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Abstract

This paper studies the optimal commodity taxation problem when time taken in con-

sumption is a perfect substitute for either labor or leisure. It shows that while labor

substitutability affects the optimal tax structure, leisure substitutability leaves the clas-

sical optimal tax results intact. In the Ramsey tax framework with linear income taxes,

whether the consumers have the same or different earning abilities, labor substitutes

tend to be taxed at a higher rate than leisure substitutes with the tax differential being

increasing in consumption time. This is not necessarily the case when one allows for

nonlinear income taxation.

JEL classification: H21: D13; J22.
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1 Introduction

Standard optimal tax analysis—summarized in Atkinson and Stiglitz (1980) and more

recently, Auerbach and Hines (2002)—ignores the fact that consumption of goods takes

time, and treats all time as being devoted to either labor or leisure. These results have

been called into question in studies by Gahvari and Yang (1993) and Kleven (2004)

who derive optimal commodity tax structures when consumption is time-consuming in

the manner suggested by Becker (1965). Optimal commodity tax rates then depend on

time spent consuming each good in a rather complicated way. Traditional results such

as the uniformity of commodity taxation when labor supply (but not leisure) is perfectly

inelastic in supply, or when utility functions are weakly separable between leisure and

goods and homothetic in goods, no longer apply.1 In the case of separability, Gahvari

(2006) has shown that it matters if one formulates utility as a weakly separable function

of goods and leisure, or goods and labor supply. When consumption is time consuming,

the two formulations are no longer equivalent.2 Specifically, if separability is in terms

of goods and leisure, as in Kleven (2004), it leads to a violation of the standard results.

On the other hand, with separability in goods and labor supply, the standard results

apply.

Clearly then, the manner in which one formulates the utility function, including the

way in which separability may apply, is critical. At the heart of this problem lies the

substitute/complement relations that exist among times spent in consumption, labor,

and leisure, especially whether any given use of consumption time is a substitute for

labor or for leisure. The Becker approach is silent on this issue, and as we shall argue

implicitly treats all consumption time, regardless of the activity, as a substitute for
1The first result is due to Gahvari and Yang (1993), and the second to Kleven (2004).
2In the standard model when consumption is not time consuming, writing utility in terms of con-

sumption and leisure, or consumption and labor, are equivalent. This follows because leisure is just
time available less labor. Indeed, the underlying utility function can be thought of as having goods,
labor and leisure as arguments, with either leisure or labor having been eliminated via the household’s
time constraint. We return to the consequences of the formulation of the utility function below.
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labor.3 Yet, one’s everyday experiences suggests that the nature of activity is very

important in how one is affected by consumption time. Contrast the time spent driving

to a vacation spot with time spent vacationing once one is there. In the former, time

is simply an unavoidable necessity for the purpose of transportation with no inherent

utility of its own. On the other hand, time spent vacationing is an integral part of

getting pleasure from that activity, much the same way as sitting and doing nothing

(which would be pure leisure time).

The above distinction applies to many other consumption activities. Time spent at

a dentist’s office is qualitatively different from time spent listening to music. The same

is true of time spent doing chores around the house versus time spent going out. Such a

distinction follows quite naturally if one applies Lancaster’s (1966) goods-characteristics

formulation of consumption to Becker’s (1965) consumption activity approach. What is

required is to conceive of the consumption activity as having two characteristics. One

is represented by the good purchased directly and the other by the time spent using it,

with both entering the utility function directly. This is the approach we take here.

To emphasize the relevance of our approach, we focus on a case that is extreme in two

senses. First, we assume that consumption time is either a perfect substitute for labor

or a perfect substitute for leisure. The distinction between labor and leisure substitutes

makes a crucial difference for the results, as we shall see later, and one that is brought

out most clearly by assuming perfect substitutability. Second, time spent consuming

any particular good is taken to be a fixed proportion of the quantity of the good—the

proportion being potentially different for all goods. This is the case studied by Gahvari

and Yang (1993), Kleven (2004) and Gahvari (2006), all of whom used it as a special

case of the Becker (1985) formulation in which each good purchased can be combined

with time in variable proportions to produce consumption services. It thus gives us a

natural basis for comparing our results to theirs who, we shall argue, implicitly assume
3This distinction is not made in the applications of Becker (1985) to optimal taxation by Gahvari

and Yang (1993), Kleven (2004) and Gahvari (2006) .
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that all time used in consumption is a perfect substitute for labor. On the basis of this

formulation, we are able to show that while labor substitutability affects the optimal

tax structure, leisure substitutability leaves the classical optimal tax results intact.

We begin with the analog of the classical Ramsey problem of choosing the optimal

commodity tax structure in an economy of identical households, the case considered by

Gahvari and Yang (1993) and Kleven (2004).4 This case nicely illustrates the intuition

and forms the basis for the two heterogeneous-household cases we consider. In the first

of these, optimal commodity taxes as well as an equal per capita lump-sum tax (or

subsidy) can be applied. This yields the analog of the so-called many-person Ramsey

rule (Diamond, 1975). We then turn to the second heterogeneous-household case where

income can be observed so an optimal nonlinear income tax can be used alongside

commodity taxes. Here the relevant separability result is the well-known theorem of

Atkinson and Stiglitz (1976) that if household preferences are weakly separable in goods

and leisure, one can dispense with differential commodity taxes. The validity of this

result will also depend upon whether consumption time is a substitute for labor or

leisure.

2 The identical-household economy

We begin with the classical identical-household optimal commodity tax problem of Ram-

sey (1927) extended to incorporate time used to consume goods. Although the identical

household case is obviously unrealistic, it is a useful way to introduce the model, to

understand some of the intuition, and to draw some comparisons with the existing liter-

ature. The representative household consumes a bundle of goods, each of which requires

some time. He devotes the remainder of his time to either market labor or pure leisure.5

4Gahvari (2006) discusses the heterogeneous-household models as well.
5One can argue that there is no such thing as pure leisure, that is, that all non-market uses of time

involve the use of at least some commodities. We allow for pure leisure so that our analysis is as general
as possible. The case of no leisure, studied by Kleven (2004), then becomes a special case, as discussed
further below.
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Specifically, the household purchases a vector of n goods, denoted x ≡ (x1, x2, . . . , xn),

at the consumer prices qi = 1+ ti , i = 1, . . . , n, where all producer prices are normalized

at unity and ti is an excise tax on xi (either per unit or equivalently as a proportion of

producer price). The amount of time devoted to the consumption of good i is denoted

θ ≡ (θ1, θ2, . . . , θn). We focus on the case where θi > 0 for all i, although as we shall

see, allowing for goods that require no time is straightforward.

In addition to devoting time to consumption of each good, the representative house-

hold supplies L units of labor to the market at the wage rate w and takes r units of

leisure (rest). As usual, one can assume that there is no tax on labor by suitable nor-

malizations of producer and consumer prices. The household faces two constraints, a

time constraint and a budget constraint. Assuming the household is endowed with one

unit of time, the time constraint can be written as

L + r +
n∑

i=1

θi = 1. (1)

Similarly, with labor supply being the sole source of income, the budget constraint is

written as
n∑

i=1

qixi = wL. (2)

The household derives utility (or disutility) from all uses of time as well as from

consumption of goods. A utility function reflecting the household’s preferences might

then be written most generally as

F (L, r, θ, x),

This formulation is distinct from that of Becker (1985), who assumed that the arguments

in the utility function were consumption activities, Zi(xi, θi) in his notation, rather than

goods and time separately. As mentioned, this allows us to emphasize the distinction

between consumption time that gives pleasure and that which is unpleasant. We assume

that F (·) is increasing in goods, x, and leisure, r, and decreasing in labor supply, L).
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Time spent consuming a good, θi, could either be utility-decreasing or utility-increasing

depending on the particular activity.

To capture this difference succinctly, assume that time taken in consumption is either

a perfect substitute for time at work, or a perfect substitute for leisure. We refer to

goods that fall into the first category as L-substitutes, and those that fall into the second

category as r-substitutes. We also label the goods such that the first m goods (with the

consumption levels xi, i = 1, . . . , m) are L-substitutes and the remaining n −m goods

(with the consumption levels xi, i = m + 1, . . . , n) are r-substitutes. An example of

an L-substitute could be doing household work, while an example of an r-substitute is

listening to music or going to a museum. Given the perfect substitutability assumption,

utility may be rewritten as

F (L, r, θ, x) = Ω

(
L +

m∑

i=1

θi, r +
n∑

i=m+1

θi, x

)
(3)

where Ω(·) is decreasing in the first argument, and increasing in the rest. We also

assume that Ω(·) is strictly monotonic, quasi-concave and twice differentiable.

