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Abstract. This paper investigates a model of strategic interactions in financial net-

works, where the decision by one agent on whether or not to default impacts the incen-

tives of other agents to escape default. Agents’ payoffs are determined by the clearing

mechanism introduced in the seminal contribution of Eisenberg and Noe (2001). We

first show the existence of a Nash equilibrium of this default game. Next, we develop

an algorithm to find all Nash equilibria that relies on the financial network structure.

Finally, we explore some policy implications to achieve efficient coordination.
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NON-TECHNICAL SUMMARY 

  

 

Financial institutions carry out various transactions with each other, including risk-sharing 

and insurance. The architecture of the network of transactions between institutions can 

support financial stability because it enables them to share funding or transfer risk. But these 

linkages can also facilitate the diffusion of shocks through the system, due to chains of default 

and the domino effect. This is referred to as systemic risk. Systemic risk is costly for 

individuals, institutions and economies, as demonstrated by the last financial crisis (of 2008). 

The obvious need for a stable financial system has led to a significant interest in policies that 

could reduce systemic risk and mitigate contagion. 

 

This paper investigates a model of strategic interactions in financial networks, where the 

decision by one agent on whether or not to default impacts the incentives of other agents to 

escape default. Agents' payoffs are determined by the clearing mechanism introduced in the 

seminal contribution of Eisenberg and Noe (2001). We first show the existence of a Nash 

equilibrium of this default game.  Next, we develop an algorithm to find all Nash equilibria 

that relies on the financial network structure. From a policy perspective, given that inefficient 

coordination on a bad Nash equilibrium might pose a severe economic problem, there is a 

need for financial institutions fostering efficient coordination of agents' decisions.  Recently, 

central clearing has become the cornerstone of policy reform in financial markets since it 

limits the scope of default contagion. Our analysis shows that introducing a central clearing 

counterparty (CCP) also allows agents to coordinate on the efficient equilibrium at no 

additional cost.  As a consequence, our result reinforces the key role central clearing 

counterparty (CCP) plays in stabilising financial markets. 



1. Introduction

Financial institutions carry out various transactions with each other, including risk–sharing

and insurance. The architecture of the network of transactions between institutions can

support financial stability because it enables them to share funding or transfer risk. But

these linkages can also facilitate the diffusion of shocks through the system, due to chains

of default and the domino effect. This is referred to as systemic risk. Systemic risk is

costly for individuals, institutions and economies, as demonstrated by the last financial

crisis. The obvious need for a stable financial system has led to a significant interest in

policies that could reduce systemic risk and mitigate contagion.

This paper introduces a model of strategic interactions in financial networks. We study

a two-period economy where agents have a positive endowment in each period. The

endowment represents agents’ cash flows from outside the financial system. We assume

that agents hold each other’s financial liabilities and that this constitutes the network

between them. These liabilities mature in the second period, and we assume that agents’

second-period endowments are small and deterministic, so that they face a risk of default.

More specifically, the liabilities structure results in cyclical payments interdependencies

that are simultaneously computed according to the clearing mechanism described in the

seminal contribution of Eisenberg and Noe (2001). The clearing vector satisfies three

criteria:

• debt absolute priority, which stipulates that liabilities are paid in full in order to

have positive equity;

• limited liability, which means that the payment made by each agent cannot exceed

its inflows;

• equal seniority of all creditors, which implies pro rata repayments.

Agents can avoid default by storing part of their first-period endowment. Due to com-

plementarities in the payments, the decision taken by one agent to store part of his

endowment exerts a positive externality on the other agents to whom he is connected.

We show that the strategic interactions in the financial system modelled here can be

investigated as a coordination game, called the default game, where agents’ decisions are

simply whether to default or not. It is well known in the literature that coordination
2



games will in general yield multiple pure–strategy Nash equilibria and that the set of

pure–strategy Nash equilibria has a lattice structure—in particular, there are two ex-

treme pure–strategy Nash equilibria. In our setting, the best equilibrium is the one where

the largest number of agents choose the maximal action Non-Default and the worst equi-

librium is the one where the largest number of agents choose the minimal action Default.

