic, τ∗∗j , is computed. This is completely analogous
to the R̂PA procedure of the previous section: Here the M drawings τm and τ∗m are
replaced by the B drawings τ∗j and τ∗∗j , respectively.

Precisely how the fast double bootstrap, or FDB, P value is calculated depends on
how the single bootstrap P value is calculated. For the moment, we maintain the
convention that τ is asymptotically U(0, 1). In this case, the bootstrap P value is

p̂∗ ≡ p̂∗(τ̂) =
1
B

B∑

j=1

I(τ∗j < τ̂), (19)

which is analogous to (1). Except for simulation randomness, a completely correct
P value would be the RP under the true DGP µ0 of the bootstrap test at nominal
level p̂∗. We can estimate this correct P value by use of the R̂PA procedure based on
the bootstrap DGP µ̂ instead of the unknown µ0. In order to do so, we calculate the
p̂∗ quantile of the τ∗∗j , denoted by Q̂∗∗B (p̂∗) and defined implicitly by the equation

1
B

B∑

j=1

I
(
τ∗∗j < Q̂∗∗B

(
p̂∗(τ̂)

))
= p̂∗(τ̂). (20)

Of course, for finite B, there will be a range of values of Q∗∗B that satisfy (20), and we
must choose one of them somewhat arbitrarily. The FDB P value is now the bootstrap
version of (12), namely,

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j < Q̂∗∗B (p̂∗(τ̂)

))
. (21)

Thus, instead of seeing how often the bootstrap test statistics are more extreme than
the actual test statistic, we see how often they are more extreme than the p̂∗ quantile
of the τ∗∗j .

If τ is not asymptotically U(0, 1), and we wish to reject when it is large, then the single
bootstrap P value is calculated by (1), and we need the 1 − p̂∗ quantile of the τ∗∗j ,
which is defined implicitly by the equation

1
B

B∑

j=1

I
(
τ∗∗j > Q̂∗∗B (1− p̂∗)

)
= p̂∗. (22)

The FDB P value is then given by

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j > Q̂∗∗

B (1− p̂∗)
)
. (23)
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If p̂∗(τ̂) = 0, as may happen quite often when the null hypothesis is false, then it
seems natural to define Q̂∗∗B (1− p̂∗) = Q̂∗∗

B (1) as the largest observed value of the τ∗∗j ,
although there are certainly other possibilities. Similarly, when p̂∗(τ̂) = 1, it seems
natural to define Q̂∗∗B (1− p̂∗) = Q̂∗∗

B (0) as the smallest observed value of the τ∗∗j .

In order to perform an equal-tail FDB test, we need to compute two FDB P values.
One is given by (23), and the other by

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j < Q̂∗∗

B (1− p̂∗)
)
. (24)

The equal-tail FDB P value is then equal to twice the minimum of (23) and (24), by
analogy with (3).

A modified version of our FDB procedure would bootstrap the R̃PA rather than the
R̂PA procedure. The only difference relative to the above formulas is that both the
τ∗j and the τ∗∗j would be generated using the bootstrap DGP according to the R̃PA

recipe instead of the R̂PA one. However, because this would significantly increase the
cost per bootstrap repetition, we have not investigated this modified FDB procedure.

It is of interest to see how well FDB tests work under ideal conditions, when τ , the τ∗j ,
and the τ∗∗j are all independent drawings from the same distribution. To investigate
this question, we generate all three statistics from a standard normal distribution for
various values of B between 99 and 3999 and then calculate single and FDB bootstrap
P values. Single bootstrap tests always reject just about 5% of the time at the .05
level and just about 1% of the time at the .01 level. So do the FDB tests, but only
when B is sufficiently large. There is a very noticeable tendency for the FDB tests to
reject too often when B is not large, especially in the equal-tail case.

To quantify this tendency, the difference between the FDB rejection frequency and the
single bootstrap rejection frequency is regressed on 1/(B + 1) and 1/(B + 1)2, with
no constant term. These regressions fit extremely well. Results for tests at the .05
and .01 levels are presented in Table 1. There are 54 experiments for the one-tailed
and symmetric tests and 47 experiments for the equal-tail tests. There are fewer
experiments for the latter because values of B for which α(B + 1) is an integer but
(α/2)(B + 1) is not (namely, 99 and 299) cannot be used. Since each experiment uses
1 million replications, the experimental error should be very small.