It is convenient to assume that the consumption of a unit of good i requires a

fixed amount of time ai, so that θi = aixi is the time taken consuming i. This fixed-

proportion assumption is a simplification of Becker’s general theory of time, but it is a

useful simplification for analytical purposes. It also corresponds with the cases found

in Gahvari and Yang (1993), Kleven (2004) and Gahvari (2006). In a more general

analysis, one would want to allow for some substitutability between the quantity of

goods consumed and time, as well as joint consumption of several goods and time (as in

the case of household production). These extensions, although realistic and important in

other contexts (e.g., the analysis of daycare policy in Bergstrom and Blomquist, 1996 or

the taxation of household production in Kleven et al., 2000), obscure the transparency

of the optimal tax results we are able to derive. Given fixed proportions, the utility

5



function (3) may be written as

F (L, r, ax, x) = Ω

(
L +

m∑

i=1

aixi, r +
n∑

i=m+1

aixi, x

)
(4)

and the time constraint as

L + r +
n∑

i=1

aixi = 1. (5)

Next, denote the first two arguments of Ω(·) by

Y ≡ L +
m∑

i=1

aixi, (6a)

y ≡ r +
n∑

i=m+1

aixi, (6b)

where Y is total time devoted to labor-equivalent activities, and y is total time devoted

to leisure-equivalent activities. Using these definitions, we rewrite the utility function

(4) as Ω(Y, y, x), with ΩY < 0, Ωy > 0, Ωi > 0, for i = 1, 2, . . . , n. Moreover, since the

time constraint (5) is now simply Y + y = 1, one can rewrite the utility function Ω(.)

in terms of y and x only:6

Ω(Y, y, x) = Ω(1− y, y, x) ≡ U(y, x). (7)

Note for future reference that if Ω(.) is weakly separable in (Y, y) and x, then U(.) is

weakly separable in y and x. Note also that if all goods are L-substitutes, (7) reduces to

U(r, x). This is equivalent to the formulation in Gahvari and Yang (1993) and Kleven

(2004).7

6The representation of utility in terms of “effective leisure” y and goods x depends critically on the
assumption that time spent consuming is a perfect substitute for either labor or leisure. Observe also
that, under this assumption, the utility could alternatively be written as a function of “effective labor”
Y and x by substituting y = 1− Y in Ω(Y, y, x). For the analysis that follows, it turns out to be more
fruitful to eliminate Y .

7They write utility as a function of consumption activities in the manner of Becker (1985), of which
pure leisure may be one. However, given that consumption time and goods are in fixed proportion, that
is equivalent to including only goods in the utility function. See Gahvari (2006).
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Similarly, one may rewrite the budget constraint (2), in terms of y and x. Thus, add

w
∑m

i=1 aixi to both sides of Eq. (2) and use the definition of y in Eq. (6a) to arrive at

n∑

i=1

qixi + w

m∑

i=1

aixi = wY, (8)

or,
m∑

i=1

q̃ixi +
n∑

i=m+1

qixi = w(1− y), (9)

where

q̃i ≡ qi + wai, i = 1, 2, . . . , m (10)

One can think of q̃i as the “full price” or the full cost of consuming good i, including the

cost of the time devoted to its consumption. Thus, qi/q̃i can be thought of, following

Kleven (2004), as the share of monetary cost in the total cost, including the time cost,

of consuming good i.

2.1 The optimal tax problem

Consider first the problem of the household, which is to choose y and x to maximize

utility (7), subject to the budget constraint (9).8 It is summarized by the Lagrangian

expression

L = U(y, x) + α

[
w(1− y)−

m∑

i=1

q̃ixi −
n∑

i=m+1

qixi

]
.

The first-order conditions of this problem reduce to the following equations for the L-

and r-substitutes, respectively,

Uj

Uy
=

q̃j

w
, j = 1, 2, . . . , m (11a)

Us

Uy
=

qs

w
, s = m + 1, . . . , n. (11b)

8Equivalently, the household can be thought of as choosing an allocation of time between y and Y ,
given that y + Y = 1, and a vector of consumption, x.
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These determine consumer demands for full leisure and goods y(q̃, q, w) and xi(q̃, q, w),

and indirect utility v(q̃, q, w), given the vector of consumer prices q̃ = (q̃1, . . . , q̃m) and

q = (qm+1, . . . , qn). Using the envelope theorem, one can easily show that Roy’s identity

applies to this setting so that

∂v

∂q̃j
= −αxj ,

∂v

∂qs
= −αxs, (12)

where α is the representative household’s marginal utility of income.

Next, consider the government’s problem. It chooses commodity tax rates ti = qi−1

to maximize the indirect utility v(q̃, q, w) subject to its revenue constraint,
∑n

i=1 tixi =

R̄, where R̄ is a given revenue requirement. The structure of this problem is analogous

to the standard optimal commodity tax problem, found for example in Sandmo (1974)

and Atkinson and Stiglitz (1980), and is summarized by the Lagrangian

L = v(q̃, q, w) + µ

[
n∑

i=1

tixi − R̄

]
.

The first-order conditions for optimal taxes on L- and r-substitutes are

∂L
∂tj

=
∂v

∂q̃j
+ µ

[
n∑

i=1

ti
∂xi

∂q̃j
+ xj

]
= 0, j = 1, 2, . . . , m,

∂L
∂ts

=
∂v

∂qs
+ µ

[
n∑

i=1

ti
∂xi

∂qs
+ xs

]
= 0, s = m + 1, . . . , n.

Simplifying these equations, using Roy’s identity, results in

n∑

i=1

ti
∂xi

∂q̃j
= −µ − α

µ
xj , j = 1, 2, . . . , m

n∑

i=1

ti
∂xi

∂qs
= −µ − α

µ
xs, s = m + 1, . . . , n.

These are the standard Ramsey tax equations except that q̃j replaces qj for all L-

substitutes (j = 1, 2, . . . , m).
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The above equations can further be rewritten, using the Slutsky equation and the

symmetry of the substitution effects, as the analogs of the standard form of optimal

commodity tax expressions in terms of compensated demand functions. We have

n∑

i=1

ti
xj

∂xc
j

∂q̃i
=

n∑

i=1

ti
q̃j

εji = −µ − γ

µ
, j = 1, 2, . . . , m, (13a)

n∑

i=1

ti
xs

∂xc
s

∂qi
=

n∑

i=1

ti
qs

εsi = −µ − γ

µ
, s = m + 1, . . . , n, (13b)

where xc
i denotes the compensated demand for good i, εki is the compensated elasticity

of demand for good k with respect to the full consumer price of good i, and γ ≡

α/µ +
∑

i ti(∂xi/∂M) is the well-known net social marginal utility of income, with M

denoting household non-labor income. The left-hand sides of these expressions are the

so-called indices of discouragement for L- and r-substitutes. For the latter, the optimal

tax rules are the standard ones. For the former, tax rules mimic the standard ones

except that q̃j replaces qj (j = 1, 2, . . . , m). Moreover, since q̃j > qj , nominal tax rates

tj/qj (as opposed to effective tax rates tj/q̃j) tend to be higher than those given by

the standard rules. Of course, if there are some goods whose consumption does not

involve any time, so that ai = 0, they would also be taxed according to the same rules

as r-substitutes.

The analog of the Corlett and Hague (1953) result, in the present setting, is imme-

diately obtained from optimal tax rules (13a) and (13b). Suppose there are two goods,

i = 1, 2, either of which could be and r- or L-substitute. Then, Eqs. (13a) and (13b)

can be written:
t1
q̃1

(ε11 − ε21) =
t2
q̃2

(ε22 − ε12),

where q̃i = qi for the case of an r-substitute. Using the homogeneity property of

compensated demand functions, where 0 stands for y, εi0 + εi1 + εi2 = 0, we obtain:

t1/q1

t2/q2
=

ε11 + ε22 + ε10

ε11 + ε22 + ε20

q2/q̃2

q1/q̃1
.
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In the case where both goods are r-substitutes, this is the standard Corlett and Hague

result whereby a higher tax is put on the good which is relatively more complementary

with leisure. On the other hand, if both goods are L-substitutes, this result must be

modified to take account of the fact that the good that is more time-intensive bears a

higher tax rate on that account (Kleven, 2004, Proposition 4). Similarly, if only one is

an L-substitute, that will tend to cause it to have a higher tax rate and will also modify

Corlett and Hague.