In the paper, we develop a simple algorithm for finding all Nash equilibria of the default

game. While there are easy algorithms for finding the maximal and minimal equilibria

and relatively easy algorithms to compute all Nash equilibria in coordination games such

as the default game (see Echenique (2007)), the advantage of the algorithm developed in

this paper is that it relies on the financial network structure to inform the computation of

Nash equilibria. Algorithms that exploit the financial network structure such as the algo-

rithm developed in this paper, as well as quickly computing all Nash equilibria, provide

useful information on the strategic interactions between agents.

In this paper, we show that the problem of inefficient coordination may arise in finan-

cial networks. Similar to other areas in economics, the strategic complementarities of

payments due to the cyclical financial interconnections allow for the existence of multiple

Nash equilibria. This gives rise to the question of which one of these equilibria will be

the outcome of the underlying default game. From a policy perspective, given that inef-

ficient coordination might pose a severe economic problem, there is a need for financial

institutions fostering efficient coordination of agents’ decisions. Recently, central clearing

has become the cornerstone of policy reform in financial markets since it limits the scope

of default contagion. Our analysis shows that introducing a central clearing counterparty

(henceforth, CCP) also allows agents to coordinate on the efficient equilibrium at no ad-

ditional cost. As a consequence, our result reinforces the key role CCP plays in stabilising

financial markets.

This paper is structured as follows. In Section 2, we go over the related literature.

Then we describe the model and show the existence of a Nash equilibrium in Section 3.

We develop an algorithm to find all Nash equilibria in Section 4 and Section 5 provides

some policy implications. Section 6 concludes the paper and Section 7 is an appendix

devoted to the proofs.
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2. Related Literature

The impact of the financial network structure on economic stability has been a subject

of ongoing interest since the last financial crisis (of 2008). The seminal contributions of

Allen and Gale (2000) and Eisenberg and Noe (2001) were first to acknowledge that the

financial network structure determines default contagion, and would serve as a basis for

many subsequent contributions.

Allen and Gale (2000) investigate how symmetric financial networks lead to contagion,

where links represent sharing agreements. Their key finding is that incomplete financial

networks are less resilient and more vulnerable to contagion than their complete coun-

terparts. Eisenberg and Noe (2001) develop a static model of default contagion in a

financial network where agents hold each other’s financial liabilities and the activities and

operations of each agent are condensed into one value: the operational cash flow. The

repayment of liabilities will be interdependent, since whether an agent defaults or not is a

result of his operational cash flow as well as the payments he receives from other agents.

Eisenberg and Noe first prove the existence of a clearing payment vector that is unique

under mild conditions. They also provide an algorithm to compute the clearing vector,

which is important to predict chains of defaults.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) extend the Eisenberg–Noe model to

accommodate agent exposure to outside shocks. They establish that up to a certain

magnitude of shocks, the more connected the financial network is, the more stable it is;

beyond this threshold, the connectedness of the network makes it more prone to contagion

and thus more fragile. Elliott, Golub and Jackson (2014) introduce two concepts of cross-

holdings that have distinctive and non-monotonic impact on default cascades. Integration,

which measures the dependence on counterparties, expands the extent of default contagion

but reduces the probability of the first failure; while diversification, which measures the

heterogeneity of cross-holdings, increases the propagation of failure cascades but decreases

the exposure level among pairs of financial institutions. Cabrales, Gottardi and Vega-

Redondo (2017) investigate the optimal network structure that maximizes risk-sharing

benefits among interconnected firms while decreasing their risk exposure. Other recent

contributions include Teteryatnikova (2014) and Csóka and Herings (2016).
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Several approaches have been investigated to mitigate the domino effect in the financial

network, such as central clearing and identifying the most systemically relevant financial

institutions and then targeting them through cash injections. For instance, Demange

(2017), following a similar approach to Eisenberg and Noe (2001), develops a new measure,

called the threat index, which identifies the most systemically relevant agents for optimal

targeted cash injection.

3. The Model

Consider a two-period (t = 1, 2) economy with N = {1, 2, ..., n} agents. Agent i’s

endowment in the first period is z1i and in the second period is z2i . The endowment of

agent i in each period denotes the cash flows arriving from outside the financial system.