In addition to coefficients and standard errors, Table 1 shows the fitted values from
each of the regressions for B = 199, B = 999, and B = 1999. It can be seen that
all the FDB tests, especially the equal-tail ones, tend to overreject when B is small.
Precisely why this is happening is not clear, although it is probably related to the
way in which quantiles are estimated. This is a problem for studies of the finite-
sample properties of FDB tests, which must avoid using small values of B. In practice,
however, overrejection should not be a problem, because any sensible investigator will
use a large value of B whenever the bootstrap P value is not well above, or well below,
the level of the test; see Davidson and MacKinnon (2000b) for a discussion of how to
choose B sequentially when it is expensive to calculate bootstrap test statistics.
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6. Relations with the Double Bootstrap

The genuine double bootstrap, as originally laid out in Beran (1988), bootstraps,
not the R̂PA procedure, but rather the much more expensive conventional procedure
described at the beginning of Section 4. Again the idea is to estimate the RP of the
single bootstrap test for a nominal level equal to the single bootstrap P value. Briefly,
one proceeds as follows. After having computed the realization τ̂ of the statistic τ
and the realization µ̂ of the bootstrap DGP from the real data, one uses B1 first-level
bootstrap samples to compute bootstrap statistics τ∗j for j = 1, . . . , B1. If we assume
as usual that τ is approximately U(0, 1), the next step is to calculate the first-level
bootstrap P value p̂∗(τ̂) according to (19).

Each first-level bootstrap sample is also used to generate a second-level bootstrap DGP
µ∗∗j , which is then used to generate B2 bootstrap samples from which we compute
second-level bootstrap test statistics τ∗∗jl for l = 1, . . . , B2. For the j th first-level
bootstrap sample, the second-level bootstrap P value is

p̂∗∗j =
1

B2

B2∑

l=1

I(τ∗∗jl < τ∗j ); (25)

compare (11). The double-bootstrap P value is the proportion of the p̂∗∗j that are less
than p̂∗(τ̂):

p̂∗∗(τ̂) =
1

B1

B1∑

j=1

I
(
p̂∗∗j ≤ p̂∗(τ̂)

)
. (26)

The inequality in (26) is not strict, because there may well be cases for which
p̂∗∗j = p̂∗(τ̂). For this reason, it is desirable that B2 6= B1.

If τ̂ , the τ∗j , and the τ∗∗jl all come from the same distribution, then, for B1 = B2 = ∞,
the double bootstrap yields exactly the same inferences as the single bootstrap. Sup-
pose, instead, that the bootstrapping process causes the distribution of the τ∗j to
contain fewer extreme values than the distribution of τ itself. Therefore, the P values
associated with moderately extreme values of τ̂ are too small. But it is reasonable to
expect that the distributions of the τ∗∗jl contain even fewer extreme values than the
distribution of the τ∗j . Therefore, the p̂∗∗j should tend to be too small, at least for
small values of p̂∗(τ̂). This implies that the double-bootstrap P value p̂∗∗(τ̂) will be
larger than p̂∗(τ̂), which is exactly what we want. By a similar argument, p̂∗∗(τ̂) will
tend to be smaller than p̂∗(τ̂) when the distribution of the τ∗j contains more extreme
values than the distribution of τ itself. The same intuition applies as well to the FDB.

Of course, even the double bootstrap cannot be expected to work perfectly. Just
as the first-level bootstrap distribution may provide an inadequate approximation to
the distribution of τ under µ0, so may the distribution of the second-level bootstrap
P values provide an inadequate approximation to that of the first-level P values. In
principle, any bootstrap procedure, including the double bootstrap, may or may not
provide an acceptable approximation to the true P value associated with τ̂ .

– 11 –



The advantage of the double bootstrap, relative to the new FDB procedure, is that
it does not require any sort of independence between the bootstrap DGP and the
test statistic. But this comes at an enormous computational cost. For each of B1

bootstrap samples, we need to compute B2 + 1 test statistics. Thus the total number
of test statistics that must be computed is 1 + B1 + B1B2. Even if B2 is somewhat
smaller than B1, as is often recommended, this will be vastly more expensive than
computing 1 + 2B test statistics, for reasonable values of B ≈ B1 and B2 ≤ B1. For
example, if B = B1 = 999 and B2 = 399, the FDB procedure involves computing 1999
test statistics, while the genuine double bootstrap involves computing no fewer than
399,601 of them.

7. Tests for Omitted Variables in Probit Models

In this section and the next two, we present results from a number of simulation
experiments designed to see whether the procedures proposed in this paper can work
well enough to be useful in practice. In this section, we focus on whether R̂PA and R̃PA

provide good approximations to the actual rejection probabilities for single bootstrap
tests based on p̂∗, and on whether the FDB procedure can yield bootstrap tests with
smaller errors in rejection probability than single bootstrap tests.

We begin by studying the OPG version of the LM test for omitted variables in the
probit model. This test has noticeably worse finite-sample properties than other tests
of the same hypothesis, such as the LR test and the efficient score version of the LM
test; see Davidson and MacKinnon (1984). Therefore, it should rarely be used in
practice. However, its poor finite-sample performance makes it a good example for
the study of alternative bootstrap procedures.

