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Abstract

In a randomized control trial, the precision of an average treatment effect

estimator and the power of the corresponding t-test can be improved either by

collecting data on additional individuals, or by collecting additional covariates

that predict the outcome variable. We propose the use of pre-experimental data

such as other similar studies, a census, or a household survey, to inform the

choice of both the sample size and the covariates to be collected. Our proce-

dure seeks to minimize the resulting average treatment effect estimator’s mean

squared error or the corresponding t-test’s power, subject to the researcher’s

budget constraint. We rely on a modification of an orthogonal greedy algorithm

that is conceptually simple and easy to implement in the presence of a large

number of potential covariates, and does not require any tuning parameters. In

two empirical applications, we show that our procedure can lead to reductions of

up to 58% in the costs of data collection, or improvements of the same magnitude

in the precision of the treatment effect estimator.
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I Introduction

This paper is motivated by the observation that empirical research in economics increas-

ingly involves the collection of original data through laboratory or field experiments

(see, e.g. Duflo, Glennerster, and Kremer, 2007; Banerjee and Duflo, 2009; Bandiera,

Barankay, and Rasul, 2011; List, 2011; List and Rasul, 2011; Hamermesh, 2013, among

others). This observation carries with it a call and an opportunity for research to

provide econometrically sound guidelines for data collection.

We analyze the decision problem faced by a researcher designing the survey for a

randomized control trial (RCT) in the presence of a budget constraint. We assume the

researcher’s goal is to obtain precise estimates of the average treatment effect and/or a

powerful t-test of the hypothesis of no treatment effect, using the experimental data.1

Data collection is costly and the research budget limits how much data can be collected.

We ask how the researcher optimally trades off the number of individuals included in

the RCT against the choice of covariates included in the survey.

For example, consider an RCT for studying the impact of an education interven-

tion on students’ test scores. This is a typical case where covariates, namely the

pre-intervention student test scores, contribute to large increases in the precision of

experimental treatment effects. In this context we can ask whether one achieves more

precise estimates of the treatment effect by spending the entire budget collecting test

score data on a large post-intervention cross section, or by spending the budget on a

smaller sample which is surveyed twice, pre- and post-intervention. Unlike the former,

the latter approach would allow us to control for baseline scores when estimating the

treatment effect. Of course, similar tradeoffs may also occur with covariates other than

baseline outcomes that the researcher considers collecting and that predict the outcome

of interest.

We show below how a rigorous analysis of this problem can potentially lead to first

order improvements in the precision of treatment effect estimates, and large reductions

in the costs of collecting data in these studies. In two realistic empirical applications, it

is possible to achieve reductions of 58% in data collection costs, and similar decreases

in the variance of the treatment effect estimates.

There are, of course, other factors potentially influencing the choice of covariates

to be collected in a survey for an RCT. For example, one may wish to learn about

1Tetenov (2015) provides a decision-theory-based rationale for using hypothesis tests in the RCT
and Banerjee, Chassang, Montero, and Snowberg (2016) develop a theory of experimenters, focusing
on the motivation of randomization among other things.
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the mechanisms through which the RCT is operating, check whether treatment or

control groups are balanced, or measure heterogeneity in the impacts of the intervention

being tested. In practice, researchers place implicit weights on each of the objectives

they consider when designing surveys, and informally work out the different trade-

offs involved in their choices. We show that there is substantial value to making

this decision process more rigorous and transparent through the use of data-driven

tools that optimize a well-defined objective. Instead of attempting to formalize the

whole research design process, we focus on one particular trade-off that is of first-order

importance and particularly conducive to data-driven procedures.

We assume the researcher has access to pre-experimental data from the population

from which the experimental data will be drawn, or at least from a population that

shares similar second moments of the variables to be collected. The data set includes

all the potentially relevant variables that one would consider collecting for the analysis

of the experiment. This assumption may be reasonable in many different contexts.

For example, the Abdul Latif Jamil Poverty Action Lab (JPAL) website lists more

than 10 papers written since 2000 analyzing different education interventions taking

place in Kenya, almost all of them involving a single district (Busia).2 l In addition,

the website also lists many studies outside of Kenya, but in nearby regions, as well

as studies on interventions targeting non-education outcomes. Some of these may

share a similar population and strongly correlated outcomes with those of education

intervention studies in Kenya. In contexts such as these the researcher can formally use

data from an earlier study to inform the design of a future study. Other examples in

which similar studies can easily be found include, for example, fertilizer interventions

in Indonesia and nutritional interventions in Malawi. Another very different type of

example in which our procedure might be useful is the rapidly growing number of

(experimental and quasi-experimental) studies based on administrative records, such

as the recent study of the Oregon Health Insurance Experiment (Finkelstein et al.,

2012) in which administrative records are already available, but need to be assembled,

organized and interlinked, at a cost.3

2See, e.g., Duflo, Dupas, and Kremer (2011, 2015); Kremer, Miguel, and Thornton (2009); Miguel
and Kremer (2004), and papers listed at https://www.povertyactionlab.org.

3In the case of Finkelstein et al. (2012) it is plausible that there are multiple important determinants
of hospital utilization in the affected population (potential covariates), other than winning the lottery
offered in this experiment, such as education, income, past hospital utilization, or distance to hospitals.
It is possible that this additional information exists in other administrative records, which, at a cost,
can be assembled and linked to the original records used in Finkelstein et al. (2012). In order to
understand which of these records would be most useful to collect for the purposes of this study, one
can rely on a large public health literature on the determinants of hospital utilization.
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The researcher faces a fixed budget for implementing the survey for the RCT. Given

this budget, the researcher chooses the survey’s sample size and set of covariates to

optimize the resulting treatment effect estimator’s precision and/or the corresponding

t-test’s power. This choice takes place before the implementation of the RCT and

could, for example, be part of a pre-analysis plan in which, among other things, the

researcher specifies outcomes of interest, covariates to be selected, and econometric

techniques to be used.

In principle, the trade-offs involved in this choice involve basic economic reasoning.

For each possible covariate, one should be comparing the marginal benefit and marginal

cost of including it in the survey, which in turn, depends on all the other covariates

included in the survey. As we discuss below, in simple settings it is possible to derive

analytic and intuitive solutions to this problem. Although these are insightful, they

only apply in unrealistic formulations of the problem.

In general, for each covariate, there is a discrete choice of whether to include it or

not, and for each possible sample size, one needs to consider all possible combinations

of covariates within the budget. This requires a solution to a computationally difficult

combinatorial optimization problem. This problem is especially challenging when the

set of potential variables to choose from is large, a case that is increasingly encountered

in today’s big data environment. Fortunately, with the increased availability of high-

dimensional data, methods for the analysis of such data sets have received growing

attention in several fields, including economics (Belloni, Chernozhukov, and Hansen,

2014). This literature makes available a rich set of new tools, which can be adapted to

our study of optimal survey design.

In this paper, we propose the use of a computationally attractive procedure based

on the orthogonal greedy algorithm (OGA) – also known as the orthogonal matching

pursuit; see, for example, Tropp (2004) and Tropp and Gilbert (2007) among many

others. In the standard implementation of the OGA, it is necessary to specify a stop-

ping rule, which in turn requires a tuning parameter. In our modified version of the

algorithm, the budget constraint, an economically meaningful constraint, replaces this

tuning parameter and thus does not require the researcher to choose any other sta-

tistical tuning parameters. This new, automated procedure is easy to implement as

it requires only running linear regressions (a Matlab implementation is available at

http://github.com/danielwilhelm/Matlab-data-coll) and it performs well even

when there are a large number of potential covariates in the pre-experimental data set.

To illustrate the application of our method we examine two recent experiments for

which we have detailed knowledge of the process and costs of data collection. We ask
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two questions. First, if there is a single hypothesis one wants to test in the experiment,

concerning the impact of the experimental treatment on one outcome of interest, what

is the optimal combination of covariate selection and sample size given by our method,

and how much of an improvement in the precision of the impact estimate can we obtain

as a result? Second, what are the minimum costs of obtaining the same precision of

the treatment effect as in the actual experiment, if one was to select covariates and

sample size optimally (what we call the “equivalent budget”)? Analogously, by con-

sidering alternative hypothetical cost functions or regression coefficients, we examine

how inexpensive or how predictive of the outcome a particular covariate would need to

be for it to be worth collecting.

We find from these two applications that by adopting optimal data collection rules,

not only can we achieve substantial increases in the precision of the estimates (statis-

tical importance) for a given budget, but we can also accomplish sizeable reductions

in the equivalent budget (economic importance). To illustrate the quantitative impor-

tance of the latter, we show that the optimal selection of the set of covariates and the

sample size leads to a reduction of about 45 percent (up to 58 percent) of the original

budget in the first (second) example we consider, while maintaining the same level of

the statistical significance as in the original experiment.

Although this paper focuses on the important case of RCTs with complete random-

ization, our procedure can be extended to many other data collection efforts and other

modes of randomization. One important extension we discuss in Section III.A is that

to treatment assignment through re-randomization or stratification.

There is a large and important body of literature on the design of experiments,

starting with Fisher (1935). There also exists an extensive body of literature on sample

size (power) calculations; see, for example, McConnell and Vera-Hernández (2015) for

a practical guide. Both bodies of this literature are concerned with the precision of

treatment effect estimates, but neither addresses the problem that concerns us. For

instance, McConnell and Vera-Hernández (2015) have developed methods to choose

the sample size when cost constraints are binding, but they neither consider the issue

of collecting covariates nor its trade-off with selecting the sample size.

In fact, to the best of our knowledge, no paper in the literature directly considers

our data collection problem. Some papers address related but very different problems

(see Hahn, Hirano, and Karlan, 2011; List, Sadoff, and Wagner, 2011; Bhattacharya

and Dupas, 2012; McKenzie, 2012; Dominitz and Manski, 2017). They study some

issues of data measurement, budget allocation or efficient estimation; however, they

do not consider the simultaneous selection of the sample size and covariates for the
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RCTs as in this paper. Because our problem is distinct from the problems studied in

these papers, we give a detailed comparison between our paper and the aforementioned

papers in Section VII.

More broadly, this paper is related to a recent emerging literature in economics that

emphasizes the importance of micro-level predictions and the usefulness of machine

learning for that purpose. For example, Kleinberg, Ludwig, Mullainathan, and Ober-

meyer (2015) argue that prediction problems are abundant in economic policy analysis,

and recent advances in machine learning can be used to tackle those problems. Fur-

thermore, our paper is related to the contemporaneous debates on pre-analysis plans

which demand, for example, the selection of sample sizes and covariates before the

implementation of an RCT; see, for example, Coffman and Niederle (2015) and Olken

(2015) for the advantages and limitations of the pre-analysis plans.

The remainder of the paper is organized as follows. In Section II we present the sim-

plest version of our data collection problem, which illustrates the main issues discussed

in this paper. A more general description of the problem is presented in Section III. In

Section IV, we propose the use of a simple algorithm based on the OGA. In Section V,

we discuss the costs of data collection in experiments. In Section VI, we present two

empirical applications, in Section VII, we discuss the existing related literature, and in

Section VIII, we give concluding remarks. Online appendices provide details that are

omitted from the main text.

II A Stylized Special Case

Consider the case in which a researcher is designing the survey for a RCT, with a

limited budget, B. Her goal is to obtain a precise estimate of the average treatment

effect, using the experimental data. In this section we consider the simplest version of

the data collection problem, in which the researcher is choosing between two alternative

uses of the budget: (i) collect one single variable, the outcome used to measure the

treatment effect, for a sample of size n1; or (ii) collect two variables, the outcome and

a single covariate, for a smaller sample of size n2.

This covariate can be any potential predictor of the outcome, but one variable

that is of central interest in multiple applications is the pre-intervention value of the

outcome, because it is often highly predictive of the post-intervention value of the

outcome. Studies of the impact of education interventions on student test scores are

a typical example for which this is the case, and often pre-intervention test scores are
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almost the only covariate collected along with post-intervention test scores.

As an illustration take Table 4 in Kremer, Miguel, and Thornton (2009). Columns

(1) and (2) of Panels B and C in their table compare estimates of the impact of providing

a merit scholarship on test scores, with and without the inclusion of school level (Panel

B) and individual level (Panel C) pre-intervention test scores in the model. In Panel

B the standard errors decrease by 50% from 0.12 to 0.06 once lagged test scores are

included, while in Panel C they decrease by 35% from 0.14 to 0.09.4

Suppose one is designing the evaluation of another education intervention in this

population of students. We consider the following two alternative specifications for

estimating the average treatment effect β:

Y = α1 + βD + V, (1)

Y = α2 + βD + γ2X + U, (2)

where Y and X are post- and pre-intervention test scores, respectively, and D is

the treatment indicator. Alternative (1) does not require data on X, i.e. no pre-

intervention survey. Denote by n1 the largest possible sample size of the RCT that

can be collected using the budget B. For alternative (2), the pre-intervention test

score needs to be collected, and since this is costly, the largest possible sample size of

the RCT in this case, denoted by n2, is smaller than n1. Assume that V and U are

unobserved random variables with mean zero and with variances equal to σ2
V and σ2

U ,

respectively. Assume further that V and U are homoskedastic. Let β̂1 and β̂2 denote

the OLS estimators of β in (1) and (2), respectively. Then, the estimators’ asymptotic

variances can be written as AV ar(β̂1) =
σ2
V

n1Var(D)
and AV ar(β̂2) =

σ2
U

n2Var(D)
because D

is randomly assigned. In addition, if we assume that U is uncorrelated with X, then

σ2
V = σ2

U + γ2
2σ

2
X , where σ2

X is the variance of pre-intervention test scores.

There is a maximum budget B that can be spent in the study. For simplicity of

exposition, assume that the cost of collecting one wave of scores from n students is

λn (where λ is the per student cost of the survey), while the cost of collecting two

waves (pre- and post-intervention) of test scores is 2λn. This means that n1 = B
λ

and

n2 = B
2λ

, i.e., n2

n1
= 1

2
.

In order to decide whether to collect pre-intervention scores or not, the researcher

would like to compare AV ar(β̂1) =
σ2
V

n1V ar(D)
and AV ar(β̂2) =

σ2
U

n2V ar(D)
.5 One opts to

4There are also changes in the point estimates but we abstract from those now. We also ab-
stract from the fact that standard errors account for correlation between students in the same school,
although it is possible that the inclusion of lagged test scores also helps absorb part of this correlation.

5Since the OLS estimators in an RCT are unbiased, the variance of the estimator is equal to its
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collect a single post-intervention survey if AV ar(β̂1) < AV ar(β̂2), or n2

n1
< 1 − γ22σ

2
X

σ2
V

,

where
γ22σ

2
X

σ2
V

= Ryx is the (population) R-squared of a regression of Y on X (using data

from only the treatment or only the control group). In this simple case n2

n1
= 1

2
, so one

decides for a single post-intervention survey if less than 50% of the variance of Y can

be explained by X, and decides for a two survey design if this R-squared is above 50%.

In order to make the decision of whether to collect the pre-intervention score or

not, suppose the researcher has access to information from Panel C of Table 4 in

Kremer, Miguel, and Thornton (2009), where the standard errors of the experimental

treatment effect are about 35% lower when the pre-intervention score is controlled

for (

√
V ar(β̂prepost)√
V ar(β̂post)

= 0.09
0.14

, where β̂post is the estimate of the treatment effect excluding

all controls, and β̂prepost is the estimate obtained controlling for the covariate). This

means that σ2
U =

(
0.09
0.14

)2
σ2
V , so Ryx ≈ 59%. Faced with this information the researcher

decides in favor of collecting the pre-intervention test score using half the sample size

that would have been feasible if she had decided to conduct only one post-intervention

survey.