We assume that agents hold each other’s liabilities, which mature in the second period.

More specifically, given two agents i, j ∈ N , let Lij ∈ R+ denote the liability that agent

i owes agent j. Then, agent i’s total liabilities are Li =
∑

j∈N Lij. Meanwhile,
∑

j∈N Lji

is the total assets of agent i. Let α = (αij)i,j∈N denote the matrix of relative liabilities,

with entries αij =
Lij

Li
representing the ratio of the liability agent i owes to agent j over

the total amount of agent i’s liabilities.

The utility function of agent i is Ui(e
1
i , e

2
i ), where e1i is the equity of agent i at t = 1,

e2i is the equity of agent i at t = 2, and Ui is an increasing and continuous function from

R2
+ to R+.

Each agent i can store an amount xi ∈ [0, z1i ] from his first-period endowment and

receives an interest rate r > 0 on his storage. Given the storage strategies of agents

x = (xi)i∈N , let πx = (πx
i )i∈N denote the clearing payment vector, uniquely1 defined as

in Eisenberg and Noe (2001), such that for each agent i it holds that

πx
i = min

{
z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j ;Li

}
.

This means that z1i − xi denotes the equity of agent i in the first period and z2i + (1 +

r)xi +
∑n

j=1 αjiπ
x
j − πx

i denotes the equity of agent i in the second period. Therefore, the

1Under mild assumptions.
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utility function of agent i, given the storage strategies of agents x = (xi)i∈N , is

Ui(z
1
i − xi, z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πx

i ).

Observe that agent i will choose to store a positive amount of his first-period endowment

if and only if he prefers (is better off) not to default. If he prefers not to default, he will

store enough endowment to avoid it; otherwise he will store nothing. Similarly, it is only

the decision of an agent to default or not, rather than the amount of storage, that affects

the other agents. This is because, if he defaults, he will pay out his total second-period

equity and, if he does not default, he will pay his total liability, neither of which is directly

affected by his level of storage.

Therefore, the strategic interaction of agents in the economy can be investigated as a

binary coordination game with two actions (Default) = 0 and (Non-Default) = 1 among

which agents must choose.

Define a threshold Ti (a−i) as the minimum amount agent i must store to avoid default,

given other agents’ actions a−i ∈ {0, 1}N−1. Define also ẑ1i as i’s first-period endowment

equivalent, which satisfies

Ui(z
1
i , 0) = Ui(0, ẑ

1
i ).

Proposition 1. The best reply function of agent i can be written as follows:

Ψi (a−i) =

0 if (1 + r) z1i − Ti (a−i) < ẑ1i ,

1 otherwise.

Proof. The proof of Proposition 1, together with all our other proofs, appears in the

Appendix.�

Observe that the default game corresponds to a binary game of strategic complements

or equivalently a coordination game, since the decision of an agent not to default makes

it easier for other agents not to default too. As defined in Bulow, Geanakoplos and

Klemperer (1985), strategic complementarities arise if an increase in one agent’s strategy

increases the optimal strategy of the other agents.

Observe also that agents can choose to default strategically. More precisely, agent i has

nonnegative equity when he stores and still chooses not to store since his equity does not
6



exceed his first-period endowment equivalent. That is, agent i chooses not store when

0 ≤ (1 + r) z1i − Ti (a−i) < ẑ1i .

Theorem 1. There exists a pure–strategy Nash equilibrium of the default game.

Theorem 1 shows the existence of a pure–strategy Nash equilibrium. Understandably,

the existence of a pure–strategy Nash equilibrium follows from the strategic complemen-

tarities between agents’ actions.

4. Nash Equilibria of the Default Game

The default game introduced above corresponds to a binary game of strategic com-

plements—see Topkis (1979), Sobel (1988), Milgrom and Roberts (1990), Vives (1990),

Echenique and Sabarwal (2003), Amir (2005), Echenique (2007) and Barraquer (2013) for

other economic applications of games of strategic complements. It is well known in the

literature that the set of Nash equilibria of a binary game of strategic complements will in

general have multiple pure–strategy Nash equilibria with a lattice structure. In particular,

this class of games has two extreme equilibria: the best equilibrium is the equilibrium

where the largest number of agents choose the maximal action (Non-Default) = 1 and

the worst equilibrium is the equilibrium where the largest number of agents choose the

minimal action (Default) = 0 .