The probit model we study can be written as

E(yt |Xt) = Φ(X1tβ1 + X2tβ2), (27)

where yt is a binary dependent variable that can equal 0 or 1, Φ(·) is the cumulative
standard normal distribution function, Xt = [X1t X2t] is a 1× k vector of exogenous
variables, with k = k1 + k2, β1 is a k1--vector, and β2 is a k2--vector. The null
hypothesis is that β2 = 0. The OPG test statistic is the explained sum of squares
from a regression of an n--vector of 1s on the derivatives of the contributions to the
loglikelihood with respect to each of the parameters, evaluated at the ML estimates
under the null hypothesis. See Davidson and MacKinnon (1984) for more details.

We report experimental results for two different cases. In Case 1, k1 = 2, k2 = 6, and
β1
>= [0 1]. The number of restrictions, k2, is relatively large because the finite-sample

performance of the test becomes worse as k2 increases, and preliminary experiments
revealed that the finite-sample performance of the single bootstrap test does likewise.
In Case 2, k1 = 2, k2 = 8, and β1

>= [1 2]. With these parameter values, the bootstrap
test performs worse because there are more restrictions, the probit model fits better,
and the proportion of 0s in the sample is much less than one-half.
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For each of the two cases, we perform 161 experiments, with 100,000 replications each,
for all sample sizes between 40 and 200. The exogenous variables, other than the
constant, are redrawn from the standard normal distribution for each replication, so
as to avoid undue dependence on the design matrix. In these experiments, rejection
frequencies of the asymptotic test and approximate rejection probabilities of the boot-
strap test (both R̂PA and R̃PA) are estimated. In addition, we perform 17 much more
expensive experiments, for n = 40, 50, 60, . . . , 200, also with 100,000 replications, in
which we estimate the actual performance of the bootstrap test and the FDB test
using B = 999. The results of these experiments are presented graphically in Figures
1 through 3.

Figure 1 shows the rejection frequencies for the asymptotic tests, which always over-
reject severely, much more so for Case 2 than for Case 1. As expected, the overrejection
gradually diminishes as the sample size increases, after an initial increase for Case 2,
but it remains quite substantial even at n = 200.

Figures 2 and 3 pertain to Cases 1 and 2, respectively. Each of these figures shows the
rejection frequencies for the (single) bootstrap and FDB tests, along with the approx-
imate rejection probabilities given by R̂PA and R̃PA. Compared with the asymptotic
tests, the bootstrap tests always perform remarkably well. However, they may either
underreject or overreject for small sample sizes and then underreject for a range of
somewhat larger sample sizes. The reason for the initial overrejection in Case 2 is
explained below. Moreover, as can be seen from the figures, the approximations R̂PA

and R̃PA are almost always very good indeed, except for the very smallest sample size.

In Section 4, we discussed the relationship between the variances of R̂PA, R̃PA, and
the estimated rejection probability for the asymptotic test. In order to investigate
this matter, we regress both estimates of bootstrap rejection probability errors on a
number of powers of n−1/2 (with no constant, since asymptotically there is no error)
for each of the two cases. The standard errors of the preferred regressions are estimates
of the magnitude of experimental error. For R̂PA, these standard errors are 0.000869
and 0.001004 for Cases 1 and 2, respectively. For R̃PA, the corresponding standard
errors are 0.000650 and 0.000765. Thus it appears that, as expected, R̃PA can produce
results with noticeably less experimental error than R̂PA.

In almost all cases, the FDB test outperforms the single bootstrap test. This is most
noticeable for the smallest sample sizes and, in Case 2, for the larger sample sizes
where the single bootstrap test systematically underrejects. The few cases in which
FDB does not perform better seem to occur when both methods perform very well,
and some of them can probably be attributed to experimental error.

The tendency of the single bootstrap test to overreject in very small samples for Case 2
has a simple explanation. In these cases, ML estimation of the null model not infre-
quently achieves a perfect fit. When this happens, the test statistic is equal to zero.
As is well known, probit models tend to fit too well in small samples. Therefore, the
slope coefficients used to generate the bootstrap samples tend to be larger than the
ones used to generate the original samples; see MacKinnon and Smith (1998). This
means that perfect fits are achieved more often for the bootstrap samples than they
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are for the original samples. In consequence, there are fewer large values of the τ∗j
than there are of the τj , and the bootstrap P values are therefore biased downwards.
This problem tends to go away rapidly as n increases.

