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Updating Ambiguous Beliefs in a Social

Learning Experiment

Roberta De Filippis, Antonio Guarino,
Philippe Jehiel and Toru Kitagawa¤

Abstract

We present a social learning experiment in which subjects predict the
value of a good in sequence. We elicit each subject’s belief twice: …rst
(“…rst belief”), after he observes his predecessors’ prediction; second, after
he also observes a private signal. Our main result is that subjects up-
date on their signal asymmetrically. They weigh the private signal as a
Bayesian agent when it con…rms their …rst belief and overweight it when
it contradicts their …rst belief. This way of updating, incompatible with
Bayesianism, can be explained by ambiguous beliefs (multiple priors on
the predecessor’s rationality) and a generalization of the Maximum Likeli-
hood Updating rule. Our experiment allows for a better understanding of
the overweighting of private information documented in previous studies.

1 Introduction

In many economic and social situations we make decisions having our own in-
formation about which action may be the best one and also observing the de-
cisions of others who faced a similar problem in the past. An investment decision
or the purchase of a new product or service are just among the many examples
of these situations. It is in fact di¢cult to think of cases in which we are the …rst
to make a decision and have no information about how others have decided in
the past. Observing the decision of others is useful, since we learn what others
thought the best action was on the basis of the information they had.

Given the pervasiveness of the phenomenon, it is of course of crucial im-
portance to answer questions such as: how do people make inferences from the
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acknowledges the …nancial support of the ERC and of the INET, and the hospitality of the
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decision of other agents? How do they combine the information coming from
that observation with their own private information?

A large literature, starting with the seminal work of Banerjee (1992) and
Bikhchandani et al. (1992), has investigated this type of issues and pointed out
that observational learning can lead to phenomena such as herding and inform-
ational cascades. Theories of observational learning, typically relying on the
assumption of full rationality, have been extensively tested through laboratory
experiments, since the experiment of Anderson and Holt (1997). A common
…nding of these experiments is that participants tend to put relatively more
weight on their private information than on the public information contained
in the choices of other participants, as compared with the rational benchmark
as well as with what would have been optimal given the actual behavior of
participants in the laboratory. Nöth and Weber (2003), for instance, using an
ingenious design in which subjects observe signals of di¤erent precision, con-
clude that “participants put too much weight on their private signal compared
to the public information which clearly indicates the existence of overcon…d-
ence.” Çelen and Kariv (2004), in a study aimed at distinguishing informational
cascades from herd behavior, also …nd that “subjects give excessive weight to
their private information relative to the public information revealed by the be-
havior of others.” Goeree et al. (2007), revisiting the original Anderson and
Holt (1997) experimental design with longer sequences of decision makers, ana-
lyze the data through the lenses of the Quantal Response Equilibrium (QRE)
and also conclude that there is strong evidence of overweighting of the private
information.

These experiments were designed to analyze herding or informational cas-
cades. The observation of the overweighting of the private signal was a by-
product of this analysis. In this paper we propose a new experiment, designed
to elicit the beliefs of a subject after he observes another subject’s decision, and
the updated belief after he receives private information. With this novel design,
we can study in detail how people combine the information coming from the
observation of others’ decisions with their private information. Our purpose is
to analyze how well human subjects’ behavior conforms to Bayesian updating
when they have to make inferences from a private signal and from the decision of
another human subject, and to understand the determinants of the overweight-
ing of the own information documented in previous studies (to the extent it
shows up in our experiment too).

To be speci…c, in our experiment, we ask subjects to predict whether a good is
worth 0 or 100 units, two events that are, a priori, equally likely. A …rst subject
receives a noisy symmetric binary signal about the true value realization: either
a “good signal”, which is more likely if the value is 100; or a “bad signal”, which
is more likely if the value is 0. After receiving his signal, the subject is asked to
state his belief on the value being 100.1 To elicit his belief we use a quadratic
scoring rule. We then ask a second subject to make the same type of prediction

1 Speci…cally, subjects are asked to choose a number between 0 and 100. The number is
the probability (expressed as a percentage) that the value is 100.
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based on the observation of the …rst subject’s decision only. Finally, we provide
the second subject with another, conditionally independent, signal about the
value of the good and ask him to make a new prediction.

Whereas in previous experiments, subjects’ beliefs are hidden under a binary
decision, in our experiment we elicit them The belief of the …rst subject tells
us how he updates from the observation of a private signal. The …rst action of
the subject at time 2 gives us the “…rst belief” that he forms upon observing
the predecessor’s action only. His second decision gives us the “posterior belief”
that he forms by observing his private signal. Asking subjects to make decisions
in a continuous action space and eliciting a subject’s beliefs both before and
after receiving the private signal are novel features in the experimental social
learning literature, which allow us to separately observe how a subject updates
from observing others’ actions and how this is combined with the subject’s own
private information.

The main results of our investigation are the following. First, after observing
a private signal only, subjects do not show a particular bias in updating their be-
liefs. In particular, there is no systematic overweight of the signal. While there
is a lot of heterogeneity in updating, the median subject’s update is in line with
Bayesian updating. Second, at time 2, after observing the predecessor’s decision
at time 1 only, subjects “discount” the informativeness of the predecessor’s ac-
tion, attaching to it a lower weight (as if the action were less informative than
the signal on which it is based). This is so despite the fact that an action at
time 1 above (respectively, below) 50 is almost as informative as the original
signal observed by the time 1 subject (since subjects update very rarely in the
wrong direction). Third, and most importantly, when at time 2 subjects observe
their private signal, they update their belief in an asymmetric way. When the
signal is in agreement with their …rst belief (e.g., when they …rst state a belief
higher than 50% and then receive a signal indicating that the more likely value
is 100), they weigh the signal as a Bayesian agent would do. When, instead,
they receive a signal contradicting their …rst belief, they put considerably more
weight on it.

In previous experiments on social learning, this asymmetry could not be ob-
served. When subjects had a signal in agreement with the previous history of
actions, they typically followed it. This decision is essentially uninformative for
the experimenter on how subjects update their private information. In fact, on
the basis of previous experimental results, one could have thought that over-
weighing private information is a general feature of human subjects’ updating
in this type of experiments. Our work shows that this is not the case, since it
only happens when the private information contradicts the …rst belief.

This asymmetric updating, not identi…ed in the previous literature, is incom-
patible with standard Bayesianism. The subject’s “…rst belief” (i.e., his belief
after observing the predecessor but before receiving the private signal) may di¤er
from the theoretical (Perfect Bayesian Equilibrium) one if the subject at time 2
has a misconception of the precision of the signals or if he conceives the possibil-
ity that his predecessor’s action may not perfectly reveal the private information
he received, e.g., because of mistakes or boundedly rational behavior (no matter
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how bounded rationality is modelled, e.g., including the approaches of level k,
cursed equilibrium or analogy-based expectation equilibrium). Whatever this
“…rst belief”, however, the subject should simply update it on the basis of the
new information, giving the same weight to the signal, independently of its
realization (whether or not it goes against the …rst belief), as this is a mere
implication of the signals at time 1 and time 2 being independent conditional
on the realization of the value of the good.2

It should be stressed that the asymmetry we observe cannot be explained
in terms of standard psychological biases such as the con…rmation bias, accord-
ing to which subjects have a tendency to discount (maybe ignore with positive
probability) new information in disagreement with their original view. Indeed,
con…rmation bias would imply that upon receiving a private information that
contradicts the …rst belief, that information should be discounted (as compared
to when the private information agrees with the …rst belief), but we observe
the opposite asymmetry. In order to rule out any form of psychological bias
(including con…rmation bias and base rate neglect) that would be purely based
on errors in signal processing and not on the multi-player aspect of our social
learning experiment, we ran a control (individual decision making) treatment in
which the same subject received two signals in sequence drawn according to the
same process as in our social learning treatment, and reported his belief on the
value of the good after the …rst and after the second signal. In this treatment, we
observed heterogeneity (thereby supporting the view that subjects may attach
subjective and dispersed beliefs to the precision of signals) but not the asym-
metry in updating (thereby supporting the view that subjects had a reasonable
understanding of the conditional independence feature highlighted above). This
control treatment thus establishes experimentally that the asymmetric updating
is intrinsically related to the social learning aspect of our experiment.

To explain the asymmetric updating we observe in our social learning exper-
iment, we propose that, like in models of ambiguity, the subject at time 2 may
entertain several possible theories about time 1 subject’s “rationality” (where
a subject is considered “rational” if he chooses an action higher than 50 when
he receives a good signal and lower than 50 when he receives a bad signal; a
“noise” subject, in contrast, chooses any action independently of the signal).3

Moreover, each time he has to make a decision, he selects the theory that max-
imizes the likelihood of the realized observations. Based on this selected theory
about the rationality of the predecessor, subject 2 updates his belief in a stand-

2 In other words, even if subject 2may perceive subject 1 as being irrational, there should be
no asymmetric updating as long as the cognitive type of subject 1 is determined independently
of the realization of the state and of the signal drawn by subject 2. This is so since, conditional
on the state, the …rst action and the second signal are independent events. The conditional
independence should be clearly understood by the subjects given that in the instructions we
indicate that the balls at times 1 and 2 are drawn (with replacement) from an urn whose
composition depends only on the value of the good. We discuss this issue in more detail in
the following pages, when we describe the control treatment and the results.

3 As we will discuss in the next section, we use this minimal requirement in our de…nition
of rationality, since it is enough to infer the signal from the subject’s action, which is the only
thing that matters.

4



ard Bayesian fashion (possibly using subjective representations of the precision
of the signals).

Intuitively, this explains the asymmetry we observe for the following reason.
Imagine a subject observing the predecessor taking an action greater than 50
(i.e., an action that presumably comes from a good signal, indicating the value is
100). Suppose he considers that the event is most likely under the prior that the
predecessor is rational and, therefore, chooses his own action (his “…rst belief”)
accordingly. After he observes a private signal con…rming his …rst belief (that the
value is more likely to be 100), the subject remains con…dent that the predecessor
was rational, that is, sticks to the same prior on the predecessor’s rationality.
He updates on that prior belief and so the weight he puts on the signal seems
identical to that of a Bayesian agent. Consider now the case in which he receives
a signal contradicting his …rst belief (i.e., a bad signal, indicating that the more
likely value is 0). In such a case he now deems it an unlikely event that the
predecessor was rational. In other words, he selects another prior belief on the
predecessor’s rationality, giving a much higher probability to his predecessor
being noise. Once he has selected this new prior on the predecessor’s rationality,
he updates on the basis of the signal realization. This time it will look like he
puts much more weight on the signal, since the signal …rst has made him change
the prior on the rationality of the predecessor (becoming more distrusting) and
then update on the basis of that prior.

Going back to our original research question, the overweighting of private
information documented by previous social learning experiments seems to be not
just the result of distrust of predecessors’ rationality, but the result of ambiguity
entertained by subjects about such rationality. This is true since a single prior
of distrust would not explain the asymmetry in updating that we observe in our
social learning treatment, an asymmetry that, instead, we do not observe in the
individual decision making treatment. The idea that there is some distrust about
others’ rationality and some uncertainty about it, seems intuitively appealing to
us. We are not aware of any alternative explanation to the observed asymmetry
in updating.

Given our proposed explanation in terms of multiple priors (on the prede-
cessor’s rationality), our experiment is also relevant for the debate in decision
theory on how to update multiple priors. There are two main models of up-
dating that have been proposed and axiomatized in the multiple prior setting
(see Gilboa and Marinacci, 2013 for a survey). One is the Maximum Likelihood
Updating (MLU) rule (axiomatized by Gilboa and Schmeidler, 1993) on which
our method of updating that we refer to as “Likelihood Ratio Test Updating”
builds. The other is the Full Bayesian Updating (FBU) model, in which agents
have multiple priors and update prior by prior. Typically, after updating all pri-
ors, an agent makes his decision by using Maxmin Expected Utility (see Pires,
2002 for an axiomatization).

In our structural econometric analysis—another methodological contribution
of our paper—we compare the Bayesian Updating (BU) model to the Likelihood
Ratio Test Updating (LRTU) model (a generalization of MLU) and to the FBU
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model.4 We show robust statistical evidence that the LRTU’s model …ts our data
signi…cantly better than the other two models. A novelty of our econometric
analysis is that we make use of the observations in the control treatment to
identify non-parametrically the distribution of unobserved heterogeneity in the
subjective beliefs about the precision of the signal. We can perform a robust
statistical comparison of the three models without relying on any distribution
speci…cation of heterogeneity. To the best of our knowledge, using a control
treatment to account for heterogeneity in individual decisions in the laboratory
has not been done in previous experimental work.

From a decision theory viewpoint, it is important to remark that our LRTU
model di¤ers from the MLU model axiomatized by Gilboa and Schmeidler (1993)
in a crucial aspect. Whereas in Gilboa and Schmeidler (1993) it is assumed that,
once the prior is selected, the agent sticks to it (as if ambiguity were totally elim-
inated after the agent receives a …rst piece of information), in our model we let
the agent change the prior after receiving extra information (as a statistician
would do, using new data to select the most likely prior — in the statistics
literature this dates back, among others, to Good, 1965). The possibility that
the set of priors does not collapse to a single prior is contemplated in Epstein
and Schneider (2007)’s model of dynamic updating. Such a method of updat-
ing appears also in a more recent work by Ortoleva (2012), who obtains it as
one possible representation theorem by relaxing dynamic consistency. We will
further discuss Ortoleva (2012)’s model in Section 7.

We believe the results of our experiment should inform future work on the
updating of multiple priors and belief dynamics. We also …nd it interesting that
our work shows an experimental application of the ambiguous beliefs literature
beyond the classical Ellsberg experiment.5

The paper is organized as follows. Section 2 describes the theoretical model
of social learning and its (Perfect Bayesian) equilibrium predictions. Section 3
presents the experiment. Section 4 contains the results. Section 5 illustrates

4 When we designed the experiment, we were interested in testing the BU model. Since the
results were at odds with the BU model (even allowing for subjective beliefs), we considered
these alternative theories which dispense with the assumption of one prior and which pre-
existed our experimental work.