It is worth noting that the norm in RCTs in education is to collect pre-intervention

test scores, and this is indeed optimal in our example, but only because the implied

Ryx is extremely high (59%). This is not always the case. As pointed out above,

the researcher should decide against collecting a pre-intervention test score when the

R-squared of the regression of post- on pre-intervention outcomes was less than 50%

(or if the standard error of the treatment effect estimate fell by less than 30% after

controlling for the covariate). There is an alternative reason why, even with Ryx = 59%,

the researcher would not collect the pre-intervention covariate: if per-student survey

costs differed across waves, with the cost in the pre-intervention survey, λpre, being at

least 44% higher than the survey cost in the post-intervention survey, λpost.
6 This is

admittedly less realistic in the example we are considering in this section, since there

is no reason why collecting a variable before the intervention would cost so much more

than collecting the same variable after the intervention. However, it is more plausible

in cases where X and Y are not the same variable (and they could even both come

from post-intervention data).

Suppose now that the standard error of the treatment effect estimate had fallen only

mean-squared error.
6In order to see this notice that, in this case, n1 = B

λpost
and n2 = B

λpre+λpost
, i.e., n2

n1
=

λpost

λpre+λpost
.

The researcher chooses to collect post-intervention test scores if n2 is larger than
(
0.09
0.14

)2
n1 ≈ 0.41n1,

i.e.,
λpost

λpre+λpost
> 0.41, or λpre <

0.59
0.41λpost ≈ 1.44λpost.
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by 25% after including the covariate, which is still a substantial fall. This means that

the Ryx ≈ 44%. In that case it would be optimal not to collect the pre-intervention

covariate. An R-squared of 44% is still high, even in typical education interventions,

where pre-intervention test scores are almost always collected.

In this setting there are two additional questions our procedure would be able to

provide answers to, and that illustrate the importance of a formal treatment of the

covariate collection problem. First, keeping the budget fixed, how large would be the

increase in the precision of the treatment effect estimate if instead of collecting the

pre-intervention outcome, the researcher opted to collect only the post-intervention

outcome with a larger sample size? Second, keeping the precision of the treatment

effect estimate constant, how large would be the savings in data collection costs if one

were to collect only post-intervention data?

Returning to the assumption that λpre = λpost = λ, with the same budget one would

be able to collect data on twice as many students with one rather than two waves of

data: n1 = 2n2 . At the same time, σ2
U = (1− 0.44)σ2

V . This means that

√
AV ar(β̂1)

AV ar(β̂2)
=√

n2σ2
V

n1σ2
U
≈ 0.95. Therefore, the answer to the first question is that one could achieve

a 5% reduction in the standard error of the treatment effect estimate. Considering

other typical Ryx values, if Ryx = 25%, then

√
AV ar(β̂1)

AV ar(β̂2)
≈ 0.82, if Ryx = 10%, then√

AV ar(β̂1)

AV ar(β̂2)
≈ 0.75, and if Ryx = 5%, then

√
AV ar(β̂1)

AV ar(β̂2)
≈ 0.73.

Suppose now we let the budget vary in order to keep precision constant across

the two alternative data collection options. Let Bpost = λn1 be budget when only

post-intervention data is collected, and Bprepost = 2λn2 be budget when both pre- and

post-intervention data is collected, so Bpost

Bprepost
= n1

2n2
. Notice that AV ar(β̂1) = AV ar(β̂2)

implies that n1

n2
=

σ2
V

σ2
U

. Then the answer to the second question, if Ryx = 44% then

Bpost

Bprepost
= 1

2

σ2
V

σ2
U

= 0.89, if Ryx = 25% then Bpost

Bprepost
= 1

2

σ2
V

σ2
U

= 0.67, if Ryx = 10% then

Bpost

Bprepost
= 1

2

σ2
V

σ2
U

= 0.56, and if Ryx = 5% then Bpost

Bprepost
= 1

2

σ2
V

σ2
U

= 0.53.7

The simple example discussed in this section provides a clear illustration of the

7If we measured the gains in precision discussed in the previous paragraph in terms of variances

instead of standard deviations we would look at AV ar(β̂1)

AV ar(β̂2)
instead of

√
AV ar(β̂1)

AV ar(β̂2)
. In that case these

ratios would be the following in each of the four cases we consider for Rxy: 0.89, 0.67, 0.56, and
0.53. Notice that these are exactly the same budget gains we obtain in each case, keeping precision
constant. Although this exact correspondence is not true in the more general framing of the problem
discussed in the next section, it is interesting that it is not far from the truth in the two empirical
applications presented below.
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problem addressed in this paper. Reality of course is much more complex. In general,

there are many potential covariates that can be collected, these covariates are typically

not uncorrelated, and the cost of data collection may be a complicated function of

sample size and the set of chosen covariates (e.g. containing fixed costs, heterogeneous

prices across covariates, components that depend on the size of the survey etc.). In

more realistic formulations of the covariate collection problem, it is not possible to

derive analytical decision rules as in the stylized example presented in this section.

The next sections present the general formulation and our proposed solution.

III General Data Collection Problem

Suppose we are planning an RCT in which we randomly assign individuals to either a

treatment (D = 1) or a control group (D = 0) with corresponding potential outcomes

Y1 and Y0, respectively. After administering the treatment to the treatment group,

we collect data on outcomes Y for both groups so that Y = DY1 + (1 − D)Y0. We

also conduct a survey to collect data on a potentially very high-dimensional vector of

covariates Z (e.g. from a household survey covering demographics, social background,

income etc.) that predicts potential outcomes. These covariates are a subset of the

universe of predictors of potential outcomes, denoted by X. Random assignment of D

means that D is independent of potential outcomes and of X.

Our goal is to estimate the average treatment effect β0 := E[Y1−Y0] as precisely as

possible, where we measure precision by the finite sample mean-squared error (MSE)

of the treatment effect estimator, and/or produce a powerful t-test of the hypothesis

H0 : β0 = 0. Instead of simply regressing Y on D, we want to make use of the avail-

able covariates Z to improve the precision of the resulting treatment effect estimator.

Therefore, we consider estimating β0 in the regression

Y = α0 + β0D + γ′0Z + U, (3)

where (α0, β0, γ
′
0)′ is a vector of parameters to be estimated and U is an error term.

The implementation of the RCT requires us to make two decisions that may have a

significant impact on the estimation of and inference on the average treatment effect:

1. Which covariates Z should we select from the universe of potential predictors X?

2. From how many individuals (n) should we collect data on (Y,D,Z)?

10



Obviously, a large experimental sample size n reduces the variance of the treatment

effect estimator. Similarly, collecting more covariates, in particular strong predictors of

potential outcomes, reduces the variance of the residual U which, in turn, also improves

the variance of the estimator. At the same time collecting data from more individuals

and on more covariates is costly so that, given a finite budget, we want to find a

combination of sample size n and covariate selection Z that leads to the most precise

treatment effect estimator possible.

In this section, we propose a procedure to make this choice based on a pre-experimental

data set on Y and X, such as a pilot study or a census from the same population from

which we plan to draw the RCT sample.8 The combined data collection and estimation

procedure can be summarized as follows:

1. Obtain pre-experimental data Spre on (Y,X).

2. Use data in Spre to select the covariates Z and sample size n.

3. Implement the RCT and collect the experimental data Sexp on (Y,D,Z).

4. Estimate the average treatment effect using Sexp.

5. Compute standard errors.

We now describe the five steps listed above in more detail. The main component of

our procedure consists of a proposal for the optimal choice of n and Z in Step 2, which

is described more formally in Section IV.

Step 1. Obtain pre-experimental data. We assume the availability of data

on outcomes Y ∈ R and covariates X ∈ RM for the population from which we

plan to draw the experimental data. We denote the pre-experimental sample of

size N by Spre := {Yi, Xi}Ni=1. Our framework allows the number of potential

covariates, M , to be very large (possibly much larger than the sample size N).

Typical examples would be census data, household surveys, or data from other,

similar experiments. Another possible candidate is a pilot experiment that was

carried out before the larger-scale role out of the main experiment, provided that

the sample size N of the pilot study is large enough for our econometric analysis

in Step 2.

8In fact, we do not need the populations to be identical, but only require second moments to be
the same.
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Step 2. Optimal selection of covariates and sample size. We want to use

the pre-experimental data to choose the sample size, and which covariates should

be in our survey. Let S ∈ {0, 1}M be a vector of ones and zeros of the same

dimension as X. We say that the jth covariate (X(j)) is selected if Sj = 1,

and denote by XS the subvector of X containing elements that are selected by

S. For example, consider X = (X(1), X(2), X(3)) and S = (1, 0, 1). Then XS =

(X(1), X(3)). For any vector of coefficients γ ∈ RM , let I(γ) ∈ {0, 1}M denote the

nonzero elements of γ and Y (γ) := Y − γ′I(γ)XI(γ). We can then rewrite (3) as

Y (γ) = α0 + β0D + U(γ), (4)

where γ ∈ RM and U(γ) := Y −α0−β0D−γ′I(γ)XI(γ). For a given γ and sample

size n, we denote by β̂(γ, n) the OLS estimator of β0 in a regression of Y (γ) on

a constant and D, using a random sample {Yi, Di, Xi}ni=1. We also consider the

two-sided9 t-test of

H0 : β0 = 0 vs. H1 : β0 6= 0

using the t-statistic

t̂(γ, n) :=
β̂(γ, n)

σ(γ)/
√
nD̄n(1− D̄n)

,

where σ2(γ) := V ar(U(γ)) is the residual variance and D̄n :=
∑n

i=1Di/n the

number of individuals in the treatment group divided by the sample size n.

Data collection is costly and therefore constrained by a budget of the form

c(S, n) ≤ B, where c(S, n) are the costs of collecting the variables given by

selection S from n individuals, and B is the researcher’s budget.

We assume the researcher is interested in collecting data so as to ensure good

statistical properties of the resulting treatment effect estimator and the corre-

sponding t-test. We consider two criteria, the MSE of β̂(γ, n) and the power of

the t-test that employs t̂(γ, n). We now briefly argue that minimizing the MSE

of β̂(γ, n) and maximizing power of the t-test lead to equivalent optimization

problems for selecting the optimal collection of covariates and sample size. Sub-

sequently, we directly consider that optimization problem and the approximation

9The same arguments in this paper straightforwardly carry over to a one-sided t-test.

12



of its solution, thereby transparently covering both objectives at the same time.

First, consider choosing the experimental sample size n and the covariate selection

S so as to minimize the finite sample MSE of β̂(γ, n), i.e., we want to choose n

and γ to minimize

MSE
(
β̂(γ, n)

∣∣∣ D1, . . . , Dn

)
:= E

[(
β̂(γ, n)− β0

)2
∣∣∣∣ D1, . . . , Dn

]
.

subject to the budget constraint.

Assumption 1. (i) {(Yi, Xi, Di)}ni=1 is an i.i.d. sample from the distribution

of (Y,X,D) such that D is completely randomized. (ii) Var(U(γ)|D = 1) =

Var(U(γ)|D = 0) for all γ ∈ RM .

Part (i) of this assumption is standard. There are other assignment mechanisms

such as re-randomization, but we focus on the simplest case in the paper. Part

(ii) is a homoskedasticity assumption that is common in standard power calcula-

tions and requires the residual variance to be the same across the treatment and

control group. This assumption is satisfied, for example, when the treatment

effect is constant across individuals in the experiment. If the researcher feels

uncomfortable with this assumption, it is necessary to collect a pilot study that

produces pre-experimental data from the joint distribution of (D,X). The power

of the homoskedasticity assumption is that, as we discuss in more detail below,

data on D is not required for the optimal choice of n and S.

The following lemma characterizes the finite sample MSE of the estimator under

the above assumption.

Lemma 1. Under Assumption 1, for any γ ∈ RM ,

MSE
(
β̂(γ, n)

∣∣∣ D1, . . . , Dn

)
=

σ2(γ)

nD̄n(1− D̄n)
. (5)

The proof of this Lemma can be found in the appendix. Note that for each (γ, n),

the MSE is minimized by the equal splitting between the treatment and control

groups. Hence, suppose that the treatment and control groups are of exactly the

same size (i.e., D̄n = 0.5). By Lemma 1, minimizing the MSE of the treatment

effect estimator subject to the budget constraint,

min
n∈N+, γ∈RM

MSE
(
β̂(γ, n)

∣∣∣ D1, . . . , Dn

)
s.t. c(I(γ), n) ≤ B, (6)
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is equivalent to minimizing the residual variance in a regression of Y on X,

divided by the sample size,

min
n∈N+, γ∈RM

σ2(γ)

n
s.t. c(I(γ), n) ≤ B, (7)

Now, consider choosing the experimental sample size n and the covariate selection

S so as to maximize power of the two-sided t-test based on t̂(γ, n). Denote by

cα and Φ(·) the α-quantile and cumulative distribution function of the standard

normal distribution, respectively. The following lemma calculates the test’s finite

sample power under the assumption of joint normality of Y and X.

Lemma 2. Suppose Assumption 1 holds and that (Y,X) are jointly normal.

Then, for any α ∈ (0, 1), β 6= 0, and γ ∈ RM ,

Pβ
(∣∣t̂(γ, n)

∣∣ > c1−α/2
∣∣ D1, . . . , Dn

)
= 1+Φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

− c1−α/2

)
−Φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

+ c1−α/2

)
,

where Pβ denotes probabilities under the assumption that β is the true coefficient

in front of D. Furthermore, Pβ(|t̂(γ, n)| > c1−α/2|D1, . . . , Dn) is decreasing in

σ(γ)/
√
nD̄n(1− D̄n).

The lemma shows that, under the normality assumption and for any alternative

β 6= 0 and size α, the power of the two-sided t-test is a decreasing transformation

of σ2(γ)

nD̄n(1−D̄n)
. Therefore, assigning as many individuals to the treatment as to

the control group, besides minimizing the MSE above also maximizes power.

Therefore, assuming again D̄n = 0.5, maximizing power subject to the budget

constraint,

max
n∈N+, γ∈RM

Pβ
(∣∣t̂(γ, n)

∣∣ > c1−α/2
∣∣ D1, . . . , Dn

)
s.t. c(I(γ), n) ≤ B,

is also equivalent to minimizing the residual variance in a regression of Y on X,

divided by the sample size, as in (7). Notice that even when (Y,X) are not jointly

normal, the power expression in Lemma 2 may be approximately correct because

the Berry-Esseen bound guarantees that the t-statistic’s distribution is close to

normal as long as n is not too small.
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Having motivated the optimization problem in (7) in terms of minimization of

the MSE of the treatment effect estimator as well as in terms of maximization

of power of the corresponding t-test, we now discuss how to approximate the

solution to (7) in a given finite sample.

Importantly, notice that the optimization problem (7) depends on the data only

through the residual variance σ2(γ), which, under Assumption 1, can be estimated

before the randomization takes place, i.e. using the pre-experimental sample Spre.

Therefore, employing the standard sample variance estimator of σ2(γ), the sample

counterpart of our population optimization problem (7) is

min
n∈N+, γ∈RM

1

nN

N∑
i=1

(Yi − γ′Xi)
2 s.t. c(I(γ), n) ≤ B. (8)

The problem (8), which is based on the pre-experimental sample, approximates

the population problem (7) for the experiment if the second moments in the pre-

experimental sample are close to the second moments in the experiment (which

holds, for example, if the population in the pre-experimental sample is the same

as the population in the experiment).

