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Abstract

We show that the identification results of finite mixture and misclassification

models are equivalent in a widely-used scenario except an extra ordering assump-

tion. In the misclassification model, an ordering condition is imposed to pin down

the precise values of the latent variable, which are also of researchers’ interests and

need to be identified. In contrast, the identification of finite mixture models is usu-

ally up to permutations of a latent index. This local identification is satisfactory

because the latent index does not convey any economic meaning. However, reach-

ing global identification is important for estimation, especially, when researchers

use bootstrap to estimate standard errors, which may be wrong without a global

estimator. We provide a theoretical framework and Monte Carlo evidences to show

that imposing an ordering condition to achieve a global estimator innocuously im-

proves the estimation of finite mixture models. As a natural application, we show

that games with multiple equilibria fit in our framework and the global estimator

with ordering assumptions provides more reliable estimates.
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1 Introduction

Mixture structures arise with the presence of a latent variable, which could be a

variable measured with error or unobserved heterogeneity of different sources such as het-

erogeneous preferences, unobserved heterogeneity within/across markets, different types

of beliefs, and multiple equilibria in games. Both finite mixture and misclassification

models can be reformulated into similar mixture structures and are widely used in eco-

nomic applications such as labor economics, industrial organization, and so forth. For

example, Keane and Wolpin (1997) consider unobserved type-specific endowments; Hu et

al. (2013) control for auction-level unobserved heterogeneity; and Xiao (2014) controls for

the presence of multiple equilibria in games. See Hu (2017) for a survey of applications

using measurement error and Compiani and Kitamura (2016) for review of finite mixture

models.

This paper shows that the identification results of two types of models are equivalent

in a widely-used scenario without an ordering assumption. Specifically, both literatures

of finite mixture and misclassification models recover the unobserved component-specific

distributions through joint distribution of observables and some versions of rank condi-

tions. Moreover, they share a prevalent label swapping issue. The two literatures address

this issue differently in accordance with their respective interpretation of the latent vari-

able. In particular, since the latent variable in misclassification models usually carries

economic implications, extra conditions are imposed to pin down the precise value of the

latent variable. In contrast, the unobserved component in finite mixture models does not

convey any economic meaning, so precise location of the unobserved component is not

necessary. Consequently, misclassification models reach global identification while finite

mixture models reach local identification.

A problem arises, however, when researchers try to use bootstrap to approximate

the standard errors of the estimators. Without an appropriate ordering condition, the

estimator is a local one in the sense that multiple estimators can generate the same values

for the chosen criteria function; thus, it is not straightforward which local estimator should

be chosen for each bootstrap resampling. This paper illustrates the problem using both

theory and Monte Carlo simulations, and thus advocates imposing an assumption to pin

down the order of the latent components by which a global estimator may be obtained,

as in misclassification models.

The existing literature on finite mixture models is beginning to realize the importance
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and necessity of pinning down the component order when standard error is estimated

through resampling. For instance, Kasahara and Shimotsu (2009) suggest that one may

determine the component ordering by using the marginal distribution of the component

to uniquely pin down the order. Hall et al. (2003) also point out similar treatment. To

this end, finite mixture models are very similar to misclassification models. Bonhomme

et al. (2016b) also realize that the label swapping issue presents a challenge for inference

methods based on resampling algorithms such as bootstrap. However, as of yet, no formal

investigation has been made regarding this concern. This paper therefore provides a formal

investigation into the potential problem as a caveat to empirical researchers working with

finite mixture models who may attempt to use bootstrap or jackknife to approximate

estimator variance.

As a natural application, we apply the global estimator to games with multiple equi-

libria. Games generally admit multiple equilibria, which sometimes is important in ex-

plaining various aspects of economic data. Thus, allowing multiple equilibria in game

applications is important. Since the labeling of equilibria again does not convey any

economic meaning, we can label them in any orders and wouldn’t affect the estimation

and interpretation of the game payoffs. As a result, imposing the ordering condition is

harmless, nonrestrictive and useful in estimation. We look at a game where radio stations

choose timing to air their commercials, where multiple equilibria rationalize the clustering

patterns of commercial timings in the data. We further see that imposing the ordering

condition improves estimation of the standard error via bootstraps.

The remainder of this paper is organized as follows. Section 2 lays out the common

framework and shows that the identification results of finite mixture and misclassification

models are equivalent in a widely-used scenario except an extra ordering assumption.

Section 3 provides a simple theoretical illustration of the problem when the label swapping

issue persists. Section 4 employs Monte Carlo simulations to illustrate the problem in finite

samples. Section 5 provides an empirical illustration in game with multiple equilibria.

Section 6 concludes.
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2 A Common Framework

Both finite mixture and misclassification models can be represented through an equa-

tion associating observables with unknowns, as follows:

fX =
∑
T

fX|TfT , (1)

where f is a probability density or mass function, X represents the observables in the

data, and T ∈ {t1, t2, . . . , tK} can be either the unobserved component in the finite mixture

model or the latent true variable in the misclassification model.