2.2 The inverse elasticity rule

Consider the quasi-linear case in which U(y, x) is additive and linear in y. Then, the

demand for xi depends only on its own (full) price, and the optimal tax rules (13a) and

(13b) can be written as

tj
q̃j

= −µ − γ

µ

1
εjj

, j = 1, 2, . . . , m, (14a)

ts
qs

= −µ − γ

µ

1
εss

, s = m + 1, . . . , n, (14b)

where εjj and εss denote both the compensated and uncompensated own price elastici-

ties of demand (given that there are no income effects). Thus, tax rates in terms of full

consumer prices are all proportional to the inverse of the elasticity of demand where the

factor of proportionality is the same for all goods.

Observe that, for L-substitutes, one can rewrite the optimal tax rates in terms of

market prices qj , using the definition of q̃j , as9

tj
qj

= −µ − γ

µ

1
εjj

(
1 +

waj

qj

)
, j = 1, 2, . . . , m. (15)

9Equivalently, this equation can be written, following Kleven (2004), Proposition 3, as

tj

qj
= −µ− γ

µ

1

εjj

1

αj

where αj = qj/q̃j is the share of the monetary costs in total cost of consuming xj (where tj/qj here
corresponds to tj in Kleven.)
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Consequently, optimal tax rates in terms of consumer prices are inversely proportional

to the elasticity of demand, but the factor of proportionality for L-substitutes is sys-

tematically higher than that for r-substitutes and is increasing in the time intensity

of consumption aj . Intuitively, the inverse elasticity rule in this context requires that

optimal tax rates in terms of full prices be proportional to the inverse of the elasticity

of demand. Thus, if an L-substitute and an r-substitute have the same elasticity of

demand, their uniform tax rate in term of full prices translates into the L-substitute

having a higher tax rate as a proportion of market prices.

2.3 Uniform taxation

A further well-known special case arises when utility is weakly separable in goods and

leisure, and is homothetic in goods. Sandmo (1974) showed that in this case, optimal

commodity taxes in the standard Ramsey problem will be uniform. The analog here

is that if preferences are weakly separable in x and full leisure y, and homothetic in x,

optimal tax rates will be characterized by10

tj
q̃j

=
ts
qs

= τ , j = 1, 2, . . . , m and s = m + 1, . . . , n, (16)

where τ is the uniform tax rate based on full consumer prices q̃ and q.11 The proof of

Eq. (16) is given in the Appendix. It implies, given the definition of q̃j in Eq. (10), the

following specific commodity taxes (or equivalently, taxes as a proportion of producer
10Separability in this context means that the marginal rate of substitution between any two goods

purchased from the market is independent of leisure time broadly defined to include pure leisure and time
spent on r-substitutes. It is different from separability in the traditional leisure/labor model. In par-
ticular, unlike the traditional model in which leisure and labor separability are equivalent, r-substitute
separability and L-substitute separability are two different assumptions with different implications. On
this, see also Gahvari (2006).

11In the case of L-substitutes, one can write Eq. (16) as

tj/qj

tk/qk
=

αk

αj
,

where αi is the cost share defined in the previous footnote. This is identical to the result found in
Kleven (2004), Proposition 2, whose formulation, we have argued above, is equivalent to assuming all
goods are L-substitutes.
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prices since the latter are all unity),

tj = (1 + waj)t, j = 1, 2, . . . , m (17a)

ts = t, s = m + 1, . . . , n (17b)

where t is a uniform tax rate applied to producer prices.

These results suggest that L-substitute goods should be taxed at a higher rate than

r-substitutes, and that the more time-consuming is consumption of an L-substitute

good, the higher should be its tax rate. The intuition is that, while the consumption of

both types of goods involves the use of scarce time, in the case of r-substitutes, there

is no opportunity cost involved. Any time spent in consumption reduces the amount

of time spent on pure leisure, but the total amount of leisure-equivalent time remains

unchanged so utility is not affected on that account. In the case of L-substitutes, the

time spent consuming comes at the expense of time working. While the total labor-

equivalent time does not change and utility is not affected on that account, less income

is earned and the household is worse off. The same reasoning tells us that the more

time-consuming is consumption of an L-substitute good, the higher should be its tax

rate.

The empirical content of the differential tax treatment of L- and r-substitutes is

far reaching. It suggests that, contrary to widely-held views, one should tax goods like

books, movies, CD’s and sport events at the same rate as goods whose consumption

may not take much time, and at a lower rate than goods like transportation. Observe

also that this result does not violate the message of Corlett and Hague. They refer to

different forces at work in optimal taxation.

2.4 Absence of pure leisure

Suppose there is no pure leisure so that r = 0, and one spends all of his time endowment

in conjunction with some consumption activity. In this case, Eq. (6b), which shows time

12



devoted to leisure-equivalent activities, simplifies to y =
∑n

i=m+1 aixi. Two special

cases of this formulation are illuminating. In the first, all n goods are L-substitutes,

which is equivalent to the case of Gahvari and Yang (1993) and Kleven (2004). Then,

y = 0, and household utility (7) may be written, with some abuse of notation, simply

as U(x). Similarly, the budget constraint (9) simplifies to
∑n

i=1 q̃ixi = w. The problem

of the household is to maximize U(x) subject to
∑n

i=1 q̃ixi = w. This is equivalent

to a standard consumer problem with fixed income and the first-order conditions are

Ui/Uj = q̃i/q̃j , ∀i, j. It is plain that, given this setup, tax revenues can be raised in a

non-distortionary way: Simply apply a tax structure in which tax rates, as a proportion

of full consumer prices, are uniform. That is, set ti/q̃i = tj/q̃j = τ , ∀i, j. Two features of

this result are worth noting. First, in contrast to the previous subsection where we had

to assume separable and homothetic-in-goods preferences, one gets a uniform taxation

result here without imposing any restrictions on households’ preferences. Second, and

again in contrast with the previous subsection where uniform taxation entailed an excess

burden, we now have a first-best outcome.12

In the second special case, all n goods are r-substitutes. Then, the budget constraint

(9) becomes
∑n

i=1 qixi = w(1 − y), where y =
∑n

i=1 aixi. The household maximizes

U(y, x) subject to
∑n

i=1 qixi = w(1 − y). This problem is analytically the same as a

utility-maximization one with variable labor supply. A government seeking to raise a

given amount of revenue using commodity taxes faces the same type of problem as in the

standard Ramsey case, and the traditional optimal commodity tax rules apply. Unlike

in the previous case with all L-substitutes, a first-best outcome cannot be achieved.

It is clear from the above discussion that as long as there exist some r-substitutes,

all possible commodity tax structures will be second best. The first-best outcome result

holds only in the special case where all goods are L-substitutes. Once again we see that
12One can write the tax as a proportion of the good’s market prices as ti/qi = τ q̃i/qi,∀i. That is,

tax rates should be inversely proportional to the ratio of a good’s market price to its full price, qi/q̃i

(Proposition 1, Kleven, 2004).
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whether time in consumption is substitutable for labor or for leisure is critical for the

design of an optimal commodity tax system.

The two special cases studied above illustrate a common thread that runs through all

the special cases we have considered. If time spent in consumption is always a perfect

substitute for leisure, all goods would be r-substitutes and the standard optimal tax

results apply. Under this circumstance, there would be no need to take account of time

spent in consumption. On the other hand, if all goods were L-substitutes, the results of

Gahvari and Yang (1993) and Kleven (2004) would apply. With a mix of L-substitutes

and r-substitutes, the results would have some features of the traditional model, along

with some adjustments as suggested by these authors. Proposition 1 summarizes the

results of this section.

Proposition 1 Consider a representative-household economy and assume that con-

sumption goods are of two types: L-substitutes, where time spent consuming is a perfect

substitute for work, and r-substitutes, where time is a perfect substitute for leisure. As-

sume that consumption of one unit of good i takes ai units of time:

(i) Optimal taxes are characterized by Eqs. (13a)–(13b).