In Section IV, we describe a computationally attractive OGA that approximates

the solution to (8). The OGA has been studied extensively in the signal extraction

literature and is implemented in most statistical software packages. Appendices

A and D show that this algorithm possesses desirable theoretical and practical

properties.

The basic idea of the algorithm (in its simplest form) is straightforward. Fix a

sample size n. Start by finding the covariate that has the highest correlation with

the outcome. Regress the outcome on that variable, and keep the residual. Then,

among the remaining covariates, find the one that has the highest correlation with

the residual. Regress the outcome onto both selected covariates, and keep the

residual. Again, among the remaining covariates, find the one that has the highest

correlation with the new residual, and proceed as before. We iteratively select

additional covariates up to the point when the budget constraint is no longer

satisfied. Finally, we repeat this search process for alternative sample sizes, and

search for the combination of sample size and covariate selection that minimizes

the residual variance. Denote the OGA solution by (n̂, γ̂) and let Î := I(γ̂)

denote the selected covariates. See Section IV for more details.

15



Note that, generally speaking, the OGA requires us to specify how to terminate

the iterative procedure. One attractive feature of our algorithm is that the budget

constraint plays the role of the stopping rule, without introducing any tuning

parameters.

Step 3. Experiment and data collection. Given the optimal selection of co-

variates Î and sample size n̂, we randomly assign n̂ individuals to either the

treatment or the control group (with equal probability), and collect the co-

variates Z := XÎ from each of them. This yields the experimental sample

Sexp := {Yi, Di, Zi}n̂i=1 from (Y,D,XÎ).

Step 4. Estimation of the average treatment effect. We regress Yi on

(1, Di, Zi) using the experimental sample Sexp. The OLS estimator of the co-

efficient on Di is the average treatment effect estimator β̂.

Step 5. Computation of standard errors. Assuming the two samples Spre

and Sexp are independent, and that treatment is randomly assigned, the presence

of the covariate selection Step 2 does not affect the asymptotic validity of the

standard errors that one would use in the absence of Step 2. Therefore, asymp-

totically valid standard errors of β̂ can be computed in the usual fashion (see,

e.g., Imbens and Rubin, 2015).

III.A Discussion

In this subsection, we discuss some of conceptual and practical properties of our pro-

posed data collection procedure.

Availability of Pre-Experimental Data. As in standard power calculations, pre-

experimental data provide essential information for our procedure. The availability of

such data is very common, ranging from census data sets and other household surveys

to studies that were conducted in a similar context as the RCT we are planning to

implement. In addition, if no such data set is available, one may consider running a

pilot project that collects pre-experimental data. We recognize that in some cases it

might be difficult to have the required information readily available. However, this is a

problem that affects any attempt to a data-driven design of surveys, including standard

power calculations. Even when pre-experimental data are imperfect, such calculations

provide a valuable guide to survey design, as long as the available pre-experimental

16



data are not very different from the ideal data. In particular, our procedure only

requires second moments of the pre-experimental variables to be similar to those in the

population of interest.

The Optimization Problem in a Simplified Setup. In general, the problem in

(8) does not have a simple solution and requires joint optimization problem over the

sample size n and the coefficient γ. To gain some intuition about the trade-offs in

this problem, in Appendix C we consider a simplified setup in which all covariates are

orthogonal to each other, and the budget constraint has a very simple form. In this

case, the constraint can be substituted into the objective and the optimization becomes

univariate and unconstrained. We show that if all covariates have the same price, then

one wants to choose covariates up to the point where the percentage increase in survey

costs equals the percentage reduction in the residual variance from the last covariate.

Furthermore, the elasticity of the residual variance with respect to changes in sample

size should equal the elasticity of the residual variance with respect to an additional

covariate. If the costs of data collection vary with covariates, then this conclusion is

slightly modified. If we organize variables by type according to their contribution to

the residual variance, then we want to choose variables of each type up to the point

where the percent marginal contribution of each variable to the residual variance equals

its percent marginal contribution to survey costs.

Imbalance and Re-randomization. In RCTs, covariates typically do not only

serve as a means to improving the precision of treatment effect estimators, but also

for checking whether the control and treatment groups are balanced. See, for example,

Bruhn and McKenzie (2009) for practical issues concerning randomization and balance.

To rule out large biases due to imbalance, it is important to carry out balance checks for

strong predictors of potential outcomes. Our procedure selects the strongest predictors

as long as they are not too expensive (e.g. household survey questions such as gender,

race, number of children etc.) and we can check balance for these covariates. However,

in principle, it is possible that our procedure does not select a strong predictor that

is very expensive (e.g. baseline test scores). Such a situation occurs in our second

empirical application (Section VI.B). In this case, in Step 2, we recommend running

the OGA a second time, forcing the inclusion of such expensive predictors. If the MSE

of the resulting estimate is not much larger than that from the selection without the

expensive predictor, then we may prefer the former selection to the latter so as to

reduce the potential for bias due to imbalance at the expense of slightly larger variance
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of the treatment effect estimator.

An alternative approach to avoiding imbalance considers re-randomization until

some criterion capturing the degree of balance is met (e.g., Bruhn and McKenzie (2009),

Morgan and Rubin (2012, 2015) and Li, Ding, and Rubin (2016)). Our criterion for the

covariate selection procedure in Step 2 can readily be adapted to this case; however,

the details are not worked out here. It is an interesting future research topic to fully

develop a data collection method for re-randomization based on the modified variance

formulae in Morgan and Rubin (2012) and Li, Ding, and Rubin (2016), which account

for the effect of re-randomization on the treatment effect estimator.

Expensive, Strong Predictors. When some covariates have similar predictive power,

but respective prices that are substantially different, our covariate selection procedure

may produce a suboptimal choice. For example, if the covariate with the highest price

is also the most predictive, OGA selects it first even when there are other covariates

that are much cheaper but only slightly less predictive. In Section VI.B, we encounter

an example of such a situation and propose a simple robustness check for whether

removing an expensive, strong predictor may be beneficial.

Properties of the Treatment Effect Estimator. Since the treatment indicator

is assumed independent of X, standard asymptotic theory of the treatment effect esti-

mator continues to hold for our estimator (despite the addition of a covariate selection

step). For example, it is unbiased, consistent, asymptotically normal, and adding the

covariates X in the regression in (3) cannot increase the asymptotic variance of the

estimator. In fact, inclusion of a covariate strictly reduces the estimator’s asymptotic

variance as long as the corresponding true regression coefficient is not zero. All these

results hold regardless of whether the true conditional expectation of Y given D and

X is in fact linear and additive separable as in (3) or not. In particular, in some appli-

cations one may want to include interaction terms of D and X (see, e.g., Imbens and

Rubin, 2015). Finally, the treatment effect can be allowed to be heterogeneous (i.e.

vary across individuals i) in which case our procedure estimates the average of those

treatment effects.

An Alternative to Regression. Step 4 consists of running the regression in (3).

There are instances when it is desirable to modify this step. For example, if the selected

sample size n̂ is smaller than the number of selected covariates, then the regression in

(3) is not feasible. However, if the pre-experimental sample Spre is large enough, we
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can instead compute the OLS estimator γ̂ from the regression of Y on XÎ in Spre. Then

use Y and Z from the experimental sample Sexp to construct the new outcome variable

Ŷ ∗i := Yi− γ̂′Zi and compute the treatment effect estimator β̂ from the regression of Ŷ ∗i
on (1, Di). This approach avoids fitting too many parameters when the experimental

sample is small and has the additional desirable property that the resulting estimator

is free from bias due to imbalance in the selected covariates.

Multivariate Outcomes. It is straightforward to extend our data collection method

to the case when there are multivariate outcomes. Appendix G provides details regard-

ing how to deal with a vector of outcomes when we select the common set of regressors

for all outcomes.

IV A Simple Greedy Algorithm

In practice, the vector X of potential covariates is typically high-dimensional, which

makes it challenging to solve the optimization problem (8). In this section, we propose

a computationally feasible algorithm that is both conceptually simple and performs

well in our simulations. In particular, it requires only running many univariate, linear

regressions and can therefore easily be implemented in popular statistical packages

such as STATA.

We split the joint optimization problem in (8) over n and γ into two nested prob-

lems. The outer problem searches over the optimal sample size n, which is restricted

to be on a grid n ∈ N := {n0, n1, . . . , nK}, while the inner problem determines the

optimal selection of covariates for each sample size n:

min
n∈N

1

n
min
γ∈RM

1

N

N∑
i=1

(Yi − γ′Xi)
2 s.t. c(I(γ), n) ≤ B. (9)

To convey our ideas in a simple form, suppose for the moment that the budget con-

straint has the following linear form,

c(I(γ), n) = n · |I(γ)| ≤ B,

where |I(γ)| denotes the number of non-zero elements of γ. Note that the budget

constraint puts the restriction on the number of selected covariates, that is, |I(γ)| ≤
B/n.
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It is known to be NP-hard (non-deterministic polynomial time hard) to find a

solution to the inner optimization problem in (9) subject to the constraint that γ

has m non-zero components, also called an m-term approximation, where m is the

integer part of B/n in our problem. In other words, solving (9) directly is not feasible

unless the dimension of covariates, M , is small (Natarajan, 1995; Davis, Mallat, and

Avellaneda, 1997).

There exists a class of computationally attractive procedures called greedy algo-

rithms that are able to approximate the infeasible solution. See Temlyakov (2011)

for a detailed discussion of greedy algorithms in the context of approximation theory.

Tropp (2004), Tropp and Gilbert (2007), Barron, Cohen, Dahmen, and DeVore (2008),

Zhang (2009), Huang, Zhang, and Metaxas (2011), Ing and Lai (2011), and Sancetta

(2016), among many others, demonstrate the usefulness of greedy algorithms for signal

recovery in information theory, and for the regression problem in statistical learning.

We use a variant of OGA that can allow for selection of groups of variables (see, for

example, Huang, Zhang, and Metaxas (2011)).

To formally define our proposed algorithm, we introduce some notation. For a vec-

tor v of N observations v1, . . . , vN , let ‖v‖N := (1/N
∑N

i=1 v
2
i )

1/2 denote the empirical

L2-norm and let Y := (Y1, . . . , YN)′.

Suppose that the covariates X(j), j = 1, . . . ,M , are organized into p pre-determined

groups XG1 , . . . , XGp , where Gk ⊆ {1, . . . , p} indicates the covariates of group k. We

denote the corresponding matrices of observations by bold letters (i.e., XGk
is the

N ×|Gk| matrix of observations on XGk
, where |Gk| denotes the number of elements of

the index setGk). By a slight abuse of notation, we let Xk := X{k} be the column vector

of observations on Xk when k is a scalar. One important special case is that in which

each group consists of a single regressor. Furthermore, we allow for overlapping groups;

in other words, some elements can be included in multiple or even all groups. The group

structure occurs naturally in experiments where data collection is carried out through

surveys whose questions can be grouped in those concerning income, those concerning

education, and so on. This can also occur naturally when we consider multivariate

outcomes. See Appendix G for details.

Suppose that the largest group size Jmax := maxk=1,...,p |Gk| is small, so that we can

implement orthogonal transformations within each group such that (X′Gj
XGj

)/N =

I|Gj |, where Id is the d-dimensional identity matrix. In what follows, assume that

(X′Gj
XGj

)/N = I|Gj | without loss of generality. Let | · |2 denote the `2 norm. The

following procedure describes our algorithm.
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Step 1. Set the initial sample size n = n0.

Step 2. Group OGA for a given sample size n:

(a) initialize the inner loop at k = 0 and set the initial residual r̂n,0 = Y, the

initial covariate indices În,0 = ∅ and the initial group indices Ĝn,0 = ∅;

(b) separately regress r̂n,k on each group of regressors in {1, . . . , p}\Ĝn,k; call

ĵn,k the group of regressors with the largest `2 regression coefficients,

ĵn,k := arg max
j∈{1,...,p}\Ĝn,k

∣∣∣X′Gj
r̂n,k

∣∣∣
2

;

add ĵn,k to the set of selected groups, Ĝn,k+1 = Ĝn,k ∪ {ĵn,k};

(c) regress Y on the covariates XÎn,k+1
where În,k+1 := În,k ∪ Gĵn,k

; call the

regression coefficient γ̂n,k+1 := (X′În,k+1
XÎn,k+1

)−1X′În,k+1
Y and the residual

r̂n,k+1 := Y −XÎn,k+1
γ̂n,k+1;

(d) increase k by one and continue with (b) as long as c(În,k, n) ≤ B is satisfied;

(e) let kn be the number of selected groups; call the resulting submatrix of

selected regressors Z := XÎn,kn
and γ̂n := γ̂n,kn , respectively.

Step 3. Set n to the next sample size in N , and go to Step 2 until (and including)

n = nK .

Step 4. Set n̂ as the sample size that minimizes the residual variance:

n̂ := arg min
n∈N

1

nN

N∑
i=1

(Yi − Ziγ̂n)2 .

The algorithm above produces the selected sample size n̂, the selection of covariates

Î := În̂,kn̂ with kn̂ selected groups and m̂ := m(n̂) := |În̂,kn̂| selected regressors. Here,

γ̂ := γ̂n̂ is the corresponding coefficient vector on the selected regressors Z.

Remark 1. Theorem A.1 in Appendix A gives a finite-sample bound on the criterion

function resulting from our OGA method and, thus, also for the MSE of the resulting

treatment effect estimator. The natural target for this residual variance is an infeasible

residual variance when γ0 is known a priori. Theorem A.1 establishes conditions under

which the difference between the residual variance resulting from our method and the

infeasible residual variance decreases at a rate of 1/k as k increases, where k is the

number of the steps in the OGA. It is known in a simpler setting than ours that this
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rate 1/k cannot generally be improved (see, e.g., Barron, Cohen, Dahmen, and DeVore,

2008). In this sense, we show that our proposed method has a desirable property. See

Appendix A for further details.

Remark 2. There are many important reasons for collecting covariates, such as checking

whether randomization was carried out properly and identifying heterogeneous treat-

ment effects, among others. If a few covariates are essential for the analysis, we can

guarantee their selection by including them in every group Gk, k = 1, . . . , p.

Remark 3. In a simple model such as the one in Appendix C, the optimal combination

of covariates equalizes the percent marginal contribution of an additional variable to

the residual variance with the percent marginal contribution of the additional variable

to the costs per interview. Step 2 of the OGA selects the next covariate as the one

that has the highest predictive power independent of its cost. Outside a class of very

simple models as in Appendix C, it is difficult to determine an OGA approximation

to the optimum that jointly takes into account both predictive power as it requires

comparison of all possible covariate combinations. In our empirical application of

Section V.B, we study a case with heterogeneous costs and propose a sensitivity analysis

that assesses whether the OGA solution significantly changes with perturbations of the

set of potential covariates.

V The Costs of Data Collection

In this section, we discuss the specification of the cost function c(S, n) that defines the

budget constraint of the researcher. In principle, it is possible to construct a matrix

containing the value of the costs of data collection for every possible combination of

S and n without assuming any particular form of relationship between the individual

entries. However, determination of the costs for every possible combination of S and n is

a cumbersome and, in practice, probably infeasible exercise. Therefore, we consider the

specification of cost functions that capture the costs of all stages of the data collection

process in a more parsimonious fashion.