A vast literature studies identification and estimation in the two areas. Specifically,

several studies (see Hu (2008) and Allman et al. (2009)) focus on the case where there are

multiple measurements, i.e., X = {X1, X2, X3}, which satisfy the following conditional

independence condition:

X1 ⊥ X2 ⊥ X3 |T. (2)

This conditional independence assumption leads to the following representation:

fX1X2X3|T = fX1|TfX2|TfX3|T . (3)

For simplicity, we assume that the cardinality of the unobserved component K is known

and is the same as the cardinality of Xi, i = 1, 2, 3.

Identification of Finite Mixture models In the finite mixture model, the unobserved

component is finite, while the observables in the data can be discrete or continuous.

Identification is similar for both continuous and finite observable scenarios by using a

three-way array or table and relying on a rank condition. For example, Allman et al.

(2009) follow the fundamental algebraic result in Kruskal (1977) to provide conditions for

identifying the mixture structures. In particular, in the scenario where Xi has finite state

space,1 they first define a three-dimensional array (tensor) [M̃1,M2,M3] whose (u, v, w)

element is

[M̃1,M2,M3]u,v,w ≡
∑
j

πjp
1
j(u)p2j(v)p3j(w)

= Pr(X1 = u,X2 = v,X3 = w),

1Note that Allman et al. (2009) do not assume that the Xis are identically distributed conditional on

the true T or have the same state space. Here for illustration purpose, we assume that Xi has the same

state space but is not necessary identically distributed, conditional on the true T .
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where Mi is of sizes K ×K with the jth row defined as pij = Pr(Xi = ·|T = tj), i.e., for

i = 1, 2, 3,

Mi ≡


fXi|T (t1|t1) fXi|T (t2|t1) ... fXi|T (tK |t1)
fXi|T (t1|t2) fXi|T (t2|t2) ... fXi|T (tK |t2)

... ... ... ...

fXi|T (t1|tK) fXi|T (t2|tK) ... fXi|T (tK |tK)

 ,

π is the marginal probability distribution of T such that π = (πj) ∈ (0, 1)K with
∑

j πj =

1, and M̃1 ≡ diag(π)M1. Therefore the identification boils down to whether we can recover

Mis and π using information on tensor [M̃1,M2,M3]. Note that [M̃1,M2,M3] is invariant

to simultaneously permuting the rows of all the Mis and π. Thus, the identification is

subject to the label swapping problem.

The identification relies on a rank condition associated with the matrix’s Kruskal

rank defined in Kruskal (1977). Specifically, the Kruskal rank of a matrix is defined

as the largest number I such that every set of I rows of the matrix are independent.

Consequently, the Kruskal rank of matrix M is never greater than the regular rank, i.e.,

rankK(M) ≤ rank(M). Moreover, if matrix M is of full row rank, its Kruskal rank is the

same as its regular rank, i.e., rankK(M) = rank(M). We summarize the identification

result in Allman et al. (2009) (Corollary 2) in the following theorem.

Theorem 1 (Allman et al. (2009)) Consider the model described above. Suppose all

entries of π are positive. For each i = 1, 2, 3, let Ii = rankK(Mi). If

I1 + I2 + I3 ≥ 2K + 2, (4)

the tensor [M̃1,M2,M3] uniquely determines M1, M2, M3, and π, up to label swapping.

That is, the Mis and π are identified up to a permutation of its support {t1, t2, . . . , tK}.
Note that the identification does not require the Mis to be full rank.

They further apply this identification result to the scenario of continuous Xi, where

the mixture structure of Equation (1) also applies to the corresponding cumulative density

function. Let µij denote the c.d.f. of variable Xi for component j, i.e., µij(x) = Pr(Xi ≤
x|T = tj). Thus, the mixture structure can be represented as

Pr(X1 <= x1, X2 <= x2, X3 <= x3) =
∑
j

πjµ
1
j(x1)µ

2
j(x2)µ

3
j(x3). (5)

We summarize their identification result (Theorem 8) in the following corollary.
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Corollary 1 (Allman et al. (2009)) Consider the mixture structure described above. If the

measures {µij}tK≥j≥t1 are linearly independent, the parameters π and the µijs are strictly

identifiable from the joint distribution of {X1, X2, X3}, up to label swapping.

The identification is achieved by choosing cut points to partition the continuous state

space into K exclusive intervals. The idea is that, by partitioning the state space, we

can construct a three-way array as in the discrete case. The linear independence of the

measures {µij}tK≥j≥t1 is equivalent to the fact that the corresponding matrix Mi is full row

rank. Consequently, the rank condition in Equation (4) is satisfied because I1=I2=I3=K

and K ≥ 2.

The rank condition required in identification using three-way array is less restrictive

than a full row rank condition. However, it does not provide a closed-form expression for

the identified components. Consequently, we cannot follow the identification procedure

to recover the identified mixture components. In fact, the rank condition is comparable

to a traditional identification argument that a local identification is feasible if the number

of restrictions is larger than or equal to that of unknowns.

Note that the finite mixture literature does not impose additional assumptions for

addressing the label swapping problem. There is no need to provide a unique ordering

for these mixing components since they do not convey any economics meanings. Conse-

quently, identification with label swapping is not an issue.

Identification of Misclassification Models In the misclassification or the measure-

ment error literature, T represents the latent true variable so it conveys economic meaning

itself. For example, in the literature on the returns to education, self-reported education

levels might has measurement error such as those who do not go to college may report that

their have college degrees. In this case, T would represent different levels of education.