The following result highlights the connection between the multiplicity of equilibria and

the structure of the financial network.

Proposition 2. If the default game has multiple Nash equilibria then the financial network

has cyclical obligations.

Proposition 2 shows that the presence of a cycle of financial obligations is necessary

for the multiplicity of Nash equilibria. Eisenberg and Noe (2001) term this phenomenon

cyclical interdependence and illustrate it as follows: “A default by Firm A on its obliga-

tions to Firm B may lead B to default on its obligations to C. A default by C may, in

turn have a feedback effect on A.”

In the following, we will show that the close relationship between the multiplicity of

Nash equilibria and the cyclical financial interconnections is useful to solve for pure–strategy
7
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Figure 1. Cyclical obligations Unidirectional obligations

Nash equilibria of the default game. More specifically, we will provide an algorithm to find

all pure–strategy Nash equilibria of the default game. Recall that the financial network is

strongly connected if there is a path of obligations between all pairs of agents. A strongly

connected component (henceforth, SCC) of the financial network is a maximal2 strongly

connected subnetwork.

4.1. A financial network with a unique SCC. First, for simplicity, we consider the

case of a financial network with a unique strongly connected component. We will use

the following notion of ear decomposition of a network, which is useful given its close

relationship to network connectivity. An ear decomposition of a network is a partition of

the set of agents into an ordered collection of agent-disjoint simple paths, called ears. More

precisely, an ear decomposition of a network is a partition of the agents into E0, E1, . . . , Ep

such that

• E0 = {v0} is a single agent;

• for each h = 1, . . . , p, it holds that Eh = {v1h , · · · , vkh} is a directed path such

that the endpoints of each Eh—that is, v1h and vkh—are in E1 ∪ . . . ∪ Eh−1 but

the internal agents of Eh—that is, v2h , · · · , v(k−1)h—are not in E1 ∪ . . . ∪ Eh−1.
3

A financial network is strongly connected if and only if it has an ear decomposition. In

the following, we will refine further the concept of ear decomposition. Given an ear Eh,

we say a subset of consecutive internal agents Rth = {vth , · · · , vsh} is a rim of the ear

if v(t−1)h is an ear’s first agent and vsh is either an ear’s first agent or Eh’s penultimate

2In the sense that it is not properly contained in a larger SCC.
3Each Eh (h = 1, . . . , p) is called an ear.
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agent and none of the other agents in the rim is an ear’s first agent. Hence the internal

agents of each ear can be partitioned into a collection of rims. Observe also that the last

ear always has a unique rim.

In the following, we will rely on this refinement of the ear decomposition to provide

an algorithm to find all pure–strategy Nash equilibria of the default game of a financial

network with a unique SCC.

The algorithm, which we call USCCNE, goes as follows:

(1) For each rim in the network, assume that each agent in the rim is the last

non–defaulting agent or that all agents in the rim are defaulting.

(2) For every case in (1), start from the last ear Ep and repeat the following until

reaching the first ear E0: for each ear delete, the internal agents and update the

inflows of the affected (intercepting) agents.

(3) For every case of assumed actions in (1), start from the single agent v0 in E0

and move along all agents in every ear in the opposite direction; for each agent

compute, the optimal action while taking feedback into consideration.4

In interpretation, the USCCNE algorithm assumes for each rim that a particular agent

is the last non-defaulting agent or that all agents in the rim default. Then start from

the last ear and repeat the following until reaching the first ear: delete all the internal

agents of each ear and update the inflows of all affected (intercepting) agents. Finally, the

algorithm navigates every ear in the opposite direction computing the optimal actions of

all agents. The Nash equilibria correspond to the iterations where all the assumed actions

are satisfied.

As a consequence, the USCCNE algorithm also provides a bound on the number of

Nash equilibria.