We propose to decompose the overall costs of data collection into three compo-

nents: administration costs cadmin(S), training costs ctrain(S, n), and interview costs

cinterv(S, n), so that

c(S, n) = cadmin(S) + ctrain(S, n) + cinterv(S, n). (10)
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In the remainder of this section, we discuss possible specifications of the three types of

costs by considering fixed and variable cost components corresponding to the different

stages of the data collection process. The exact functional form assumptions are based

on the researcher’s knowledge about the operational details of the survey process. Even

though this section’s general discussion is driven by our experience in the empirical

applications of Section VI, the operational details are likely to be similar for many

surveys, so we expect the following discussion to provide a useful starting point for

other data collection projects.

We start by specifying survey time costs. Let τj, j = 1, . . . ,M , be the costs of

collecting variable j for one individual, measured in units of survey time. Similarly, let

τ0 denote the costs of collecting the outcome variable, measured in units of survey time.

Then, the total time costs of surveying one individual to elicit the variables indicated

by S are

T (S) := τ0 +
M∑
j=1

τjSj.

V.A Administration and Training Costs

A data collection process typically incurs costs due to administrative work and training

prior to the start of the actual survey. Examples of such tasks are developing the

questionnaire and the program for data entry, piloting the questionnaire, developing

the manual for administration of the survey, and organizing the training required for

the enumerators.

Fixed costs, which depend neither on the size of the survey nor on the sample size

of survey participants, can simply be subtracted from the budget. We assume that B

is already net of such fixed costs.

Most administrative and training costs tend to vary with the size of the question-

naire and the number of survey participants. Administrative tasks such as development

of the questionnaire, data entry, and training protocols are independent of the number

of survey participants, but depend on the size of the questionnaire (measured by the

number of positive entries in S) as smaller questionnaires are less expensive to prepare

than larger ones. We model those costs by

cadmin(S) := φT (S)α, (11)

where φ and α are scalars to be chosen by the researcher. We assume 0 < α < 1, which
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means that marginal costs are positive but decline with survey size.

Training of the enumerators depends on the survey size, because a longer survey

requires more training, and on the number of survey participants, because surveying

more individuals usually requires more enumerators (which, in turn, may raise the

costs of training), especially when there are limits on the duration of the fieldwork. We

therefore specify training costs as

ctrain(S, n) := κ(n)T (S), (12)

where κ(n) is some function of the number of survey participants.10 Training costs are

typically lumpy because, for example, there exists only a limited set of room sizes one

can rent for the training, so we model κ(n) as a step function:

κ (n) =


κ1 if 0 < n ≤ n1

κ2 if n1 < n ≤ n2

...

.

Here, κ1, κ2, . . . is a sequence of scalars describing the costs of sample sizes in the ranges

defined by the cut-off sequence n1, n2, . . ..

V.B Interview Costs

Enumerators are often paid by the number of interviews conducted, and the payment

increases with the size of the questionnaire. Let η denote fixed costs per interview that

are independent of the size of the questionnaire and of the number of participants.

These are often due to travel costs and can account for a substantive fraction of the

total interview costs. Suppose the variable component of the interview costs is linear

so that total interview costs can be written as

cinterv(S, n) := nη + np T (S), (13)

where T (S) should now be interpreted as the average time spent per interview, and

p is the average price of one unit of survey time. We employ the specification (10)

with (11)–(13) when studying the impact of free day-care on child development in

Section VI.A.

10It is of course possible that κ depends not only on n but also on T (S). We model it this way for
simplicity, and because it is a sensible choice in the applications we discuss below.
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Remark 4. Because we always collect the outcome variable, we incur the fixed costs

nη and the variable costs npτ0 even when no covariates are collected.

Remark 5. Non-financial costs are difficult to model, but could in principle be added.

They are primarily related to the impact of sample and survey size on data quality.

For example, if we design a survey that takes more than four hours to complete, the

quality of the resulting data is likely to be affected by interviewer and interviewee

fatigue. Similarly, conducting the training of enumerators becomes more difficult as

the survey size grows. Hiring high-quality enumerators may be particularly important

in that case, which could result in even higher costs (although this latter observation

could be explicitly considered in our framework).

V.C Clusters

In many experiments, randomization is carried out at a cluster level (e.g., school level),

rather than at an individual level (e.g., student level). In this case, training costs may

depend not only on the ultimate sample size n = c nc, where c and nc denote the

number of clusters and the number of participants per cluster, respectively, but on a

particular combination (c, nc), because the number of required enumerators may be

different for different (c, nc) combinations. Therefore, training costs (which now also

depend on c and nc) may be modeled as

ctrain(S, nc, c) := κ(c, nc)T (S). (14)

The interaction of cluster and sample size in determining the number of required enu-

merators and, thus, the quantity κ(c, nc), complicates the modeling of this quantity

relative to the case without clustering. Let µ(c, nc) denote the number of required sur-

vey enumerators for c clusters of size nc. As in the case without clustering, we assume

that the training costs is lumpy in the number of enumerators used:

κ(c, nc) :=


κ1 if 0 < µ(c, nc) ≤ µ1

κ2 if µ1 < µ(c, nc) ≤ µ2
...

.

The number of enumerators required, µ(c, nc), may also be lumpy in the number of

interviewees per cluster, nc, because there are bounds to how many interviews each

enumerator can carry out. Also, the number of enumerators needed for the survey

typically increases in the number of clusters in the experiment. Therefore, we model
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µ(c, nc) as

µ(c, nc) := bµc(c) · µn(nc)c,

where b·c denotes the integer part, µc(c) := λc for some constant λ (i.e., µc(c) is

assumed to be linear in c), and

µn(nc) :=


µn,1 if 0 < nc ≤ n1

µn,2 if n1 < nc ≤ n2

...

.

In addition, while the variable interview costs component continues to depend on

the overall sample size n as in (13), the fixed part of the interview costs is determined

by the number of clusters c rather than by n. Therefore, the total costs per interview

become

cinterv(S, nc, c) := ψ(c)η + cncp T (S), (15)

where ψ(c) is some function of the number of clusters c.11

V.D Covariates with Heterogeneous Prices

In randomized experiments, the data collection process often differs across blocks of

covariates. For example, the researcher may want to collect outcomes of psychological

tests for the members of the household that is visited. These tests may need to be

administered by trained psychologists, whereas administering a questionnaire about

background variables such as household income, number of children, or parental ed-

ucation, may not require any particular set of skills or qualifications other than the

training provided as part of the data collection project.

Partition the covariates into two blocks, a high-cost block (e.g., outcomes of psycho-

logical tests) and a low-cost block (e.g., standard questionnaire). Order the covariates

such that the first Mlow covariates belong to the low-cost block, and the remaining

Mhigh := M −Mlow together with the outcome variable belong to the high-cost block.

Let

Tlow(S) :=

Mlow∑
j=1

τjSj and Thigh(S) := τ0 +
M∑

j=Mlow+1

τjSj

11One issue we have not yet explicitly address concerns the implications for inference of a clustered
randomized design. It is well known that intra-cluster correlation in residuals has large effects on the
standard errors of treatment effect estimates. It is possible that covariates contribute to changes in
the MSE of treatment effect estimators not only by absorbing part of the residual variance, but also
by absorbing part of the intra-cluster correlation.
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be the total time costs per individual of surveying all low-cost and high-cost covariates,

respectively. Then, the total time costs for all variables can be written as T (S) =

Tlow(S) + Thigh(S).

Because we require two types of enumerators, one for the high-cost covariates and

one for the low-cost covariates, the financial costs of each interview (fixed and variable)

may be different for the two blocks of covariates. Denote these by ψlow(c, nc)ηlow +

cncplowTlow(S) and ψhigh(c, nc)ηhigh + cncphighThigh(S), respectively.

The fixed costs for the high-cost block are incurred regardless of whether high-

cost covariates are selected or not, because we always collect the outcome variable,

which here is assumed to belong to this block. The fixed costs for the low-cost block,

however, are incurred only when at least one low-cost covariate is selected (i.e., when∑Mlow

j=1 Sj > 0). Therefore, the total interview costs for all covariates can be written as

cinterv(S, n) := 1
{Mlow∑

j=1

Sj > 0
}

(ψlow(c, nc)ηlow + cncplowTlow(S))

+ ψhigh(c, nc)ηhigh + cncphighThigh(S). (16)

The administration and training costs can also be assumed to differ for the two types

of enumerators. In that case,

cadmin(S) := φlowTlow(S)αlow + φhighThigh(S)αhigh , (17)

ctrain(S, n) := κlow(c, nc)Tlow(S) + κhigh(c, nc)Thigh(S). (18)

We employ specification (10) with (15)–(18) when, in Section VI.B, we study the impact

on student learning of cash grants which are provided to schools.

VI Empirical Applications

VI.A Access to Free Day-Care in Rio de Janeiro

In this section, we re-examine the experimental design of Attanasio et al. (2014), who

evaluate the impact of access to free day-care on child development and household

resources in Rio de Janeiro. In their dataset, access to care in public day-care centers,

most of which are located in slums, is allocated through a lottery, administered to

children in the waiting lists for each day-care center.

Just before the 2008 school year, children applying for a slot at a public day-care
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center were put on a waiting list. At this time, children were between the ages of

0 and 3. For each center, when the demand for day-care slots in a given age range

exceeded the supply, the slots were allocated using a lottery (for that particular age

range). The use of such an allocation mechanism means that we can analyze this

intervention as if it was an RCT, where the offer of free day-care slots is randomly

allocated across potentially eligible recipients. Attanasio et al. (2014) compare the

outcomes of children and their families who were awarded a day-care slot through the

lottery, with the outcomes of those not awarded a slot.

The data for the study were collected mainly during the second half of 2012, four

and a half years after the randomization took place. Most children were between the

ages of 5 and 8.12 A survey was conducted, which had two components: a household

questionnaire, administered to the mother or guardian of the child; and a battery of

health and child development assessments, administered to children. Each household

was visited by a team of two field workers, one for each component of the survey.

The child assessments took a little less than one hour to administer, and included

five tests per child, plus the measurement of height and weight. The household survey

took between one and a half and two hours, and included about 190 items, in addition

to a long module asking about day-care history, and the administration of a vocabulary

test to the main carer of each child.

As we explain below, we use the original sample, with the full set of items collected

in the survey, to calibrate the cost function for this example. However, when solving

the survey design problem described in this paper we consider only a subset of items

of these data, with the original budget being scaled down properly. This is done for

simplicity, so that we can essentially ignore the fact that some variables are missing

for part of the sample, either because some items are not applicable to everyone in

the sample, or because of item non-response. We organize the child assessments into

three indices: cognitive tests, executive function tests, and anthropometrics (height and

weight). These three indices are the main outcome variables in the analysis. However,

we use only the cognitive tests and anthropometrics indices in our analysis, as we have

fewer observations for executive function tests.

We consider only 40 covariates out of the total set of items on the questionnaire.

The variables not included can be arranged into four groups: (i) variables that can be

seen as final outcomes, such as questions about the development and the behavior of

the children in the household; (ii) variables that can be seen as intermediate outcomes,

12An additional wave on an expanded sample was collected in 2015, but we abstract from it here.
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such as labor supply, income, expenditure, and investments in children; (iii) variables

for which there is an unusually large number of missing values; and (iv) variables that

are either part of the day-care history module, or the vocabulary test for the child’s

carer (because these could have been affected by the lottery assigning children to day-

care vacancies). We then drop four of the 40 covariates chosen, because their variance is

zero in the sample. The remaining M = 36 covariates are related to the respondent’s

age, literacy, educational attainment, household size, safety, burglary at home, day

care, neighborhood, characteristics of the respondent’s home and its surroundings (the

number of rooms, garbage collection service, water filter, stove, refrigerator, freezer,

washer, TV, computer, Internet, phone, car, type of roof, public light in the street,

pavement, etc.). We drop individuals for whom at least one value in each of these

covariates is missing, which leads us to use a subsample with 1,330 individuals from

the original experimental sample, which included 1,466 individuals.

Calibration of the cost function. We specify the cost function (10) with compo-

nents (11)–(13) to model the data collection procedure as implemented in Attanasio

et al. (2014). We calibrate the parameters using the actual budgets for training, ad-

ministrative, and interview costs in the authors’ implementation. The contracted total

budget of the data collection process was R$665,000.13

For the calibration of the cost function, we use the originally planned budget of

R$665,000, and the original sample size of 1,466. As mentioned above, there were

190 variables collected in the household survey, together with a day-care module and

a vocabulary test. In total, this translates into a total of roughly 240 variables.14

Appendix B provides a detailed description of all components of the calibrated cost

function.

Implementation. In implementing the OGA, we take each single variable as a pos-

sible group (i.e., each group consists of a singleton set). We studentized all covariates

to have variance one. To compare the OGA with alternative approaches, we also con-

sider LASSO and POST-LASSO for the inner optimization problem in Step 2 of our

13There were some adjustments to the budget during the period of fieldwork.
14The budget is for the 240 variables (or so) actually collected. In spite of that, we only use 36 of

these as covariates in this paper, as the remaining variables in the survey were not so much covariates
as they were measuring other intermediate and final outcomes of the experiment, as we have explained
before. The actual budget used in solving the survey design problem is scaled down to match the use
of only 36 covariates.
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procedure. The LASSO solves

min
γ

1

N

N∑
i=1

(Yi − γ′Xi)
2

+ λ
∑
j

|γj| (19)

with a tuning parameter λ > 0. The POST-LASSO procedure runs an OLS regression

of Yi on the selected covariates (non-zero entries of γ) in (19). Belloni and Cher-

nozhukov (2013), for example, provide a detailed description of the two algorithms. It

is known that LASSO yields biased regression coefficient estimates and that POST-

LASSO can mitigate this bias problem. Together with the outer optimization over the

sample size using the LASSO or POST-LASSO solutions in the inner loop may lead

to different selections of covariate-sample size combinations. This is because POST-

LASSO re-estimates the regression equation which may lead to more precise estimates

of γ and thus result in a different estimate for the MSE of the treatment effect estima-

tor.

In both LASSO implementations, the penalization parameter λ is chosen so as to

satisfy the budget constraint as close to equality as possible. We start with a large

value for λ, which leads to a large penalty for non-zero entries in γ, so that few or

no covariates are selected and the budget constraint holds. Similarly, we consider a

very small value for λ which leads to the selection of many covariates and violation of

the budget. Then, we use a bisection algorithm to find the λ-value in this interval for

which the budget is satisfied within some pre-specified tolerance.

OGA, LASSO and POST-LASSO are three alternative procedures, and all of them

provide approximate solutions to the problem we study in this paper. Of the three,

OGA is easier to implement and is computationally more attractive, but in theory we

could use any of the three. We show below that, in the applications we present, these

three methods deliver very similar solutions.

Table 1: Day-care (outcome: cognitive test)

Method n̂ |Î| Cost/B RMSE EQB Relative EQB
Experiment 1,330 36 1 0.025285 R$562,323 1
OGA 2,677 1 0.9939 0.018776 R$312,363 0.555
LASSO 2,762 0 0.99475 0.018789 R$313,853 0.558
POST-LASSO 2,677 1 0.9939 0.018719 R$312,363 0.555
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Table 2: Day-care (outcome: health assessment)

Method n̂ |Î| Cost/B RMSE EQB Relative EQB
Experiment 1,330 36 1 0.025442 R$562,323 1
OGA 2,762 0 0.99475 0.018799 R$308,201 0.548
LASSO 2,762 0 0.99475 0.018799 R$308,201 0.548
POST-LASSO 2,677 1 0.9939 0.018735 R$306,557 0.545

Results. Tables 1 and 2 summarize the results of the covariate selection procedures.