(ii) If preferences are additive in goods and linear in leisure-equivalent activities,

then,

• The inverse elasticity rule applies when tax rates are expressed in terms of full

consumer prices, as characterized by Eqs. (14a)–(14b).

• Given the same price elasticity of demand, the statutory tax on an L-substitute

must be higher than that on an r-substitute. The tax increases as the consumption

time for the L-substitutes increases as characterized by Eq. (15).

(iii) If preferences are weakly separable in goods and leisure-equivalent activities, and

homothetic in goods, then,
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• The r-substitutes are always taxed uniformly, as in the standard theory.

• The tax rates on L-substitutes are increasing in the time-intensity of the good

consumed as characterized by Eq. (17a).

• The L-substitutes are taxed at higher rates than the r-substitutes.

(iv) Assume there is no pure leisure. Then,

• If all goods are L-substitutes, a tax structure in which tax rates, as a proportion

of full consumer prices, are uniform is first-best and Eq. (17a) applies.

• As long as there exist some r-substitutes, all commodity tax structures will be

second best.

3 Heterogeneous households with linear taxes

The above analysis where all households are identical focuses solely on efficiency. Sup-

pose now that households are heterogeneous in earning ability, so that equity becomes

a consideration. Following the pedagogical approach in the optimal tax literature, in

this section we consider the extended Ramsey case where the government uses only

linear taxes, as in Diamond and Mirrlees (1971) and Diamond (1975), and summarized

in Atkinson and Stiglitz (1980). In the next section, we allow for nonlinear income

taxation. As is usual, all households have identical preferences, and we suppose those

preferences are characterized as previously by Eq. (7).

Let there be H types of households, indexed by h = 1, 2, . . . , H . Households of type

h have an earning ability given by their wage rate wh, which is fixed by assumption.

The total population size is again normalized at one, and the proportion of persons of

type h is πh, where
∑H

h=1 πh = 1.
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3.1 The optimal tax problem

The government now levies a set of excise taxes ti, i = 1, . . . , n, on the n goods as

before, but in addition provides everyone with a lump-sum transfer of M to make the

tax system progressive. The optimization problem of an h-type household then becomes

a simple extension of the identical-household case. The household chooses yh and xh to

maximize utility U(yh, xh) subject to the budget constraint:
m∑

i=1

q̃h
i xh

i +
n∑

i=m+1

qix
h
i = wh(1− yh) + M,

where now

q̃h
j ≡ qj + whaj , j = 1, 2, . . . , m. (18)

Thus, the full cost of consuming L-substitutes varies with the earning ability of house-

holds, reflecting the fact that their opportunity cost of labor time differs. The first-

order conditions are analogous to Eqs. (11a) and (11b), and the indirect utility func-

tion is given by vh(q̃h, q, M) = v(q̃h, q, wh, M) where q̃h = (q̃h
1 , q̃h

2 , . . . , q̃h
m) and q =

(qm+1, . . . , qn). The standard envelope properties apply to this indirect utility function.

The objective function for the government is a standard additive social welfare func-

tion of the following form:
H∑

h=1

πhW
(
vh(q̃h, q, M)

)
, (19)

where W (vh(·))—the social utility of household h—is increasing, concave and twice

differentiable in vh. The optimal tax problem is then to determine the values of the

lump-sum transfer M and the commodity tax vector (t1, . . . , tn) that maximize social

welfare subject to the government’s exogenous revenue requirement, R̄,

n∑

i=1

ti

(
H∑

h=1

πhxh
i

)
−M ≥ R̄. (20)

This problem takes the same form as the standard many-type Ramsey optimal tax

problem, except that full consumer prices q̃h apply for L-substitutes. We can make use of
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existing results to obtain some insight into the effect of time-consuming consumption on

the structure of optimal commodity taxes. Note first that if all goods were r-substitutes,

the standard optimal tax analysis would apply and time differences in consumption

would be irrelevant. This follows from the analysis in the previous section.

We are now in a position to reexamine the special cases we considered in the pre-

vious section for the representative Ramsey case. The following definitions help in

presentation. Define the marginal social utility of income of an h-type household by

βh ≡ W ′(vh)
∂vh

∂M
.

Denote the shadow price of government revenue (the Lagrange multiplier on the revenue

constraint) by µ. Then

γh ≡ βh + µ
∑

i

ti
∂xh

i

∂M

is household h’s net social marginal utility of income, as conventionally defined in the

literature. One can interpret γh as the social value in terms of the numeraire good of

transferring a unit of income to a household of type h. The mean value of the γh’s is

γ =
∑

h πhγh.

3.2 Inverse elasticity rule

Assume, as in the representative-household case, that U(y, x) is additive and linear

in y. Let Xj =
∑

h πhxh
j and Xs =

∑
h πhxh

s denote aggregate (over all households)

consumption of goods j = 1, 2, . . . , m and s = m + 1, . . . , n. Similarly, let εh
jj and

εh
ss denote household h’s price elasticity of demand with respect to q̃h

j and qs (both

compensated and uncompensated given that there are no income effects). We show in

the Appendix that, corresponding to Eqs. (15) and (14b), we now have

tj
q̃j

= − 1
µ

µ−
∑

h γhπhxh
j /Xj∑

h(qj/q̃h
j )(πhxh

j /Xj)εh
jj

, j = 1, 2, . . . , m, (21a)

ts
qs

= − 1
µ

µ −
∑

h γhπhxh
s/Xs∑

h(πhxh
s/Xs)εh

ss

, s = m + 1, . . . , n, (21b)

17



with µ = γ̄.

It follows from Eq. (21b) that the characterization of the optimal tax on r-substitutes

remains as in the traditional model where we have a generalized version of the inverse

elasticity rule adjusted by equity considerations and every household’s share in con-

sumption of these goods. In the case of L-substitutes, the optimal tax characterization

changes in that h-household’s elasticity of demand is now weighted by the ratio of the

good’s market price to the full price for household h. With q̃h
j > qj (for all h and j),

it again follows that, if an L-substitute and an r-substitute have the same elasticity

of demand and the same consumption share (for all households), the L-substitute will

have a higher tax rate than the r-substitute as a proportion of market prices.

3.3 Weakly-separable preferences

Suppose we again assume that U(y, x) is weakly separable in y and x and that the subu-

tility in x is homothetic, so that the problem has the same structure as Deaton (1977).

We prove in the Appendix that in this case, the optimal commodity taxes are charac-

terized by

tj =
∑

h πh(γ − γh)/εh

γ −
∑

h πh(γ − γh)/εh
(1 + whaj), j = 1, 2, . . . , m (22a)

ts =
∑

h πh(γ − γh)/εh

γ −
∑

h πh(γ − γh)/εh
, s = m + 1, . . . , n (22b)

where εh is the cross-price elasticity of the h-type’s demand for leisure with respect to

any one of the produced goods. Note that the separability and homotheticity assump-

tions imply that εh is the same for all goods.

To interpret Eqs. (22a) and (22b), define

t ≡
∑

h πh(γ − γh)/εh

γ −
∑

h πh(γ − γh)/εh
, (23a)

Θ ≡
∑

h πh(γ − γh)wh/εh

γ −
∑

h πk(γ − γk)/εk
. (23b)
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Then, optimal tax rates tj and ts can be written as

tj = t + Θaj , j = 1, . . . , m (24a)

ts = t, s = m + 1, . . . , n (24b)

These are the analogs of Eqs. (17a)–(17b) in the representative-household case. The

r-substitutes are always taxed uniformly. As in the traditional model, the tax rate t is

affected by distributional considerations via the γh terms, and by the efficiency terms via

the ε terms. For L-substitutes, we have a more complex version of the representative-

household case. As in that setting, all L-substitutes whose consumption take the same

time should be taxed at the same rate. Moreover, tax rates must increase with time

taken in consumption. However, unlike the representative-household case, relative tax

rates for the L-substitutes are not governed simply by relative time intensity factors.

One now has tj/ti = (t+Θaj )/(t+Θai) so that distributional and efficiency considera-

tions also enter through Θ. Every different configuration of γh’s or εh’s imply a different

value for Θ and, with it, a different ratio of tax rates for the same as and ai (as long as

as 6= ai).13 Finally, observe that Eqs. (24a)–(24b) imply that tax rates for L-substitutes

are all higher than the tax rate on the r-substitutes.