Consequently, pinning down the precise value of T is very important.

In the misclassification literature, one of the measurements does not have to have a

cardinality at least the same as the cardinality of the latent true variable, as summarized

in the so-called 2.1 measurement model in Hu (2017). For easy exposition, we assume

that the cardinality of X1 and X2 are K, while X3 is allowed to contain as little infor-

mation as a binary variable. Using an eigenvalue-eigenvector decomposition, Hu (2008)

imposes extra conditions to pin down the precise location of T and achieve the nonpara-

metric global identification of the model. In particular, we introduce the following matrix
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representation.

Mi =
[

Pr(Xi = tk|T = tj)
]
j,k
, i = 1, 2, 3

A(x3) ≡
[

Pr(X1 = tj, X2 = tk, X3 = x3)
]
j,k
,

A ≡
[

Pr(X1 = tj, X2 = tk)
]
j,k
,

Ω ≡ diag
(
π1, ..., πK

)
,

D(x3) ≡ diag
(
Pr(X3 = x3|T = t1), ....,Pr(X3 = x3|T = tK)

)
.

Consequently, we have the following two matrix representations:

A = MT
1 ΩM2,

A(x3) = MT
1 D(x3)ΩM2.

With a full rank condition, i.e., M1 and M2 are invertible, we have

A(x3)A
−1 = MT

1 D(x3)(M
T
1 )−1.

Note that the observed matrix A(x3)A
−1 in Hu (2008) is allowed to be asymmetric

while symmetry plays an important role in Bonhomme et al. (2016a).2 For the decom-

position to be unique, the eigenvalues must vary with the latent index tj for some value

of x3. Notice that the eigenvectors do not change with x3. One sufficient condition for

distinctive eigenvalues is as follows:

Assumption 1 (Distinctive eigenvalues) For any tj 6= tk, there exist an x3 such that

Pr(X3 = x3|T = tj) 6= Pr(X3 = x3|T = tk).

Assumption 1 implies that for any two rows of the M3 matrix defined above, there exists

at least a column, i.e., a value x3, that the probabilities in the two rows differ from each

other. This assumption is less restrictive than the usual assumption that the exists a

column so that probabilities of every row, i.e., corresponding to every tj, differs from each

other. Moreover, this assumption is empirically testable since matrix A(x3)A
−1 can be

estimated directly from the data.

The label swapping issue is also prevalent in the identification of misclassification

models. Hu (2008) provides a set of flexible ordering conditions to pin down the value of

2Bonhomme et al. (2016a) also use an eigenvalue-eigenvector decomposition technique to obtain

identification in the setting of a finite mixture model. They assume M1, M2, and M3 are the same.
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the latent true variable to achieve global identification. These conditions are also quite

intuitive in various economic contexts. Specifically, Assumption 2 provides a few examples

of conditions to fix the order of the eigenvalues or the eigenvectors.

Assumption 2 (Ordering) one of the following conditions holds:

1) fX1|T (.|t) has a unique mode at t;

2) fX1|T (.|t) has a median (min, max, or a known quantile) at t;

3) there exist ti such that fX1|T (ti|t) is increasing in t;

4) E[ω(X3)|T = t] is increasing in t for a known function ω(.).

The function in condition 4 may be user-specific, such as ω(X3) = X3 or ω(X3) = I(X3 =

x3), where I(.) is the indicator function. We summarize the global identification result of

misclassification models as follows:

Theorem 2 (Hu (2008)) Consider a structure described as Equation (1). Suppose that

matrix M1 and M2 have a full rank, and that Assumptions 1 and 2 are satisfied. Then,

M1, M2, M3, and π are uniquely identified.

Note that the condition that matrix M1 and M2 have a full rank implies that the

Kruskal ranks of matrices M1 and M2 are equal to the regular matrix rank K. In the

scenario with a binary X3, Assumption 1, which guarantees distinctive eigenvalues, holds

if and only if the so-called Kruskal rank of M3 is equal to 2. Therefore, the total Kruskal

rank equals 2K + 2. We further prove the equivalence of the two rank conditions for a

general discrete X3 in the following theorem.

Sufficient and Necessary Conditions for Identification This paper connects the

identification results of finite mixture models and those of misclassification models in a

widely-used scenario in empirical research. Below we first present a set of sufficient and

necessary conditions for identification of the models, then we provide detailed discussions.

Our main results are summarized as follows:

Theorem 3 Consider a structure described as Equation (1). Suppose that M1 and M2

have a full rank, i.e., I1 = I2 = K. The following four statements are equivalent:

1. (Nontrivial Kruskal rank) The Kruskal rank I3 of M3 satisfies I3 ≥ 2;
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2. (Distinctive eigenvalues) Assumption 1 holds, i.e., for any tj 6= tk, there exist an x3

such that

Pr(X3 = x3|T = tj) 6= Pr(X3 = x3|T = tk).

3. (Distinctive eigenvalues) there exist a function ω(.) such that

E[ω(X3)|T = tj] 6= E[ω(X3)|T = tk]

for any tj 6= tk

4. (Uniqueness) M1, M2, M3, and π are uniquely identified, up to label swapping.

Proof: We show that these four statements are equivalent in three steps.