For the cognitive test outcome, OGA and POST-LASSO select one covariate (“|Î|”),15

whereas LASSO does not select any covariate. The selected sample sizes (“n̂”) are

2,677 for OGA and POST-LASSO, and 2,762 for LASSO, which are almost twice

as large as the actual sample size in the experiment. The performance of the three

covariate selection methods in terms of the precision of the resulting treatment effect

estimator is measured by the square-root value of the minimized MSE criterion function

(“RMSE”) from Step 2 of our procedure. We focus on the MSE, but notice that gains

in MSE translate into gains in the power of the corresponding t-test as discussed in

Section III. The three methods perform similarly well and improve precision by about

25% relative to the experiment. Also, all three methods manage to exhaust the budget,

as indicated by the cost-to-budget ratios (“Cost/B”) close to one. We do not put any

strong emphasis on the selected covariates as the improvement of the criterion function

is minimal relative to the case that no covariate is selected (i.e., the selection with

LASSO). The results for the health assessment outcome are very similar to those of

the cognitive test with POST-LASSO selecting one variable (the number of rooms in

the house), whereas OGA and LASSO do not select any covariate.

To assess the economic gain of having performed the covariate selection procedure

after the first wave, we include the column “EQB” (abbreviation of “equivalent bud-

get”) in Tables 1 and 2. The first entry of this column in Table 1 reports the budget

necessary for the selection of n̂ = 1,330 and all covariates, as was carried out in the

experiment. For the three covariate selection procedures, the column shows the budget

that would have sufficed to achieve the same precision as the actual experiment in

terms of the minimum value of the MSE criterion function in Step 2. For example, for

15For OGA, it is an indicator variable whether the respondent has finished secondary education,
which is an important predictor of outcomes; for POST-LASSO, it is the number of rooms in the
house, which can be considered as a proxy for wealth of the household, and again, an important
predictor of outcomes.
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the cognitive test outcome, using the OGA to select the sample size and the covari-

ates, a budget of R$312,363 would have sufficed to achieve the experimental RMSE of

0.025285. This is a huge reduction of costs by about 45 percent, as shown in the last

column called “relative EQB”. Similar reductions in costs are possible when using the

LASSO procedures and also when considering the health assessment outcome.

In Appendix F, we perform an out-of-sample evaluation by splitting the dataset

into training samples for the covariate selection step and evaluation samples for the

computation of the performance measures RMSE and EQB. The results are very similar

to those in Tables 1 and 2.

Appendix D presents the results of Monte Carlo simulations that mimic this dataset,

and shows that all three methods select more covariates and smaller sample sizes as we

increase the predictive power of some covariates. This finding suggests that the covari-

ates collected in the survey were not predicting the outcome very well and, therefore,

in the next wave the researcher should spend more of the available budget to collect

data on more individuals, with no (or only a minimal) household survey. Alternatively,

the researcher may want to redesign the household survey to include questions whose

answers are likely better predictors of the outcome.

VI.B Provision of School Grants in Senegal

In this subsection, we consider the study by Carneiro et al. (2015) who evaluate, using

an RCT, the impact of school grants on student learning in Senegal. The authors

collect original data not only on the treatment status of schools (treatment and control)

and on student learning, but also on a variety of household, principal, and teacher

characteristics that could potentially affect learning.

The dataset contains two waves, a baseline and a follow-up, which we use for the

study of two different hypothetical scenarios.16 In the first scenario, the researcher has

access to a pre-experimental dataset consisting of all outcomes and covariates collected

in the baseline survey of this experiment, but not the follow-up data. The researcher

applies the covariate selection procedure to this pre-experimental dataset to find the

optimal sample size and set of covariates for the randomized control trial to be carried

out after the first wave. In the second scenario, in addition to the pre-experimental

sample from the first wave the researcher now also has access to the post-experimental

outcomes collected in the follow-up (second wave). In this second scenario, we treat

the follow-up outcomes as the outcomes of interest and include baseline outcomes in

16There is also a third wave of data from which we abstract in this paper.
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the pool of covariates that predict follow-up outcomes.

As in the previous subsection, we calibrate the cost function based on the full

dataset from the experiment, but for solving the survey design problem we focus on

a subset of individuals and variables from the original questionnaire. For simplicity,

we exclude all household variables from the analysis, because they were only collected

for 4 out of the 12 students tested in each school, and we remove covariates whose

sample variance is equal to zero. Again, for simplicity, of the four outcomes (math

test, French test, oral test, and receptive vocabulary) in the original experiment, we

only consider the first one (math test) as our outcome variable. We drop individuals

for whom at least one answer in the survey or the outcome variable is missing. This

sample selection procedure leads to sample sizes of N = 2, 280 for the baseline math

test outcome. For the second scenario discussed above where we use also the follow-up

outcome, the sample size is smaller (N = 762) because of non-response in the follow-up

outcome and because we restrict the sample to the control group of the follow-up. In the

first scenario in which we predict the baseline outcome, dropping household variables

reduces the original number of covariates in the survey from 255 to M = 142. The

remaining covariates are school- and teacher-level variables. In the second scenario

in which we predict follow-up outcomes, we add the three baseline outcomes to the

covariate pool, but at the same time remove two covariates because they have variance

zero when restricted to the control group. Therefore, there are M = 143 covariates in

the second scenario.

Calibration of the cost function. We specify the cost function (10) with compo-

nents (16)–(18) to model the data collection procedure as implemented in Carneiro et

al. (2015). Each school forms a cluster. We calibrate the parameters using the costs

faced by the researchers and their actual budgets for training, administrative, and in-

terview costs. The total budget for one wave of data collection in this experiment,

excluding the costs of the household survey, was approximately $192,200.

For the calibration of the cost function, we use the original sample size, the original

number of covariates in the survey (except those in the household survey), and the orig-

inal number of outcomes collected at baseline. The three baseline outcomes were much

more expensive to collect than the remaining covariates. In the second scenario, we

therefore group the former together as high-cost variables, and all remaining covariates

as low-cost variables. Appendix B provides a detailed description of all components of

the calibrated cost function.
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Implementation. The implementation of the covariate selection procedures is iden-

tical to the one in the previous subsection except that we consider here two different

specifications of the pre-experimental sample Spre, depending on whether the outcome

of interest is the baseline or follow-up outcome.

Table 3: School grants (outcome: math test)

Method n̂ |Î| Cost/B RMSE EQB Relative EQB

(a) Baseline outcome

experiment 2,280 142 1 0.0042272 $30,767 1
OGA 3,018 14 0.99966 0.003916 $28,141 0.91
LASSO 2,985 18 0.99968 0.0039727 $28,669 0.93
POST-LASSO 2,985 18 0.99968 0.0038931 $27,990 0.91

(b) Follow-up outcome

experiment 762 143 1 0.0051298 $52,604 1
OGA 6,755 0 0.99961 0.0027047 $22,761 0.43
LASSO 6,755 0 0.99961 0.0027047 $22,761 0.43
POST-LASSO 6,755 0 0.99961 0.0027047 $22,761 0.43

(c) Follow-up outcome, no high-cost covariates

experiment 762 143 1 0.0051298 $52,604 1
OGA 5,411 140 0.99879 0.0024969 $21,740 0.41
LASSO 5,444 136 0.99908 0.00249 $22,082 0.42
POST-LASSO 6,197 43 0.99933 0.0024624 $21,636 0.41

(d) Follow-up outcome, force baseline outcome

experiment 762 143 1 0.0051298 $52,604 1
OGA 1,314 133 0.99963 0.0040293 $41,256 0.78
LASSO 2,789 1 0.9929 0.0043604 $42,815 0.81
POST-LASSO 2,789 1 0.9929 0.0032823 $32,190 0.61

Results. Table 3 summarizes the results of the covariate selection procedures. Panel

(a) shows the results of the first scenario in which the baseline math test is used as the

outcome variable to be predicted. Panel (b) shows the corresponding results for the

second scenario in which the baseline outcomes are treated as high-cost covariates and

the follow-up math test is used as the outcome to be predicted.

For the case where baseline math is the outcome of interest in panel (a), the OGA
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selects only |Î| = 14 out of the 145 covariates with a selected sample size of n̂ = 3, 018,

which is about 32% larger than the actual sample size in the experiment. The results for

the LASSO and POST-LASSO methods are similar. These two methods, as mentioned

above, also provide good approximations to the solution of the problem we are studying,

but are computationally less attractive than OGA.

As before, we measure the performance of the three covariate selection methods

by the estimated precision of the resulting treatment effect estimator (“RMSE”). Our

focus is on the MSE, but notice that gains in MSE translate into gains in the power

of the corresponding t-test as discussed in Section III. The three methods improve the

precision by about 7% relative to the experiment. Also, all three methods manage

to essentially exhaust the budget, as indicated by cost-to-budget ratios (“Cost/B”)

close to one. As in the previous subsection, we measure the economic gains from using

the covariate selection procedures by the equivalent budget (“EQB”) that each of the

method requires to achieve the precision of the experiment. All three methods require

equivalent budgets that are 7-9% lower than that of the experiment.

All variables that the OGA selects as strong predictors of baseline outcome are plau-

sibly related to student performance on a math test.17 They are related to important

aspects of the community surrounding the school (e.g., distance to the nearest city),

school equipment (e.g., number of computers), school infrastructure (e.g., number of

temporary structures), human resources (e.g., teacher–student ratio, teacher training),

and teacher and principal perceptions about which factors are central for success in

the school and about which factors are the most important obstacles to school success.

For the case where the follow-up math score is the outcome to be predicted in

panel (b), the budget used in the experiment increases due to the addition of the

three expensive baseline outcomes to the pool of covariates. All three methods select

no covariates and exhaust the budget by using the maximum feasible sample size of

6,755, which is almost nine times larger than the sample size in the experiment. The

implied precision of the treatment effect estimator improves by about 47% relative

to the experiment, which translates into the covariate selection methods requiring less

than half of the experimental budget to achieve the same precision as in the experiment.

These are striking statistical and economic gains from using our proposed procedure

to choose covariates (in the case where covariates are mainly useful to improve the

precision of the treatment effect estimator).

In the remainder of this section, we present sensitivity checks and counterfactual

17Online Appendix E shows the full list and definitions of selected covariates for the baseline out-
come.
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experiments that provide insights into why the covariate selection procedures do not

recommend the inclusion of any covariates, not even baseline outcomes.

Sensitivity Checks. In RCT’s, baseline outcomes tend to be strong predictors of

the follow-up outcome. One may therefore be concerned that, because the OGA first

selects the most predictive covariates which in this application are also much more

expensive than the remaining low-cost covariates, the algorithm never examines what

would happen to the estimator’s MSE if it first selects the most predictive low-cost

covariates instead. In principle, such selection could lead to a lower MSE than any

selection that includes the very expensive baseline outcomes. As a sensitivity check

we therefore perform the covariate selection procedures on the pool of covariates that

excludes the three baseline outcomes. Panel (c) shows the corresponding results. In

this case, all methods indeed select more covariates and smaller sample sizes than

in panel (b), and achieve a slightly smaller MSE. The budget reductions relative to

the experiment as measured by EQB are also almost identical to those in panel (b).

Therefore, both selections of either no covariates and large sample size (panel (b))

and many low-cost covariates with somewhat smaller sample size (panel (c)) yield

very similar and significant improvements in precision or significant reductions in the

experimental budget, respectively.18

As discussed in Section III.A, one may want to ensure balance of the control and

treatment group, especially in terms of strong predictors such as baseline outcomes.

Checking balance requires collection of the relevant covariates. Therefore, we also

perform the three covariate selection procedures when we force each of them to include

the baseline math outcome as a covariate. In the OGA, we can force the selection of

a covariate by performing group OGA as described in Section IV, where each group

contains a low-cost covariate together with the baseline math outcome. For the LASSO

procedures, we simply perform the LASSO algorithms after partialing out the baseline

math outcome from the follow-up outcome. The corresponding results are reported in

panel (d). Since baseline outcomes are very expensive covariates, the selected sample

sizes relative to those in panels (b) and (c) are much smaller. OGA selects a sample

size of 1,314 which is almost twice as large as the experimental sample size, but about

4-5 times smaller than the OGA selections in panels (b) and (c). In contrast to OGA,

18Note that there is no sense in which we need to be concerned about identification of the optimal
set of covariates. There may indeed exist several combinations of covariates that yield similar precision
of the resulting treatment effect estimator. Our objective is highest possible precision without any
direct interest in the identities of the covariates that achieve this optimum.
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the two LASSO procedures do not select any other covariates beyond the baseline math

outcome. As a result of forcing the selection of the baseline outcome, all three methods

achieve an improvement in precision, or reduction of budgets respectively, of around

20% relative to the experiment. These are still substantial gains, but the requirement

of checking balance on the expensive baseline outcome comes at the cost of smaller

improvements in precision due to our procedure.

In Appendix F, we also perform an out-of-sample evaluation for this application by

splitting the dataset into training samples for the covariate selection step and evaluation

samples for the computation of the performance measures RMSE and EQB. The results

are qualitatively similar to those in Table 3.

Counterfactual Costs and Predictive Power of Baseline Outcomes. It is well

known that in education interventions such as the one we study, pre-intervention test

scores are expensive covariates but strong predictors of post-intervention test scores.

In our data, about 25% of the variance of the follow-up math score can be accounted

for by the variance in the baseline math score. The main reason why our procedure

does not select it is because of its high cost. Therefore, it is worth considering the

following two questions. First, by how much would we need to reduce the cost of the

high-cost covariate for it to be worth collecting? Second, keeping costs unaltered, by

how much would we need to improve the predictive power of the high-cost covariate in

order for it to be worth collecting.

To answer the first question we compute solutions to the covariate choice problem

under different counterfactual cost functions. In particular, we examine what happens

to the results when we consider hypothetical values of prices τj for the baseline test

scores. There are three high-cost covariates, i.e. the three baseline outcomes. We

reduce their prices τj simultaneously, all by the same factor. In panel (a) of Table 4,

they all have price 0.5 times the actual price τj, and in panel (b) of Table 4, the

factor is 0.4. All other aspects of the problem are kept identical to those in panel (b)

of Table 3. In panel (b) of Table 4, the selected covariate is the same for all three

selection procedures: the baseline outcome for the math test.

Panel (a) of Table 4 shows that even if we reduce the cost of baseline outcomes by

50%, our procedure still provides a solution in which no covariates are chosen, just as

in panel (b) of Table 3. However, if we reduce the cost by 60% (panel (b)) then the

baseline math test score is chosen. Therefore, in order to make it worthwhile to ever

collect the baseline outcome as a covariate its cost would have to be extremely low.

To answer the second question, we examine what happens to our results when we
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Table 4: School grants (outcome: math test): varying the costs or predictive power of
expensive covariates

Method n̂ |Î| Cost/B RMSE EQB Relative EQB

(a) reduce price of high-cost covariates by 50%

experiment 762 143 1 0.00513 $31,948 1
OGA 14,569 0 0.99666 0.00184 $12,816 0.40
LASSO 14,569 0 0.99666 0.00184 $12,816 0.40
POST-LASSO 14,569 0 0.99666 0.00184 $12,816 0.40

(b) reduce price of high-cost covariates by 60%

experiment 762 143 1 0.00513 $27,461 1
OGA 8,623 1 0.99864 0.00187 $10,632 0.39
LASSO 8,623 1 0.99864 0.00214 $10,632 0.39
POST-LASSO 8,623 1 0.99864 0.00187 $10,632 0.39

(c) increase predictive power of baseline outcome by 20%

experiment 762 143 1 0.00434 $52,604 1
OGA 6,755 0 0.99961 0.00270 $27,304 0.52
LASSO 6,755 0 0.99961 0.00270 $27,304 0.52
POST-LASSO 6,755 0 0.99961 0.00270 $27,304 0.52

(d) increase predictive power of baseline outcome by 30%

experiment 762 143 1 0.00382 $52,604 1
OGA 2,789 1 0.99290 0.00245 $32,058 0.61
LASSO 6,755 0 0.99961 0.00270 $32,058 0.61
POST-LASSO 2,789 1 0.99290 0.00245 $32,058 0.61

consider hypothetical values of the predictive power of the baseline math score. To

this end we increase the correlation of the baseline score with the follow-up score as

described in Section H of the appendix.