We calculate genuine double bootstrap P values in a few experiments. Despite having
only 10,000 replications, with B1 = 399 and B2 = 199, these experiments are far more
expensive than any of the others. Table 2, in which these results are reported, provides
no evidence to suggest that double bootstrap P values are any more accurate than FDB
P values. In Case 2 with 40 observations, where perfect fits occur with some frequency,
the double bootstrap actually performs substantially less well. In the other five cases,
bearing in mind that the standard errors of the estimated rejection frequencies are
roughly 0.0022, there is little to choose between them.

8. Tests for Serial Correlation

The simulation experiments of the second set concern tests for serial correlation. They
are designed in part to shed light on the choice between symmetric and equal-tail tests,
which can have quite different power properties.

Commonly-used tests for serial correlation are not exact in models with lagged depen-
dent variables or nonnormal disturbances. Consider the linear regression model

yt = Xtβ + γyt−1 + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), (28)

where there are n observations, and Xt is a 1× k vector of observations on exogenous
variables. The null hypothesis is that ρ = 0. A simple and widely-used test statistic
for serial correlation in this model is the t statistic on ût−1 in a regression of yt on Xt,
yt−1, and ût−1. This procedure is proposed in Durbin (1970) and Godfrey (1978). The
test statistic is asymptotically distributed as N(0, 1) under the null hypothesis. Since
this test can either overreject or underreject in finite samples, it is natural to use the
bootstrap in an effort to improve its finite-sample properties.

In order to bootstrap the Durbin-Godfrey test under weak assumptions about the εt,
we first estimate the regression in (28) by ordinary least squares. This yields β̂, γ̂,
and a vector of residuals with typical element ût. It is then natural to generate the
bootstrap data using the semiparametric bootstrap DGP

y∗t = Xtβ̂ + γ̂y∗t−1 + u∗t , (29)

where the u∗t are obtained by resampling the vector of rescaled residuals with typical
element (n/(n−k−1))1/2ût. The initial value y∗0 is set equal to the actual pre-sample
value y0. The bootstrap DGP (29) imposes the IID assumption on the disturbances
without imposing any additional distributional assumptions.

In all the reported experiments, the disturbances are normally distributed, the first
column of the X matrix is a constant, and the remaining columns are generated by
independent, stationary AR(1) processes with normal innovations and parameter ρx. A
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new X matrix is drawn for each replication. Both asymptotic and bootstrap rejection
frequencies are found to depend strongly on k, ρx, σε, and γ, as well as on the sample
size n. Since the performance of the asymptotic test improves rapidly as n increases,
n = 20 is used for most of the experiments.

Asymptotic results are based on 200,000 replications for values of γ between −0.99 and
0.99 at intervals of 0.01. Bootstrap results are based on 100,000 replications for values
of γ between −0.9 and 0.9 at intervals of 0.1 using 1999 bootstrap samples. This is
an unusually large number to use in a Monte Carlo experiment. It is used because
the results in Table 1 suggest that the equal-tail FDB tests will tend to overreject
noticeably if B is not quite large.

Results under the null

Figure 4 shows three sets of rejection frequencies for the performance of asymptotic and
bootstrap tests under the null hypothesis when n = 20. These are representative of the
results for a much larger number of similar experiments. Rejection frequencies for tests
at the .05 level are shown on the vertical axis, and γ is shown on the horizontal axis.
Each row concerns the same set of experiments. Results for the asymptotic test are
shown in both panels. The left-hand panel shows rejection frequencies for symmetric
bootstrap and FDB tests, and the right-hand panel shows rejection frequencies for
equal-tail bootstrap and FDB tests.

The first row of the figure contains results for a case in which all the bootstrap tests
work very well. In the left-hand panel, we see that there is very little difference between
the rejection frequencies for the symmetric bootstrap test, based on (2), and for its
FDB variant. This is not merely true on average, but also for every replication: The
correlation between the two P values is 0.999 for every value of γ. Thus an investigator
who performs both tests would obtain extremely similar results and would probably
conclude, correctly, that the bootstrap P value is very reliable.

In the right-hand panel of the first row of the figure, we see that the equal-tail bootstrap
test is generally not quite as reliable as the symmetric bootstrap test. Moreover, the
FDB procedure yields noticeably different rejection frequencies which are, in most
cases, closer to the nominal level of .05. However, the correlation between the two
P values is still very high at approximately 0.996 for all values of γ.

The second and third rows of the figure show results for cases in which, on average,
the bootstrap tests do not work as well. In both cases, σ = 10, which is ten times
larger than for the case in the first row, and k = 6, which is twice as large. Thus the
bootstrap DGP depends on more parameters, and they are estimated less precisely.
The only difference between the two cases is that ρx = 0.8 in the second row, and
ρx = −0.8 in the third row.