Step 1: Statement 1 holds if and only if statement 2 does. First, we show statement

2, i.e., Assumption 1, implies statement 1, i.e., I3 ≥ 2. For a general discrete X3 with

support {t1, t2, . . . , tK}3 Note that M3 is defined as

M3 =


fX3|T (t1|t1) fX3|T (t2|t1) ... fX3|T (tK |t1)
fX3|T (t1|t2) fX3|T (t2|t2) ... fX3|T (tK |t2)

... ... ... ...

fX3|T (t1|tK) fX3|T (t2|tK) ... fX3|T (tK |tK)

 .

We can show that the Kruskal rank of M3 is at least 2 if and only if for any tj 6= tk there

exists a x3 ∈ {t1, t2, ..., tK} such that fX3|T (x3|tj) − fX3|T (x3|tk) 6= 0. For any two rows

with tj 6= tk, we consider the following matrix of dimensions 2×K

M3.2 ≡

(
fX3|T (t1|tj) fX3|T (t2|tj) ... fX3|T (tK |tj)
fX3|T (t1|tk) fX3|T (t2|tk) ... fX3|T (tK |tk)

)
.

Without loss of generality, let x3 = tm. Define 1 = (1, 1, ..., 1)T and em = (0, ..., 0, 1, 0, ..., 0)T ,

where 1 is at the m-th coordinate. We consider

M3.2 × (em 1) =

(
fX3|T (x3|tj) 1

fX3|T (x3|tk) 1

)
.

Therefore, the rank of M3.2 equals 2 if fX3|T (x3|tj) − fX3|T (x3|tk) 6= 0. That means the

Kruskal rank of M3 is larger than or equal to 2.

3Note that X3 does not have to have the same cardinality as T . Theorem 3 holds for a general X3

with a cardinality not less than 2.
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Second, we show that I3 ≥ 2 implies Assumption 1. If the Kruskal rank of M3 is at

least 2, the regular rank of matrix M3.2 for any tj 6= tk equals 2. That means there must

exist a column, say m, in M3.2 such that fX3|T (tm|tj) − fX3|T (tm|tk) 6= 0. Assumption 1

then holds with x3 = tm for the given tj 6= tk.

Step 2: Statement 2 holds if and only if statement 4 does. First, we show statement

2 implies statement 4. We have shown that statement 2 implies statement 1, i.e., I3 ≥ 2.

Since I1 + I2 + I3 ≥ 2K + 2, Allman et al. (2009) shows the unique identification up

to label swapping, i.e., statement 4. Next, we show that if statement 2 does not hold,

neither does statement 4. If the assumption of distinctive eigenvalues fails, it indicates

that at least two different rows of matrix M3 are the same. The eigenvalue-eigenvector

decomposition as in Hu (2008) implies that if the distinctive eigenvalues assumption fails,

e.g., fX3|T (.|tj) = fX3|T (.|tk), any convex combination of the eigenvectors, e.g., fX1|T (.|tj)
and fX1|T (.|tk), corresponding to the same eigenvalue is an eigenvector. Therefore, the

eigenvectors in M1 is not uniquely identified, i.e., statement 4 does not hold.

Step 3: Statement 2 holds if and only if statement 3 does. First, we show state-

ment 3 implies statement 2. This can be shown by contradiction. Suppose statement 2

do not hold. That means the distributions fX3|T (.|tj) is the same as fX3|T (.|tk). Then

E[ω(X3)|T = tj] = E[ω(X3)|T = tk] for any function ω, which is contradictory to state-

ment 3.

Next, we show that statement 2 implies statement 3. Define a vector

Dfj,k ≡


fX3|T (t1|tj)− fX3|T (t1|tk)
fX3|T (t2|tj)− fX3|T (t2|tk)

...

fX3|T (tK |tj)− fX3|T (tK |tk)

 .

Assumption 1 in statement 2 guarantees that Dfj,k 6= 0 for all j and k. Therefore, there

exists a vector W = (w1, w2, ..., wK)′ such that W is not orthogonal to either of Dfj,k for

any j 6= k. 4 That is

W ′ ×Dfj,k 6= 0, j 6= k, j, k = 1, 2, ..., K.

4The existence of such a vector W can be shown by contradiction. Suppose such a vector W does

not exist. Then for any W , there exists a pair (j, k) with k 6= j such that W ′ ×Dfj,k = 0 . Note that

the left hand side the that equation, i.e., W ′ ×Dfj,k, is continuous in W . Thus, for that given pair of

(j, k), there must exist K linearly independent W 1,...,WK such that [(W 1)′, ..., (WK)′]′ ×Dfj,k = 0. As

a result, we have Dfj,k = 0. A contradiction.
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Therefore, we can define a function of X3 as

ω(X3) =
∑

i=1,2,...,K

wi × I(X3 = ti)

which satisfies for any tj 6= tk,

E[ω(X3)|T = tj]− E[ω(X3)|T = tk] = W ′ ×Dfj,k 6= 0.

�

Although we focus on the case where M1 and M2 are full rank, we are able to provide a

set of sufficient and necessary conditions for identification up to label swapping, while All-

man et al. (2009) provide sufficient conditions for the identification of a more general case.

Statement 3 provides a transparent explanation of the distinctive-eigenvalue assumption.