In panels (c) and (d) of Table 4, we increase the predictive power by 20% and

30%, respectively. All other aspects of the problem are identical to those in panel (b)

of Table 3. In panel (d), the covariate selected by OGA and POST-LASSO is the

same: the baseline outcome for the math test. Panel (c) of Table 4 shows that even if

we increase the predictive power of this variable by 20%, our procedure opts for not

collecting it. In fact, it will only start choosing this covariate when its predictive power

on the outcome is 30% higher than what we currently observe in the data. Therefore,
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in order to make it worthwhile to ever collect the baseline outcome as a covariate at

its current cost, its predictive power on the outcome would have to be extremely high.

VII Relation to the Existing Literature

In this section, we discuss related papers in the literature. We emphasize that the

research question in our paper is different from those studied in the literature and that

our paper is a complement to the existing work.

In the context of experimental economics, List, Sadoff, and Wagner (2011) suggest

several simple rules of thumb that researchers can apply to improve the efficiency of

their experimental designs. They discuss the issue of experimental costs and estimation

efficiency but did not consider the problem of selecting covariates.

Hahn, Hirano, and Karlan (2011) consider the design of a two-stage experiment

for estimating an average treatment effect, and proposed to select the propensity score

that minimizes the asymptotic variance bound for estimating the average treatment

effect. Their recommendation is to assign individuals randomly between the treatment

and control groups in the second stage, according to the optimized propensity score.

They use the covariate information collected in the first stage to compute the optimized

propensity score.

Bhattacharya and Dupas (2012) consider the problem of allocating a binary treat-

ment under a budget constraint. Their budget constraint limits what fraction of the

population can be treated, and hence is different from our budget constraint. They

discuss the costs of using a large number of covariates in the context of treatment

assignment.

McKenzie (2012) demonstrates that taking multiple measurements of the outcomes

after an experiment can improve power under the budget constraint. His choice problem

is how to allocate a fixed budget over multiple surveys between a baseline and follow-

ups. The main source of the improvement in his case comes from taking repeated

measures of outcomes; see Frison and Pocock (1992) for this point in the context

of clinical trials. In the set-up of McKenzie (2012), a baseline survey measuring the

outcome is especially useful when there is high autocorrelation in outcomes. This would

be analogous in our paper to devoting part of the budget to the collection of a baseline

covariate, which is highly correlated with the outcome (in this case, the baseline value

of the outcome), instead of just selecting a post-treatment sample size that is as large

as the budget allows for. In this way, McKenzie (2012) is perhaps closest to our paper
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in spirit.

In a very recent paper, Dominitz and Manski (2017) proposed the use of statistical

decision theory to study allocation of a predetermined budget between two sampling

processes of outcomes: a high-cost process of good data quality and a low-cost process

with non-response or low-resolution interval measurement of outcomes. Their main

concern is data quality between two sampling processes and is distinct from our main

focus, namely the simultaneous selection of the set of covariates and the sample size.

VIII Concluding Remarks

We develop data-driven methods for designing a survey in a randomized experiment

using information from a pre-existing dataset. Our procedure is optimal in a sense

that it minimizes the mean squared error of the average treatment effect estimator and

maximizes the power of the corresponding t-test, and can handle a large number of

potential covariates as well as complex budget constraints faced by the researcher. We

have illustrated the usefulness of our approach by showing substantial improvements in

precision of the resulting estimator or substantial reductions in the researcher’s budget

in two empirical applications.

We recognize that there are several other potential reasons guiding the choice of

covariates in a survey. These may be as important as the one we focus on, which is the

precision of the treatment effect estimator. We show that it is possible and important

to develop practical tools to help researchers make such decisions. We regard our paper

as part of the broader task of making the research design process more rigorous and

transparent.

Some important issues remain as interesting future research topics. For example,

we have assumed that the pre-experimental sample Spre is large, and therefore the

difference between the minimization of the sample average and that of the population

expectation is negligible. However, if the sample size of Spre is small (e.g., in a pilot

study), one may be concerned about over-fitting, in the sense of selecting too many

covariates. A straightforward solution would be to add a term to the objective function

that penalizes a large number of covariates via some information criteria (e.g., the

Akaike information criterion (AIC) or the Bayesian information criterion (BIC)).

40



References

Attanasio, Orazio, Ricardo Paes de Barros, Pedro Carneiro, David Evans,
Lycia Lima, Rosane Mendonca, Pedro Olinto, and Norbert Schady. 2014.
“Free Access to Child Care, Labor Supply, and Child Development.” Discussion
paper.

Bandiera, Oriana, Iwan Barankay, and Imran Rasul. 2011. “Field Experiments
with Firms.” Journal of Economic Perspectives, 25(3), 63–82.

Banerjee, Abhijit V., Sylvain Chassang, Sergio Montero, and Erik Snow-
berg. 2016. “A Theory of Experimenters.” Discussion Paper.

Banerjee, Abhijit V., and Esther Duflo. 2009. “The Experimental Approach to
Development Economics.” Annual Review of Economics, 1(1), 151–78.

Barron, Andrew R., Albert Cohen, Wolfgang Dahmen, and Ronald A. De-
Vore. 2008. “Approximation and Learning by Greedy Algorithms.” Annals of Statis-
tics, 36(1), 64–94.

Belloni, Alexandre, and Victor Chernozhukov. 2013. “Least Squares after Model
Selection in High-Dimensional Sparse Models.” Bernoulli, 19(2), 521–47.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2014.
“High-Dimensional Methods and Inference on Structural and Treatment Effects.”
Journal of Economic Perspectives, 28(2), 29–50.

Bhattacharya, Debopam, and Pascaline Dupas. 2012. “Inferring Welfare Maxi-
mizing Treatment Assignment under Budget Constraints.” Journal of Econometrics,
167(1), 168–96.

Bruhn, Miriam, and David McKenzie. 2009. “In Pursuit of Balance: Randomiza-
tion in Practice in Development Field Experiments.” American Economic Journal:
Applied Economics, 1(4), 200–32.

Carneiro, Pedro, Oswald Koussihouèdé, Nathalie Lahire, Costas Meghir,
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For Online Publication

Appendix A: Large-Budget Properties of the Algo-

rithm

In this appendix, we provide non-asymptotic bounds on the empirical risk of the OGA

approximation f̂ := Zγ̂. Following Barron, Cohen, Dahmen, and DeVore (2008), we

define

‖f‖LN1 := inf
{ p∑
k=1

|βk|2 : βk ∈ R|Gk| and f =

p∑
k=1

X ′Gk
βk

}
.

When the expression f =
∑p

k=1 X
′
Gk
βk is not unique, we take the true f to be one with

the minimum value of ‖f‖LN1 . This gives f := γ′0X and f := Xγ0 for some γ0. Note

that f is defined by X with the true parameter value γ0, while f̂ is an OGA estimator

of f using only Z. The following theorem bounds the finite sample approximation to

the MSE of the treatment effect estimator

M̂SEn̂,N(f̂) := ‖Y − f̂‖2
N/n̂,

which is equal to the objective function in (8). Note that M̂SEn̂,N(f̂) can also be called

the “empirical risk”.

The following theorem is a modification of Theorem 2.3 of Barron, Cohen, Dahmen,

and DeVore (2008). Our result is different from Barron, Cohen, Dahmen, and DeVore

(2008) in two respects: (i) we pay explicit attention to the group structure, and (ii)

our budget constraint is different from their termination rule.

Theorem A.1. Assume that (X′Gj
XGj

)/N = I|Gj | for each j = 1, . . . , p. Suppose N is

a finite subset of N+, c : {0, 1}M ×N+ → R some function, and B > 0 some constant.

Then the following bound holds:

M̂SEn̂,N(f̂)− M̂SEn̂,N(f) ≤
4‖f‖2

LN1
n̂

(
1

min{p, kn̂}

)
. (A.1)

The theorem provides a non-asymptotic bound on the empirical risk of the OGA

approximation, but the bound also immediately yields asymptotic consistency in the

following sense. Suppose ‖f‖LN1 < ∞ (Remark A.1 discusses this condition). Then,

the empirical risk of f̂ is asymptotically equivalent to that of the true predictor f either

if the selected sample size n̂ → ∞ or if both the total number of groups p and the
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number of selected groups kn̂ diverge to infinity. Consider, for example, the simple

case in which, for a given sample size n, data collection on every covariate incurs the

same costs (i.e., c̃(n)) and each group consists of a single covariate. Then the total

data collection costs are equal to the number of covariates selected multiplied by c̃(n)

(i.e., c(S, n) = c̃(n)
∑M

j=1 Sj). Assuming that c̃(n) is non-decreasing in n, we then have

1

n̂min{p, kn̂}
=

1

n̂min{M, m̂}
=

1

n̂min {M, bB/c̃(n̂)c}
,

where bxc denotes the largest integer smaller than x. Therefore, we obtain consistency

if n̂M →p ∞ and n̂B/c̃(n̂) →p ∞. Continue to assume that c̃(n) is increasing in n

and N contains sample sizes bounded away from zero. Then, both rate conditions are

satisfied, for example, as the budget increases, B → ∞, and the costs per covariate

does not increase faster than linearly in the sample size.19 Note that consistency can

hold irrespectively of whether the number of covariates M is finite or infinite.

Remark A.1. The condition ‖f‖LN1 < ∞ is trivially satisfied when p is finite. In the

case p → ∞, the condition ‖f‖LN1 < ∞ requires that not all groups of covariates

are equally important in the sense that the coefficients βk, when their `2 norms are

sorted in decreasing order, need to converge to zero fast enough to guarantee that∑∞
k=1 |βk|2 <∞.

Remark A.2. If suitable laws of large numbers apply, we can also replace the condition

‖f‖LN1 <∞ by its population counterpart.

Remark A.3. The minimal sample size n0 in N could, for example, be determined

by power calculations (see, e.g. Duflo, Glennerster, and Kremer, 2007; McConnell and

Vera-Hernández, 2015) that guarantee a certain power level for an hypothesis test of

β = 0.

Proofs

Proof of Lemma 1. Let Ui(γ) := Yi−γ′Xi−β0Di. The homoskedastic error assumption

implies that conditional on D1, . . . , Dn, the estimator β̂(γ, n) is unbiased and thus the

19In fact, the costs could be allowed to increase with n at any rate as long as B → ∞ at a faster
rate, so that we have n̂B/c̃(n̂)→p ∞.
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finite-sample MSE of β̂(γ) is

Var
(
β̂(γ, n)

∣∣∣ D1, . . . , Dn

)
=

1

n
Var (Yi − γ′Xi | Di = 0)

{(
n−1

n∑
i=1

Di

)(
1− n−1

n∑
i=1

Di

)}−1

,

which equals the desired expression because Var(Yi−γ′Xi|Di = 0) = Var(Yi−γ′Xi|Di =

1) = σ2(γ). Q.E.D.

Proof of Lemma 2. First, notice that as in Lemma 1,

β̂(γ, n)− β0 | (D1, . . . , Dn) ∼ N

(
0,

σ2(γ)

nD̄n(1− D̄n)

)
.

Therefore:

Pβ
(
t̂(γ, n) > z

∣∣ D1, . . . , Dn

)
= Pβ

(
β̂(γ, n)

σ(γ)/
√
nD̄n(1− D̄n)

> z

∣∣∣∣∣ D1, . . . , Dn

)

= Pβ

(
β̂(γ, n)− β

σ(γ)/
√
nD̄n(1− D̄n)

> z − β

σ(γ)/
√
nD̄n(1− D̄n)

∣∣∣∣∣ D1, . . . , Dn

)

= Φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

− z

)

The power of the two-sided test then is

Pβ
(∣∣t̂(γ, n)

∣∣ > c1−α/2
∣∣ D1, . . . , Dn

)
= Φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

− c1−α/2

)
+ 1− Φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

+ c1−α/2

)

Differentiating this expression with respect to σ(γ) yields

∂

∂σ(γ)
Pβ
(∣∣t̂(γ, n)

∣∣ > c1−α/2
∣∣ D1, . . . , Dn

)
= φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

− c1−α/2

)
−β

σ2(γ)/
√
nD̄n(1− D̄n)
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− φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

+ c1−α/2

)
−β

σ2(γ)/
√
nD̄n(1− D̄n)

=

[
φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

+ c1−α/2

)
− φ

(
β

σ(γ)/
√
nD̄n(1− D̄n)

− c1−α/2

)]
× β

σ2(γ)/
√
nD̄n(1− D̄n)

≤ 0

where the inequality follows because the expression in the square brackets has the same

sign as −β. Q.E.D.

Proof of Theorem A.1. This theorem can be proved by arguments similar to those used

in the proof of Theorem 2.3 in Barron, Cohen, Dahmen, and DeVore (2008). In the

subsequent arguments, we fix n and leave indexing by n implicit.

First, letting r̂k−1,i denote the ith component of r̂k−1, we have

‖r̂k−1‖2
N = N−1

N∑
i=1

r̂k−1,iYi

= N−1

N∑
i=1

r̂k−1,iUi +N−1

N∑
i=1

r̂k−1,i

∞∑
j=1

X ′Gj ,i
βj

≤ ‖r̂k−1‖N
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥
N

+
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2

≤ 1

2

(
‖r̂k−1‖2

N +
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)
+
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2,

which implies that

‖r̂k−1‖2
N −

∥∥∥Y − ∞∑
k=1

X′Gk
βk

∥∥∥2

N
≤ 2
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2. (A.2)

Note that if the left-hand side of (A.2) is negative for some k = k0, then the conclusion

of the theorem follows immediately for all m ≥ k0 − 1. Hence, we assume that the

left-hand side of (A.2) is positive, implying that

(
‖r̂k−1‖2

N −
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)2

≤ 4
[ ∞∑
j=1

|βj|2
]2

N−2|r̂′k−1XGk
|22. (A.3)
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Let Pk denote the projection matrix Pk := XGk
(X′Gk

XGk
)−1X′Gk

= N−1XGk
X′Gk

,

where the second equality comes from the assumption that (X′Gk
XGk

)/N = I|Gk|.

Hence, it follows from the fact that Pk is the projection matrix that

‖r̂k−1 − Pkr̂k−1‖2
N = ‖r̂k−1‖2

N − ‖Pkr̂k−1‖2
N . (A.4)

Because r̂k is the best approximation to Y from În,k, we have

‖r̂k‖2
N ≤ ‖r̂k−1 − Pkr̂k−1‖2

N . (A.5)

Combining (A.5) with (A.4) and using the fact that P 2
k = Pk, we have

‖r̂k‖2
N ≤ ‖r̂k−1‖2

N − ‖Pkr̂k−1‖2
N

= ‖r̂k−1‖2
N − ‖N−1XGk

X′Gk
r̂k−1‖2

N

= ‖r̂k−1‖2
N −N−2|r̂′k−1XGk

|22, (A.6)

Now, combining (A.6) and (A.3) together yields

‖r̂k‖2
N ≤ ‖r̂k−1‖2

N −
1

4

(
‖r̂k−1‖2

N −
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)2[ ∞∑
j=1

|βj|2
]−2

. (A.7)

As in the proof of Theorem 2.3 in Barron, Cohen, Dahmen, and DeVore (2008), let

ak := ‖r̂k‖2
N − ‖Y −

∑∞
k=1 X′Gk

βk‖2
N . Then (A.7) can be rewritten as

ak ≤ ak−1

(
1− ak−1

4

[ ∞∑
j=1

|βj|2
]−2)

. (A.8)

Then the induction method used in the proof of Theorem 2.1 in Barron, Cohen, Dah-

men, and DeVore (2008) gives the desired result, provided that a1 ≤ 4[
∑∞

j=1 |βj|2]2.