Several interesting results are evident in the second and third rows of the figure. All
four bootstrap tests generally work much better than the asymptotic test on which
they are based. It is apparent that a symmetric bootstrap test can overreject when an
equal-tail test underrejects, and vice versa. However, the equal-tail tests seem to be a
bit more prone to overreject than the symmetric tests. The FDB tests generally work
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better than the single bootstrap tests, especially when the latter are least reliable.
Nevertheless, the correlations between the single bootstrap and FDB tests remain
quite high. They are never less than 0.976 for the equal-tail tests and 0.998 for the
symmetric ones.

It is of interest to see how fast the performances of the single bootstrap and FDB
tests improve as the sample size increases. Figure 5 contains six panels, comparable to
those in Figure 4. In each of these experiments, γ is fixed at a value associated with
relatively poor performance of at least one of the tests for n = 20, and n takes on the
values 10, 14, 20, 28, 40, 56, 80, 113, 160, 226, and 320. Each of these sample sizes
is larger than the previous one by a factor of approximately

√
2. As before, there are

100,000 replications, and B = 1999.

The left-hand panel of the first row shows that the symmetric bootstrap and FDB tests
work extremely well for all sample sizes when k = 3 and σε = 1. There is essentially
nothing to choose between them. However, as can be seen from the right-hand panel,
the equal-tail tests tend to underreject for very small values of n in this case, with the
FDB tests underrejecting less severely than the single bootstrap tests.

The next two rows of the figure, in which k = 6 and σε = 10, are more interesting. We
see both noticeable overrejection and noticeable underrejection by the single bootstrap
tests. With a few exceptions, the FDB tests perform substantially better than the
single bootstrap tests when the latter perform badly. The results in the right-hand
panel of the second row and the left-hand panel of the third row are particularly
dramatic. In these cases, the gain from using the FDB procedure is quite substantial.

It appears that the equal-tail FDB tests overreject slightly for large values of n. This
appears to be a manifestation of the phenomenon seen in Table 1. Since the magnitude
of the overrejection is just about what we would expect from the results in Table 1,
allowing for a certain amount of experimental error, it would surely be even smaller if
B were larger than 1999.

Results under the alternative

Figure 6 shows power functions for six sets of experiments. The value of ρ is on the
horizontal axis, and the rejection frequency is on the vertical axis. Asymptotic results
are based on 200,000 replications for 199 values of ρ between −0.99 and 0.99, and
bootstrap results are based on 100,000 replications for 19 values of ρ between −0.9
and 0.9. Every panel shows results for both symmetric and equal-tail tests. Because
the single bootstrap and FDB tests always have essentially the same power, their
symbols always overlap. Thus it may not be immediately apparent that the same
symbols are used as in Figures 4 and 5.

In the first two rows of the figure, n = 20. In the four panels in these rows, the shapes
of the asymptotic power functions differ dramatically from the inverted bell shape
that they must have asymptotically. The power functions for the symmetric bootstrap
tests always have essentially the same shape as those for the asymptotic tests, although
with a vertical displacement that is quite large in the case of the left-hand panel in the
second row. This vertical displacement arises because the asymptotic test overrejects

– 16 –



quite severely under the null hypothesis. The symmetric bootstrap test, which does
not overreject, inevitably has noticeably less power against all alternatives.

In contrast, the shapes of the power functions for the equal-tail bootstrap tests are
dramatically different from the ones for the symmetric bootstrap tests. The former
have somewhat less power in whichever direction the asymptotic tests have high power,
but they have much more power in the other direction. Specifically, when ρx and γ
are both positive, the equal-tail tests always have more power against positive values
of ρ than the symmetric tests, and the differences are often dramatic. Since this is a
case that we might expect to encounter quite frequently, this is an important result.

In the third row of Figure 6, n = 40. Increasing the value of n brings the shape
of the asymptotic power functions much closer to the inverted bell shape that they
should have, as can be seen by comparing the left-hand panel in the top row with the
left-hand panel in the bottom row and the left-hand panel in the middle row with the
right-hand panel in the bottom row. However, it does not change the results about
the power of the symmetric and equal-tail bootstrap tests. The equal-tail tests have
somewhat less power against negative values of ρ and a great deal more power against
positive values than do the symmetric tests, because the power functions of the former
are much closer to being symmetric about ρ = 0.

In several panels of Figure 6, the asymptotic tests are reasonably reliable under the
null. Nevertheless, there are substantial gains in power to be had from using equal-tail
bootstrap tests instead of asymptotic tests. This suggests that equal-tail bootstrap
tests for serial correlation should be used routinely, even when (indeed, perhaps espe-
cially when) there is no reason to believe that asymptotic tests are unreliable.