Notice that the eigenvalue-eigenvector decomposition still holds with eigenvalue matrix

D(x3) replaced with:

D(ω) = diag
(
E[ω(X3)|T = t1], ...., E[ω(X3)|T = tK ]

)
.

Specifically,

A(ω)A−1 = MT
1 D(ω)(MT

1 )−1,

where

A(ω) ≡
[
E[ω(X3)|X1 = tj, X2 = tk] Pr(X1 = tj, X2 = tk)

]
j,k
.

Statement 3 guarantees that the eigenvalues E[ω(X3)|T = tj] in D(ω) are distinctive.

Therefore, the eigenvector matrix M1 corresponding to each tj is uniquely identified up

to the label tj. That means the eigenvector matrix M1 is uniquely identified up to label

swapping.

It is natural to compare these results for the two models. Allman et al. (2009) provide

local identification results for a more general setting with less intuitive conditions. The

general setting may include the case where each of the measurements can have a smaller

support than that of the latent true variable. For example, when the latent true variable

has 5 possible values, identification is still feasible when researchers only observe 4 possible

values in each of the three measurements. That is a scenario not considered in Hu (2008)

or the current paper. Meanwhile, their conditions are based on the abstract Kruskal rank,

which may be difficult to test and interpret with economic models. In addition, it is not

clear how to extend the Kruskal rank condition to the continuous case. Finally, it is well

known that the local identification results cause problems in estimation.
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Hu (2008) presents global identification results with conditions which are more intu-

itive and applicable to empirical research. In particular, the ordering assumption may

have useful economic implications. Additionally, the regular rank condition is directly

testable from the data and can be intuitively extended to the injectivity condition the

continuous case as in Hu and Schennach (2008). More importantly, Assumption 2 is

innocuous and very intuitive, and can transform a local identification into a global iden-

tification, which is very helpful in estimation. Therefore, one should impose Assumption

2 even in the estimation of finite mixture models.

3 Global Estimation and Bootstrap

With the model identified, one can use a minimum Hellinger distance estimator (MHD)

defined by minimizing the distance of the joint distribution directly from the data f̂ and

predicted by the models f , respectively. The MHD estimator for finite mixture models

can be represented as:(
fM1|T , fM2|T , fM3|T , fT

)
= arg min

fM1|T ,fM2|T ,fM3|T ,fT
‖f̂ 1/2

M1M2M3
− (ΣfM1|TfM2|TfM3|TfT )1/2‖,

(6)

and the MHD estimator for misclassification models can be represented as:(
fM1|T , fM2|T , fM3|T , fT

)
= arg min

fM1|T ,fM2|T ,fM3|T ,fT
‖f̂ 1/2

M1M2M3
− (ΣfM1|TfM2|TfM3|TfT )1/2‖,

s.t. Assumption 2 holds (7)

where ‖ · ‖ represents the L2 norm. Since the finite mixture model is identified up to

a permutation of T , the estimator is a local estimation in the sense that there are K!

minima of the criterion function and these minima all lead to the same value for the

criteria function. The estimator for the misclassification model is a global one because it

directly pins down which minima is the correct one. This may not seem to be a problem

because the permutations of the T types do not matter economically. However, such

identification up to a permutation makes the bootstrap method invalid because it is not

clear which local minimum the estimator reaches in each bootstrap draw. Therefore, we

argue that it is still better off to impose Assumption 2 in the estimation of the finite

mixture model, i.e., treating it as a misclassification model.
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Remark 1: This label swapping issue is a problem for more than just minimum distance

estimation. It is a prevalent problem due to the identification strategy, and thereby affects

every estimator.

Remark 2: Some may argue that we do not need to worry about this problem if one

can derive the variance-covariance matrix for the estimator theoretically. However, some

applications, especially applications such as dynamic discrete choice models or dynamic

games, rely heavily on a sequential estimation approach to estimate structural parameters

while also requiring controls for unobserved heterogeneity. In those applications, deriving

the variance matrix is very challenging and maybe infeasible. Thus, bootstrap is a popular

alternative for standard deviation approximation. The label swapping issue again causes

similar problems in these scenarios.

A global estimator is always preferable if possible. The rest of this section illustrates

the problem one might encounter if using bootstrap to estimate the standard error for

the finite mixture model without imposing the ordering condition, which is a local esti-

mator. Let θ denote all unknown parameters, i.e., θ0 =
(
fM1|T , fM2|T , fM3|T , fT

)
. For ease

of exposition, assume that T is binary so the minimization has two local minima. In par-

ticular, one minima orders the components estimated as t1 and t2, respectively, while the

other minima orders the components estimated as t2 and t1, respectively. In particular,

minimum 1 is denoted as

θ10 ≡
(
{fM1|T=t1 , fM1|T=t2}, {fM2|T=t1 , fM2|T=t2}, {fM3|T=t1 , fM3|T=t2}, {fT=t1 , fT=t2}

)
,

and minimum 2 is denoted as

θ20 ≡
(
{fM1|T=t2 , fM1|T=t1}, {fM2|T=t2 , fM2|T=t1}, {fM3|T=t1 , fM3|T=t1}, {fT=t2 , fT=t1}

)
.