3.4 Absence of pure leisure

It is plain that the first-best result of the representative-household case, when leisure

does not enter preferences and all goods are L-substitutes, will no longer hold when

households are heterogeneous. This is easy to see. With the full consumer price of each

good, q̃h
j , being different for different consumers, there will be no tax scheme which can

raise all full consumer prices proportionally for all consumers. If tax rates are chosen

such that the full consumer prices increase by the same proportion for one household,
13Time differences in consumption become irrelevant if the social planner has no equity objectives.

Setting γh = γ (for all h = 1, 2, . . . ,H) in Eqs. (23a)–(23b) implies that t = Θ = 0 and the tax on all
goods (r- as well as L-substitutes) are set at zero. All revenues are then raised from a head tax.
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then they will change at varying proportions for different households. Proposition 2

summarizes the results of this Section.

Proposition 2 Assume the economy is inhabited by households who differ in earning

ability but have identical preferences, and that tax instruments are constrained to be

linear.

(i) Assume preferences are additive in goods and linear in leisure-equivalent activi-

ties. There will be a generalized version of the inverse elasticity rule for optimal taxes

on L- and r-substitutes as characterized by Eqs. (21a)–(21b). They show that if an

L-substitute and an r-substitute have the same elasticity of demand and the same con-

sumption share (for all households), the L-substitute will have a higher tax rate than the

r-substitute as a proportion of market prices.

(ii) Assume preferences are weakly separable in leisure-equivalent activities and goods.

Then,

• The r-substitutes are always taxed uniformly and characterized by Eq. (23a), while

the optimal taxes on L-substitutes are characterized by Eqs. (23a)–(24a).

• All L-substitutes whose consumption take the same time should be taxed at the

same rate, and the tax rates increase with time taken in consumption.

• All L-substitutes are taxed at higher rates than the uniform tax rate on r-substitutes.

• Time differences in consumption become irrelevant if the social planner has no

equity objectives; all revenues are then raised from a head tax.

(iii) Assume that pure leisure does not enter preferences and that all goods are L-

substitutes. No first-best outcome can be attained.
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4 Heterogeneous households with a nonlinear income tax

The presence of a general income tax changes the landscape for optimal taxation. In

the traditional model, weak separability between goods and leisure (or labor supply) is

sufficient for the redundancy of commodity taxes: homotheticity of the goods subutility

function is no longer required (Atkinson and Stiglitz, 1976). The standard method for

the derivation of optimal taxes in models with a discrete number of types is to first

derive the optimal allocations and then consider the properties of the tax functions

that implement this allocation (e.g., Stiglitz, 1987). With more than one consumption

good, however, this procedure will yield allocations whose implementation generally

requires nonlinear commodity taxes. Whether or not goods may be taxed nonlinearly

depends crucially on the type of information that is available to the tax administration.

Specifically, whether the available information is on personal consumption levels or not.

While such information may exist for certain commodities (e.g., electricity consump-

tion by households), it is more likely that the tax administration has information on

anonymous transactions only. The possibility of reselling commodities exacerbates the

problem. Under this circumstance, nonlinear commodity taxes are not feasible. This is

the informational structure that we shall assume in this paper.

As previously, households have identical preferences U(y, x) defined by Eqs. (6a)–(7)

with y = 1− Y = 1 − L−
∑m

i=1 aixi. Define I ≡ wL, and let wk denote the wage of a

household of “type” k, with wk > wh whenever k > h. Introduce a type-specific utility

function describing preferences over xi’s and I ,

uh(I, x) ≡ U

(
1− I

wh
−

m∑

i=1

aixi, x

)
. (25)

Denote the utility level of a h-type household by uh when he chooses the allocation
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intended for him, and by uhk when he chooses a k-type person’s bundle, namely,

uh = uh(Ih, xh), (26a)

uhk = uh(Ik, xk). (26b)

We follow Cremer and Gahvari’s (1997) method for the characterization of Pareto-

efficient allocations that are constrained not only by the standard self-selection con-

straints and the resource balance, but also by the linearity of commodity taxes. Thus,

we derive an optimal revelation mechanism that consists of a set of type-specific before-

tax incomes, Ih’s, aggregate expenditures on private goods, ch’s, and a vector of com-

modity tax rates (same for everyone), t = (t1, t2, . . . , tn). This procedure determines

the commodity tax rates right from the outset. A complete solution to the optimal tax

problem then requires only the design of a general income tax function. Note that in-

stead of commodity taxes, the mechanism may equivalently specify the consumer prices:

q = (q1, q2, . . . , qn), where qi = 1+ ti (i = 1, 2, . . . , n). The mechanism assigns (q, ch, Ih)

to a household who reports type h; the consumer then allocates ch between the pro-

duced goods, x.14As usual, homogeneity of degree zero of demands in consumer prices,

and supplies in producer prices, allows us to normalize both sets of prices. This enables

us to normalize commodity tax rates by setting tn to zero so that qn = 1.

Formally, given any vector (q, c, I), a household of type h solves

maxx uh(x, I) (27a)

subject to
n∑

i=1

qixi = c. (27b)

Denote, with some abuse of notation, the resulting “conditional” demand functions by
14Strictly speaking, this procedure does not characterize allocations as such; the optimization is over

a mix of quantities and prices. However, given the commodity prices, utility maximizing households
would choose the quantities themselves. We can thus think of the procedure as indirectly determining
the final allocations.
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xh
i (q, c, I),15 and the indirect utility function by

vh(q, c, I)≡ uh
(
xh(q, c, I), I

)
.

Next, define
xh

i = xh
i (q, ch, Ih), xhk

i = xh
i (q, ck, Ik),

vh = vh(q, ch, Ih), vhk = vh(q, ck, Ik).

Pareto-efficient allocations (constrained by incentive compatibility and linearity of com-

modity taxes) can then be described as follows. Let δh (h = 1, 2, . . . , H) denote a

positive constant with the normalization
∑H

h=1 δh = 1. Maximize

∑

h

δhvh, (28)

with respect to ch, Ih, and q1, q2, . . . , qn−1, subject to the resource constraint

∑

h

πh
[
(Ih − ch) +

n−1∑

i=1

(qi − 1)xh
i

]
≥ R̄, (29)

and the self-selection constraints

vh ≥ vhk, h, k = 1, 2, . . . , H. (30)

Denote the Lagrange multipliers associated with the resource balance (29) by µ and

the self-selection constraints (30) by λhk (h, k = 1, 2, . . . , H). Let x̂h
i denote the com-

pensated version of household h’s conditional demand for xi as determined by problem

(27a)–(27b). Finally, define

A =




∑
h πh ∂x̂h

1
∂q1

∑
h πh ∂x̂h

1
∂q2

· · ·
∑

h πh ∂x̂h
1

∂qn−1∑
h πh ∂x̂h

2
∂q1

∑
h πh ∂x̂h

2
∂q2

· · ·
∑

h πh ∂x̂h
2

∂qn−1

...
...

. . .
...

∑
h πh ∂x̂h

n−1

∂q1

∑
h πh ∂x̂h

n−1

∂q2
· · ·

∑
h πh ∂x̂h

n−1

∂qn−1




. (31)

15These functions are conditional on ch and Ih; they differ from the customary Marshallian demand
functions. Specifically, xh

i (.) as defined here has a different functional form from its counterpart in
Section 3.
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In the Appendix, we prove that an interior solution satisfies the following conditions,




t1
t2
...
tn−1


 = A−1




−
∑

h

∑
k 6=h λkh(xkh

1 − xh
1)vkh

c
µ

−
∑

h

∑
k 6=h λkh(xkh

2 − xh
2)vkh

c
µ

...
−
∑

h

∑
k 6=h λkh(xkh

n−1 − xh
n−1)

vkh
c
µ




, (32)

where we will also give a characterization for xh
i and xkh

i solutions. It is clear from

Eq. (32) that the structure of commodity taxes depend in the usual way on incentive and

redistributive concerns. They also depend, in a complicated way, on the time intensity

of the consumption goods. To be able to say anything more about these taxes, we again

have to consider some special cases. The inverse elasticity rule has no counterpart in

the optimal nonlinear tax problem. We shall thus consider only the two special cases of

weakly separable preferences and absence of pure leisure.