As discussed at the end of the proof of Theorem 2.3 in Barron, Cohen, Dahmen, and

DeVore (2008), the initial condition is satisfied if a0 ≤ 4[
∑∞

j=1 |βj|2]2. If not, we have

that a0 > 4[
∑∞

j=1 |βj|2]2, which implies that a1 < 0 by (A.8). Hence, in this case, we

have that ‖r̂1‖2
N ≤ ‖Y −

∑∞
k=1 X′Gk

βk‖2
N for which there is nothing else to prove.

Then, we have proved that the error of the group OGA satisfies

‖r̂m‖2
N ≤

∥∥∥Y − p∑
k=1

X′Gk
βk

∥∥∥2

N
+

4

m

[ p∑
j=1

|βj|2
]2

, m = 1, 2, . . . .
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Equivalently, we have, for any n ∈ N and any k ≥ 1,

‖Y − f̂n,k‖2
N − ‖Y − f‖2

N ≤
4‖f‖2

LN1
k

.

Because N is a finite set, the desired result immediately follows by substituting in the

definition of f̂ and kn̂. Q.E.D.

Appendix B: Cost Functions Used in Section VI

In this appendix, we provide detailed descriptions of the cost functions used in Section

VI.

Calibration of the Cost Function in Section VI.A

Here, we give a detailed description of components of the cost function used in Section

VI.A.

• Administration costs. The administration costs in the survey were R$10,000

and the average survey took two hours per household to conduct (i.e., T (S) = 120

measured in minutes). Therefore,

cadmin(S, n) = φ(120)α = 10,000.

If we assume that, say, α = 0.4 (which means that the costs of 60 minutes are

about 75.8 percent of the costs of 120 minutes), we obtain φ ≈ 1,473.

• Training costs. The training costs in the survey were R$25,000, that is,

ctrain(S, n) = κ(1, 466) · 120 = 25,000,

so that κ(1, 466) ≈ 208. It is reasonable to assume that there exists some lumpi-

ness in the training costs. For example, there could be some indivisibility in hotel

rooms that are rented, and in the number of trainers required for each training
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session. To reflect this lumpiness, we assume that

κ(n) =



150 if 0 < n ≤ 1,400

208 if 1,400 < n ≤ 3,000

250 if 3,000 < n ≤ 4,500

300 if 4,500 < n ≤ 6,000

350 if 6,000 < n

.

Note that, in this specification, κ(1,466) ≈ 208, as calculated above. We take

this as a point of departure to calibrate κ(n). Increases in sample size n are likely

to translated into increases in the required number of field workers for the survey,

which in turn lead to higher training costs. Our experience in the field (based

on running surveys in different settings, and on looking at different budgets for

different versions of this same survey) suggests that, in our example, there is some

concavity in this cost function, because an increase in the sample size, in principle,

will not require a proportional increase in the number of interviewers, and an

increase in the number of interviewers will probably require a less than proportion

increase in training costs. For example, we assume that a large increase in the

size of the sample, from 1,500 to 6,000, leads to an increase in κ(n) from 208 to

300 (i.e., an increase in overall training costs of about 50 percent).

• Interview costs. Interview costs were R$630,000, accounting for the majority

of the total survey costs, that is,

cinterv(S, n) = 1,466 · η + 1,466 · p · 120 = 630,000,

so that η+120p ≈ 429.74. The costs of traveling to each household in this survey

were approximately half of the total costs of each interview. If we choose η = 200,

then the fixed costs η amount to about 47 percent of the total interview costs,

which is consistent with the actual costs of the survey. Then we obtain the price

per unit of survey time as p ≈ 1.91. It is also reasonable to assume that half of the

variable costs per individual are due to the collection of the three outcomes in the

survey, because their administration was quite lengthy. The costs of collecting

the outcomes could also be seen as fixed costs (equal to 0.955 × 120 = 114.6),

which means that the price per unit of survey time for each of the remaining
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covariates is about 0.955. In sum, we can rewrite interview costs as

cinterv(S, n) = 1,466× (200 + 114.6) + 1, 466× 0.955× 120 = 630,000.

• Price per covariate. We treat the sample obtained from the original experiment

as Spre, a pilot study or the first wave of a data collection process, based on which

we want to decide which covariates and what sample size to collect in the next

wave. We perform the selection procedure for each outcome variable separately,

and thus adjust T (S) = τ(1 +
∑M

j=1 Sj). For simplicity, we assume that to ask

each question on the questionnaire takes the same time, so that τ0 = τj = τ

for every question; therefore, T (S) = τ(1 +
∑M

j=1 Sj) = 120. Note that we set

τ0 = τ here, but the high costs of collecting the outcome variables are reflected in

the specification of η above. This results in τ = 120/(1 +
∑M

j=1 Sj). The actual

number of covariates collected in the experiment was 40; so
∑M

j=1 Sj = 40, and

thus τ ≈ 3.

• Rescaled budget. Because we use only a subsample of the original experimental

sample, we also scale down the original budget of R$665,000 down to R$569,074,

which corresponds to the costs of selecting all 36 covariates in the subsample;

that is, c(1, 1,330) where 1 is a 36-dimensional vector of ones and c(S, n) is the

calibrated cost function.

Calibration of the Cost Function in Section VI.B

Here, we present a detailed description of components of the cost function used in

Section VI.B.

• Administration costs. The administration costs for the low- and high-cost

covariates were estimated to be about $5,000 and $24,000, respectively. The high-

cost covariates were four tests that took about 15 minutes each (i.e., Thigh(S) =

60). For the low-cost covariates (teacher and principal survey), the total survey

time was around 60 minutes, so Tlow(S) = 60. High- and low-cost variables were

collected by two different sets of enumerators, with different levels of training

and skills. Therefore,

φlow(60)αlow = 5,000 and φhigh(60)αhigh = 24,000.
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If we assume that, say, αlow = αhigh = 0.7, we obtain φlow ≈ 285 and φhigh ≈
1,366.

• Training costs. µhigh and µlow are the numbers of enumerators collecting high-

and low-cost variables, respectively. The training costs for enumerators in the

high and low groups increase by 20 for each set of additional 20 low-cost enumer-

ators, and by 12 for each set of 4 high-cost enumerators:

κlow(c, nc) := 20
19∑
k=1

k · 1{20(k − 1) < µlow(c, nc) ≤ 20k}

and

κhigh(c, nc) := 12
17∑
k=1

k · 1{4(k − 1) < µhigh(c, nc) ≤ 4k}.

This is reasonable because enumerators for low-cost variables can be trained in

large groups (i.e., groups of 20), while enumerators for high-cost variables need

to be trained in small groups (i.e., groups of 4). However, training a larger group

demands a larger room, and, in our experience, more time in the room. The

lumpiness comes from the costs of hotel rooms and the time of the trainers.

The numbers 20 and 12 as the average costs of each cluster of enumerators were

chosen based on our experience with this survey (even if the design of the training

and the organization of the survey was not exactly the same as the stylized

version presented here), and reflect both the time of the trainer and the costs

of hotel rooms for each type of enumerators. Because the low-cost variables are

questionnaires administered to principals and teachers, in principle the number

of required enumerators only depends on c (i.e., µlow(c, nc) = bλlowcc). High-

cost variables are collected from students, and therefore the number of required

enumerators should depend on c and nc, so µhigh(c, nc) = bλhighcµn,high(nc)c. We

assume that the latter increases again in steps, in this case of 10 individuals per

cluster, that is,

µn,high(nc) :=
7∑

k=1

k · 1{10(k − 1) < nc ≤ 10k}.

We let λlow = 0.14 (capturing the idea that one interviewer could do about seven

schools) and λhigh = 0.019 (capturing the idea that one enumerator could perhaps

work with about 50 children). The training costs in the survey were $1,600 for
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the low-cost group of covariates and $1,600 for the high-cost group of covariates.

• Interview costs. We estimate that interview costs in the survey were $150,000

and $10,000 for the high- and low-cost variables, respectively, i.e.

ψlow(350)ηlow + 350 · plow · 60 = 10,000

and

ψhigh(350, 24)ηhigh + 350 · 24phigh · 60 = 150,000.

We set ψlow(c) = µlow(c) and ψhigh(c, nc) = µhigh(c, nc), the number of required

enumerators for the two groups, so that ηlow and ηhigh can be interpreted as fixed

costs per enumerator. From the specification of µlow(c) and µhigh(c, nc) above,

we obtain µlow(350) = 50 and µhigh(350, 24) = 20. The fixed costs in the survey

were about ψlow(350)ηlow = 500 and ψhigh(350, 24)ηhigh = 1,000 for low- and high-

cost covariates. Therefore, ηlow = 500/50 = 10 and ηhigh = 1,000/20 = 50.

Finally, we can solve for the prices plow = (10,000− 500)/(350× 60) ≈ 0.45 and

phigh = (150,000− 1,000)/(350× 24× 60) ≈ 0.3.

• Price per covariate. For simplicity, we assume that to ask each low-cost ques-

tion takes the same time, so that τj = τlow for every low-cost question (i.e.,

j = 1, . . . ,Mlow), and that each high-cost question takes the same time (i.e.,

τj = τhigh) for all j = Mlow + 1, . . . ,M . The experimental budget contains fund-

ing for the collection of one outcome variable, the high-cost test results at follow-

up, and three high-cost covariates at baseline. We modify Thigh(S) accordingly:

Thigh(S) = τhigh(1 +
∑M

j=Mlow+1 Sj) = 4τhigh so that τhigh = 60/4 = 15. Similarly,

originally there were 255 low-cost covariates, which leads to τlow = 120/255 ≈
0.47.

• Rescaled budget. As in the previous subsection, we use only a subsample of

the original experimental sample. Therefore, we scale down the original budget

to the amount that corresponds to the costs of collecting all covariates used in

the subsample. As a consequence, the rescaled budget is $25,338 in the case of

baseline outcomes and $33,281 in the case of the follow-up outcomes.
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Appendix C: A Simple Formulation of the Problem

Uniform Cost per Covariate

Take the following simple example where: (1) all covariates are orthogonal to each

other; (2) all covariates have the same price, and the budget constraint is just B = nk,

where n is sample size and k is the number of covariates. Order the covariates by the

contribution to the MSE, so that the problem is to choose the first k covariates (and

the corresponding n).

Define σ2(k) = (1/N)
∑N

i=1(Yi − γ′0,kXi)
2, where γ0,k is the same as the vector of

true coefficients γ0 except that all coefficients after the (k+1)th coefficient are set to be

zeros, and let MSE(k, n) = (1/n)σ2(k). For the convenience of using simple calculus,

suppose that k is continuous, ignoring that k is a positive integer, and that σ2(k) is

twice continuously differentiable. This would be a reasonable first-order approximation

when there are a large number of covariates, which is our set-up in the paper. Because

we ordered the covariates by the magnitude of their contribution to a reduction in the

MSE, we have ∂σ2(k)/∂k < 0, and ∂2σ2(k)/∂k2 > 0.

The problem we solve in this case is just

min
n,k

1

n
σ2(k) s.t. nk ≤ B.

Assume we have an interior solution and that n is also continuous. Replace the budget

constraint in the objective function and we obtain

min
n,k

k

B
σ2(k).

This means that k is determined by

σ2(k) + k
∂σ2(k)

∂k
= 0,

or

σ2(k)

k
+
∂σ2(k)

∂k
= 0, (C.1)

which in this particular case does not depend on B. Then, n is given by the budget

constraint (i.e., n = B/k).

Another way to see where this condition comes from is just to start from the budget
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constraint. If we want to always satisfy it then, starting from a particular choice of n

and k yields

n · dk + k · dn = 0,

or
dn

dk
= −n

k
.

Now, suppose we want to see what happens when k increases by a small amount.

In that case, keeping n fixed, the objective function falls by

1

n

∂σ2(k)

∂k
dk.

This is the marginal benefit of increasing k. However, n cannot stay fixed, and needs

to decrease by (n/k)dk to keep the budget constraint satisfied. This means that the

objective function will increase by(
− 1

n2

)
σ2 (k)

(
−n
k

)
dk.

This is the marginal cost of increasing k.

At the optimum, in an interior solution, marginal costs and marginal benefits need

to balance out, so
1

nk
σ2 (k) dk = − 1

n

∂σ2 (k)

∂k
dk

or
σ2 (k)

k
+
∂σ2 (k)

∂k
= 0,

which reproduces (C.1).

There are a few things to notice in this simple example.

(1) The marginal costs of an increase in k are increasing in σ2 (k). This is because

increases in n are more important role for the MSE when σ2 (k) is large than

when it is small.

(2) The marginal costs of an increase in k are decreasing in k. This is because when k

is large, adding an additional covariate does not cost much in terms of reductions

in n.

(3) A large n affects the costs and benefits of increasing k in similar way. Having a

large n reduces benefits of additional covariates because it dilutes the decrease in
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σ2 (k). Then, on one hand, it increases costs through the budget constraint, as a

larger reduction in n is needed to compensate for the same change in k. However,

on the other hand, it reduces costs, because when n is large, a particular reduction

in n makes much less difference for the MSE than in the case where n is small.

(4) We can rewrite this condition as

1

k
+
∂σ2(k)/∂k

σ2 (k)
= 0,

where the term (∂σ2(k)/∂k)/σ2 (k) is the percentage change in the unexplained

variance from an increase in k.

If we combine
dn

n
=
dk

k
,

which comes from the budget constraint, and

1

MSE (n, k)

∂MSE (n, k)

∂n
= − 1

n
,

we notice that the percentage decrease in MSE from an increase in n is just (dn)/n,

the percentage change in n, which in turn is just equal to (dk)/k. So what the condition

above says is that we want to equate the percentage change in the unexplained variance

from a change in k to the percentage change in the MSE from the corresponding change

in n.

Perhaps even more interesting is to notice that k is the survey cost per individual in

this very simple example. Then this condition says that we want to choose k to equate

the percentage change in the survey costs per individual ((dk)/k) to the percentage

change in the residual variance
∂σ2(k)/∂k

σ2 (k)
dk.

This condition explicitly links the impacts of k on the survey costs and on the reduction

in the MSE.

Adding fixed costs F of visiting each individual is both useful and easy in this very

simple framework. Suppose there are a fixed costs F of going to each individual, so the

budget constraint is n (F + k) = B. Proceeding as above, we can rewrite our problem

as

min
n,k

F + k

B
σ2 (k) .
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This means that k is determined by

σ2 (k) + (F + k)
∂σ2 (k)

∂k
= 0,

or

1

F + k
+
∂σ2 (k)/∂k

σ2 (k)
= 0.

Note that, when there are large fixed costs of visiting each individual, increasing k is

not going to be that costly at the margin. It makes it much easier to pick a positive

k. However, other than that, the main lessons (1)–(4) of this simple model remain

unchanged.

Variable Cost per Covariate

If covariates do not have uniform costs, then the problem is much more complicated.