5 We cannot compare our results to other work, since the experimental literature on up-
dating in a context of ambiguity is still to be developed. To our knowledge, there are only
two related experiments, (Cohen et al., 2000 and Dominiak et al., 2012), but they are very
di¤erent from ours and a comparison is di¢cult. Both studies consider Ellsberg’s original urn
experiment in which the proportion of yellow balls is known but only the aggregate propor-
tion of blue and green balls is known. Cohen et al. (2000) ask subjects to choose between
acts (specifying rewards as a function of the drawn ball color) conditional on learning that
the drawn ball is not green. Dominiak et al. (2012) conduct a similar experiment, although
their focus is on whether subjects violate dynamic consistency and/or consequentialism (con-
sequentialism is assumed in Cohen et al., 2000). Both experiments …nd that the proportion of
subjects whose behavior is compatible with FBU is higher than that compatible with to MLU.
Our …ndings derived in social learning environments do not support FBU. In our experiment,
two pieces of information (predecessor’s action, then private signal) arrive over time, and this
is a crucial ingredient of our design which has no counterpart in these other two experiments
(in which the …rst choice does not require any inference). Since the action space is rich in our
experiment, we can observe beliefs, which is impossible in the other experiments.
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how multiple priors can, theoretically, lead to asymmetric updating. Section 6
illustrates the econometric analysis. Section 7 o¤ers further discussion of our
…ndings. Section 8 concludes. An Appendix contains additional material.

2 The Theoretical Model

We now describe the simple theoretical social learning model on which the ex-
periment is based and then illustrate the experimental procedures.

In our economy there is a good that can take two values,  2 f0 100g. The
two values are equally likely. There are two agents who make a decision in
sequence. The decision consists in choosing a number in the interval [0 100].
Each agent  ( = 1 2) receives a private signal  2 f0 1g correlated with
the true value  . Speci…cally, each agents receives a symmetric binary signal
distributed as follows:

Pr( = 1 j  = 100) = Pr( = 0 j  = 0) = 07.

This means that, conditional on the value of the good, the signals are identically
and independently distributed over time, with precision 07. Since the signal
 = 1 increases the probability that the value is 100, we will also refer to
it as the good signal, and to  = 0 as the bad signal. Agent 1 (randomly
chosen) observes the signal 1 and takes an action 1. At time 2, agent 2
observes 1 and takes a …rst action 1

2. He then observes the private signal
2 and takes a second action 2

2. The agent’s payo¤ from each choice depends
on his choice and on the value of the good. The payo¤ is quadratic and, in
particular, equal to ¡( ¡ )

2.6 Given his information  , the agent chooses
 to maximize his expected payo¤ [¡( ¡ )

2j ] (where the superscript

 stands for “subjective”). Therefore, his optimal action is ¤ = 
³
 j

´
.

When the subjective beliefs coincide with correct beliefs, what we are describing
coincides with a Perfect Bayesian Equilibrium (PBE). In the PBE, agent 1
chooses 70 upon observing 1 = 1 and 30 upon observing 1 = 0. Since each
action perfectly reveals the signal realization, observing the action is identical
to observing the signal. Therefore, agent 2 chooses his …rst action such that
1
2 = 1. After observing the private signal 2, the agent updates his belief

and chooses 2
2 =  ( j1 = 70 2 = 1) = 8448, 2

2 =  ( j1 = 30 2 = 0) =
15 52 and 2

2 =  ( j1 = 30 2 = 1) =  ( j1 = 70 2 = 0) = 50.
Allowing agents to have subjective views about the precisions  2 (05 1]

of signals (which we will later use to explain the observed heterogeneity of be-
havior) does not change the analysis qualitatively. As long as agent 1 thinks the
signal is informative (1  05), he updates in the “correct direction” although
not exactly as in the PBE. Agent 2 is still able to infer the signal realization
from the action, and can form his own belief, 1

2100, which again may depend

6 Here, and in the following analysis, we use the subscript  = 1 2 to indicate the …rst and
second period, and the superscript  = 1 2 to indicate the …rst and second subperiod in which
agent 2 makes a decision; the superscript  is immaterial when  = 1.
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on his subjective belief on the precision of signal 1. Note that agent 2 may also
have subjective beliefs on the “rationality” of agent 1, that is, on his ability to
read the signal correctly and update in the correct direction, above or below
50. If the subject entertains the possibility that, with some probability, the
predecessor updates incorrectly, he will form the expectation on the value of
the good accordingly. We are qualifying a subject as “rational” as long as he
updates in the correct direction, since the only thing that agent 2 has to learn
from subject 1 is indeed the signal realization (since the objective precisions of
the signals are known and do not have to be learned), and this is revealed under
the minimal requirement that the agent updates in the right direction. In any
case, whatever model of reasoning agent 2 uses to compute his expected value,
that is what he expresses by stating 1

2100. Once he has stated this belief, he
then updates it, possibly using a subjective precision 2 .

One can, of course, go beyond the Bayesian paradigm just discussed (even
allowing for subjective views both about the precisions of signals and about the
rationality of the predecessor). Speci…cally, one can consider a model in which
subject 2 may have ambiguous beliefs on subject 1’s rationality (along the line
of the literature with multiple priors).7 In such a case, as we anticipated in
the Introduction, it is important to specify how a subject updates beliefs. For
exposition motives, we …nd it convenient to postpone this discussion to Section
5, after we will have presented the main results.

3 The Experiment and the Experimental Design

3.1 The Experiment

This work is part of a larger experimental project, designed to answer several
research questions. The experiment was conducted with multiple, rather than
with just two periods of decision making. We describe the entire experiment
subjects participated in, even though we will then only focus on their decisions
in the …rst two periods.

We ran the experiment in the ELSE Experimental Laboratory at the De-
partment of Economics at University College London (UCL) in the fall 2009,
winter 2010, fall 2011 and spring 2014. The subject pool mainly consisted of
undergraduate students in all disciplines at UCL. They had no previous exper-
ience with this experiment. In total, we recruited 267 students. Each subject
participated in one session only.

The sessions started with written instructions given to all subjects. We
explained to participants that they were all receiving the same instructions.
Subjects could ask clarifying questions, which we answered privately. The ex-
periment was programmed and conducted with a built-on-purpose software.

7 Another departure from Bayesianism would be to allow for ambiguity on the precision of
signals. This would be a more far fetched hypothesis, since the composition of the urns is
known. In contrast, nothing is known about the rationality of subjects, which, potentially,
leaves subject 2 in a situation of uncertainty about the rationality of the predecessor.
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Here we describe the baseline treatment (SL1). In the next section, we will
explain the experimental design. We ran …ve sessions for this treatment. In
each session we used 10 participants. The procedures were the following:

1. Each session consisted of …fteen rounds. At the beginning of each round,
the computer program randomly chose the value of a good. The value was
equal to 0 or 100 with the same probability, independently of previous
realizations.

2. In each round we asked all subjects to make decisions in sequence, one
after the other. For each round, the sequence was randomly chosen by the
computer software. Each subject had an equal probability of being chosen
in any position in the sequence.

3. Participants were not told the value of the good. They knew, however, that
they would receive information about the value, in the form of a symmetric
binary signal. If the value was equal to 100, a participant would receive
a “green ball” with probability 07 and a “red ball” with probability 03;
if the value was equal to 0, the probabilities were inverted. That is, the
green signal corresponded to  = 1 and the red signal to  = 0, the signal
precision  was equal to 07 at any time.

4. As we said, each round consisted of 10 periods. In the …rst period a subject
was randomly chosen to make a decision. He received a signal and chose
a number between 0 and 100, up to two decimal points.

5. The other subjects observed the decision made by the …rst subject on their
screens. The identity of the subject was not revealed.

6. In the second period, a second subject was randomly selected. He was
asked to choose a number between 0 and 100, having observed the …rst
subject’s choice only.

7. After he had made that choice, he received a signal and had to make
a second decision. This time, therefore, the decision was based on the
observation of the predecessor’s action and of the private signal.

8. In the third period, a third subject was randomly selected and asked to
make two decisions, similarly to the second subject: a …rst decision after
observing the choice of the …rst subject and the second choice of the second
subject; a second decision after observing the private signal too. The same
procedure was repeated for all the remaining periods, until all subjects
had acted. Hence, each subject, from the second to the tenth, made two
decisions: one after observing the history of all (second) decisions made
by the predecessors; the other after observing the private signal too.8

8 As we explained above, the experiment was designed to address many research questions.
Here we describe the entire experiment subjects participated in, although we focus our analysis
on periods 1 and 2 only.
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9. At the end of the round, after all 10 subjects had made their decisions,
subjects observed a feedback screen, in which they observed the value of
the good and their own payo¤ for that round. The payo¤s were computed
as 100 ¡ 001( ¡ )

2 of a …ctitious experimental currency called “lira.”
After participants had observed their payo¤s and clicked on an OK button,
the software moved to the next round.

Note that essentially we asked subjects to state their beliefs. To elicit the be-
liefs, we used a quadratic scoring function, a quite standard elicitation method.
In the instructions, we followed Nyarko and Schotter (2002) and explained to
subjects that to maximize the amount of money they could expect to gain, it
was in their interest to state their true belief.9

As should be clear from this description, compared to the existing experi-
mental literature on social learning / informational cascades / herd behavior,
we made two important procedural changes. First, in previous experiments sub-
jects were asked to make a decision in a discrete (typically binary) action space,
whereas we ask subjects to choose actions in a very rich space which practic-
ally replicates the continuum. This allows us to elicit their beliefs, rather than
just observing whether they prefer one action to another.10 Second, in previous
experiments subjects made one decision after observing both the predecessors
and the signal. In our experiment, instead, they made two decisions, one based
on public information only and one based on the private information as well.11

To compute the …nal payment, we randomly chose (with equal chance) one
round among the …rst …ve, one among rounds 6 ¡ 10 and one among the last
…ve rounds. For each of these round we then chose either decision 1 or decision
2 with equal chance (with the exception of subject 1, who was paid according to
the only decision he made in the round). We summed up the payo¤s obtained in
these decisions and, then, converted the sum into pounds at the exchange rate
of 100 liras for 7 GBP. Moreover, we paid a participation fee of $5. Subjects
were paid in cash, in private, at the end of the experiment. On average, in this
treatment subjects earned $21 for a 2 hour experiment.

9 This explanation helps the subjects, since they do not have to solve the maximization
problem by themselves (and to which extent they are able to do so is not the aim of this
paper). For a discussion of methodological issues related to elicitation methods, see the recent
survey by Schotter and Trevino (2014).

10 Within the discrete action space experiments, exceptions to the binary action space are
the …nancial market experiments of Cipriani and Guarino (2005, 2009) and Drehman et al.
(2005) where subjects can choose to buy, to sell or not to trade. In the interesting experimental
design of Celen and Kariv (2004), subjects choose a cut o¤ value in a continuous signal space:
depending on the realization of the signal, one of the two actions is implemented (as in
a Becker, DeGroot and Marschak, 1964, mechanism). That design allows the authors to
distinguish herd behavior from informational cascades.

11 Cipriani and Guarino (2009) use a quasi strategy method, asking subject to make decisions
conditional on either signal they might receive. Still, at each time, a subject never makes a
decision based only on the predecessors’ decisions.
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3.2 Experimental Design

Social Learning. In addition to the social learning treatment (SL1) just de-
scribed, we ran a second treatment (SL2) which only di¤ered from the …rst
because the signal had a precision which was randomly drawn in the interval
[07 071] (instead of having a precision always exactly equal to 07). Of course,
each subject observed not only the ball color but also the exact precision of his
own signal. A third treatment (SL3) was identical to SL2, with the exception
that instead of having sequences of 10 subjects, we had sequences of 4 subjects.
Given the smaller number of subjects, each round lasted less time, obviously;
for this reason, we decided to run 30 rounds per session, rather than 15. The
results we obtained for times 1 and 2 for these three treatments are not stat-
istically di¤erent (as we show in the next section and in the Appendix). For
the purposes of this paper, we consider the three treatments as just one experi-
mental condition. We will refer to it as the SL treatment. Drawing the precision
from the tiny interval [07 071], instead of having the simpler set up with …xed
precision equal to 07, was only due to a research question motivated by the
theory of Guarino and Jehiel (2013), where the precision is indeed supposed to
di¤er agent by agent; this research question, however, is not the object of this
paper. Reducing the length of the sequence to 4 subjects was instead motivated
by the opportuneness to collect more data for the …rst periods of the sequence.

Individual Decision Making. In the social learning treatments subjects
make decisions after observing private signals and the actions of others. Clearly,
we may expect departures from the PBE even independently of the social learn-
ing aspect if subjects do not update in a Bayesian fashion. To control for this,
we ran a treatment in which subjects observed a sequence of signals and made
more than one decision.12 Speci…cally, a subject received a signal (as subject 1
in the SL treatments) and had to make a choice in the interval [0 100]. Then,
with a 50% probability, he received another signal and had to make a second
decision (similarly to the second decision of subject 2 in the SL treatments).
Note that, at the cost of collecting less data, we decided not to ask subjects to
make a second decision in all rounds. Our purpose was to make the task of the
subject as close possible as possible to that of a subject in the SL treatments.
In other words, we wanted the subject to make his …rst decision not knowing
whether he would be asked to make a second one; this way, his …rst decision was
in a condition very similar to that of subject 1 in the other treatments; once
the subject was given another signal and was asked to make another decision,
he was in a situation comparable to that of subject 2 in the SL treatments.