We further use θ̂1n and θ̂2n to denote the estimators for the two minima, respectively, given

a sample. We first state the asymptotic property of the estimator in the following lemma;

refer to the existing literature for rigorous proof, e.g., Tang and Karunamuni (2013).

Lemma 1 (Asymptotic property) With some regularity conditions, the minimal dis-

tance estimator is consistent and asymptotically normally distributed when the sample size

goes to infinity. That is,

√
n(θ̂1 − θ10) → N(0,Σ1),
√
n(θ̂2 − θ20) → N(0,Σ2),

13



where Σ1 and Σ2 are the variance matrices of minima θ̂1 and θ̂2, respectively. Ideally,

if there was an easy way to estimate the variance-covariance matrix Σ1 or Σ2, it would

not be a problem to ignore the ordering of the unobserved components. However, direct

estimation of the variance-covariance matrix may not always be feasible. An alternative

method would be to treat the sample in hand as a population and resample the data

to approximate the variance-covariance matrix. Specifically, an approximation of the

variance-covariance matrix can be obtained by a sample of bootstrap estimators denoted

as θ̂b, b = 1, ..., B, which is obtained by sampling n observations with replacement from

the original data and recomputing θ̂ for each new sample. After B times resampling, one

can approximate the asymptotic covariance matrix of the estimator θ̂ with

Est.Asy.Σ =
1

B − 1

∑
b

[θ̂b − θ̄][θ̂b − θ̄]′,

where θ̄ = 1
B

∑
b θ̂b represents the mean of the estimates across the B bootstrap samples

(Efron et al. (1979)). In the scenario with multiple minima, the variance matrix is correctly

approximated with an appropriate ordering condition. Consequently, we can approximate

the variance matrix for both minima using

Est.Asy.Σ1 =
1

B − 1

∑
b

[θ̂1b − θ̄1][θ̂1b − θ̄1]′ (8)

and Est.Asy.Σ2 =
1

B − 1

∑
b

[θ̂2b − θ̄2][θ̂2b − θ̄2]′, (9)

respectively.

However, the lack of an ordering condition could generate a mixture of the estimator

in bootstrap. The local minimum estimated in each resampling may not be the same one,

and the probability of getting different minima is unknown. For illustration purposes, let

us assume that we reach minimum θ̂1b and θ̂2b with probability λ and 1 − λ, respectively.

That is,

θ̂b =

θ̂1b , with a probability of λ,

θ̂2b , with a probability of 1− λ.

Essentially the estimator obtained from resampling b is a mixture of the two minima.

This mixture feature will cause problems when one uses the variance matrix from the

bootstrap to approximate the asymptotic variance matrix. In particular,

Est.Asy.Σ =
1

B − 1

∑
b

[θ̂b − θ̄][θ̂b − θ̄]′, (10)
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which basically is to approximate the population variance-covariance matrix of the mix-

ture

var(θ̂b) = E[var(θ̂b|minimum)] + var[E(θ̂b|minimum)]

= λΣ1 + (1− λ)Σ2 + λ(1− λ)[θ1 − θ2][θ1 − θ2]′.

The second equality holds because

E(θ̂b|minimum) =

θ1, if minimum is 1 ,

θ2, if minimum is 2 .

Consequently, the variance-covariance matrix approximated by bootstrap resampling with-

out an ordering condition differs from the targeted population variance matrix, which is

either Σ1 or Σ2, depending on the original estimate. Specifically, the bias from the ap-

proximation can be computed as

var(θ̂b)− Σ1 = (1− λ)
[
Σ2 − Σ1 + λ[θ1 − θ2][θ1 − θ2]′

]
, if minimum is 1,

and var(θ̂b)− Σ2 = λ
[
Σ1 − Σ2 + (1− λ)[θ1 − θ2][θ1 − θ2]′

]
, if minimum is 2.

It is not straightforward to check whether the variance from bootstrap without ordering

over-estimates or under-estimates the targeted population matrix. That is, are var(θ̂b)−
Σ1 and var(θ̂b)− Σ2 negative definite, positive definite, or neither?

We further simplify the framework to investigate further the problem of using the

variance from bootstrap to approximate the targeted population variance matrix. Suppose

the components have the same distributions, i.e.,

fM1T = fM2|T = fM3|T =

(
p1 p2

1− p1 1− p2

)
,

and

fT = (π, 1− π) .

Consequently, θ1 = (p1, p2, π), and θ2 = (p2, p1, 1− π); θ̂1 = (p̂1, p̂2, π̂) and θ̂2 = (p̂2, p̂1, 1− π̂)

are estimators for θ1 and θ2, respectively. We also assume

Σ1 = var(θ̂1) ≡


σ2
1 σ12 σ1π

σ12 σ2
2 σ2π

σ1π σ2π σ2
π

 .

15



Then

Σ2 = var(θ̂2) =


σ2
2 σ12 σ2π

σ12 σ2
1 σ1π

σ2π σ1π σ2
π

 .