Corollary 1. The maximal number of Nash equilibria for a financial network with a

unique SCC is ΠRth
|Rth + 1|.

The next example illustrates the default game.

4That is, for agent i
inflowi = aiπi + bi,

which vary according to the case considered.
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Figure 2. A financial network with ten agents

Example 1. Consider an economy of ten agents connected through their ownership of

each other’s liabilities, among which only the first nine agents are strategically relevant.

Agents’ endowments in the first period are z1 = (25, 25, 40, 40, 60, 40, 40, 70, 24) and in the

second period are z2 = (3, 3, 3, 3, 3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents

have the same utility function Ui(e
1
i , e

2
i ) = e1i + e2i . The financial liabilities of agents to

each other are illustrated in the financial network in Figure 2.

This financial network contains a unique SCC, {1, 2, 3, 4, 5, 6, 7, 8, 9}, which has four

ears, E0 = {1} ;E1 = {1, 2, 3, 4, 5, 1};E2 = {3, 6, 7, 8, 2}; and E3 = {7, 9, 1}, and five rims,

R2 = {2, 3}; R4 = {4, 5}; R6 = {6, 7}; R8 = {8}; and R9 = {9}.
To compute the Nash equilibria, we apply the USCCNE algorithm described above.

We find three Nash equilibria–the best equilibrium 1, 1, 1, 1, 1, 1, 1, 1, 1, the intermediate

equilibrium 0, 0, 0, 1, 1, 0, 0, 0, 0, and the worst equilibrium 0, 0, 0, 0, 0, 0, 0, 0, 0–which we

illustrate in Figures 3-5.
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4.2. Arbitrary financial network. Now we investigate the case of an arbitrary financial

network. Recall that an arbitrary financial network can be transformed to a directed

acyclic graph (henceforth, DAG)—that is, a network with no cycles–by contracting each

SCC into a single large node.

In the following, we will rely on transitive reduction, which is a uniquely defined opera-

tion on a DAG, to compute the pure–strategy Nash equilibria of a financial network with

multiple SCCs. A transitive reduction of a DAG is the network with the fewest possible

links that preserves the chains of default of the original financial network. That is, it

removes all the links that are unnecessary for the chain of default to be realized and only

nodes which were connected by a path in the original network remain connected in the

transitively reduced network. For instance, if A links to B, and B links to C, then the

transitive reduction removes the link A to C, if it exists.

Observe that, from the minimality of links in the transitive reduction, there exists a

unique partition of the set of agents W = {W1, . . . ,Wk} such that W1 corresponds to the
12



SCCs with no incoming links, W2 corresponds to the SCCs with only incoming links from

W1, W3 corresponds to the SCCs with only incoming links from W1 ∪W2, and so on.

Then, the algorithm USCCNE can be easily extended to compute the Nash equilibria

with multiple SCCs. The algorithm, which we call MSCCNE, goes as follows:

(1) Apply USCCNE to find all Nash equilibria for each SCC in W1.

(2) For each product of Nash equilibria of SCCs in W1, apply USCCNE to find all

Nash equilibria for each SCC in W2.

(3) For each product of Nash equilibria of SCCs in W1 ∪W2, apply USCCNE to find

all Nash equilibria for each SCC in W3.

(4) Repeat the procedure until visiting all the elements of the partition W .

a1 a2

a3a4

b1

b2b3

b4b5

c1c2

c3

e1e2

e3

e4 e5

d1

Figure 6. Example of a DAG
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Figure 8. Transitive reduction of the DAG

The MSCCNE algorithm is a simple algorithm that exploits a network decomposi-

tion technique to find all the pure–strategy Nash equilibria of a financial network. It is

worth noting that the MSCCNE algorithm can be easily adapted to compute the clearing

payment vector of Eisenberg and Noe (2001).

Corollary 2. Assume that the first-period endowment of each agent i is zero—that is,

z1i = 0. Then the MSCCNE algorithm computes the clearing payment vector in Eisenberg

and Noe (2001).
14



Recall that the clearing payment vector of Eisenberg and Noe (2001) is unique under

mild conditions. Hence the existence of cyclical financial interconnections, while necessary

for multiple equilibria, is not sufficient.