12 This treatment was programmed and conducted with the software z-Tree (Fischbacher,
2007) in the fall 2014. The payment followed the same rules. The exchange rate was appropri-
ately modi…ed before each treatment so that, in expectation, subjects could receive a similar
amount of money per hour spent in the laboratory.
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Treatments
Signal
Precision

Sequence
Subjects
in a group

Groups
Partici-
pants

Rounds

SL1 0.7 10 10 5 50 15

SL2 [0.7,0.71] 10 10 5 49 15

SL3 [0.7,0.71] 4 4 5 20 30

IDM 0.7 1 or 2 - - 36 30

Table 1: Treatments’ features. SL: Social Learning; IDM: Individual Decision
Making. Note that in SL2 there are 49 subjects since onse session was run with
9 participants rather than 10 due to a last minute unavailability of one subject.

4 Results

Our main interest is in understanding how human subjects weigh private and
public information. To this aim, we will focus on subjects’ second decisions at
time 2, that is, after they have observed both their predecessor’s action and their
private signal. Before doing so, however, we will brie‡y discuss the decisions of
subjects at time 1 (when they have only observed a private signal) and the …rst
decisions of subjects at time 2, based on the observation of their predecessor’s
choice only.

4.1 How do subjects make inference from their own signal
only?

At time 1, a subject makes his decision on the basis of his signal only. His
task—to infer the value of the good from a signal drawn from an urn—is the
same in the SL and in the IDM treatments; for this reason we pool all data
together (for a total of 1380 observations).13

Figure 1 shows the frequency of decisions at time 1, separately for the cases
in which the signal the subject received was good or bad. The top panel refers
to the case of a good signal. A high percentage of decisions (345%) are in
line with Bayesian updating, deviating from it by less than 5 units; 195% of
actions are smaller than the Bayesian one and 433% of actions are larger. Note,
in particular, that in 94% of the cases subjects did not update their belief at
all after seeing the signal, choosing an action exactly equal to 50. On the
other hand, in 13% of the cases, subjects went to the boundary of the support,
choosing the action 100. Finally, there is a small proportion (28%) of actions
in the wrong direction (i.e., updating down rather than up).

The bottom panel refers to the bad signal. The picture looks almost like the
mirror image of the previous one, with the mode around 30, masses of 128% in

13 We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the medians of each session
(the most conservative option to guarantee independence of observations) for the SL treatment
and on the medians of each individual’s decisions in the IDM treatment; we cannot reject the
null hypothesis that they come from the same distribution (p-value = 047). Note that we
also ran the same test to compare the three SL treatments and we cannot reject the same
hypothesis (at the 5% signi…cance level) when we compare SL1 with SL2 (p-value = 05), SL1
with SL3 (p-value = 008), or SL2 with SL3 (p-value = 022).
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Figure 1: Distribution of actions at time 1. The top (bottom) panel refers to
actions upon receiving 1 = 1 (1 = 0).

50 and of 124% in 0, and other actions distributed similarly to what explained
above.

One interpretation of these results is that subjects put di¤erent weights
on the signal they receive (which is equivalent to subjects attaching to signals
di¤erent, subjective precisions). A simple model that allows to quantify this
phenomenon is the following:

1 = 100

µ

1
1

1 + (1 ¡ )1
+ (1 ¡ 1)

(1 ¡ )1

1 + (1 ¡ )1

¶

, (1)

where 1 2 R is the weight put on the signal in observation  and the pre-
cision of the signal  is considered to be always 07.14 Note that for 1 = 1
expression (1) gives the Bayesian updating formula, and so 1 = 1 is the weight
that a Bayesian agent would put on the signal. A value higher (lower) than 1
indicates that the subject overweights (underweights) the signal. For instance,
for 1 = 2, the expression is equivalent to Bayesian updating after receiving

14 Recall that a subject made many choices in the same experiment, since he participated in
several rounds; the index  refers to the observation  at time 1, and not to the subject acting at
that time. Of course the same subject could have chosen di¤erent weights in di¤erent decisions.
Moreover, recall that in some sessions the exact precision of the signal was randomly drawn
from [07 071] rather than being identical to 07. By using the exact precision we obtain, of
course, almost identical results, with di¤erences at most at the decimal point. We prefer to
present the results for  = 07 for consistency with our analysis at time 2.
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two conditionally independent signals and can, therefore, be interpreted as the
action of a Bayesian agent acting upon receiving two signals (with the same
realization). A subject that does not put any weight on the signal (1 = 0)
of course does not update at all upon observing it (1 = 50), whereas a sub-
ject who puts an in…nite weight on it chooses an extreme action (1 = 0 or
1 = 100), as if he were convinced that the signal fully reveals the value of the
good. Finally, a negative value of 1 indicates that the subject misreads the
signal, e.g., interpreting a good signal as a bad one.

Table 2 reports the quartiles of the distribution of the computed 1.
15 Note

that the median 1 is 1, indicating that the median subject is actually Bayesian.

1st Quartile Median 3rd Quartile

1 073 100 205

Table 2: Distribution of weights on private signal for actions at time 1.
The table shows the quartiles of the distribution of weights on private signal for actions at

time 1.

In this analysis, we have allowed for heterogeneous weights on the signal
and assumed that subjects did state their beliefs correctly. Of course, another
approach would be to take into account that subjects could have made mistakes
while reporting their beliefs, as in the following model:

1 = 100

µ

1
1

1 + (1 ¡ )
1

+ (1 ¡ 1)
(1 ¡ )1

1 + (1 ¡ )
1

¶

+ 1, (2)

where the weight on the signal is the same for all subjects but each subject
makes a random mistake 1. It is easy to show that, as long as the error term
has zero median, the estimated median 1 in this model coincides with the
median 1 computed above.

Of course, other interpretations are possible. One may, for instance, argue
that the fact that a subject chooses 70, while compatible with Bayesian up-
dating, is not necessarily indication that he is a proper Bayesian: he may be
choosing 70 simply because that is the precision of his signal. The fact that the
median subject is Bayesian for a bad signal too, however, lends some credibility
to the fact that the subjects are doing more than just inputting their signal
precision. Action 50 may also be the result of di¤erent heuristics. A subject
may feel that one signal alone is not enough for him to make any update; or
perhaps he is happy to choose the least risky action. The extreme actions, on
the other hand, may be the expression of a “guessing type” who, despite the
incentives given in the laboratory, simply tries to guess the most likely outcome.
It should be noticed, though, that of all subjects who acted at time 1 more than
once, only one chose an extreme action (0 or 100) every time; similarly, only
57% of them chose the action 50 every time.16

15 When 1 = 0 or 100, we compute 1 by approximating 1 = 0 with  and 1 = 100
with 100¡  (with  = 001). We prefer to report the quantiles rather than the mean or other
statistics whose computations are a¤ected by the approximation of 1.

16 We will comment more on risk preferences in Section 43.
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As we said in the Introduction, in previous social learning experiments, de-
viations from equilibrium have been interpreted sometimes as subjects being
overcon…dent in their own signal. Our analysis shows that there is much hetero-
geneity in the way subjects update their beliefs after receiving a signal. Despite
these subjective beliefs, there is no systematic bias to overweight or underweight
the signal. As a matter of fact, the median belief is perfectly in line with Bayesian
updating.

4.2 How do subjects make inference from their prede-
cessor’s action?

We now turn to the question of whether and how subjects infer the value of
the good from the predecessor’s action. We focus on the …rst decision at time
2 (denoted by 1

2) since it is based on the observation of that action only. Of
course, here we only consider the data from the SL treatment.

A subject at time 2 has to infer which signal his predecessor received on the
basis of the action he took. We know from the previous analysis that only rarely
(in 35% of the cases), subjects at time 1 updated in the “wrong direction” (i.e.,
chose an action greater (lower) than 50 after observing a bad (good) signal).
Therefore, subjects at time 2 could have simply considered an action strictly
greater (or lower) than 50 as a good (or bad) signal.

We have pooled together all cases in which the observed choice at time 1
was greater than 50 and, similarly, all cases in which it was lower than 50 (see
Figure 2). Compared to Figure 1, Figure 2 shows a higher mass for 1

2 = 50 and
a lower one around 70 or 30 (for the case of 1  50 and 1  50, respectively).
When the subject at time 1 had chosen 1 = 50, perhaps not surprisingly, the
distribution has a large mass at 50.

Figure 3 shows the di¤erence between the actions 1
2 and the corresponding

action 1 that a subject has observed (excluding the cases in which 1 = 50).
If subjects simply imitated the predecessor’s decision, all the mass would be
concentrated around zero. While there are approximately 30% of cases in which
this happens, we observe that the distribution has in fact a larger mass below
0, indicating that subjects had the tendency to choose lower values than the
predecessors’.17

We replicated the model discussed in the previous section, by replacing the
case in which the subject observed a good signal with the case in which the
subject observed 1  50, and so chose 1

2 such that

1
2 = 100


1
2


1
2 + (1 ¡ )

1
2

; (3)

analogously, for the case in which he observed 1  50, he chose 1
2 such that

17 In 30% of the observed cases, imitation coincides with the Bayesian action. There is no
speci…c pattern in the remaining cases.
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Figure 2: Distribution of …rst actions at time 2 (the top panel refers to 1  50,
the middle to 1 = 50 and the bottom to 1  50).
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1
2 = 100

(1 ¡ )
1
2


1
2 + (1 ¡ )

1
2

. (4)

Essentially, in this model we are assuming that a subject considers actions higher
(or lower) than 50 as good (bad) signals with the same precision  = 07. By
applying this model, we obtain the results reported in Table 3. The median
weight is (slightly) lower than 1 and the …rst and third quartiles are 013 and
14 (versus 081 and 205 at time 1) re‡ecting the fact that subjects in these
treatments seem to “discount” to some extent the information contained in the
predecessor’s action.18 19

It should be noticed that we could expect to observe the same distribution at
time 1 and at time 2 under two di¤erent models. One model is that subjects at
time 2 perfectly infer the signal from the observed action at”{ time 1 and weigh
the signal in the same heterogenous ways at time 1 and time 2. The other is
that subjects simply imitate the predecessors’ actions. Clearly both models are
rejected by our data. To explain the data we need a model in which a subject
acting at time 2 has subjective beliefs on how trustworthy the predecessor is
(i.e., on how frequently the predecessor decision to update up or down from 50
re‡ects a good or bad signal).

To investigate this issue further, we computed the weights separately for
di¤erent classes of 1, as illustrated in Table 3.20

1st Quartile Median 3rd Quartile

12 013 094 14

12 (upon observing 50  1 · 667) 0 048 09

12 (upon observing 667  1 · 834) 0 089 133

12 (upon observing 1  834) 09 131 28

Table 3: Distribution of weights for …rst actions at time 2.
The table shows the quartiles of the distribution of weights for …rst actions at time 2. The

action at time 1 is considered as a signal (of precision 0.7) for the subject at time 2.

As one can see, subjects have the tendency to “discount” the actions close
to 50 (50  1 · 667) and, although less, those in a neighborhood of the
Bayesian one (667  1 · 834). They do not discount, instead, more extreme
actions. This behavior is in line with a model of subjective beliefs in which

18 We considered the medians of each session for the SL treatment and of each individual’s
decisions in the IDM treatment for 1; and the medians of each session for the SL treatment
for 12; we reject the null hypothesis that they come from the same distribution (p-value =
0014). We repeated the same test considering only the IDM treatment for 1; again, we reject
the null hypothesis (p-value = 0015).

19 Discounting the predecessor’s action is found, in a stronger way, in the experiment by
Çelen and Kariv (2004). They ask subjects at time 2 to report a threshold value that depends
on what they learn from the …rst subject’s choice. Çelen and Kariv (2004, p.493) …nd that
“subjects tend to undervalue sharply the …rst subjects’ decisions.”

20 We have chosen the cut-o¤ points 667 and 834 simply to obtain intervals of equal length.
We tried alternative cut-o¤ points and did not …nd signi…cant di¤erences in the results.
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subjects expect error rates to be inversely proportional to the cost of the error,
since the expected cost of an action against the signal is of course increasing
in the distance from 50. A well known model in which errors are inversely
related to their costs is the Quantal Response Equilibrium (which also assumes
expectations are rational). Our results are, however, not compatible with such
a theory in that expectations about time 1 error rates are not correct. Indeed,
the error rate at time 1 is very small. With subjects at time 1 choosing an
action against their signal in 35% of the cases only, a Bayesian agent would
have a belief on the value of the good being 100 equal to Pr( = 100j1 

50) = (07)(0965)+(03)(0035)
(07)(0965)+(03)(0035)+(07)(0035)+(03)(0965) = 69, which barely changes

from the case of no mistakes. Essentially, to explain our data, we need a model
of incorrect subjective beliefs. In one such model, a subject at time 1 can be
either rational (always updating in the correct direction) or noise (choosing any
number independently of the signal). If a noise type chooses more frequently
actions close to 50 (e.g., because he chooses actions as in a Normal distribution
centered around 50) and a rational type chooses more frequently more extreme
actions, letting a subject at time 2 having (incorrect) subjective beliefs on the
proportion of these two types can lead to the observed results. We will illustrate
this model in Section 6.

4.3 How do subjects weigh their signal relative to their
predecessor’s action?

As we said in the Introduction, in the experimental social learning literature
there is a long debate about how subjects weigh their own signal with respect
to the public information contained in the predecessors’ actions. Several studies
(e.g., Nöth and Weber, 2003) conclude that subjects are “overcon…dent” in that
they put more weight on their signal than they should (according to Bayes’s
rule). Our previous analysis shows that subjects do not have a systematic bias
in overweighting their signal when it is the only source of information. We now
study how they weigh it at time 2, after having observed their predecessor’s
action. Time 2 o¤ers the possibility of studying this issue in a very neat way. In
the subsequent periods, the analysis becomes inevitably more confounded, since
subjects may take the sequence of previous actions into account in a variety of
ways (since their higher order beliefs on the predecessors’ type matter too). At
time 2, instead, the only source of information for the subject is the predecessor’s
action and the own signal.