Consider again a simple set-up where all the regressors are orthogonal, and we order

them by their contribution to the MSE. However, suppose that the magnitude of each

covariate’s contribution the MSE takes a discrete finite number of values. LetR denote

the set of these discrete values. Let r denote an element of R and R = |R| (the total

number of all elements in R). There are many potential covariates within each r group,

each with a different price p. The support of p could be different for each r. So, within

each r, we will then order variables by p. The problem will be to determine the optimal

k for each r group. Let k ≡ {kr : r ∈ R}.
The problem is

min
n,k

1

n
σ2 (k) s.t.

∑
r∈R

cr(kr) ≤ B,

where cr (kr) =
∑kr

l=1 pl are the costs of variables of type r used in the survey. We can

also write it as cr (kr) = pr (kr) kr, where pr (kr) = (
∑kr

l=1 pl)/kr. Because we order the

variables by price (from low to high), ∂pr (kr) /∂kr > 0. Let σ2
r = ∂σ2 (k)/∂kr, which

is a constant (this is what defines a group of variables).

Then, assume we can approximate pl (kr) by a continuous function and that we

have an interior solution. Then, substituting the budget constraint in the objective

function:

min
n,k

1

B

[∑
r∈R

cr(kr)

]
σ2 (k) .
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From the first-order condition for kr,

∂cr (kr)

∂kr
σ2 (k) +

[∑
r∈R

cr(kr)

]
∂σ2 (k)

∂kr
= 0,

or
∂cr (kr)/∂kr∑

r∈R cr(kr)
= −∂σ

2 (k)/∂kr
σ2 (k)

.

What this says is that, for each r, we choose variables up to the point where the

percent marginal contribution of the additional variable to the residual variance equals

the percent marginal contribution of the additional variable to the costs per interview,

just as in the previous subsection.

Appendix D: Simulations

In this appendix, we study the finite sample behavior of our proposed data collection

procedure, and compare its performance to other variable selection methods. We con-

sider the linear model from above, Y = γ′X+ε, and mimic the data-generating process

in the day-care application of Section VI.A with the cognitive test outcome variable.

First, we use the dataset to regress Y on X. Call the regression coefficients γ̂emp and

the residual variance σ̂2
emp. Then, we regress Y on the treatment indicator to estimate

the treatment effect β̂emp = 0.18656. We use these three estimates to generate Monte

Carlo samples as follows. For the pre-experimental data Spre, we resample X from the

empirical distribution of the M = 36 covariates in the dataset and generate outcome

variables by Y = γ′X + ε, where ε ∼ N(0, σ̂2
emp) and

γ = γ̂emp +
1

2
sign(γ̂emp)κγ̄.

We vary the scaling parameter κ ∈ {0, 0.3, 0.7, 1} and γ̄ := (γ̄1, . . . , γ̄36)′ is specified in

three different fashions, as follows:

• “lin-sparse”, where the first five coefficients linearly decrease from 3 to 1, and all

others are zero, that is,

γ̄k :=

{
3− 2(k − 1)/5, 1 ≤ k ≤ 5

0, otherwise
;
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• “lin-exp”, where the first five coefficients linearly decrease from 3 to 1, and the

remaining decay exponentially, that is,

γ̄k :=

{
3− 2(k − 1)/5, 1 ≤ k ≤ 5

e−k, k > 5
;

• “exp”, where exponential decay γ̄k := 10e−k.

When κ = 0, the regression coefficients γ are equal to those in the empirical ap-

plication. When κ > 0, we add one of the three specifications of γ̄ to the coefficients

found in the dataset, thereby increasing (in absolute value) the first few coefficients20

20Because all estimated coefficients in the dataset (γ̂emp) are close to zero and roughly of the same
magnitude, we simply pick the first five covariates that have the highest correlation with the outcome
variable.
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Figure 1: Regression coefficients in the simulation when κ = 0.3
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more than the others, and thus increasing the importance of the corresponding regres-

sors for prediction of the outcome. Figure 1 displays the regression coefficients in the

dataset (i.e., when κ = 0, denoted by the blue line labeled “data”), and γ for the three

different specifications when κ = 0.3.

For each Monte Carlo sample from Spre, we apply the OGA, LASSO, and POST-

LASSO methods, as explained in Section VI.A. The cost function and budget are

specified exactly as in the empirical application. We store the sample size and covariate

selection produced by each of the three procedures, and then mimic the randomized

experiment Sexp by first drawing a new sample of X from the same data-generating

process as in Spre. Then we generate random treatment indicators D, so that outcomes

are determined by

Y = β̂empD + γ′X + ε,

where ε is randomly drawn from N(0, σ̂2
emp). We then compute the treatment effect

estimator β̂ of β as described in Step 4 of Section III.

The results are based on 500 Monte Carlo samples, N = 1,330, which is the sample

size in the dataset, and N a fine grid from 500 to 4,000. All covariates, those in the

dataset as well as the simulated ones, are studentized so that their variance is equal to

one.

For the different specifications of γ̄, Tables D.1–D.3 report the selected sample size

(n̂), the selected number of covariates (|Î|), the ratio of costs for that selection divided

by the budget B, the square root of the estimated MSE,

√
M̂SEn̂,N(f̂), the bias and

standard deviation of the estimated average treatment effect (bias(β̂) and sd(β̂)), and

the RMSE of β̂ across the Monte Carlo samples of the experiment.

Overall, all three methods perform similarly well across different designs and the

number of selected covariates tends to increase as κ becomes large. No single method

dominates other methods, although POST-LASSO seems to perform slightly better

than LASSO. In view of the Monte Carlo results, we argue that the empirical findings

reported in Section VI.A are likely to result from the lack of highly predictive covariates

in the empirical example.
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Appendix E: Variables Selected in the School Grants

Example

Table E.1: School grants (outcome: math test): selected covariates in panel (a) of
Table 3

OGA LASSO POST-LASSO

Child is male Child is male Child is male
Village pop. Dist. to Dakar Dist. to Dakar
Piped water Dist. to city Dist. to city
Teach-stud Village pop. Village pop.
No. computers Piped water Piped water
Req. (h) teach. qual. No. computers No. computers
Req. (h) teach. att. Req. (h) teach-stud Req. (h) teach-stud
Obs. (h) manuals Hrs. tutoring Hrs. tutoring
Books acq. last yr. Books acq. last yr. Books acq. last yr.
Any parent transfer Provis. struct. Provis. struct.
Teacher bacc. plus NGO cash cont. NGO cash cont.
Teach. train. math Any parent transfer Any parent transfer
Obst. (t) class size NGO promised cash NGO promised cash
Measure. equip. Avg. teach. exp. Avg. teach. exp.

Teacher bacc. plus Teacher bacc. plus
Obs. (t) student will. Obs. (t) student will.
Obst. (t) class size Obst. (t) class size
Silence kids Silence kids
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Table E.2: Definition of variables in Table E.1

Variable Definition
Child is male Male student
Village pop. Size of the population in the village
Piped water School has access to piped water
Teach–stud Teacher–student ratio in the school
No. computers Number of computers in the school
Req. (h) teach. qual. Principal believes teacher quality is a major requirement

for school success
Req. (h) teach. att. Principal believes teacher attendance is a major requirement

for school success
Obs. (h) manuals Principal believes the lack of manuals is a major obstacle

to school success
Books acq. last yr. Number of manuals acquired last year
Any parent transfer Cash contributions from parents
Teacher bacc. plus Teacher has at least a baccalaureate degree
Teach. train. math Teacher received special training in math
Obst. (t) class size Teacher believes class size is a major obstacle to school success
Measure. equip. There is measurement equipment in the classroom
Dist. to Dakar Distance to Dakar
Dist. to city Distance to the nearest city
Req. (h) teach–stud Principal believe teacher–student ratio is a major requirement

for school success
Hrs. tutoring Hours of tutoring by teachers
Provis. struct. Number of provisional structures in school
NGO cash cont. Cash contributions by NGO
NGO promised cash Promised cash contributions by NGO
Avg. teach. exp. Average experience of teachers in the school
Obst. (t) student will. Teacher believes the lack of student willpower is one of the

main obstacles to learning in the school
Obst. (t) class size Teacher believes the lack of classroom size is one of the main

obstacles to learning in the school
Silence kids Teacher has to silence kids frequently
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Appendix F: Out-of-Sample Evaluations

In the empirical applications, we performed the covariate selection procedure as well

as its evaluation (by RMSE and EQB) on the same pre-experimental sample. In

this section, we study the sensitivity of our findings when the covariate selection and

evaluation steps are performed on two separate samples.

We partition each of the datasets into five subsamples of equal size. Four of the

five subsamples are merged to form the training set on which we perform the covariate

selection procedure, and the remaining fifth subsample serves as evaluation sample on

which we calculate the performance measures RMSE and EQB. Given the partition

into five subsamples, there are five possible ways to combine them into training and

evaluation samples. We perform the covariate selection on each of these five training

samples using the same calibrated cost functions as in the main text, but adjusting the

budget for the drop in sample size by letting the budget be the cost function c(S, n)

evaluated at the experimental selection S = (1, . . . , 1)′ and n the length of the training

sample. The output of the procedure consists of five sample size selections n̂, five

covariate selections, i.e. five values of |Î|, and five cost-to-budget ratios. Tables E.3–

E.5 show the averages of n̂, |Î|, and “Cost/B” over those five different training samples.

The RMSE is calculated using the estimate of γ from the training sample and data

on Y and X from the evaluation sample. Similarly, the EQB is the budget necessary

to achieve the RMSE on the evaluation sample equal to that of the experiment when

the covariate selection procedures are applied to the training sample. Both RMSE and

EQB are then averaged over the five subsamples.

Overall, the results of this out-of-sample evaluation exercise are similar to those re-

ported in the full-sample analysis of the main text. Qualitatively, in both applications,

the covariate selection procedures recommend larger sample sizes than the experiment.

The recommended sample size may differ somewhat from those reported in the main

text because the budget and training sample size is different, but the orders of magni-

tude are the same. In the school grants application, we notice that the recommended

number of covariates selected tends to be smaller than in the full-sample evaluation

of the main text, but if anything the covariate selection procedures manage to achieve

even lower relative equivalent budgets and lower RMSE than the experiment.
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Table E.3: Day-care (outcome: cognitive test), 5-fold out-of-sample evaluation

method n̂ |Î| cost/B RMSE EQB relative EQB
experiment 1,330 36 1 0.029068 R$460,809.54 1

OGA 2,209 0.8 0.99503 0.020694 R$235,654.21 0.511
LASSO 2,260 0 0.99392 0.020777 R$237,425.38 0.515

POST-LASSO 2,146 1.8 0.99464 0.020647 R$234,494.95 0.509

Table E.4: Day-care (outcome: health assessment), 5-fold out-of-sample evaluation

method n̂ |Î| cost/B RMSE EQB relative EQB
experiment 1,330 36 1 0.029313 R$460,809.54 1

OGA 2,221 0.6 0.99495 0.020708 R$232,066.95 0.504
LASSO 2,260 0 0.99392 0.020787 R$233,751.11 0.507

POST-LASSO 2,158 1.6 0.9949 0.020644 R$231,224.87 0.502
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Table E.5: School grants (outcome: math test), 5-fold out-of-sample evaluation

Method n̂ |Î| Cost/B RMSE EQB Relative EQB

(a) Baseline outcome

experiment 1,824 142 1 0.0082721 $27,523.74 1
OGA 2,618.4 1.2 0.99823 0.0044229 $16,609.53 0.603
LASSO 2,658 0 0.9991 0.004445 $16,621.60 0.604
POST-LASSO 2,638.2 1.2 0.99927 0.0044291 $16,651.77 0.605

(b) Follow-up outcome

experiment 609 143 1 0.0098756 $48,856.20 1
OGA 6,132 0 0.99885 0.0028432 $14,664.85 0.300
LASSO 6,132 0 0.99885 0.0028432 $14,664.85 0.300
POST-LASSO 6,132 0 0.99885 0.0028432 $14,664.85 0.300

(c) Follow-up outcome, no high-cost covariates

experiment 609 143 1 0.0098756 $48,856.20 1
OGA 6,092.8 0.8 0.99893 0.0027807 $14,571.10 0.298
LASSO 6,000.8 5.4 0.99905 0.002795 $14,651.75 0.300
POST-LASSO 6,040.4 2.4 0.99887 0.0027623 $14,532.12 0.297

(d) Follow-up outcome, force baseline outcome

experiment 609 143 1 0.0098756 $48,856.20 1
OGA 2,035.2 2.4 0.90783 0.0041647 $24,918.89 0.510
LASSO 2,494 1 0.99623 0.0046439 $25,522.72 0.522
POST-LASSO 2,494 1 0.99623 0.0034893 $23,651.72 0.484
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Appendix G: The Case of Multivariate Outcomes

In this section, we consider an extension to the case of multivariate outcomes. If data

on a particular regressor is collected, then the regressor is automatically available for

regressions involving any of the outcomes. Therefore, it is natural to select one common

set of regressors for all outcomes. Hence, our regression problem corresponds to the

special case of seemingly unrelated regressions (SUR) such that the vector of regressors

is identical for each equation. In this case, it is well known that the OLS and GLS

estimators are algebraically identical. In other words, there is no loss of efficiency in

using the single-equation OLS estimator even if regression errors are correlated.

Suppose there are L outcome variables of interest, say {Y`,i : ` = 1, . . . , L, and i =

1, . . . , N}. Then a multivariate analog of (8) can be written as

min
n∈N+,γ=(γ′1,...,γ

′
L)′∈RML

1

nNL

L∑
`=1

N∑
i=1

(Y`,i − γ′`Xi)
2 s.t. c(I(γ), n) ≤ B. (G.1)

In other words, the stacked version of the OLS problem is equivalent to regressing

y := (y′1, . . . ,y
′
L)′ on IL ⊗ X conditional on the budget constraint, where y` =

(Y`,1, . . . , Y`,L)′, IL is the L-dimensional identity matrix, and X is N × M dimen-

sional matrix whose ith row is X ′i. Therefore, the OGA applies to this case as well

with minor modifications. First, we need to redefine the outcome vector and the design

matrix with the stacked y and the enlarged design matrix IL ⊗X. Suppose that a

variable selection problem is on individual components of Xi. Then note that because

of the nature of the stacked regressions, we need to apply a group OGA with each

group consisting of L columns of [IL ⊗X]k, where k = (` − 1)M + m (` = 1, . . . , L)

for each m = 1, . . . ,M .

Appendix H: Counterfactual Increases of the Predic-

tive Power of Covariates

In the second empirical application, we increase the correlation of the baseline outcome

with the follow-up outcome as follows:

• First, we run a regression of follow-up outcome Y2i on baseline outcome Y1i,

yielding regression coefficient ρ̂ and residual êi.
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• We then increase the predictive power of the baseline outcome by multiplying ρ̂

by a factor w1 and the residual by w2 to define a new follow-up outcome

Ỹ2i = w1ρ̂Y1i + w2êi.

• Then the variance of the original follow-up outcome can be decomposed into an

“explained” and “unexplained” part as

V ar(Y2i) = ρ̂2V ar(Y1i) + V ar(êi),

and similarly for the new follow-up outcome

V ar(Ỹ2i) = w2
1ρ̂

2V ar(Y1i) + w2
2V ar(êi).

• We choose w2 so that the two outcomes have the same variance (V ar(Y2i) =

V ar(Ỹ2i)), i.e.

w2 =

√
(1− w2

1)ρ̂2V ar(Y1i)

V ar(êi)
+ 1.

• In panel (c) of Table 4, we set w1 = 1.2, and in panel (d) of Table 4, w1 = 1.3.
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