At the heart of the seminal contribution of Eisenberg and Noe (2001) lies the elegant

fictitious default algorithm that computes the unique clearing payment vector. The fic-

titious default algorithm goes as follows. First, determine the set of agents who cannot

fulfill their obligation, even when we assume that all agents receive their due payments.

These agents will be called the first wave of default. Then, assume that the agents in the

first wave of default pay their liabilities pro rata and the new defaulting agents will be

called the second wave of default and so on until the algorithm terminates. In this way,

the fictitious default algorithm produces a natural measure of systemic risk, which is the

number of waves required to induce a given agent to default.

Echenique (2007) provides the most efficient algorithm for computing all pure–strategy

Nash equilibria in the class of games of strategic complements, of which the default game is

a special case. The algorithm elegantly checks whether there is another Nash equilibrium

once the smallest and largest pure–strategy Nash equilibria are computed from classical

algorithms (for example, Topkis (1979)).

While each of the above algorithms is clearly interesting in many aspects, arguably,

the advantage of the MSCCNE algorithm developed in this paper is that it relies on the

financial network architecture to compute the Nash equilibria. Generally, algorithms that

exploit the financial network structure such as the algorithm developed in this paper,

as well as having a clear computational advantage, provide valuable information on the

strategic interactions among agents, as we will show below.

5. Policy Implications

From a policy perspective, in view of the multiplicity of Nash equilibria of the default

game, there is the central policy question of equilibrium selection. In particular, it may

be desirable to implement the best equilibrium in order to achieve financial stability and

minimize the cost of default.
15



Given the best and worst equilibria, agents in the network can be classified into three

types:5

(1) agents that choose 0 in the worst equilibrium and 1 in the best equilibrium;

(2) agents that choose 0 in the worst equilibrium and 0 in the best equilibrium;

(3) agents that choose 1 in the worst equilibrium and 1 in the best equilibrium.

From now on, without loss of generality, we may assume that all agents are of type

(1). Note that agents of type (2) and (3) are not strategically relevant since they play

the same action in the worst and the best equilibrium. Actually, we could construct a

reduced financial network containing only agents of type (1). To do so, we first eliminate

all outgoing links emanating from agents of type (3) and, since none of them defaults,

add their liabilities pro rata to the cash flow of the agents intercepting their outgoing

links. As for agents of type (2), given that they default and pay their inflows—i.e. their

cash flow and the payments they receive from their debtors—they can be eliminated from

the network by adding their cash flow to the cash flow of their creditors pro rata and by

extending their ingoing liabilities links to their creditors pro rata so that the new liabilities

directly link between their debtors and their creditors.

Recently, central clearing counterparty has become increasingly the cornerstone of pol-

icy reform in financial markets. Introducing a CCP modifies the structure of the financial

network: the original liability between a debtor and a creditor is erased and replaced

by two new liabilities—one liability between the debtor and the CCP, and another one

between the CCP and the creditor. Hence, if the CCP is able to honour its liabilities, it

eliminates the risk borne by the creditor that the debtor defaults. As a consequence, one

of the key benefits of central clearing is that, by breaking down the cyclical connections

of financial liabilities, it reduces the aggregate level of default exposure, which in turn

reduces default contagion.

The following proposition points out another potential benefit of introducing central

clearing in financial markets.

Proposition 3. Introducing a CCP in each SCC of the reduced financial network achieves

the best equilibrium in the default game at no additional cost.

5Obviously, it is not possible for an agent to choose 1 in the worst equilibrium and 0 in the best.
16



1

2 3

456

15

30

10

30

40

10

40

Figure 9. A financial network with five agents

Proposition 3 shows that when a CCP intermediates the liabilities of each SCC of the

reduced financial network, the best equilibrium is achieved and the CCP is budget neutral.

As a consequence, in addition to reducing default contagion by eliminating the cyclical

financial interconnections, central clearing can also serve as a coordination device that

achieves the best equilibrium of the default game.

The following example illustrates this point.

Example 2 Consider an economy of six agents connected through their ownership of

each other’s liabilities, among which only the first five agents are strategically relevant.