9. Tests for ARCH

Since the seminal work of Engle (1982), it has been recognized that serial dependence
in the variance of the disturbances of regression models using time-series data is a very
common phenomenon. In the case of financial data at high or moderate frequencies,
there is not much point simply testing for ARCH disturbances, because we know that
we will find strong evidence of them, whether or not ARCH is actually the best way to
model the properties of the disturbances. However, in the case of low-frequency finan-
cial data, or non-financial macroeconomic data, the hypothesis of serial independence
is not unreasonable, and it may therefore make sense to test for ARCH.

Consider the linear regression model

yt = Xtβ + ut, ut = σtεt, σ2
t = α0 + α1u

2
t−1 + δ1σ

2
t−1, εt ∼ IID(0, 1). (30)

The disturbances of this model follow the GARCH(1,1) process introduced by Boller-
slev (1986). It is easy to generalize this process to have more lags of u2

t , more lags of
σ2

t , or both. In this paper, however, attention is restricted to the GARCH(1,1) process,
partly for simplicity, and partly because this process generally works extraordinarily
well in practice.
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The easiest way to test the null hypothesis that the ut are IID in the model (30) is to
run the regression

û2
t = b0 + b1û

2
t−1 + residual, (31)

where ût is the tth residual from an OLS regression of yt on Xt. The null hypothesis
that α1 = δ1 = 0 can be tested by testing the hypothesis that b1 = 0. For a simple
derivation of the test regression (31), and an explanation of why it has just two coef-
ficients even though the GARCH(1,1) model has three, see Davidson and MacKinnon
(2004, Section 13.6).

There are several valid test statistics based on regression (31). These include the
ordinary t statistic for b1 = 0, which is asymptotically distributed under the null as
N(0, 1), and n times the centered R2, which is asymptotically distributed as χ2(1).
Results are reported only for the second of these statistics, partly because it seems to
be the most widely used test for ARCH, and partly because it generalizes easily to tests
for higher-order ARCH and GARCH processes, in which there are more lags of û2

t in
the test regression. It would be interesting to compare the finite-sample performance
of alternative tests, but that would require another paper.

Figures 7 through 10 report results from a number of simulation experiments which
focus on the effects of the sample size and the distribution of the εt. In all the reported
experiments, Xt consists of a constant and two independent, standard normal random
variates, since changing the number of regressors has only a modest effect on the
finite-sample behavior of the tests. The sample size takes on the values 10, 14, 20,
28, 40, 56, 80, 113, 160, 226, and 320. The εt are either standard normal, Student’s
t with 4 degrees of freedom, or χ2(2) rescaled and recentered to have mean 0 and
variance 1. The first of these distributions is in some sense the base case, the second
involves severe leptokurtosis, and the third involves severe skewness. As is easily
shown, the test statistics are invariant to the variance of the disturbances under the
null hypothesis.

The top left-hand panel of Figure 7 shows rejection frequencies for the asymptotic test
as a function of the sample size for the three different distributions of the εt. These
results are based on 100,000 replications for each value of n. The test underrejects
severely in all cases, especially when the εt are nonnormal. As we would expect,
performance improves with the sample size, but the rate of improvement is fairly slow,
especially when the εt are t(4).

There are several ways to bootstrap this test. One possibility is to use a parametric
bootstrap, drawing the simulated disturbances from the normal distribution. It is easy
to see that this leads to an exact test when the disturbances actually are normally
distributed. The test statistic depends solely on the X matrix and the vector of
innovations ε. The former is known. If the distribution of the latter is also known,
then that of the test statistic does not depend on any unknown features of the DGP. It
then follows by standard arguments for Monte Carlo tests that, if B is chosen so that
α(B +1) is an integer, the parametric bootstrap test is exact; see Dufour et al. (2004).
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The top right-hand panel of Figure 7 shows rejection frequencies for parametric boot-
strap tests with B = 1999. As expected, these tests work perfectly when the εt are
actually normally distributed. The very small deviations from a frequency of 0.05
are well within the margins of experimental error. However, the tests are evidently
not exact when the disturbances are not normally distributed. For the largest sample
sizes, they are no better than the corresponding asymptotic tests. Since the FDB
tests performed almost identically to the parametric bootstrap tests on which they are
based, results for parametric FDB tests are not shown.

Of course, we would not expect parametric bootstrap tests to perform well when they
are based on an incorrect distributional assumption, and we would not expect the FDB
procedure to help. It therefore seems natural to use a semiparametric bootstrap DGP,
like the one in equation (29). Results for this procedure are shown in the bottom
left-hand panel of Figure 7 and in the two left-hand panels of Figure 8. For the
normal distribution, the semiparametric bootstrap test underrejects, quite noticeably
so for the smaller sample sizes. Interestingly, except for the very smallest sample sizes,
the FDB version performs considerably better. It appears to be essentially exact for
n ≥ 80, whereas the single semiparametric bootstrap test always underrejects.