Without loss of generality, we assume that σ2
2 > σ2

1 > 0. We compute the difference be-

tween the variance from bootstrap without ordering and the targeted population variance

through:

var(θ̂b)− Σ1 = (1− λ)
[
Σ2 − Σ1 + λ[θ1 − θ2][θ1 − θ2]′

]
,

= (1− λ)

[
σ2
2 σ12 σ2π

σ12 σ2
1 σ1π

σ2π σ1π σ2
π

−

σ2
1 σ12 σ1π

σ12 σ2
2 σ2π

σ1π σ2π σ2
π



+λ


(p1 − p2)2 −(p1 − p2)2 (p1 − p2)(2π − 1)

−(p1 − p2)2 (p1 − p2)2 −(p1 − p2)(2π − 1)

(p1 − p2)(2π − 1) −(p1 − p2)(2π − 1) (2π − 1)2


]

= (1− λ)


σ2
2 − σ2

1 + λ(p1 − p2)2 −λ(p1 − p2)2 Σ12π

−λ(p1 − p2)2 σ2
1 − σ2

2 + λ(p1 − p2)2 −Σ12π

Σ12π −Σ12π λ(2π − 1)2

 ,

where Σ12π = σ2π − σ1π + λ(p1 − p2)(2π − 1). The variance from bootstrap without an

ordering condition tends to over-estimate the targeted population variance. First, the

bootstrap variance without ordering over-estimates the variance of the type probability

(σ2
π) because λ(2π − 1)2 ≥ 0. Second, since σ2

2 > σ2
1, variance from bootstrap without

ordering also over-estimates the variance of the first element (σ2
1) because σ2

2 − σ2
1 +

λ(p1− p2)2. However, bootstrap without the ordering could result in an under-estimation

of variance if σ2
1 − σ2

2 + λ(p1 − p2)2 < 0. The intuition here is that, without the ordering

condition, different draws in the bootstrap procedure could reach different minima so

that the variance computed in this fashion is a mixture of variance from different minima,

which is a weighted average of the variance of different minima (λΣ1 + (1 − λ)Σ2) with

extra noise (λ(1− λ)[θ1 − θ2][θ1 − θ2]′).
In practice, the process of approximating the variance matrix from bootstrap with-

out an ordering condition is very complicated. The probability of getting a given local

minimum in each draw of bootstrap could vary, which thereby complicates understand-

ing how the lack of an ordering condition affects the approximation. Moreover, different
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softwares might have different algorithms so that probability may also vary with software.

This difficulty increases with the cardinality of the latent components since the number

of minima increases exponentially.

4 Monte Carlo Evidences

This section illustrates the problem of variance estimation using bootstrap without

an ordering condition through Monte Carlos simulations. Consider a simple example

where T is binary, i.e., T ∈ {1, 2}, and all M1,M2,M3 are also binary, and the mixture

distributions are the same for all M1,M2,M3. Since the latent component is binary, there

exist two minima. Both minimize the moment conditions in Equation (6). If we follow

the misclassification models, we can impose a condition that the diagonal elements in the

mixture matrix are bigger than the off-diagonal elements, resulting in a global minima.

We consider the following scenario:

fM1T = fM2|T = fM3|T =

(
0.8 0.1

0.2 0.9

)
& fT = (0.2, 0.8) ,

with θ1 = {0.8, 0.1, 0.2} and θ2 = {0.1, 0.8, 0.8} as the two minima.

To illustrate the invalidity of the bootstrap method without ordering conditions, we

simulate the data, estimate the parameters θ = {p1, p2, π} from minimizing distance be-

tween the left and right-hand sides of the equations, and approximate the variance by

resampling with replacement 1000 times. In the scenario without an ordering condition,

we introduce a selection rule of getting local minimum 1 with a probability of 0.5, i.e.,

λ = 0.5. We provide histograms for the estimates of bootstrap with and without order-

ing conditions for sample size=4000 in Figure (1). We also provide the variance of the

estimators for sample sizes=500, 1000, 1500, and present the results in Table (1).

From the results, we can clearly see that estimates without an ordering condition are

inconsistent and biased. Moreover, the standard error from bootstrap with an ordering

condition is much smaller than without an ordering condition but with random selection.

5 Multiple Equilibria

This section illustrates the importance of the ordering condition in estimation of games

with multiple equilibria. The application uses a simultaneously move game to characterize
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the timing decisions for broadcasting commercials by radio stations with contemporary

music formats (Contemporary Hit Radio (CHR)/Top 40, Country, Rock etc.).

5.1 Data and Model

In reality, stations tend to play commercials at the same time (figure 2). One possible

explanation is that some time intervals are more desirable for commercials. Note that

Arbitron uses the same methodology to compute listenerships, which determines firms’

willingness to pay for commercials. Suppose this indeed drives the clustering phenomenon,

one then can expect that every market has the same pattern. This, however, is not the

case (Figure 3). Thus, common factors cannot fully explain the clustering pattern of

commercials. Another possible explanation is the presence of multiple equilibria. Stations

coordinate to air their commercials at the same time to avoid listener switching, and

different markets coordinate at different times, which indicates that they employ different

equilibria. This rationalizes both the clustering pattern in general and the clustering in

the different times across markets.