4.1 Weakly-separable preferences in y and x

Assume U is weakly separable in y and x, so that

U(y, x) = U (y, f(x)) . (33)

In this case, the first-order conditions to problem (27a)–(27b) for household h are,

j = 1, 2, . . . , m and s = m + 1, · · · , n,16

−aj
Uy

(
1− Ih/wh −

∑m
i=1 aix

h
i , f(xh)

)

Un

(
1− Ih/wh −

∑m
i=1 aixh

i , f(xh)
) +

fj(xh)
fn(xh)

= qj , (34a)

fs(xh)
fn(xh)

= qs, (34b)

n∑

i=1

qix
h
i = ch. (34c)

These equations then determine xh. Observe also that the first-order conditions for the

problem of household k mimicking h will be exactly the same except that the arguments
16These can be derived from Eqs. (A38)–(A40) in the Appendix.
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of Uy and Un will be (1− Ih/wk −
∑m

i=1 aix
kh
i , xkh), the arguments of fj , fn and fs will

be xkh, and xkh
i replaces xkh

i in Eq. (34c).

Equations (34a)–(34c) indicate that if there are no L-substitute goods, that is, if

m = 0, then xh = xkh for all k, h = 1, 2, . . . , H . In turn, this implies, via Eq. (32), that

no differential commodity taxation is needed. Thus, as in the two previous sections with

linear income taxes, the standard optimal tax results apply if all goods are r-substitutes

and there is no need to take account of time spent consuming. Once some goods are

L-substitutes, there are no clearcut results. In particular, unlike the two linear income

tax cases, weak separability here does not imply that r-substitutes should necessarily be

taxed uniformly (based on full consumer prices). Nor does it imply that L-substitutes

must as a rule be taxed at higher rates than r-substitutes. Similarly, it will no longer be

the case that the tax rates on L-substitutes necessarily move positively with their time

consumption coefficients. If, aj = ak , for example, it does not follow that tj = tk unless

fj(xh) = fk(xh), for all h = 1, 2, . . . , H . Despite lack of general results in this case, one

can nevertheless get some intuition into the structure of optimal taxes through a simple

example with two persons and two goods.

4.2 A two-person, two-good example

Assume there are only two household types, h = 1, 2, with w2 > w1, enjoying leisure

and consuming two goods with time coefficients a1, a2. Assume also that the govern-

ment wants to redistribute from type 2’s to type 1’s so that the only binding incentive

constraint will be that on the type 2’s, implying λ21 > 0, λ12 = 0. Since one commodity

tax rate is redundant, one can set t2 = 0. Then, by Eq. (32), t1 > 0 if x21
1 > x1

1.
17

That is, good 1 will have a positive tax rate if mimicking type 2’s consume more of the

taxed good than do the type 1’s whom they are mimicking. This parallels the result in
17In the standard optimal tax literature, when consumption is not time consuming, the Atkinson-

Stiglitz (1976) Theorem applies and weak separability is sufficient to ensure that x21
1 = x1

1, so that, at
the optimum, t1 = 0.
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Edwards et al. (1994), and the intuition is the same. Imposing a higher tax rate on a

good that is consumed more by the mimicker will weaken the incentive constraint and

make redistribution more efficient.

To investigate what determines the size of x21
1 relative to x1

1, let σ(x1, x2; L) denote

the absolute value of the slope of an indifference curve in (x2, x1)−space:

σ(x1, x2; L) ≡ −∂x2

∂x1

∣∣∣∣
dU=0

.

Recall that the mimickers and type 1’s receive the same after-tax income, but that the

mimickers supply less labor (because both types earn the same before-tax incomes).

Consequently, whether the mimickers or type 1’s consume more of one good or the

other, depends on how σ varies with L. Specifically, if ∂σ/∂L > 0, mimickers will have

flatter indifference curves than type 1’s, consuming more x2 and less x1. On the other

hand, if ∂σ/∂L < 0, mimickers will have steeper indifference curves than type 1’s, and

consume less x2 and more x1. To sum, we have,

∂σ

∂L
T 0 ⇒ x21

1 S x1
1 ⇒ t1 S 0.

Now consider the case where the goods are L-substitutes. Assuming weak separa-

bility, utility may then be written, using Eq. (7), as U(1 − Y, x) = U(1 − L − a1x1 −

a2x2, f(x1, x2)). Differentiating this, we obtain the expression for σ corresponding to it,

σ(x1, x2; L) =
Uff1 − a1Uy

Uff2 − a2Uy
, (35)

where fi = ∂f/∂xi. Observe that, with a1 and/or a2 6= 0, σ varies with L. Thus, despite

the weak separability of preferences, type 1’s and type 2’s preferences over x1 and x2

depend on their labor supplies. Differentiating (35) with respect to L, one obtains

∂σ

∂L
=

UfyUy − UyyUf

(Uff2 − a2Uy)2
(a2f1 − a1f2). (36)

Assuming consumption goods are normal, the first expression on the right-hand side of

Eq. (36) will be positive. The sign of ∂σ/∂L will then be the same as the sign of the

26



second expression. The following result emerges,

a1

a2
T

f1

f2
⇒ ∂σ

∂L
S 0 ⇒ t1 T 0. (37)

This relationship tells us that the tax on good 1 will be positive (negative) if the relative

intensity with which x1 uses time exceeds (falls short of) the rate at which x1 can be

substituted for x2 in the sub-utility function. In this sense, a higher commodity tax

should be imposed on the good that is most time-intensive as in the earlier sections,

albeit for different reasons.

The same type of calculations establishes the relationship between tax rates on L-

and r-substitutes (when there are only two goods and two types). Thus assume good 2

is an r-substitute. Then, although a2 6= 0, it does not appear in U(y, x) = U(1 − L −

a1x1, f(x1, x2)). One can then find the expressions for σ and ∂σ/∂L by replacing a2

with zero in Eqs (35)–(36). Moreover, it is plain that in this case, a1/a2 ≥ f1/f2 so that

from Eq. (37), t1 > 0. This tell us that, as in the previous sections, the L-substitute

good must be taxed at a higher rate than the r-substitute good.

Finally, observe that if both goods are r-substitutes, from Eq. (35), σ = f1/f2 and

independent of y, and hence of labor supplies. We will then have ∂σ/∂L = 0 so that

t1 = t2 = 0, as argued for the general case.

4.3 Absence of pure leisure

Assume again that pure leisure does not enter preferences. It is again clear that as

long as there exist any r-type goods, one cannot say much about the structure of

commodity taxes. The interesting case is again when one also assumes that there

are no r-substitutes. In this case, y disappears as an argument from the households’

preferences. It also follows from the individual’s time constraint (5) that Lh = 1 −
∑n

i=1 aix
h
i for h = 1, 2, . . . , H .

Now consider our earlier revelation mechanism (28)–(30). With Ih = whLh =

wh[1−
∑n

i=1 aix
h
i ] being determined through household h’s choice of xh

i (i = 1, 2, . . . , n),
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we no longer have to assign Ih to a household, only ch and q. Consequently, the optimum

is characterized by a pooling solution where everyone is assigned the same amount of

ch = c. Given the same c and the same consumer prices, everyone will end up with the

same consumption levels and the same labor supply. Moreover, everyone will pay a tax

equal to Ih−c. These taxes are lump-sum (but differential). Consequently, the optimal

tax policy for the government will be to levy no commodity taxes and attain a first-best

outcome. Consequently, while we have a first-best outcome (unlike the heterogeneous

Ramsey case), we have no commodity taxes (unlike the representative household case).

Proposition 3 summarizes the results of this Section.

Proposition 3 Assume the economy is inhabited by households who differ in earning

ability but have identical preferences. Income taxes are nonlinear, but commodity taxes

are linear.

(i) Assume further that preferences are weakly separable in leisure-equivalent activ-

ities and goods. Then,

• Optimal commodity taxes on L- and r-substitutes are characterized by Eq. (32).

• If there are no L-substitute goods, differential commodity taxes are redundant.

(ii) If pure leisure does not enter preferences and all goods are L-substitutes, the

optimal policy will be first-best requiring no commodity taxes.

5 Conclusion

As Becker (1965) first emphasized, the consumption of goods is an activity that takes

time, and consumer choice involves allocating both a goods’ budget and a time bud-

get. The benefits obtained from time-consuming activities are analogous to services

obtained from the joint consumption of many goods as in Lancaster’s (1966) charac-

teristics approach to consumer demand. In principle, this should affect the design of
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optimal commodity taxes. Informational constraints preclude the direct taxation of the

services of time-consuming household consumption activities, so for practical purposes,

taxation must be based on the purchase of goods alone. Standard consumer theory has

analyzed the optimal taxation of goods in a setting in which time taken in consumption

is ignored. Instead, utility is based on labor time or leisure time along with goods alone,

and time spent in consumption plays no role in the determination of optimal taxes.