It is more interesting to see what happens when the disturbances are nonnormal. When
they are t(4), the semiparametric bootstrap test underrejects quite severely for small
sample sizes. However, its performance gradually improves as n increases, and there is
a noticeable gain from using the FDB procedure, except when n is very small. When
the disturbances are recentered χ2(2), the underrejection is even more severe for small
sample sizes, but the rate of improvement as n increases is much more rapid. Once
again, there is generally a noticeable gain from using the FDB procedure.

The errors committed by the semiparametric bootstrap test must arise from the fact
that the empirical distribution of the residuals provides an inadequate approximation
to the distribution of the disturbances. One way to improve this approximation is to
smooth the bootstrap disturbances. This can be done by using a kernel estimator.
The kernel estimator of the CDF of u at the point u′, using a sample of n residuals ût,
is given by

F̂h(u′) = 1−
n

n∑
t=1

K(ût, u
′, h), (32)

where K(ût, u
′, h) is a cumulative kernel, such as the standard normal CDF, called

the Gaussian kernel, and h is the bandwidth; see Azzalini (1981) and Reiss (1981).
A reasonable choice for h is 1.587σ̂n−1/3, where σ̂ is the standard deviation of the
(possibly rescaled) residuals.

To draw bootstrap disturbances from (32), we simply resample from the residuals ût

and then add independent normal random variables with variance h2. The result-
ing bootstrap disturbances have expectation zero because both the residuals and the
normal random variates do. They also have too much variance, but they can easily
be rescaled. However, in the context of tests for ARCH errors, this rescaling is not
needed, because the test statistics are invariant to the variance of the disturbances.
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The bottom right-hand panel of Figure 7 and the two right-hand panels of Figure 8
show the effects of using bootstrap disturbances that are smoothed in this way, where
the Gaussian kernel with the bandwidth given above is used. When the disturbances
are actually normal, resampling smoothed residuals works substantially better than
resampling ordinary residuals for small sample sizes. This presumably occurs because
smoothing brings the distribution of the disturbances closer to normality. However,
there appears to be no appreciable gain from smoothing when the disturbances are t(4)
or recentered χ2(2). As in the case where smoothing is not used, the FDB rejection
frequencies are always noticeably closer to 0.05 than those of the single bootstrap,
except when the sample size is very small.

Because Figures 7 and 8 deal only with tests at the 0.05 level, they do not tell the
whole story. To show the effect of the level of the test, Figure 9 plots the difference
between the rejection frequency and the level of the test for all levels between 0.005
and 0.25, at intervals of 0.005, for two sample sizes, 40 and 160. The nominal level
is on the horizontal axis, and the “rejection frequency discrepancy” is on the vertical
axis. Several interesting facts emerge from this figure. First, the asymptotic test can
actually overreject for small levels. Second, for nonnormal disturbances, the distortion
of the asymptotic test becomes steadily worse as the level increases. Finally, and of
most interest for this paper, the improvement from using the FDB rather than the
single bootstrap becomes larger as the level of the test increases. Moreover, the extent
of the improvement is greater for n = 160 than for n = 40, especially in relative terms.
To see this, compare the left-hand and right-hand panels in the second and third rows
of the figure.

It is natural to ask whether the FDB procedure works as well as the full double
bootstrap. Figure 10 provides some evidence on this point. The experiments are
similar to those in the left-hand panels of Figure 8, except that values of n greater than
160 are omitted. They involve semiparametric bootstrap DGPs that use resampled
residuals, with disturbances that are either t(4) or recentered χ2(2). There are 100,000
replications. However, because computational cost is an issue, B1 and B2 are just 399
and 199, respectively. Even with such a small value of B2, the double bootstrap is
about 100 times more expensive to compute than the FDB in this case.

In both panels of Figure 10, it is evident that all the bootstrap procedures work much
better than the asymptotic test. Moreover, there is a clear ordering, with the FDB
performing noticeably better than the single bootstrap, and the double bootstrap
performing a little better than the FDB. The advantage of the double bootstrap over
the FDB is a bit greater for the experiments with χ2(2) disturbances than for the ones
with t(4) disturbances, but it is never striking. Thus, at least in this case, the failure
of the FDB to work perfectly appears to be attributable mainly to the limitations of
the double bootstrap itself rather than to a failure of the independence assumption.
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10. Conclusions

In this paper, we have proposed two closely related techniques to solve two differ-
ent problems. The first problem is the high cost of Monte Carlo experiments that
involve bootstrap tests. Our R̂PA and R̃PA procedures make it possible to study
the finite-sample performance of bootstrap tests for only about three or four times
the computational cost of studying asymptotic tests. In contrast, with the standard
approach, the cost is generally hundreds of times as great. Of course, because our
procedures are valid only under an independence assumption that may not hold in
finite samples, it will always be essential to simulate actual bootstrap tests for at least
a few cases to verify that they are yielding accurate results.

