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1 Introduction

In many situations, individuals participate in collective decision making via a committee of

representatives or delegates, i.e., a double-layered aggregation of individual opinions. Consider,

for instance, voting for political candidates in elections to represent your opinion in a parliament.

Board decisions in large corporates are also taken collectively via a committee representing different

departments albeit not every department is allocated a seat at the board. Correspondingly, peace

conferences and negotiations over conflict zones require delegates to be sent by different interest

groups or ethnicities involved in a civil war. The choice of which interest group, ethnicity, etc.

to invite to the conference, however, is not very straightforward. Especially not in extremely

heterogeneous, polarized and/or divided societies.

With a peace conference scenario in mind, consider a society and issues it is facing. Thinking

of individual opinions (priority orderings) over these issues, we want to find out what limited set of

opinions we could choose to represent this society in a reasonable, fair way. Eventually, we might

bring together some people representing those opinions on behalf of the possibly very diverse

interest groups and hope to achieve consensus in the society. We are not interested per se in how

much relative importance an opinion has, but only in whether an opinion is relevant enough1 to be

invited to the table. The mechanism through which this table is formed should preferably respect

some minimal normative requirements. For instance, it should respect unanimous agreements in

the society and be consistent in choosing delegations for when similar societies are merged. We

expect it to be neutral in the way it treats the opinions, and also expect it to be non-manipulable.

We propose all these norms as criteria to choose who should get a seat at the table and then show

that there is a unique class of rules which satisfy all these criteria, hence a characterization result.

These novel rules are not trivial, and relatively simple to comprehend, making them practically

usable to set the table for peace negotiations.

Our framework assumes individuals to have preferences/rankings over some available issues,

also known as a preference profile of a society. We formalize the delegation rules as systems that

assign preferences2 to each given preference profile. We then propose conditions on how to choose

delegates for this society. We first require that if all individuals in a society agree on how to

rank one issue over another, the delegation should respect that. This is also known as Pareto

optimality. Second, we impose that when two distinct societies represented by identical delegations

merge, the merged society should also be represented by the same delegation (Young, 1974, 1975;

Smith, 1973), an idea known as Consistency3. Our third condition, Ballot neutrality reflects an

idea of fairness, and requires that only the ballots of individual opinions should matter in the

1Of course in principle, plurality requires that every opinion should be included in the peace talks. This is

perhaps preferable when there is a limited number of available opinions. However, in cases where the number of

ethnicities/interest groups are numerous, it becomes implausible to invite all as delegates to the table.
2Since the delegation does not necessarily comprise of a single ranking, a delegation rule herein corresponds to a

social welfare correspondence instead of a social welfare function. However, we employ the term delegation as it

entails a particular interpretation.
3Consistency additionally implies that the delegation choice is anonymous, a condition which requires that the

names of the individuals do not matter.

2



delegation choice4. Finally, we require that no individual can manipulate the choice of delegates

to their advantage. This condition is called Strategy-proofness. The first two, Pareto optimality

and consistency, are very standard conditions in the literature. In what follows we explain further

ballot neutrality and strategy-proofness.

Ballot neutrality imposes neutrality towards “equivalent ballots”. Consider two societies of

equal size, say 6 individuals, facing three issues, hence six possible preferences. Now represent

the opinions in both societies by the number of followers each preference has, e.g., (3, 2, 1, 0, 0, 0)

and (0, 1, 2,3, 0, 0). As it happens, the two societies have “equivalent” ballots, i.e., the support

distribution is merely a shuffling of the number of followers. In this case, we require the delegation

choice in each society to correspond to the support for the delegates. For instance, if the first

preference in the former ballot with a support of 3, is chosen as a delegate in the former society

then the fourth preference in the latter ballot should also be chosen in the second society. Ballot

neutrality is also a variable alternative axiom which necessitates that increasing the number of

available issues, and preferences, does not influence the outcome so long as the distributions of

supported opinions are equivalent5. We explain this further in detail in the coming section and

provide an example in the appendix.

Strategy-proofness requires that the rule is not manipulable by individuals (or coalitions).

Therefore a rule being strategy-proof naturally induces honest reporting of individual opinions.