As we already mentioned in the Introduction, we will refer to the …rst action
that subjects take at time 2 as their “…rst belief” and to the second as their
“posterior belief.” Figure 4 shows the frequency of posterior beliefs conditional
on whether the subject received a signal con…rming his …rst belief (i.e., 2 = 1
after an action 1

2  50 or 2 = 0 after an action 1
2  50) or contradicting it

(i.e., 2 = 1 after an action 1
2  50 or 2 = 0 after an action 1

2  50).21 The

21 In this analysis we exclude the cases in which the action at time 1 was uninformative
(1 = 50). We do study the case in which a subject at time 2 observed an informative action
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Figure 4: Distribution of 2
2 given 1

2  50 and a con…rming (top panel) or
contradicting (bottom panel) 2.

…gure is obtained after transforming an action 1
2  50 into 100 ¡ 1

2 and the
corresponding signal 1 into 1 ¡ 1.

If subjects acted as in the PBE, in the case of con…rming signal we would
observe the entire distribution concentrated on 84. The empirical distribution
shows much more heterogeneity, of course. Nevertheless, the median action as
well as the mode are indeed close to the PBE. For the contradicting signal, the
picture is rather di¤erent. Whereas in the PBE we would observe the entire
distribution concentrated on 50, the empirical distribution looks very asymmet-
ric around 50, with more than 70% of the mass below 50. To understand these
results, we compute the weight that the subject puts on his signal by using our
usual model of updating:

2
2 = 100


2
2
1
2

100


2
2
1
2

100 + (1 ¡ )
2
2

³
1 ¡

1
2

100

´ , (5)

when he observed 2 = 1 and, analogously,

at time 1 and chose 12 = 50; in this case we distinguish whether the action observed at time 1
con…rmed or contradicted the realization of the signal 2. Note that an alternative de…nition
of con…rming and contradicting signal would be in reference to 1 rather than to 12 This
would not a¤ect our results, since the di¤erence is in one observation only (in which 12  50
and 1  50).
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2
2 = 100

(1 ¡ )
2
2 1

2

100

(1 ¡ )
2

2
1
2

100 + 
2
2

³
1 ¡

1
2

100

´ , (6)

when he observed 2 = 0.
Table 4 reports the results.22 While in the case of a con…rming signal the

median subject puts only a slightly lower weight on the signal than a Bayesian
agent would do, in the case of a contradicting signal, the weight is considerably
higher, 170.23 The di¤erent weight is observed also for the …rst and third
quartiles. Essentially, subjects update in an asymmetric way, depending on
whether the signal con…rms or not their …rst beliefs: contradicting signals are
overweighted with respect to Bayesian updating.24

1st Quartile Median 3rd Quartile

22 068 116 204

22 (upon observing con…rming signal) 054 096 135

22 (upon observing contradicting signal) 100 170 273

Table 4: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was di¤erent from 50.

1st Quartile Median 3rd Quartile

22 064 108 207

22 (upon observing con…rming signal) 064 130 248

22 (upon observing contradicting signal) 093 100 176

Table 5: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was di¤erent from 50.

Of course, one may wonder whether this result is due to the social learning
aspect of our experiment or, instead, is just the way human subjects update upon
receiving two consecutive signals. To tackle this issue, we consider subjects’

22 The value of 22 is undetermined when 12 = 100, therefore we exclude these cases. When
22 = 100 we use the same approximation as previously discussed.

23 We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the median weight for the
con…rming and contradicting signal; we can reject the null hypothesis that their distribution
is the same (p-value =0000003).

24 As we said, our results do not change if we de…ne the signal as contradicting or con…rming
with respect to the action 1 rather than with respect to the …rst belief 12, since the di¤erence
is for one observation only. Moreover, we cannot reject the hypothesis that the results, both
for con…rming and contradicting signals, are the same for the three treatments SL1, SL2 and
SL3. (see the Appendix for details).
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behavior in the IDM treatment, as reported in Table 5. As one can see, the
asymmetry and the overweight of the contradicting signal disappear in this case:
the median weight is equal to 1 for the contradicting signal and a bit higher for
the con…rming signal (it should be observed, though, that the order for the
…rst quartile is reversed). We can conclude that the asymmetric updating we
observe in the SL treatment does not just come from the way subjects update
on a signal after having observed a …rst piece of information.

1st Quartile Median 3rd Quartile

22 000 102 238

22 (upon observing con…rming signal) 025 106 241

22 (upon observing contradicting signal) 000 098 206

Table 6: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was equal to 50.

1st Quartile Median 3rd Quartile

22 000 000 122

22 (upon observing con…rming signal) 000 100 184

22 (upon observing contradicting signal) 000 000 000

Table 7: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was equal to 50.

It is also interesting to see the di¤erence in behavior when subjects have …rst
stated a …rst belief of 50 (after observing an informative action or signal). In
the SL experiment (Table 6), the median subject puts approximately the same
weight on the signal, independently of whether it is con…rming or contradicting.
In the IDM treatment (Table 7), instead, he updates as a Bayesian agent would
do (after receiving just one signal) if the signal is con…rming and puts no weight
at all on it if it is contradicting. The latter result has a simple interpretation.
A subject choosing 1 = 50 in the IDM treatment is not con…dent in one piece
of information (e.g., ball color) only, he needs two to update. When the second
ball color is in disagreement with the …rst, the subject states again a belief of 50,
which is quite natural, since he has received contradictory information; when
instead, the second ball has the same color, he updates as if it were the …rst
signal he has received.

To understand the behavior in the SL treatment, we now look at how the
weight on the signal changes with the …rst belief. Table 8 reports the quartiles
for 2

2 for three di¤erent classes of 1
2. As one can immediately observe, the
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asymmetry occurs for the last two classes, but not for the …rst.25

1st Quartile Median 3rd Quartile

22 (upon observing con…rming signal)

Conditional on 50 · 12 · 667 057 104 135

Conditional on 667  12 · 834 018 091 157

Conditional on 12  83 043 210 487

22 (upon observing contradicting signal)

Conditional on 50 · 12 · 667 007 098 197

Conditional on 667  12 · 834 102 168 211

Conditional on 12  834 253 334 426

Table 8: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the …rst belief.

As we know from the previous analysis, the median subject chose an action
1
2  67 mainly when he observed an action at time 1 greater than the the-

oretical Bayesian decision. These are cases in which the subject “trusted” the
predecessor. These are also the cases in which subjects update in an asymmetric
way. Table 9 reports the same analysis, but based on classes of predecessor’s
action, 1. Again, there is no asymmetry for the class 50 · 1 · 067, whereas
there is for the extreme class. The middle class o¤ers a less clear interpretation.

1st Quartile Median 3rd Quartile

22 (upon observing con…rming signal)

Conditional on 50  1 · 667 070 097 128

Conditional on 667  1 · 834 043 106 137

Conditional on 1  834 050 101 236

22 (upon observing contradicting signal)

Conditional on 50  1 · 67 096 106 272

Conditional on 667  1 · 834 049 120 211

Conditional on 1  834 118 200 388

Table 9: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the action at time 1.

In the next section we will o¤er an explanation for this phenomenon. We will
show that introducing subjective beliefs (i.e., allowing for the possibility that a
subject has incorrect beliefs) on the predecessor’s rationality is not enough. We
will need an extra ingredient.

Before we do so, let us make some observations.

25 The 3rd quartile of 487 when 12  83 and the signal is con…rming is of course in‡uenced
by subjects choosing 100 after having already chosen a number greater than 83.
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First, our result cannot be explained in terms of risk preferences. As a matter
of fact, risk aversion would push subjects receiving two contradicting pieces of
information towards choosing 50, which makes our result even more striking.
Moreover, the IDM treatment serves to control for risk preferences too, and we
do see a striking di¤erence of behavior between SL and IDM. Finally, a model
in which subjects choose actions according to their risk preferences would not
be able to predict asymmetric updating, unless risk preferences were correlated
with the signal subjects receive, which is of course implausible.26

Second, if one thinks that the only inference subjects had to make from
the predecessor’s action was the predecessor’s signal realization (and not the
precision, since it was known), it is even more surprising that subjects simply did
not choose 50 after a contradicting signal, since the fact that a good and a bad
piece of information “cancel out” does not require sophisticated understanding
of Bayes’s rule.

Third, and relatedly, one could observe that if a subject chose, e.g., 1
2 = 84

and then, after receiving a bad signal, 2
2 = 50, the corresponding 2

2 would be
2, which is compatible with the overweight we documented. It must be noticed,
though, that if we exclude the cases in which 2

2 = 50, the asymmetry remains
and is actually even stronger (see Table 11 in the Appendix). In other words,
the asymmetry is not driven by subjects choosing 2

2 = 50.27

Fourth, as we stressed in the Introduction, our result cannot be explained
by and does not fall into categories of psychological biases sometimes invoked
in decision making under uncertainty such as the base rate neglect or the con-
…rmatory bias. Base rate neglect in our experiment would mean neglecting the
…rst belief once the new piece of information (the private signal) is received.
With such a bias, we should expect that the median choice of subjects …rst
observing an action 1  50 and then a signal 2 = 1 should be equal to that
at time 1 after observing a signal 1 = 1, which is not the case (this would be
equivalent to 2

2 lower than or equal to 0, whereas it is slightly greater than 1).
Moreover, such a bias should appear in the IDM treatment too, since it is not
related to how the base rate is formed in the …rst place. As for the con…rmatory
bias, if subjects had the tendency to discard new information in disagreement
with their original view, and only accept information con…rming their original
opinion (the de…nition of con…rmatory bias) they should ignore (i.e., not update
upon receiving) a contradicting signal, in sharp contrast with our results. Note
that had we inverted the order in which information is presented (i.e., …rst the
private signal and then the predecessor’s action) we would have not been able
to rule out this possibility.28

26 The proof is simple and available upon request.
27 In the econometric analysis that will follow, this type of concern is well taken into account,

since we allow and elicit (from a control treatment) subjective beliefs.
28 Finally, it is worth mentioning that whereas in the social learning literature, as in much

psychological literature, researchers have talked about “overncon…dence,” in other experi-
mental studies subjects show “undercon…dence.” In particular, in experiments on decision
making with naive advice, it has been observed that “when given a choice between getting
advice or the information upon which the advice is based, subjects tend to opt for the advice,
indicating a kind of undercon…dence in their decision making abilities [...]” (Schotter, 2003).
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5 Explaining asymmetric updating

5.1 No asymmetry in Bayesian Updating

The asymmetric updating we observe in the laboratory is incompatible with
Bayesianism. Whatever theory subject 2 has about subject 1’s behavior, once
he has stated his …rst belief, he should simply put the same weight on the signal,
independently of his realization.

One could be tempted to think that after observing a signal contradicting the
predecessor’s action, a subject could update down his belief on the rationality
of the predecessor, revise the belief previously stated and, as a result, put more
weight on his own private signal. This is, however, not in agreement with
Bayesian updating. To see this, it su¢ces to notice that the posterior likelihood
ratio on the value of the good is related to the prior likelihood ratio through
this simple expression:

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

Pr (2j = 1 1)

Pr (2j = 0 1)

Pr ( = 1j1)

Pr ( = 0j1)
. (7)

Given the conditional independence of the signals, the expression simpli…es to

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

Pr (2j = 1)

Pr (2j = 0)

Pr ( = 1j1)

Pr ( = 0j1)
, (8)

that is, to

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

µ
2

1 ¡ 2

¶22¡1
Pr ( = 1j1)

Pr ( = 0j1)
. (9)

where, using the same notation as in Section 2, 2 is the subjective precision
attached to the signal by subject 2 (equivalent to a subjective weight 2

2, in the
terminology of the previous section).

In the experiment, the subject states his belief Pr ( = 1j1) by making his
…rst decision at time 2, 1

2. Therefore, we have,

Pr ( = 1j1 2)

Pr ( = 0j1 2)
=

µ
2

1 ¡ 2

¶22¡1
1
2100

1 ¡ 1
2100

. (10)

Whatever this …rst belief and whatever the model used to form it, if the
subject were Bayesian, he should put the same weight on the signal, independ-
ently of its realization. Note that in this approach we have not imposed that
the subject has correct expectations on the signal precision: indeed, we have
allowed for subjective precisions. Nevertheless, for any precision the subject
attaches to the signal, the weight must be the same for both realizations. The
only requirement for this simple implication of Bayesian updating is that the
signal realization (a draw from an urn) is independent of the rationality of the
previous decision maker, which is logically undisputable.29

Our result is again not explained by this type of bias.
29 Subjects know from the experimental design that signals are conditionally independent.

The results of the IDM treatment are perfectly in line with subjects understanding it.
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5.2 Multiple priors and asymmetric updating

The intuition that observing a signal contradicting the …rst belief makes an
agent update down on the predecessor’s rationality and put more weight on his
own signal, while in contradiction with Bayesianism, is, however, compatible
with a model of updating in which an economic agent has multiple priors on the
predecessor’s rationality. In such a model, the own signal serves two purposes:
it makes the agent select the prior on the predecessor’s rationality; and, once
this is done, to update on the …rst belief.

Speci…cally, suppose a subject at time 2 believes that the predecessor is of
two types: either “rational” or “noise.” A rational type always chooses an action
greater than 50 after observing a good signal and an action lower than 50 after
observing a bad signal. A noise type, instead, chooses any action between 0
and 100 independently of the signal. Let us denote these types by  2 f g
and the probability that the subject is noise by Pr( = ) ´ . Whereas a
Bayesian agent has a unique prior , a subject at time 2 has ambiguous belief
on , that is, multiple priors belonging to the set [¤ 

¤] µ [0 1].
To update his belief upon observing an event , …rst of all the subject selects

one of the priors in the set. If he is su¢ciently con…dent that the event could
occur conditional on the predecessor being rational, he will pick up the lowest
prior ¤, in the complementary case, he will pick up ¤. In other words,

if
Pr(j = )

Pr(j = )
¸ , then  = ¤, and (11)

if
Pr(j = )

Pr(j = )
 , then  = ¤,

where  2 [01).
Note that in our experiment the subject makes this decision twice, …rst after

observing the event  ´ f1g and then after observing the event  ´ f1 2g.30

Note also that after observing f1 2g the subject, of course, also uses the signal
realization 2 to update on the …rst belief.