Agents’ endowments in the first period are z1 = (22, 22, 75, 170, 100) and in the second

period are z2 = (3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents have the same

utility function Ui(e
1
i , e

2
i ) = e1i + e2i . The financial liabilities of agents to each other are

illustrated in the network in Figure 9.

This financial network contains a unique SCC {1, 2, 3, 4, 5}. To compute the Nash

equilibria, we apply the USCCNE algorithm described above. We find three Nash equi-

libria—the best equilibrium 1, 1, 1, 1, 1, the intermediate equilibrium 0, 0, 0, 1, 1, and the

worst equilibrium 0, 0, 0, 0, 0—which we illustrate in Figures 10-12.
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Figure 11. The intermediate equilibrium
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Figure 12. The worst Equilibrium

Adding a CCP will result in a new financial network as shown in Figure 13, with the

following liabilities vector:

L̃ = (5, 5, 10, 10, 10,−40) .
18



Given that there are no feedback effects in the presence of the CCP, the minimum cash

flow for an agent i to escape default is equal to the new liability L̃i. Therefore, after the

introduction of a CCP, it is easy to check that the best equilibrium is implemented at no

additional cost since the inflows and outflows of CCP are equal.
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6 CCP

5 5

10

1010

40

Figure 13. Adding a CCP

6. Conclusion

This paper shows that the CCP allows agents to achieve the best equilibrium at no

additional cost. As a consequence, central clearing can serve as a coordination device

in financial markets. While our result reinforces the key role CCP plays in financial

markets, which is quite desirable, it remains to be seen whether other policies can be

designed to minimize the number of defaults, such as identifying key agents and targeting

them through either cash injection or minimum endowment requirement.

7. Appendix

Proof of Proposition 1. Observe that agent i will choose to play 1 whenever

Ui(ai = 1, a−i) ≥ Ui(ai = 0, a−i),

which is equivalent to

Ui(0, (1 + r)z1i − Ti(a−i)) ≥ Ui(0, ẑ
1
i ),
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which is also equivalent to

(1 + r)z1i − Ti(a−i) ≥ ẑ1i .�

Proof of Theorem 1. A profile of actions a∗ ∈ {0, 1}N is a Nash equilibrium if a∗i =

Ψi

(
a∗−i
)
. Clearly, Ti (a−i) is decreasing in a−i since, as the number of agents playing 1

increases the minimum cash flow and consequently the threshold get smaller. Hence, Ψi

is increasing in a−i. By the Knaster–Tarski Theorem, there exists a fixed point of the

following map:

Ψ : {0, 1}N −→ {0, 1}N

Ψ (a) = (Ψ1 (a−1) , ...,Ψn (a−n)) ,

which will be a Nash equilibrium of the default game.�

Proof of Proposition 2. Suppose not—that is, the default game has multiple equilibria

and the financial network does not have cyclical obligations. Let R denote the set of agents

who play 0 in the worst Nash equilibrium and 1 in the best Nash equilibrium. Then the

subnetwork induced by R contains an agent i that does not have any ingoing link. As a

consequence, the inflow of agent i does not change between the worst equilibrium and the

best equilibrium, and as a result agent i will not change his choice in the worst equilibrium

and the best equilibrium. This is a contradiction.�

Proof of Proposition 3. Adding a CCP in the middle of the financial network will net

out the liabilities and will sort agents into two types: debtors and creditors to the CCP.

Let node 0 represent the CCP, and L̃i0 the liabilities to/from the CCP such that

L̃i0 =
∑
j∈N

Lij −
∑
j∈N

Lji.

Hence, if L̃i0 is positive (resp. negative), agent i is a debtor (resp. creditor) to the CCP.

Since the best equilibrium can be reached, it follows that whenever agent i receives all

the liabilities from his debtors, he will choose not default. Therefore, it holds that

z2i + (1 + r) z1i +
∑
j∈N

Lji ≥
∑
j∈N

Lij,

20



which implies

z2i + (1 + r) z1i ≥ L̃i0.

Hence, the non-default condition is satisfied for each agent in the network with liabilities

intermediated by the CCP and the best equilibrium is reached.�
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