Recent analyses by Gahvari and Yang (1993) and Kleven (2004) have indeed shown

that the traditional optimal commodity tax rules can be violated once consumption time

is taken into account. For example, uniformity of taxation when utility is separable in

goods and leisure and homothetic in goods (the Atkinson and Stiglitz (1976) result)

no longer applies. They argue that, in this case, goods that are more time-intensive

should generally be taxed at higher rates. Gahvari (2006), however, has shown that this

depends on the assumption that utility is separable in goods and leisure rather than

goods and labor. In the latter case, standard results apply.

In this paper, we have argued that the substitutability relationships among consump-

tion time, leisure and labor are critical in determining the optimal taxation of goods.

This is seen most clearly by assuming that consumption time can either be a perfect

substitute for leisure or for labor, and that time and goods are used in fixed proportions.

In these circumstances, the standard optimal commodity tax rules would apply if all

goods were r-substitutes, and this would be the case whether income taxes were linear

or nonlinear. However, as soon as some goods are L-substitutes, optimal tax rules must

take account of time spent consuming (and the fact that it is not taxed directly), and

the manner the tax rules are affected depends on whether linear or nonlinear income

taxes are available.

The implications of the analysis for the design of an optimal tax structure are in

striking contrast to the standard results. Goods for which the time spent consuming

them is unpleasant should be taxed at a higher rate than those for which it is pleasant.
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Thus, goods that require household work, such as food and shelter, should be taxed at

a higher rate on that account than those that involve leisurely time, such as consumer

electronics and books. Moreover, the more time do L-substitutes take, the greater the

need for the tax rate to be higher. It may well be that this consideration conflicts with

standard optimal tax prescriptions that, for example, suggest taxing necessities at a

lower rate than luxuries. It is conceivable that many necessities are L-substitutes and

many luxury goods are r-substitutes.

The simple assumptions that we have built into our analysis are suggestive only and

are not meant to reflect reality. In a more general analysis, consumption time could be

an imperfect substitute for labor or leisure, and time and goods could be substitutable

in consumption as in the original formulation of Becker (1965). Consumption activities

could themselves involve more than one good. One such activity could involve house-

hold production activities in which time is presumably substitutable for work. The

implications for optimal taxation would be more complicated than those we have been

able to obtain here but would take us beyond the scope of the present paper.
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Appendix

Proof of Eq. (16): The optimal tax problem is summarized by the Lagrangian

L = v(q̃, q, w) + µ

[
n∑

i=1

tixi − R̄

]
,

where q̃ = (q̃1, q̃2, . . . , q̃m) and q = (qm+1, qm+2, . . . , qn). The first-order conditions for

this problem are,

∂L
∂tj

=
∂v

∂q̃j
+ µ

[
n∑

i=1

ti
∂xi

∂q̃j
+ xj

]
= 0, j = 1, 2, . . . , m,

∂L
∂ts

=
∂v

∂qs
+ µ

[
n∑

i=1

ti
∂xi

∂qs
+ xs

]
= 0, s = m + 1, . . . , n.

Simplifying these equations, using Roy’s identity, results in

n∑

i=1

ti
∂xi

∂q̃j
= −µ − α

µ
xj , j = 1, 2, . . . , m,

n∑

i=1

ti
∂xi

∂qs
= −µ − α

µ
xs, s = m + 1, . . . , n,

where α is the representative household’s marginal utility of income. These equations

can be rewritten, using the Slutsky equation, as

n∑

i=1

ti
∂xc

i

∂q̃j
= −µ − γ

µ
xj , j = 1, 2, . . . , m, (A1)

n∑

i=1

ti
∂xc

i

∂qs
= −µ − γ

µ
xs, s = m + 1, . . . , n, (A2)

where xc
i denotes the compensated demand for good i, and γ ≡ α/µ +

∑
i ti(∂xi/∂M)

is the net social marginal utility of income, with M denoting household’s exogenous

income.

Next, from the homogeneity of compensated demands (of degree zero in prices) and

31



the symmetry of substitution terms, one has

n∑

i=1

q̃i
∂xc

i

∂q̃j
+ w

∂yc

∂q̃j
= 0, j = 1, 2, . . . , m, (A3)

n∑

i=1

qi
∂xc

i

∂qs
+ w

∂yc

∂qs
= 0, s = m + 1, . . . , n, (A4)

where yc(.) is the compensated demand for y. When preferences are separable in y and

x, with the subutility in x being homothetic, we have, following Sandmo (1974),

∂yc

∂q̃j
= ηxj , j = 1, 2, . . . , m, (A5)

∂yc

∂qs
= ηxs, s = m + 1, . . . , n, (A6)

where η is independent of j and s. Substituting in Eqs. (A3)–(A4)

n∑

i=1

q̃i
∂xc

i

∂q̃j
= −ηwxj , j = 1, 2, . . . , m, (A7)

n∑

i=1

qi
∂xc

i

∂qs
= −ηwxs, s = m + 1, . . . , n. (A8)

Eliminating xj between Eqs. (A1) and (A7), and xs between Eqs.(A2) and (A8), yields,

n∑

i=1

[
µti

µ− γ
− q̃i

ηw

]
∂xc

i

∂q̃j
= 0, j = 1, 2, . . . , m, (A9)

n∑

i=1

[
µti

µ− γ
− qi

ηw

]
∂xc

i

∂qs
= 0, s = m + 1, . . . , n. (A10)

Assuming that the matrix [∂xc
i/∂q̃j , ∂xc

i/∂qs] is non-singular, the solution to the system

of equations (A9)–(A10) is characterized by

tj
q̃j

=
1

ηw

µ− γ

µ
, j = 1, 2, . . . , m, (A11)

ts
qs

=
1

ηw

µ− γ

µ
, s = m + 1, m + 2, . . . , n. (A12)
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where from Eqs. (A5)–(A6) and symmetry of the Slutsky matrix,

ηw =
w

xj

∂yc

∂q̃j
=

w

xj

∂xc
j

∂w
= ε,

ηw =
w

xs

∂yc

∂qs
=

w

xs

∂xc
s

∂w
= ε,

where ε is the cross-price elasticity of compensated demand for y with respect to any

one of the consumption goods (same for all goods). Using Eq. (A11)–(A12), one arrives

at Eq. (16) in the text.

Proof of Eqs. (21a)–(21b): The optimal tax problem is summarized by the La-

grangian

L =
H∑

h=1

πhW
(
vh(·)

)
+ µ

[
n∑

i=1

ti

(
H∑

h=1

πhxh
i

)
−M − R̄

]
,

where vh(·) = v(q̃h, q, wh, M). The first-order conditions are, for j = 1, 2, . . . , m and

s = m + 1, . . . , n,

∂L
∂tj

=
H∑

h=1

πhW ′
(
vh(·)

) ∂vh

∂q̃h
j

+ µ

[
H∑

h=1

πhxh
j +

n∑

i=1

ti

(
H∑

h=1

πh ∂xh
i

∂q̃h
j

)]
= 0,

∂L
∂ts

=
H∑

h=1

πhW ′
(
vh(·)

) ∂vh

∂qs
+ µ

[
H∑

h=1

πhxh
s +

n∑

i=1

ti

(
H∑

h=1

πh ∂xh
i

∂qs

)]
= 0,

∂L
∂M

=
H∑

h=1

πhW ′
(
vh(·)

) ∂vh

∂M
+ µ

[
n∑

i=1

ti

(
H∑

h=1

πh ∂xh
i

∂M

)
− 1

]
= 0.