As we said in the Introduction, we refer to this model of updating based on

the likelihood ratio Pr(j=)
Pr(j=) as Likelihood Ratio Test Updating (LRTU) rule.

It can be seen as a simple generalization of the Maximum Likelihood Updating
(MLU) model (axiomatized by Gilboa and Schmeidler, 1993), in which the time
2 subject estimates  to be the value in [¤ 

¤] that maximizes the likelihood
of observing the event . Indeed, since

Pr() = Pr(j = )Pr( = ) + Pr(j = )Pr( = ),

that is,
Pr() = Pr(j = )(1 ¡ ) + Pr(j = ),

30 Since 1 is a continuous variable, Pr(f1gj = ) should be read as a conditional density
function.
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according to the MLU rule, the subject chooses either ¤ or ¤, depending on
whether the event is more likely conditional on the predecessor being rational
or noise. That is,

if
Pr(j = )

Pr(j = )
¸ 1, then  = ¤, and (12)

if
Pr(j = )

Pr(j = )
 1, then  = ¤.

The LRTU model generalizes the MLU model to take into account that subjects
may need stronger or weaker evidence in favor of one type in order to select a
speci…c prior. This is equivalent to assuming that the subject acts as if he
received another signal  about the predecessor’s type (and uncorrelated with
the event). In this case, he would choose the prior to maximize the following
probability:

Pr( ) = Pr( j = )Pr( = ) + Pr( j = )Pr( = ).

That is, he would select  = ¤ (or  = ¤) if the following inequality is (or is
not) satis…ed:

Pr( j = )

Pr( j = )
¸ 1,

that is,
Pr(j = )

Pr(j = )

Pr(j = )

Pr(j = )
¸ 1,

or
Pr(j = )

Pr(j = )
¸

Pr(j = )

Pr(j = )
. (13)

By setting Pr(j=)
Pr(j=)

´ , one obtains the LRTU model.

As we explained in the Introduction, updating by …rst selecting one prior and
then applying Bayes’s rule is one way in which the decision theory literature has
solved the problem of updating beliefs when there are multiple priors. A second
paradigm, referred to as Full Bayesian Updating (FBU) consists in updating all
priors, by using Bayes’s rule for each of them. The choice then depends on the
agent’s preferences. We will consider the most common case, axiomatized by
Pires (2002) in which the agent has maxmin preferences.

Before showing these di¤erent models and their structural estimation in de-
tail (in the next Section) we …rst illustrate them through a simple example. The
example will give the main intuition as to why the LRTU model can generate the
type of asymmetric updating we observe in our data, whereas the FBU model
cannot.
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5.3 An example

Suppose that subject 2 has multiple priors [¤ 
¤] = [0 1] on the predecessor’s

type. Suppose that he observes 1 = 70 and then the signal 2 = 0. Let us
consider …rst the LRTU model and suppose the threshold is  = 1, so that the
model is equivalent to the MLU model.

Suppose that subject 2 has expectations on the rational and noise types’

actions at time 1 such that Pr(1=70j=)
Pr(1=70j=) ¸ 1. In this case, the subject selects

the prior ¤ = 0. The subject is con…dent on the predecessor’s rationality,
and, therefore, chooses 1

2 = 70. After receiving the signal 2 = 0, the subject
now reassesses the predecessor’s rationality. The probability of observing an
action greater than 50 and a negative signal conditional on the predecessor

being rational is now lower. If, in particular, Pr(1=702=0j=)
Pr(1=702=0j=)  1, then the

subject chooses ¤ = 1. Being now con…dent that the predecessor was a noise
type, the subject considers 1 = 70 completely uninformative, which would
imply a belief of 05 on  = 100. On top of this, the subject has observed a bad
signal: by applying Bayes’s rule to a prior of 05, the subject obtains a posterior
belief of 03 on the value being 100 and, as a result, chooses 2

2 = 30. In terms
of our previous analysis, this is equivalent to a subject overweighting the signal,

with 2
2 = 2, since 30 = 100

(1¡)2 70
100

(1¡)2 70
100+2(1¡ 70

100)
. A similar analysis applies to

the case in which the subject observes a signal 2 = 1. It is easy to see that if
Pr(1=70j=)
Pr(1=70j=) ¸ 1, then a fortiori Pr(1=702=1j=)

Pr(1=702=1j=) ¸ 1. Therefore, in this

case the subject sticks to the prior ¤ = 0. Since the subject is still con…dent
that the predecessor was rational, he does not change his …rst belief on  = 100,
which remains 07. Since the subject has observed a good signal, by applying
Bayes’s rule to a belief of 07, he obtains a posterior belief of 084 on the value
being 100 and, as a result, chooses 2

2 = 84. This is equivalent to a subject
weighting the signal as a Bayesian agent would do, with 2

2 = 1. This way of
updating, thus, generates the asymmetry we observe in our data.

Let us consider now the FBU model, in which the subject, with maxmin
preferences, updates all priors. After observing 1 = 70, the subject updates
his belief on the value of the good using each prior  2 [0 1]. This means that
his posterior beliefs on  = 100 lie in [05 07]. Therefore, he chooses 1

2 = 50,
the action that maximizes the minimum payo¤ he can obtain. After receiving
the signal 2 = 0, the subject updates his set of beliefs to [03 05]. Of course,
this implies that again he chooses 2

2 = 50, which is equivalent to 2
2 = 0.

After receiving the signal 2 = 1, instead, the subject updates his set of beliefs
to [07 084]. He will then maximize his utility by choosing 2

2 = 70, which is
equivalent to 2

2 = 1. This updating rule, therefore, would imply no updating at
all (rather than overweighting the signal) after receiving a contradicting signal,
and updating as a Bayesian after observing a con…rming signal (an asymmetric
way of updating that sharply di¤ers from that we observe).

27



6 Econometric analysis

So far we have illustrated the three models of updating in a heuristic way. In
this section, we perform a formal statistical comparison to quantify the evidence
in favor of the LRTU model against the other two models of updating. For each
updating rule (BU, LRTU, FBU), in our econometrics models, we explicitly
consider the individual heterogeneity observed in the data. As we have seen
in the previous sections, the reported beliefs both at time 1 and at time 2 are
quite heterogeneous, with non-regular features (e.g., multi-modal, asymmetric
distributions, mixtures of probability masses and continuous distributions). To
take this into account, we use the IDM treatment observations to obtain a
nonparametric estimator for the distribution of the unobservable heterogeneity,
and develop a model comparison procedure that does not rely on parametric
speci…cations. Our purpose is to understand which model explains the behavior
of subjects at time 2 best. The three models will have two common ingredients:

i) subjective beliefs on the informativeness (precision) of the private signal;
ii) subjective beliefs on the rationality of the subject acting at time 1.
The models will instead di¤er in the way a subject at time 2 updates his

beliefs (and in the way he behaves as a function of the beliefs).
Let us start discussing point i above. We know that there is heterogeneity

in how subjects update their beliefs on the basis of their private signal. To take
this into account, in our analysis we let the subjective precisions 1 = Pr(1 =
1j = 1) = Pr(1 = 0j = 0) and 2 = Pr(2 = 1j = 1) = Pr(2 = 0j = 0)
vary for each observation  (recall that the superscript  stands for subjective).
Recall that in both the SL and the IDM treatments, we observe the distribution
of stated beliefs at time 1, which are based on the observation of one signal
only. Furthermore, in the IDM treatment, in 50% of the rounds, we observe the
joint distribution of stated beliefs at times 1 and 2. From these stated beliefs,
we can recover 1, and 2, since there is a one-to-one map between beliefs and
precisions (e.g., 1 = 73 after observing 1 = 1 is equivalent to 1 = 073;
in the IDM treatment, 2 = 80 after 1 = 73 and 2 = 1 is equivalent
to 2 = 060). We will use the empirical distribution of 1 so recovered, as
representing the distribution of the subjective precision of a signal at time 1.
When, for estimation, we will need the joint distribution of precisions, we will
use the empirical distribution obtained by considering the sample of observations
’s for which both (1 


2) can be recovered in the IDM treatment.31

Let us move to point ii. In line with the above discussion, we assume that a
subject at time 2 believes that the predecessor is of two types: either “rational”
() or “noise” (), with Pr() ´ . A rational type is de…ned as someone
who always chooses an action strictly greater than 50 after observing a good
signal and an action lower than 50 after observing a bad signal. A noise type,
instead, chooses any action between 0 and 100 independently of the signal.32

31 In our estimations, we assume that the distribution of subjective signal precisions be inde-
pendent of the signal realization. In another speci…cation, we also considered the distribution
conditional on the realization: the results do not change.

32 As we explained in Section 2, we use this de…nition of rationality since the only thing that
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The BU model assumes a unique ; in the LRTU and FBU model, instead,
the ambiguous beliefs on the predecessor’s rationality consists in a set of priors
[¤ 

¤]. We will estimate the unique  or the lower and upper bounds ¤and
¤ by …tting the models to the data.

As we know from Section 4, the empirical distribution of actions at time 1
conditional on a good signal is almost the mirror image (with respect to 50) of
the distribution conditional on a bad signal. For this reason, we now pool all
the observations by transforming 1 into 100 ¡ 1 whenever 1 = 0. We can
then focus our analysis on actions strictly greater than 50. In particular, given
this transformation, a rational subject always chooses an action greater than
50.

In the spirit of the descriptive analysis, we divide the interval (50 100] into
three “bins” 1 = (50 667], 2 = (667 834] and 3 = (834 100]. As high-
lighted by the previous analysis, subjects react di¤erently to a predecessor’s
choice of an action below the Bayesian one, in the neighborhood of the Bayesian
one, or more extreme than it. We want to understand this behavior more in
depth in our econometric analysis. Of course by pooling the data together for
these intervals of actions, we also have enough data to estimate our models.

For the noise type, we assume that (subject 2 believes that) his actions follow
a distribution (1) symmetric around 50. We construct a histogram density in
the following way. Let © () be the probability assigned to an interval  by a
normal distribution with mean 50 and variance 2. Then,

(1) =
1

© ([0 100])

3X

=1

© ()

jj
¢ 1 f1 2 g , for 1  50, (14)

where jj denotes the width of . In words, we construct the histogram
by considering a truncated normal distribution, and computing the resulting
density for the three chosen bins.

To estimate the parameter  we use the cases in which subjects at time
1 updated their beliefs in the wrong direction. Indeed we estimate it by the

empirical standard deviation b =
q

1
#f:12£g

P
2£(1 ¡ 50)2, where £ is the

set of actions 1  50 ( 50) taken after the observation of a good (bad)
signal.33 We obtain the estimate b = 0273 (with a standard error —computed
by delta method— of 0006). Given this estimated value of , we re-denote the
distribution (1) by (1). Note that, since (1) is symmetric, the probability
of observing a mistake (i.e., updating in the wrong direction) from the point of
view of subject 2 is given by Pr(1  50j1 = 0) = Pr(1  50j1 = 1) = 

2 .
As for the rational type, we assume that subjects at time 2 have correct ex-

pectations on the distribution of actions at time 1 by rational subjects. Consider
the empirical distribution of time 1 subject’s actions. The histogram density

subject 2 has to learn from subject 1 is, indeed, the signal realization, and this is revealed
under the minimal requirement that the subject updates in the right direction.

33 Of course, given the above transformation of data, all incorrect actions are below 50.
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Figure 5: Histograms (1) (solid line) and (1) (dotted line) for rational and
noise actions at time 1.

for the actions greater than 50 is

(1) =
3X

=1

̂1 f1 2 g for 1  50, (15)

where ̂ = 1
jj


 1f12g
 1f150g . This means that ̂1 ̂2 ̂3 are the histogram density

estimates for the three intervals we are considering.34 Note, however, than not
all observed actions greater than 50 can be considered as coming from rational
subjects, since noise type subjects choose correct decisions half of the time. To
correct for the proportion of irrational actions, we consider the distribution of
rational actions to be35

(1) =
(1) ¡ (007)(1)

093
.

Figure 5 shows the estimated histograms.
Given these histograms, a (rational) subject  at time 2, observing an action

34 Note that, of course, we exclude 1 = 50. This action is uninformative and, therefore,
has a di¤erent status from any other action.

35 Recall that we observed 35% of incorrect updating at time 1. Given the symmetry of
(1), they must result from a 7% of noise type’s actions.
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1  50, has the following conditional beliefs (density functions):

(1j = 1 ) = (1j1 = 1  = 1 )

1 + (1j1 = 0  = 1 )(1 ¡ 1) = 1(1),

(1j = 0 ) = (1 ¡ 1)(1), (16a)

(1j = 1 ) = (1j = 0 ) = (1).

While subjects are constrained to have correct expectations on the distribu-
tion of rational actions (and on the standard deviation of the noise actions), they
have subjective beliefs on the precisions of signals as well as on the proportion
of the noise type () and of the rational type (1 ¡ ).

Given these common ingredients, we can now describe how a subject forms
his beliefs on the value of the good depending on the updating model.

The BU model

According to the BU model, given a prior belief  on the proportion of noise
type subjects at time 1, a subject applies Bayes’s rule to determine his …rst
action,

1
2

¡
 1

¢
´ 100Pr( = 1j1) = 100

(1 ¡ )1(1) + (1)

(1 ¡ )(1) + 2(1)
(17)

= 100
(1 ¡ )1

(1)
(1)

+ 

(1 ¡ ) (1)
(1)

+ 2
.

To simplify notation, let us denote the log-likelihood ratio by (), that is,
() =: ln 

1¡ . Then, after receiving a con…rming signal (2 = 1), a subject

chooses an action 2
2 such that the following equality holds:



Ã
2
2

¡
 1 


2

¢

100

!