The second problem is the errors in rejection probability that sometimes occur for
bootstrap tests. Our FDB procedure seems to reduce these errors quite substantially
in some cases. In fact, for the probit model example we looked at, it does so just as
effectively as a genuine double bootstrap procedure, but at very much less computa-
tional expense. For the ARCH errors example, it performs almost as well as a genuine
double bootstrap.

We do not claim that the FDB procedure will always be useful. In some cases, if an
investigator chooses the right test statistic to bootstrap and the right bootstrap DGP,
single bootstrap tests may work so well that there is nothing to be gained by using
the FDB. In such a case, the single bootstrap and FDB P values are likely to be very
similar, and this fact may be taken as evidence that both procedures are reliable. In
other cases, neither the double bootstrap nor the FDB may help very much.

Since the FDB was originally proposed in Davidson and MacKinnon (2000a), we and
others have performed a number of additional simulations. In particular, Davidson
and MacKinnon (2002b) show that the FDB works very well when applied to the
J test for nonnested linear regression models. In most cases, the single bootstrap
based on resampling residuals works adequately for the J test. However, there are
extreme cases in which single bootstrap tests overreject noticeably, and, in these cases,
FDB tests work very much better. For a number of other tests, however, using the
FDB apparently leads to more modest improvements; see Omtzigt and Fachin (2002),
Lamarche (2004), and Davidson (2006).

One interesting result of this paper is not specifically related to the FDB procedure.
For the experiments discussed in Section 7, equal-tail bootstrap tests can be much
more powerful than either asymptotic tests or symmetric bootstrap tests, even when
the asymptotic tests are well-behaved under the null. This suggests that equal-tail
bootstrap tests deserve closer investigation for a variety of problems where two-tailed
tests are commonly used.

Based on all the experimental results, it is tempting to draw the following conclusions,
which are admittedly somewhat speculative. When the single bootstrap works almost
perfectly, the FDB procedure will produce extremely similar results, provided B is
reasonably large. When the single bootstrap improves matters substantially, the FDB
procedure will lead to a significant further improvement if there is still much room for
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improvement. But when the single bootstrap leads to only modest improvement, the
FDB procedure will not help matters very much.
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Table 1. Response surface regressions for FDB overrejection as a function of B

Test 1/(B + 1) 1/(B + 1)2 B = 199 B = 999 B = 1999
Symmetric .05 0.3466 (.0102) −6.02 (1.21) 0.001583 0.000341 0.000172
One-tailed .05 0.3489 (.0111) −6.01 (1.32) 0.001595 0.000343 0.000173
Equal-tail .05 1.7654 (.0208) −51.10 (4.77) 0.007550 0.001714 0.000870
Symmetric .01 0.3886 (.0073) −15.84 (0.86) 0.001547 0.000373 0.000190
One-tailed .01 0.3695 (.0073) −13.64 (0.86) 0.001507 0.000356 0.000181
Equal-tail .01 1.6865 (.0174) −140.89 (3.96) 0.004910 0.001546 0.000808

Table 2. Rejection frequencies at .05 level, 10,000 replications

n B1 B2 Bootstrap FDB Double Bootstrap
Case 1 40 399 199 0.0402 0.0447 0.0462
Case 1 80 399 199 0.0447 0.0502 0.0511
Case 1 160 399 199 0.0514 0.0543 0.0531
Case 2 40 399 199 0.0685 0.0564 0.0330
Case 2 80 399 199 0.0503 0.0496 0.0500
Case 2 160 399 199 0.0488 0.0519 0.0527
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Figure 1. Asymptotic rejection frequencies at .05 level for probit OPG test
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Figure 2. Bootstrap rejection frequencies at .05 level for probit OPG test, Case 1
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Figure 3. Bootstrap rejection frequencies at .05 level for probit OPG test, Case 2
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Figure 4. Durbin-Godfrey test rejection frequencies at .05 level under the null, n = 20
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Figure 5. Durbin-Godfrey test rejection frequencies at .05 level under the null
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Figure 6. Power of Durbin-Godfrey tests at .05 level
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Figure 7. ARCH test rejection frequencies at .05 level under the null
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Figure 8. ARCH test rejection frequencies at .05 level under the null
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Figure 9. Rejection frequency discrepancy plots for ARCH tests
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Figure 10. ARCH test rejection frequencies at .05 level under the null (resampled residuals)
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