Manipulation of these equations, using Roy’s identity, yields

∑

h

(µ− βh)πhxh
j + µ

∑

i

ti

(∑

h

πh ∂xh
i

∂q̃h
j

)
= 0, (A13)

∑

h

(µ− βh)πhxh
s + µ

∑

i

ti

(∑

h

πh ∂xh
i

∂qs

)
= 0, (A14)

∑

h

πh

[
βh + µ

∑

i

ti
∂xh

i

∂M

]
= µ. (A15)
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Slutsky decomposition of ∂xh
i /∂q̃h

j and ∂xh
i /∂qs terms in Eqs. (A13)–(A14), denoting

the elements of the associated Slutsky matrix by Sh
ij and Sh

is, allows one to simplify

Eqs. (A13)–(A14) further and rewrite Eqs. (A13)–(A15) as

∑

h

(µ− γh)πhxh
j + µ

∑

h

∑

i

tiπ
hSh

ij = 0, (A16)

∑

h

(µ− γh)πhxh
s + µ

∑

h

∑

i

tiπ
hSh

is = 0, (A17)

γ̄ ≡
∑

h

πhγh = µ. (A18)

The system of equations (A16) hold with no restrictions imposed on U(y, x). Now

given the quasi-linearity and additivity assumptions, Sh
ij = ∂xh

i /∂q̃h
j = 0 whenever

i 6= j and Sh
is = ∂xh

i /∂qs = 0 whenever i 6= s. Substituting these values in Eqs. (A16)–

(A16), rewriting the resulting equations in terms of elasticities and simplifying we have

Eqs. (21a)–(21b) in the text.

Proof of Eqs. (22a)–(22b): From the properties of the Slutsky matrix,

∑

i

(qi + aiw
h)Sh

ij + whSh
yj = 0, j = 1, 2, . . . , m, (A19)

∑

i

qiS
h
is + whSh

ys = 0, s = m + 1, . . . , n. (A20)

As with Eqs. (A5)–(A6), following Sandmo (1974), one can write

Sh
yj = ηhxh

j , j = 1, 2, . . . , m, (A21)

Sh
ys = ηhxh

s , s = m + 1, m + 2, . . . , n, (A22)

where ηh is independent of j and s. Substituting from Eqs. (A21)–(A22) into Eqs. (A19)–

(A20) then results in

∑

i

(qi + aiw
h)Sh

ij = −ηhwhxh
j , j = 1, 2, . . . , m, (A23)

∑

i

qiS
h
is = −ηhwhxh

s , s = m + 1, . . . , n. (A24)
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Recall that conditions (A16)–(A17) were derived without making any simplifying

assumptions on the preferences U(y, x). Thus substitute from Eqs. (A23)–(A24) into

Eqs. (A16)–(A17) and simplify to arrive at the following system of n equations that will

hold only under the weak separability assumption,

∑

h

∑

i

[
ti −

µ − γh

µ ηhwh
(qi + aiw

h)
]

πhSh
ij = 0 , j = 1, 2, . . . , m,

∑

h

∑

i

[
ti −

µ− γh

µ ηhwh
qi

]
πhSh

is = 0 , s = m + 1, m + 2, . . . , n.

Now, weak separability and homotheticity in goods assumption imply that Sh
ij = (whLh)Sij

and Sh
is = (whLh)Sis. Assuming that [Sij , Sis] matrix is non-singular, the solution to

above system of equations is given by

tj =
∑

h

πh µ − γh

µ ηhwh
(qj + ajw

h), j = 1, 2, . . . , m, (A25)

ts =
∑

h

πh µ − γh

µ ηhwh
qs, s = m + 1, . . . , n. (A26)

Moreover, from Eqs. (A21)–(A22), we have for j = 1, 2, . . . , m and s = m + 1, . . . , n,

ηhwh =
Sh

yj

xh
j

wh =
Sh

ys

xh
s

wh = εh,

where εh is type h’s cross-price elasticity of compensated demand for y with respect to

any one of the consumption gods (same for all goods). Substituting for ηh from this

relationship, and for µ from Eq. (A18), into Eqs. (A25)–(A26) and rearranging, one

arrives at Eqs. (22a)–(22b) in the text.

Derivation of Eq. (32): Summarize the problem by the Lagrangian

L =
∑

h

δhvh(q, ch, Ih)+µ
{∑

h

πh
[
(Ih−ch)+

n−1∑

i=1

(qi−1)xh
i

]
−R̄

}
+
∑

h

∑

k 6=h

λhk(vh−vhk).

(A27)
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Rearranging the terms, one may usefully rewrite the Lagrangian expression as

L =
∑

h

(
δh +

∑

k 6=h

λhk
)
vh − +µ

{∑

h

πh
[
(Ih − ch)

+
n−1∑

i=1

(qi − 1)xh
i

]
− R̄

}
−
∑

h

∑

k 6=h

λhkvhk. (A28)

The first-order conditions are, for all t = 1, 2, . . . , n− 1 and h, k = 1, 2, . . . , H,

∂L
∂Ih

=
(
δh +

∑

k 6=h

λhk
)
vh
I + µπh

[
1 +

n−1∑

i=1

(qi − 1)
∂xh

i

∂Ih

]
−
∑

k 6=h

λkhvkh
I = 0, (A29)

∂L
∂ch

=
(
δh +

∑

k 6=h

λhk
)
vh
c + µπh

[
− 1 +

n−1∑

i=1

(qi − 1)
∂xh

i

∂ch

]
−
∑

k 6=h

λkhvkh
c = 0, (A30)

∂L
∂qt

=
∑

h

(
δh +

∑

k 6=h

λhk
)
vh
t + µ

∑

h

πh
[ n−1∑

1=1

(qi − 1)
∂xh

i

∂qt
+ xh

t

]

−
∑

h

∑

k 6=h

λhkvhk
t = 0. (A31)

Multiply Eq. (A30) by xh
t , sum over h, add the resulting equation to Eq. (A31), and

simplify. We will have the following system of equations for i = 1, 2, . . . , n− 1,

∑

h

(
δh +

∑

k 6=h

λhk
)(

vh
t + xh

t vh
c

)
+ µ

∑

h

πh
[ n−1∑

i=1

(qi − 1)
(∂xh

i

∂qt
+ xh

t

∂xh
i

∂ch

)]

−
∑

h

∑

k 6=h

λkh
(
vkh
t + xh

t vkh
c

)
= 0. (A32)

Next, make use of Roy’s identity to set, for all t = 1, 2, . . . , n, and h, k = 1, 2, . . . , H,

vh
t + xh

t vh
c = 0, (A33)

vkh
t + xkh

t vkh
c = 0. (A34)

Then use the Slutsky equation to write, for all i, t = 1, 2, . . . , n, and h = 1, 2, . . . , H,

∂xh
i

∂qt
=

∂x̂h
i

∂qt
− xh

t

∂xh
i

∂ch
. (A35)
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Substituting from (A33)–(A34) and (A35) in (A32), making use of the symmetry of the

Slutsky matrix, setting qi − 1 = ti, upon further simplification and rearrangement, one

arrives at

n−1∑

i=1

(∑

h

πh ∂x̂h
t

∂qi

)
ti = −

∑

h

∑

k 6=h

λkh
(
xkh

t − xh
t )

vkh
c

µ
, t = 1, 2, . . . , n− 1. (A36)

Equation (A36) is one way of characterizing the optimal commodity tax rates: ti’s.

To arrive at Eq. (32), use the definition of A in Eq. (31) to write out the system of

equations (A36) in matrix notation:

A




t1
t2
...
tn−1


 =




−
∑

h

∑
k 6=h λkh

(
xkh

1 − xh
1)vkh

c
µ

−
∑

h

∑
k 6=h λkh

(
xkh

2 − xh
2)vkh

c
µ

...
−
∑

h

∑
k 6=h λkh

(
xkh

n−1 − xh
n−1)

vkh
c
µ




. (A37)

Premultiplying Eq. (A37) by A−1 then yields the system of equations (32) in the text.

Characterization of xh and xkh: With the first m goods being L-substitutes and the

remaining n −m goods r-substitutes, the first-order conditions of the problem (27a)–

(27b) are simplified as, for j = 1, 2, . . . , m, and s = m + 1, . . . , n− 1,

−aj
Uy

Un
+

Uj

Un
=

qj

qn
= qj , (A38)

Us

Un
=

qs

qn
= qs, (A39)

n∑

i=1

qixi = ch, (A40)

where qn ≡ 1. The solution to the above equations will be xh if the arguments of

Uy , Un, Uj and Us are (1− Ih/wh −
∑m

i=1 aix
h
i , xh) and xi = xh

i . Similarly, we will have

xkh as the solution if the arguments of Uy , Un, Uj and Us are (1−Ih/wk−
∑m

i=1 aix
kh
i , xkh)

and xi = xkh
i .
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