= (
1
2

¡
 1

¢

100
) + (2); (18)

similarly, after a contradicting signal, action 2
2 will satisfy



Ã
2
2

¡
 1 


2

¢

100

!

= (
1
2

¡
 1

¢

100
) + (1 ¡ 2). (19)

Note that 2
2 is fully determined by 1

2 and 2 given that the dependence

on  is summarized in 1
2

¡
 1

¢
.

The LRTU model

In this model, subject 2 starts with a set of priors [¤ 
¤] on the proportion of

noise type subjects. He selects one prior in [¤ 
¤] on the basis of the likelihood

ratio
(1j = )

(1j = )
=

1
2


1(1) + 1

2(1 ¡ 1)(1)

(1)
=

(1)

2(1)
. (20)
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In particular, he selects 1
2 as follows:

1
2 =

(
¤ if (1)

(1)
¸ 2,

¤ if (1)
(1)

 2.
(21)

He then applies Bayes’s rule to determine his …rst action, 1
2

¡
1

2 

1

¢
, which is

identical to expression (17), after substituting 1
2 to . Note that 1

2

¡
1

2 

1

¢

varies from 1001 to 50 as 1
2 varies from 0 to 1. Moreover, note that although

the same 1 was used both in (20) and in (17), (20) does not depend on 1.
Now, consider the second action at time 2 and suppose the subject receives

a con…rming signal (2 = 1). Then,

(1 2 = 1j) =
1

2

£
1


2 + (1 ¡ 1)

¡
1 ¡ 2

¢¤
(1),

(1 2 = 1j) =
1

2
(1).

Therefore,

2
2 =

8
<

:

¤ if (1)
(1)

¸ 
1


2+(1¡1)(1¡2)

,

¤ if (1)
(1)

 
1


2+(1¡1)(1¡2)

.
(22)

Given 2
2 and 2, 

2
2 satis…es



0

@
2
2

³
2

2 

1 


2

´

100

1

A ´ (
1
2

³
2

2 

1

´

100
) + (2), (23)

where 1
2

³
2

2 

1

´
is equal to (17) with the exception that 1

2 is

replaced by 2
2.

Note that the threshold in (22) is lower than that in (21).
For the contradicting signal case, the analysis is analogous; we have

Pr(1 2 = 0j) =
1

2

£
1(1 ¡ 2) + (1 ¡ 1)


2

¤
(1),

Pr(1 2 = 0j) =
1

2
(1),

and, therefore,

2
2 =

(
¤ if (1)

(1)
¸ 

1(1¡2)+(1¡1)

2

,

¤ if (1)
(1)

 
1(1¡2)+(1¡1)


2

.
(24)

Given 2
2 and 2, 

1
2 satis…es



0

@
1
2

³
2

2 

1 


2

´

100

1

A ´ (
1
2

³
2

2 

1

´

100
) + (1 ¡ 2).

(25)
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Note that the threshold in (24) is higher than that in (21): a con…rming signal
lowers the threshold to trust the predecessor’s rationality, whereas a contradict-
ing signal raises it.

The FBU model

In this model too a subject at time 2 starts with a set of priors [¤ 
¤] on

the proportion of noise type subjects at time 1. The subject applies Bayes’s
rule for each prior 1

2 in [¤ 
¤] and obtains a belief

1
2(

1
2 


1) ´ Pr( = 1j1;

1
2 


1) =

(1 ¡ 1
2)


1(1) + (1)

1
2

(1 ¡ 1
2)(1) + 2(1)1

2

. (26)

As a result, he has a range of beliefs on the value of the good being 100:£
1
2(

¤ 1) 
1
2(¤ 


1)

¤
.

After receiving a con…rming signal case, the subject updates his range of
beliefs so that

£
(2

2(
¤ 1 


2)) (

2
2(¤ 


1 


2))

¤
=

£
(1

2(
¤ 1)) (

1
2(¤ 


1))

¤
+ (2),

(27)
where + [ ] means [+  + ]. Similarly, in the contradicting signal case,

£
(2

2(
¤ 1 


2)) (

2
2(¤ 


1 


2))

¤
=

£
(1

2(
¤ 1)) (

1
2(¤ 


1))

¤
+(1¡2).

(28)

Recall that a maxmin expected utility agent with a set of beliefs
h


 ¹

i

chooses the optimal action maxmin such that

max min = arg max


min
2[


¹]



¡
100 ¡ 001( ¡ )2

¢
,

that is,

maxmin =

8
<

:

100

 if 


 1

2 ,

50 if 

· 1

2 and ¹ ¸ 1
2 ,

100¹ if ¹ 
1
2 .

Therefore, in the FBU model, since 1
2(

¤ 1) ¸ 1
2 , the subject’s …rst action is

based on the most pessimistic prior,  = ¤:

1
2 = 1

2

¡
¤ 1

¢
= 1001

2(
¤ 1).

Similarly, the second action is

2
2 =

8
<

:

1002
2(

¤ 1 

2), if 2

2(
¤ 1 


2) 

1
2 ,

50, if 2
2(

¤ 1) 
1
2 , and 2

2(¤ 

1) 

1
2 ,

1002
2(¤ 


1 


2), if 2

2(¤ 

1 


2) 

1
2 .
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6.1 Estimation methodology and results

We estimate the three models by the Generalized Method of Moments (GMM).
In each of our models, the heterogeneity in the subjective precision of signals
induces a distribution of actions at time 2 or any …xed value of the parameters.
The estimation strategy consists in …nding the parameter values such that the
distribution of actions predicted by a model is closest to the actual distribution.
With maximum likelihood, we would need to specify a parametric distribution
for (1 


2). In our experiment, however, we do observe the empirical distribu-

tion of (1 

2). With GMM, we can use it without parametric assumptions.

We have a gain in terms of robustness of the estimates, with a potential sacri…ce
in terms of e¢ciency.

Speci…cally, in the descriptive analysis, we have reported the three quartiles
of the empirical distribution of the weights ’s for a) the …rst action at time 2;
b) the second action at time 2, conditional upon receiving a con…rming signal;
c) the second action at time 2, conditional upon receiving a contradicting signal.
For each model, we now match the value of the cumulative distribution functions
of ’s at each of these quartiles, for all these three cases (for a total of nine
moment conditions). We do so separately for each of the three intervals in
which we have divided (50 100]. In other words, we estimate the parameters
that make a model generate data whose distribution is as close as possible to
the true dataset’s in terms of the three observed quartiles, conditional on a
subject at time 2 having observed 1 belonging to either 1 = (50 667], or
2 = (667 834] or 3 = (834 100]. The estimate will, therefore, result from
27 moment conditions (nine for each type of action).36

Since our models predict the behavior of a rational type, we restrict our
analysis to the dataset consisting of rational actions only. In other words, we
eliminate the (few) cases in which a subject updated in the “wrong direction”
after receiving a piece of information (e.g., updating down after receiving a good
signal). Consistently, we also restrict the sample of 1 and 2 to those that are
weakly greater then 05.

We refer the readers to the Appendix for a detailed illustration of the es-
timation procedure. Here we simply observe that for the BU model we must
estimate one parameter, that is, the proportion of noise type subjects, . For
the LRTU model, we must estimate three parameters: the bounds of the support
for the prior on the proportion of noise type subjects, ¤ and ¤, as well as the
threshold . Finally, for the FBU model, we must only estimate ¤ and ¤.

Table 10 reports the results of the second stage GMM estimation (non-
parametric bootstrapped standard errors in parenthesis).

The estimated proportion of noise type subjects in the BU model is  =
03. This of course re‡ects the tendency of subjects at time 2 to “discount”
the actions 1, in particular those in bins 1 and 2, when choosing 1

2, as
documented in Section 4. Given the densities (1) and (1) clearly they did

36 For the BU model, as observed above, given 12

 1


, action 22


 1 


2


only

depends on 2. For this reason, the estimate of  is only based on the …rst action at time 2
(i.e., on 9 moment conditions).
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Model  ¤ ¤ 

BU 030
(0053)

LRTU 0
(0019)

030
(0045)

[165 173]
(0073)

FBU 030
(0070)

030
(0069)

Table 10: Parameter Estimates
The table shows the parameter estimates of the three models. The standard errors in

parenthesis are computed by non-parametric bootstrap with 1000 bootstrap samples. The

standard error for c refers to 1.65.

not discount more extreme actions too much.
Of course,  = 03 implies a belief that in 15% of the cases a subject at

time 1 updated in the wrong direction, which is higher than the actual (35%)
proportion of mistakes we observed at time 1, thus showing that subjects at
time 2 did not have rational expectations on the proportion of noise and rational
predecessors.

Let us now move to the FBU model. Such a model can in principle explain
the observed behavior better, given that there is an extra degree of freedom.
It turns out, however, that the FBU model’s estimates coincide with the BU’s,
since the support for the multiple priors is estimated to be just the point 03.
In other words, adding multiple priors in this case does not provide a di¤erent
and better …t of the data, compared to the BU model.

Let us now look at the LRTU model. First of all note that the GMM
objective function does not have a unique minimizer for the parameter :  2
[165 173]. Nevertheless, the other parameters have the same estimate for any
 2 [165 173]. This parameter  co-determines the thresholds to trust or not
the predecessor. It is clear that the inequalities in (21), (23), (25) may be
satis…ed for a set of parameter values. The estimates shows that to “trust” a
predecessor’s action, a subject needs the likelihood ratios to be greater than
a threshold equal to 165, that is, he requires stronger evidence of rationality
than what assumed in the MLU model (in which  = 1). When this threshold
is reached, the subject considers the observed action as fully rational (since
the estimated lower bound for proportion of a noise type is ¤ = 0). When,
instead, the threshold is not reached, he updates as if the probability of a noise
predecessor were ¤ = 03. Note that this is actually the estimate for the single
prior in the BU model. Essentially, according to our estimates, when the subject
observes an action that he trusts, he fully does so; when, he does not trust it,
he attaches a probability of 030 to it coming from a noise type. It is interesting
to see the implications of these parameter estimates for subjects’s behavior.
Let us consider …rst 1

2. Given the parameter estimates, when choosing 1
2,

subjects do not trust an action 1 2 (50 667] or 1 2 (667 834] (that is,
they pick the prior ¤ = 03); they do trust an action 1 2 (834 100]. Let
us consider now 2

2. The decision to trust or not the predecessor depends
on the subjective precisions of signals, in this case, as one can notice from
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(22) and (24). After receiving a con…rming signal, they keep not trusting an
action 1 2 (50 667], whereas in 727% of the cases they become trusting of an
action 1 2 (667 834].37 Of course they keep trusting 1 2 (834 100]. After
receiving a contradicting signal, they keep not trusting an action 1 2 (50 667]
or 1 2 (667 834], of course, and in 689% of the cases they stop trusting an
action 1 2 (834 100].

The …nal question is whether the LRTU model provides a better explanation
for the observed behavior than the BU model (and the FBU model, since they
happen to coincide). A simple comparison of the minimized GMM objective
functions for the two models would not be an appropriate way of measuring their
relative …tness, since one model allows for more degree of freedom (has more
parameters) than the other. There is a large literature on model speci…cation
test that accounts for over-…tting of the models with extra parameters within
the framework of GMM (see Newey and McFadden, 1994). No existing test,
however, can be readily applied to our case, due to the non-standard features
of our moment conditions. In particular, note that (i) the GMM objective
function for the LRTU model is discontinuous and non-di¤erentiable; (ii) one
parameter of the LRTU model can only be set identi…ed; and (iii) the LRTU
nests the BU model at the boundary of the parameter space (e.g., ¤ = ¤).
Instead of developing a new asymptotically valid model selection test that can
overcome all these issues, we consider a model comparison test based on the idea
of resampling -value, which heuristically quanti…es the strength of evidence
against a null model without relying on an asymptotic theory (at the cost of
being computationally intensive). We refer the reader to the Appendix for
the details. Here we note that in the model comparison test, we set up the
null hypothesis “the BU model with parameter value  = 03 is the true data
generating process.” We simulate 1000 datasets from the BU model with  =
03, of course resampling

¡
1 


2

¢
from the empirical distribution, as discussed

above. For each of these data sets, we then estimate the BU and LRTU models
by GMM and let ̂ and ̂ be the resulting minimized values of the

GMM objective function for sample  = 1 2     1000. Note that ¢̂ = ̂ ¡

̂ is non-negative since the LRTU model nests the BU model, and hence
represents a gain in model …tness solely due to “over-parametrization” of the
LRTU model relative to the BU model. We take the empirical distribution of
¢̂ ( = 1     1000) as the null distribution of the model …tness criterion. We
compute ¢̂ = ̂ ¡ ̂ as the di¤erence between the minimized GMM
objective functions of the BU and LRTU models for our dataset. To measure
how unlikely ¢̂ is in terms of the null distribution, we compute the p-value by

1

1000

1000X

=1

1
n

¢̂ ¸ ¢̂
o


where 1 fg is the indicator function. The p-value, so computed, is 0008, that

37 This is in fact a feature we did not observed in our descriptive analysis, an instance in
which this model does not …t the data well. Despite this, the model is the best predictor of
the distribution of actual actions, as we will show.
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is, we can reject the null hypothesis and consider our evidence in support of
the LRTU model. The LRTU model …ts the data signi…cantly better than
the BU model after we have properly taken into account the gain of over-
parametrization. Moreover, in our approach we did not impose any parametric
restriction on the heterogeneity of subjective precisions: the evidence in favor of
the LRTU model is robust to individual heterogeneity (i.e., it does not depend
on a parametric assumption on heterogeneity).

7 Discussion

We now want to discuss some features of our LRTU and FBU models, and
consider some alternative approaches, to highlight how our experimental work
could inform future theoretical developments.