We model stations’ decisions as to choose from two time blocks in every hour simul-

taneously, as in Sweeting (2009) and Xiao (2014). Specifically, we use information about

whether commercials are being played at two particular time interval in each hour, and ,

denoted as option 0(: 48− : 52) and option 1(: 53− : 57), respectively. We assume further

that stations are symmetric, and station i’s payoff for placing a commercial in time block

t ∈ {0, 1} is defined as follows:

π(ai = 1, a−i) = α + δ

∑
j 6=i I(aj = 1)

n− 1
+ εi1,

π(ai = 0, a−i) = δ

∑
j 6=i I(aj = 0)

n− 1
+ εi0,

where α allows different average profit for stations when they play their commercials in

timing 1, δ captures the coordination incentives, and ε’s represent the idiosyncratic private

profit shocks, which the Stations receive before they make their timing decisions. The ε’s

represent the fact that a station tends to play commercials at different times every day.

This introduces variation due to the length of other programming, such as songs or travel

news, can vary and be unpredictable. We assume εit to be independent across actions,

players and markets. Furthermore, εit follows with a type one extreme value distribution.

Following the existing literature, we use the probability that firms choose time slots 0
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and 1 to characterize the equilibrium conditions, denoted as p0 and p1, respectively. Since

radio stations are assumed to be homogenous, we focus on symmetric equilibria. As a

result, the equilibrium condition can be represented as:

p1 =

∫
I(α + δp1 + εi1 > δp0 + εi0)dF (εi)

=
exp(α + δp1)

exp(δp0) + exp(α + δp1)
. (11)

The second equality holds due to the assumption that εi follows an extreme value distri-

bution.

The data used in this paper are constructed using hourly airplay logs collected by

Medabase 24/7 and extracted from airplay logs that stations play on a minute-by-minute

basis5. In summary, there are 144 markets in total; the number of stations in each market

varies from 3 to 15 with a mean of 5.7; each station has 236 observations, including 59

days (Table 2).

5.2 Estimation and Results

Note that we can pool markets with different number of radio stations for estimation

because only the proportion of radio stations’ timing instead of the number of firms enters

the payoff function from the equilibrium condition. We thus use markets with at least

three players to obtain a reasonable size of observations.

The number of equilibria is estimated to be two6. We then estimate the equilibrium

CCPs using the proposed minimum distance estimation. To illustrate the problem of local

estimators, we estimate the two equilibrium CCPs with and without imposing an ordering

condition, as in the Monte Carlo experiment. We present the results in table 3. The

standard deviation estimated from imposing the ordering condition is significantly smaller

than that without the ordering condition. Note that because the labeling of equilibrium

does not convey any economic meaning. The estimation of the payoff primitives are

the same with or without imposing the ordering condition. Consequently, the ordering

condition does not impose any restrictions on the payoff primitives. Both equilibrium

CCPs satisfy the same equilibrium conditions. We skip the estimation of the payoff

primitives here since it is not the focus of this paper.

5Thanks Andew Sweeting for sharing the data. Please refer to Sweeting (2009) for a detailed descrip-

tion of the data.
6Please refer to Xiao (2014) for estimating the number of equilibria.
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6 Conclusion

This paper connects the identification results of finite mixture models and those of

misclassification models in a widely-used scenario in empirical research. While existing

studies provide sufficient identification conditions for a more general case, we present

sufficient and necessary conditions for the identification of this widely-used case, up to

label swapping of the latent values. In the misclassification model, an ordering condition

is usually imposed to pin down the precise value of the latent variable, which are also

of researchers’ interests and need to be identified. In contrast, the identification of finite

mixture models is usually up to label swapping. We argue that the ordering condition in

misclassification models leads to global identification and should be imposed in estimation,

especially, when researchers use bootstrap to estimate standard errors. That is to treat a

finite mixture model as a misclassification model in estimation with an ordering condition.

As an empirical application, games with multiple equilibria fit in our framework well and

we show that the global estimator with ordering assumptions provides reliable estimates

with real data.
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Appendix

A Graphs and Tables

Figure 1: histogram
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Table 1: Mean and Standard Deviation Estimated using Bootstrap

Sample Size TRUE est bootstrap with order bootstrap without order

mean std error mean std error

500 0.8 0.75 0.75 0.05 0.42 0.33

0.1 0.10 0.09 0.01 0.42 0.33

0.2 0.21 0.21 0.03 0.50 0.29

1000 0.8 0.77 0.77 0.03 0.42 0.34

0.1 0.09 0.09 0.01 0.43 0.34

0.2 0.22 0.22 0.02 0.50 0.28

1500 0.8 0.82 0.82 0.02 0.46 0.36

0.1 0.10 0.10 0.01 0.46 0.36

0.2 0.20 0.20 0.01 0.50 0.30

Figure 2: Timing Patterns for Commercials across Markets (Sweeting (2009))�������������	
�����������
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Table 2: Descriptive Statistics

Variable Obs Mean std. Dev Min Max

No. Players 92766 5.641 2.054 3 15

Timing 92766 .499 .489 0 1

Day 92766 31.745 17.723 1 59
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Figure 3: Timing Patterns for Commercials in Different Markets (Sweeting (2009))�������������	��
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Table 3: Estimation of eq Strategy

Ordering No Ordering

estimates std (bootstrap) estimates std (bootstrap)

p1 (eq1) 0.602 0.065 0.602 0.120

p1 (eq2) 0.420 0.056 0.420 0.123

λ(prob of eq1) 0.451 0.229 0.451 0.232
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