A crucial aspect of our LRTU model is that we let the subject pick a di¤erent
prior from the same set of priors every time he receives new information. This
is in line with the tradition of the statistics literature, and dates back to the
Type- maximum likelihood of Good (1965), in which new observations are
used to estimate a prior for an unknown parameter (see, e.g., Berger 1985).
In this methodology, the set of priors (from which one prior is estimated) is
invariant to the new arrival of information. This approach is, however, less well
established in the decision theory literature. In their axiomatization of the MLU
model, Gilboa and Schmeidler (1993) do not consider a multi-period problem.
In their MLU framework an agent only updates once, therefore the problem
of how to update once new information arrives is not immediately relevant.
Nevertheless, in their analysis, implicitly the choice of the prior is once and for
all. This would be equivalent, in our experiment, to the subject having to stick
to the prior he has selected after observing the predecessor’s action only. Pires
(2002) observes that in the spirit of ambiguity aversion it is sensible to assume
that the agent keeps all possible priors alive and for this reason she advocates the
FBU model. Gilboa and Marinacci (2013) describe the MLU and FBU models
as two extremes: one in which only one prior is used and one in which all are.
We view our model as somehow in between these two extremes. In the LRTU
model, the subject does pick one prior, but this does not eliminate ambiguity for
ever, since the subject can pick another prior after new information arrives.38

Of course a model in which the agent picks di¤erent priors every time new
information arrives exhibits a form of time inconsistency.39 In such a model
preferences are not stable, which may be problematic from a normative view
point (similar objections apply to Epstein and Schneider, 2007). Nevertheless,
from a descriptive viewpoint, the model that best …ts the data lets the subjects
choose the prior every time (from a set that we estimate).

38 Epstein and Schneider (2007) consider an intertemporal economy. They do not impose
that once a prior is chosen, it is chosen forever, letting the agent re-choose the prior in a
neighborhood of the prior previously chosen.

39 For a theoretical investigation of dynamically consistent updating of ambiguous beliefs
see Hanany et al. (2007).
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Our way of modelling updating multiple priors is closely related to the model
proposed by Ortoleva (2012). In his model, the decision maker has a prior over
possible priors (referred to as theories to avoid confusion). Initially, the theory
with the highest prior probability is selected. When a new event occurs, if
the likelihood of that event is higher than a speci…c threshold, then the theory
is maintained; otherwise, the prior over priors is updated on the basis of the
likelihood of the event, and the theory with the highest posterior probability
is selected. In our approach, we have not considered a threshold, which is
equivalent to set it equal to 1 (so that there is always a reconsideration of all
theories). Moreover, our parameter  can be viewed as playing a similar role as
the prior over priors in Ortoleva’s model (since in both set ups, an agent can
be a priori biased in favour of a particular theory). We have not attempted to
estimate Ortoleva’s model, and, in particular, we have not considered a threshold
below which there is no new selection of the prior. In an attempt to …t better
the data, one could possibly estimate a richer model including a parameter for
the threshold as in Ortoleva (2012)’s model. Nevertheless, our experiment gives
support to his model of updating also in comparison to the BU and FBU models.

We have estimated the FBU model joint with maxmin preferences, the only
one that, to the best of our knowledge, has been axiomatized (by Pires, 2002).
It is sometimes claimed that maxmin preferences imply that agents are very
pessimistic (since they consider the worst outcome), and one may think that
they imply that subjects are too pessimistic in the context of our experiment.
It should be noticed, however, that we did estimate the bounds [¤ 

¤] and in
this sense we did not constrain our subjects to be overly pessimistic (as it would
have been the case had we imposed ¤ = 1). Nonetheless, we also considered a
more general criterion, proposed by Hurwicz (1951), in which an agent considers
the best and worst outcomes of his decision and then makes his choice weighing
the two extreme outcomes on the basis of his preferences. If he put all the
weight, represented by a parameter , on the worst outcome, he would behave
as in our FBU model; if he chose  = 0, he would be extremely optimistic;
intermediate values of  indicate intermediate values of pessimism. Optimism
in this model may help to explain our data. For instance, if ¤ = 0 and ¤ = 1
and  = 0, an agent would choose 70 (the most extreme belief in the support)
as a …rst action, and then 30 (again the most extreme belief) after receiving a
contradicting signal, which is in line with the observed asymmetric updating.
On the other hand, from a behavioral viewpoint, this is not the most appealing
explanation: being optimistic means trusting the predecessor after observing
him (“being optimistic that the predecessor is rational”), and, then distrusting
him after receiving a contradicting signal (“being optimistic that the predecessor
is a noise type”). Nevertheless, we estimated the model and obtained  = 017,
¤ = 02, ¤ = 068, indicating some form of optimism. Using the same test for
model selection explained above, we obtain a p-value of 06: that is, this model
does not …t the data signi…cantly better than the BU model.40

40 Another approach considered in the literature is the so-called minimax regret theory, …rst
proposed by Savage (1954). An agent would compute, for each action, his maximum regret
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A di¤erent approach to the problem would be to use the principle of indif-
ference or insu¢cient reason. According to this principle, typically attributed
to Jacob Bernoulli or Laplace, in the absence of a convincing reason, the sub-
ject would give the same probability to di¤erent events. In the context of our
experiment, this would mean that a subject at time 2, not having any reason to
attach a speci…c weight to the probability  that the predecessor is noise, would
simply use a uniform as a distribution of . In such a case, however, he would
behave as in the Bayesian model. Clearly, this model cannot perform better
than our BU model, in which we have estimated the parameter .

8 Conclusion

Our experiment is relevant for two di¤erent literatures: that on social learning
and that on belief updating.

A long debate in the social learning literature has concerned how subjects
treat their private information versus the information coming from the choices
of others. This question is indeed at the core of this literature. A phenomenon
frequently documented is that human subjects tend to rely more on their private
information than on the public information, compared to the full rationality
benchmark. Our experimental design let us study this issue in much more
detail. We discovered that subjects tend to put more weight on their own
information when it is in contrast with the public information (revealed by
the choice of another subject), whereas they put approximately the correct
weight when it agrees with it. This behavior could not be observed in previous
experiments. Previous studies were mainly designed to study the occurrence
of informational cascades. They found that when subjects are in a situation
of potential herding (that is, they received a signal at odds with the history of
predecessors’ actions), they require a number of predecessors choosing the same
action larger than the theoretical one in order to go against their signal. On
the other hand, when subjects receive a signal in agreement with the previous
history of actions, they typically follow it. The …rst type of decision is in line
with our result (but gives coarser information on subjects’ updating); the second
is essentially uninformative on how subjects weigh the signal.

This result is incompatible with Bayesian updating of beliefs. It is instead
explained by a form of updating of multiple priors known in the decision theory
literature as Maximum Likelihood Updating. This updating rule consists in
using new information for two purposes: …rst to select a prior in the set of
multiple priors; second, to update that prior. There is an important issue in

and then choose the action to minimize it. Intuitively, given that the action set is …xed, the
predictions of this model would not be very di¤erent from the Hurwicz (1951)’s model for
an intermediate value of  (as the resulting behavior would be a good way to minimize the
largest distance to the optimal action when varying the prior belief). It should be noticed
that in the context of our experiment, regret modeled in such a way would represent a purely
subjective construction in subjects’ mind. Subjects never had access to information about the
predecessor’s type, actually not even to the signal the predecessor received. It is, therefore,
not very compelling to assume that subjects could feel such mentally constructed regret.
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this updating rule. In our experiment, a subject has to update twice, …rst
after observing a predecessor’s action and, second, after observing a private
signal too. In this multistage updating problem, from a theory viewpoint it is
somehow unclear whether a di¤erent prior can be selected after new information
arrives or whether once the prior is selected, the agent should stick to it (as if
ambiguity were resolved for ever). Our experimental data are explained by a
model in which the prior is selected after each new piece of information. In the
decision theory literature, it is somehow claimed (Gilboa and Marinacci, 2013;
Pires, 2002) that the MLU rule (with the property that a prior is picked once
and for ever) is an extreme form of updating, since it only relies on one prior.
Our model, letting the agent change his prior after receiving new information,
can be seen as an intermediate rule of updating between the standard MLU
and the FBU in which all priors are updated. In our model, only one prior is
selected, but after new information the selection can change. We hope that this
and other future experiments will inform the debate in decision theory on how
to update multiple priors.
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APPENDIX
(FOR ONLINE PUBLICATION ONLY)

9 Appendix A

9.1 More descriptive statistics

One could observe that if a subject chose, e.g., 1
2 = 84 and then, after receiving

a bad signal, chose 2
2 = 50, the corresponding 2

2 would be 2, which is com-
patible with the overweight we documented. It must be noticed, though, that
if we exclude the cases in which 2

2 = 50, nevertheless the asymmetry remains,
as one can appreciate by looking at the following table.

First Quartile Median Third Quartile

22 072 116 211

22 (upon observing con…rming signal) 055 096 136

22 (upon observing contradicting signal) 130 207 298

Table 11: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the

second action at time 2 in the SL treatment. The data refer to all cases in which the …rst

action at time 2 was di¤erent from 50; moreover, cases in which the second action at time 2

was equal to 50 are excluded.

9.2 Social Learning Treatments

The social learning treatments SL1, SL2 and SL3 di¤er in some dimensions
(lenght of the sequence, precision of the signal). Our results, however, are not
signi…cantly di¤erent across treatments. Speci…cally, we ran a Mann-Witney
U test (Wilcoxon rank-sum test) on the medians of each session (the most
conservative option to guarantee independence of observations) for time 1, as
well as for the …rst decision at time 2 and the second decision at time 2 (for
con…rming and contradicting signals). The p-values are reported in Table 2.

Time 1 Time 21 Time 22 - con…rming Time 22 - contradicting

SL1 versus SL2 050 009 084 010

SL1 versus SL3 008 0008 030 014

SL2 versus SL3 022 069 029 100

Table 12: Tests for the SL treatments.
The table shows the results of Mann-Witney U test (Wilcoxon rank-sum test). The null

hypothesis is that the medians come from the same distribution. In the table we report the

p-values.

Ignoring the multiple hypothesis testing issue, we would reject the null hypo-
thesis for one case (equivalence of SL1 versus SL3 at Time 2.1, i.e., for the …rst
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action at time 2) at signi…cance level 5%. The simple Bonferroni correction for
multiple hypothesis tests controlling the family-wise error rate at 5%, however,
lowers the critical p-value to 0004, and we do not reject the joint null after this
correction.

9.3 Estimation and test

Let us illustrate the details of the GMM estimation and of the model speci…ca-
tion test.

9.3.1 GMM estimation

Estimating the LRTU model

Let us consider …rst the estimation of the LRTU model. The parameters
to be estimated are  ´ (¤ 

¤ ), 0 · ¤ · ¤ · 1 and  ¸ 0. To make
the dependence on the parameters explicit, we express the LRTU model ac-

tions obtained in the main text as 1
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holds at the true  for every 1, where the inner expectation  [¢] is the ex-
pectation with respect to the joint distribution  of (1 2), which we assume be
independent of (1 2), and the outer expectation is with respect to the actual
sampling distribution of (1

2 
2
2) conditional on 1 and 2 = 1. Speci…cally,

as we said, for  we use the empirical distribution of precisions. Hence,



£
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¡
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
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X
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
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¡
1

2 

1 ; 

¢
 2
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2 

1  


2 ; 

¢¢


where the index  indicates an observation of
¡
1  


2

¢
and  is the num-

ber of observations of
¡
1  


2

¢
available in our dataset. Speci…cally, when

 (¢ ¢) involves only 1
2, the marginal distribution of 1 su¢ces to compute



¡
(1

2)
¢
. Therefore, we construct the empirical distribution of 1 by pool-

ing the rational actions at time 1 (1 ¸ 50) in the SL and IDM treatments
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( = 1331). When  (¢ ¢) involves both 1
2 and 2

2, we construct the empirical
distribution of

¡
1  


2

¢
using the observations (1 2) in the IDM treatment

only, restricted to 50 · 1  100 and 2 ¸ 50.41 The total number of ob-
servations used to construct the empirical distribution of

¡
1  


2

¢
amounts to

 = 440.
Similarly, for the contradicting signal case we have that


£
(1

2 
2
2) ¡
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
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¢
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
1  


2 ; 

¢¢¤
j1 2 = 0

¤
= 0

holds for any 1.
These moment conditions imply the following unconditional moment condi-

tions:
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(29)
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(30)

When (1
2 

2
2) only depends on 1

2, 2 plays no role and the moment condi-
tions (29) and (30) reduce (with a slight abouse of notation) to


£
(1
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£


¡
1
2

¡
1

2 

1 ; 

¢¢¤¤
= 0. (31)

Given a speci…cation for (¢), we estimate  by applying GMM to the uncondi-
tional moment conditions (29) - (31).

Speci…cally, our approach is to match the cumulative distribution functions
(cdfs) of  predicted by the models with the empirical distributions. Recall that¡
1

2 
2
2

¢
can be written in terms of

¡
1
2 

2
2

¢
as

time 2.1: 1
2 =

(1
2100)

(07)
,

time 2.2-con…rming: 2
2 =


¡
2
2100

¢
¡ (1

2100)

(07)
,

time 2.2-contradicting: 2
2 =


¡
2
2100

¢
¡ (1

2100)

(03)
.

To match the cdfs of ’s evaluated at  2 [01), we specify  (¢ ¢) as

(1
2) = 1

½
(1

2100)

(07)
· 

¾

,

when we match the cdf of 1
2, and specify  (¢ ¢) as

(1
2 

2
2) = 1

(

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2100

¢
¡ (1
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and
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2
2) = 1

(

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2100

¢
¡ (1

2100)

(03)
· 

)

,

41 We drop observations 1 = 100 since we cannot impute a unique value of 2 on the basis
of the observed 2.
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when we match the cdf of 2
2 for the con…rming and contradicting signal case,

respectively.
Since we discretise the action space of 1 into three intervals (“bins”)

1 = (50 667], 2 = (667 834] and 3 = (834 1] and the theoretical predict-
ive distribution of  vary over 1 only across these thee bins, we focus on the
distributions of 1

2 and 2
2 conditional on 1 being in each of these three bins.

We compute the distributions of  for time 21 as well as for time 22, distin-
guishing between the con…rming and the contradicting signal case. Overall, we
obtain nine empirical distributions of  (three for each bin) to be matched with
the corresponding distributions of ’s predicted by the theoretical model.

We match the cdfs of  at the three points of the support corresponding to
the empirical quartiles of  conditional on 1 2 , with  2 f1 2 3g. For
 2 f025 05 075g and  2 f1 23g, we denote the -th quartile of 1

2

conditional on action 1 2  by 12, the -th quartile of 2
2 conditional on

action 1 2  and 2 = 1 by 22, and the -th quartile of 2
2 conditional

on action 1 2  and 2 = 0 by 22.

Given the underlying parameter vector  and the signal precisions
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,

the theoretical ’s can be written as
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time 2.2-contradicting :
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The predicted distributions of  given 1 2  (and 2 for the second action at
time 2) is obtained by viewing 1

2

¡
 1

¢
and 1

2

¡
 1  


2

¢
as random variables

with their probability distributions generated from the empirical distribution of
the heterogeneous signal precisions (1  


2 ) » .

Since we match the 9 distributions of  at three points of the support, we
have in total the following 27 moment conditions:
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where m
1 () is a 9 £ 1 vector of moment conditions concerning the cdfs of
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(32)
and m

2 () and m
2() are 9£1 vectors of moment conditions concern-

ing the cdfs of 2
2 for con…rming and contradicting signal cases, respectively:
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Since the number of moment conditions is greater than the number of un-
known parameters, we obtain a point estimator of  by minimizing the overiden-
ti…ed GMM objective function in two steps. In the …rst step, we solve

̂ = arg min


Ã
X

=1

m
 ()

!0 Ã X
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!

,
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and, in the second step, we solve

̂ = arg min
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where

̂ =
1



X

=1

m
 (̂)m

 (̂)0.

The optimization for ̂ and ̂ is carried out by grid search with grid size
001.

Estimating the BU model

The BU model is a special case of the LRTU model in which ¤ = ¤ = 
In this case  becomes an irrelevant parameter, and the only parameter to
estimate is  =  2 [0 1]. Furthermore, note that the theoretical 2

2 is given
by 2

¡
2

¢
+(1 ¡ 2) (1¡ 2 ) (which is independent of the parameters) when

¤ = ¤ = . Hence, the identifying information for  only comes from the
cdf of 1

2. Nevertheless, in the two-step GMM procedure, we make use of the
full set of moment conditions (27 £ 1), since the …rst-stage estimate does not
necessarily equal to the second-stage estimate due to the non-block-diagonal
weighting matrix. The set of moment conditions is given by
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where these moment conditions are the moment conditions of the LRTU model
constrained to ¤ = ¤ = . Since only the …rst set of moment conditions
m

1() depends on , an initial GMM estimator minimizes

̂ = arg min
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The optimal 2-step GMM estimator then minimizes the variance weighted GMM
objective functions with the full set of moment conditions,

̂ = arg min


Ã
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
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 (34)

̂ =
1



X

=1

m
 (̂)m

 (̂)0 with ̂ = ̂

Again, a grid search with grid size 001 is used to …nd ̂ and ̂ .

Estimating the FBU model
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In the FBU model, the unknown parameters are  = (¤ 
¤), 0 · ¤ ·

¤ · 1. Since we only consider the realization of 1 greater than 05, the range
of beliefs for the …rst action at time 2 is a subset of

£
1
2  1

¤
(see expression (??)),

and the maximin action 1
2maxmin is the Bayes’s action with the implied prior

¤. Hence, the moment conditions for the FBU model concerning the cdf of 1
2

are obtained by replacing 1
2
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¢
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(07)
.

We then denote the resulting 9 moment conditions by m
1().

As for the moment conditions for the cdfs of 2
2, we cannot …x the im-

plied prior as it depends on the individual’s (1 2). Nevertheless, given¡
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where

for time 2.2-con…rming :
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The estimation of  = (¤ 
¤) then proceeds by forming the moment vector
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and running the same estimation procedure as in the LRTU model.

9.3.2 Resampling-based model comparison

We now turn to presenting the details of the implementation of the model com-
parison procedure shown in Section 6.

We consider as the null model the BU model with parameter value ̂

(as reported in Table 10). As usual, we sample
¡
1 


2

¢
randomly and with

replacement from the empirical distribution. We then plug them into the for-
mulae of the theoretical ’s, with (1 2) set at the values observed in the
actual dataset. Having a random draw of

¡
1 


2

¢
for each observation and

computing the 1
2 and 2

2 for each , we obtain a simulated sample from the
null BU model with the same size as the actual data. We generate 1000 such
samples and index them by  = 1 2  1000.

For each simulated dataset, we minimize the GMM objective functions in
the BU model and the LRTU model. The minimized values of the objective
functions are denoted by ̂ and ̂,  = 1     1000, respectively. To keep
the weights on the moment conditions identical in the estimation of the BU
and the LRTU models, we construct the GMM objective functions by choosing
the weighting matrix used to obtain ̂ for the actual data. We keep this
weighting matrix …xed across samples.

We then approximate the null distribution of the di¤erence of the GMM
objective functions by the empirical distribution of ¢̂ = ̂ ¡ ̂, for  =
1     1000. To obtain the p-value for the null model (the BU model) against the
LRTU model, we compute ¢̂, the di¤erence of the GMM objective functions
for our actual data. Of course, we use the same weighting matrix as the one
used to compute ¢̂ ,  = 1     1000. The p-value is then obtained by the
proportion of ¢̂ ’s that are greater than ¢̂. A small p-value (e.g., less than
5%) indicates that the LRTU model …ts the actual data signi…cantly better
than the BU model, even taking into account the …tness gain only due to the
over-parametrization of the LRTU model.
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10 Appendix B: Instructions

Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making with 9 other par-
ticipants. Everyone in the experiment has the same instructions. If something
in the instructions is not clear and you have questions, please, do not hesitate
to ask for clari…cation. We will be happy to answer your questions privately.

Depending on your choices, the other participants’ choices and some luck
you will earn some money. You will receive the money immediately after the
experiment.

10.1 The Experiment

The experiment consists of 15 rounds of decision making. In each round you
will make two consecutive decisions. All of you will participate in each round.

What you have to do
In each round, you have simply to choose a number between 0 and 100. You

will make this choice twice, before and after receiving some information. The
reason for these choices is the following. There is a good whose value can be
either 0 or 100 units of a …ctitious currency called “lira.” You will not be told
whether the good is worth 0 or 100 liras, but will receive some information about
which value is more likely to have been chosen by a computer. We will ask you
to predict the value of the good, that is, to indicate the chance that the value
is 100 liras.

The value of the good
Whether the good will be worth 0 or 100 liras will be determined randomly

at the beginning of each round: there will be a probability of 50% that the value
is 0 and a probability of 50% that it is 100 liras, like in the toss of a coin. The
computer chooses the value of the good in each round afresh. The value of the
good in one round never depends on the value of the good in one of the previous
rounds.

What you will know about the value
Although you will not be told the value of the good, you will, however,

receive some information about which value is more likely to have been chosen.
For each of you, the computer will use two “virtual urns” both containing green
and red balls. The proportion of the two types of balls in each urn, however,
is di¤erent. One urn contains more red than green balls, whereas the other
urn contains more green than red balls. If the value of the good is 0, you will
observe a ball drawn from an urn containing more red balls. If the value is 100,
instead, you will observe a ball drawn from an urn containing more green balls.
To recap:

² If the value is 100, then there are more GREEN balls in the urn.
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² If the value is 0, then there are more RED balls in the urn.

Therefore, the ball color will give you some information about the value of
the good. Below we will tell you more about how many balls there are in the
urns. First, though, let us see more precisely what will happen in each round.

10.2 Procedures for each round

In each of the 15 rounds you will make decisions in sequence, one after the other.
There will be 10 periods. Each of you will make her/his two choices only in one
period, randomly chosen. Since there are 10 participants, this means that all of
you will participate in each round.

The precise sequence of events is the following:

First: the computer program will decide randomly if the good for that round
is worth 0 or 100 liras. You will not be told this value. On your screen you will
read “Round 1 of 15. The computer is deciding the value of the good by ‡ipping
a coin.”

Second: the computer program will randomly select who is the …rst person
who has to make a choice. Each of you has the same (110) chance of being
selected.

Third: the computer will draw a ball from the “virtual urn” and inform the
…rst person (only the …rst person) of the drawn ball color. The …rst person will
see this information on the screen. No one else will see it. The other participants
will be waiting.

Fourth: after the person sees this information, (s)he has to choose a number
between 0 and 100. This can be done by moving a slider on the screen (to select
a precise number, please, use the arrows on your keyboard). The decision made
will be visible to all participants.

Fifth: the computer will now randomly choose another person. Again, all
the remaining 9 people have the same (19) chance of being chosen.

Sixth: this second person, having observed the …rst person’s prediction, will
be asked to make her/his prediction, choosing a number between 0 and 100.
This decision will not be visible to other participants.

Seventh: after the decision, the computer will draw a ball from the “virtual
urn” and inform (only) the second person of its color.

Eighth: the second person, after observing the ball color, will now make
a new prediction, choosing again a number between 0 and 100. This choice is
visible to all participants.

Ninth: the computer will choose a third person. This person will have to
make two predictions, before and after receiving information, exactly as the
second person. The …rst decision is after having observed the …rst two persons’
predictions. The second prediction is after having observed the ball color too.
The decision made after seeing the ball color will be visible to everyone. Then
the computer will choose the fourth person and so on, until all ten people have
had the opportunity to participate.
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Tenth: the computer will reveal the value of the good for the round and the
payo¤ you earned in the round.

Observation 1: All 10 participants have to make the same type of decision,
predicting the value of the good. However, the …rst person in the sequence is
asked to make only one prediction, while the others will make two. The reason
is simple. Since the …rst person knows nothing, the only sensible prediction
is 50, given that there is a 50 ¡ 50 chance that the value is 0 or 100 liras.
Therefore, if you are the …rst, we do not ask you to make the prediction before
seeing the ball color. Instead, if you are a subsequent person, we will ask you to
make a prediction even before seeing the ball color, just after observing the pre-
decessors’ predictions. Always recall that the predecessors’ predictions
that you will observe are the second predictions that they made, that
is, the predictions they made after receiving information about the
ball color.

Observation 2: As we said, when it is your turn, the computer will draw a
ball from one of two virtual urns: the urn containing more red than green balls
if the value is zero; and the urn containing more green than red balls if the value
is 100. But, exactly how many red and green balls are there in the urns? If the
value is 0, then there are 70 red balls and 30 green balls. If the value is 100,
then there are 70 green balls and 30 red balls.

10.3 Your per-round payo¤

Your earnings depend on how well you predict the value of the good. If you are
the …rst person in the sequence, your payo¤ will depend on the only prediction
that you are asked to make. If you are a subsequent decision maker, your payo¤
will depend on the …rst or the second prediction you make, with the same chance
(like in the toss of a coin).

If you predict the value exactly, you will earn 100 liras. If your prediction
di¤ers from the true value by an amount , you will earn 100 ¡ 0012. This
means that the further your prediction is from the true value, the less you will
earn. Moreover, if your mistake is small, you will be penalized only a small
amount; if your mistake is big, you will be penalized more than proportionally.

To make this rule clear, let us see some examples.

Example 1: Suppose the true value is 100. Suppose you predict 80. In this
case you made a mistake of 20. We will give you 100 ¡ 001 ¤ 202 = 960 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this
case you made a mistake of 10. We will give you 100 ¡ 001 ¤ 102 = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25. In this
case you made a mistake of 75. We will give you 100 ¡ 001 ¤ 752 = 4375 liras.
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Example 4: Suppose the true value is 0. Suppose you predict 50. In this
case you made a mistake of 50. We will give you 100 ¡ 001 ¤ 502 = 75 liras.

Note that the worst you can do under this payo¤ scheme is to state that you
believe that there is a 100% chance that the value is 100 when in fact it is 0,
or you believe that there is a 100% chance that the value is 0 when in fact it is
100. Here your payo¤ from prediction would be 0. Similarly, the best you can
do is to guess correctly and assign 100% to the value which turns out to be the
actual value of the good. Here your payo¤ will be 100 liras.

Note that with this payo¤ scheme, the best thing you can do to
maximize the expected size of your payo¤ is simply to state your
true belief about what you think the true value of the good is. Any
other prediction will decrease the amount you can expect to earn. For
instance, suppose you think there is a 90% chance that the value of the good is
100 and, hence, a 10% chance that value is 0. If this is your belief about the
likely value of the good, to maximize your expected payo¤, choose 90 as your
prediction. Similarly, if you think the value is 100 with chance 33% and 0 with
chance 67%, then select 33.

10.4 The other rounds

We will repeat the procedures described in the …rst round for 14 more rounds.
As we said, at the beginning of each new round, the value of the good is again
randomly chosen by the computer. Therefore, the value of the good in round 2
is independent of the value in round 1 and so on.

10.5 The …nal payment

To compute your payment, we will randomly choose (with equal chance) one
round among the …rst …ve, one among the rounds 6¡10 and one among the last
…ve rounds. For each of these round we will then choose either prediction 1 or
prediction 2 (with equal chance), unless you turn was 1, in which case there is
nothing to choose since you only made one prediction. We will sum the payo¤s
that you have obtained for those predictions and rounds. We will then convert
your payo¤ into pounds at the exchange rate of 100 liras = $7. That is, for
every 100 liras you earn, you will get 7 pounds. Moreover, you will receive a
participation fee of $5 just for showing up on time. You will be paid in cash,
in private, at the end of the experiment.
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