Consider a society and a delegation representing it. Suppose an individual misreports his opinion

and this alters the delegation such that at least one new delegate is strictly closer6 to his opinion

than any other delegate in the original delegation. This situation is considered as a successful

manipulation. We require that the delegation choice should not be prone to any such manipulation.

If a rule is not manipulable by any individual, then we call this condition as individual strategy-

proofness, whereas if no coalition of individuals can achieve such manipulation, we call this as

coalitional strategy-proofness. The latter is a stronger requirement than the former. Our strategy-

proofness concept is essentially different than that of Bossert and Storcken (1992), Bossert and

Sprumont (2014) and Athanasoglou (2016) since we allow multiple preferences in the outcome.7

We find that there exists a non-dictatorial, non-trivial and in fact, simple class of rules which

is characterized by these conditions, and which we call as threshold rules. The threshold rules

4Ballot neutrality additionally implies that the delegation choice is neutral, a condition which requires that the

names of the issues do not matter.
5For instance, increasing the number of issues to 4, and hence the number of possible preferences to 24, would

still yield the first preference as a delegate if the ballot stayed as (3, 2, 1, 0, 0, . . . , 0).
6We use the most typical measure of closeness for rankings, i.e., the Kemeny distance (Kemeny, 1959).
7When preferences are aggregated into a single alternative, i.e., social choice functions, Gibbard (1973) and

Satterthwaite (1975), shows the impossibility of finding such proper non-dictatorial and strategy-proof rules. See

Barberà (2011) for more on strategy-proof social choice functions. For strategy-proofness of multi-valued social

choice rules, see Barberà et al. (2001). When preferences are aggregated into a single ranking, i.e., social welfare

functions, the results are mixed since the definition of strategy-proofness can be quite numerous. Bossert and

Storcken (1992) proves an impossibility result, Sato (2013) offers more positive news, and finally Bossert and

Sprumont (2014) uses a weaker version of strategy-proofness than in Bossert and Storcken (1992) and provides

some examples of non-manipulable rules.
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impose different sizes of delegations depending on the composition of the society instead of a fixed

size. This is natural as opinions in a group of people may have a different level of polarization

and diversity. The rules also share a common lower bound in terms of how much representative

power they require for all possible sizes of delegations. For instance, if a delegation is composed of

t delegates, then the ratio of individuals whose opinions are not included is always below (0.5)t,

hence the ratio of the individuals supporting those delegates to the whole society must be strictly

higher than 1− 0.5t.

The delegation rules we characterize only differ in “how high” the thresholds are set above the

common lower bound. For each threshold rule, there exists a threshold function f which imposes

how much minimal support a delegation of size t has to have to be an appropriate representation

for a society. The rule orders each possible ranking/delegate according to their support in the

society and chooses the lowest number of delegates t∗ with a total support reaching the respective

threshold, i.e., f(t∗). For example, a threshold rule might require 60% of the society’s support for

singleton delegations, i.e., f(1). If this support is not found, then it might look for 85% of the

society’s support for a delegation of size 2, f(2). If this support is not found, then the process

continues, with monotonically increasing thresholds for each t. We show that all threshold rules

satisfy two conditions: i) f(1) > 0.5 and ii) 1 ≥ f(t) ≥ (f(t− 1) + 1)/2 for t > 2, i.e., the minimal

threshold for a singleton delegation is above 50%, and the minimal threshold for delegations of

size t is at least the average of the previous level, f(t− 1) and 100%, but at most 100%. Of course,

f(1) can also start from 100% (and hence continue at that level), requiring 100% support for each

possible sizes of delegations, which can only be reached by including all the reported preferences.

Threshold rules are well-defined, as the threshold for t sooner or later reaches 100%.

As Lanz (2011) argues, “Only stakeholders who add value to the process and augment the

chances of reaching a sustainable settlement should be given seats at the table, [...]”. The challenge,

therefore, is to make the invitations to the table from a normative perspective while maintaining

inclusivity and feasibility. This paper proposes a quantitative measure on how to set the table for

invitations, the number of seats at the table, and finally how representative in total, the invitees

must minimally be.

The paper proceeds as follows. Section 2 presents the notation and conditions. In Section 3, we

define threshold rules and provide some examples. In Section 4, we provide our characterization.

Section 5 concludes with some policy implication.

2 Basic notation

2.1 Model

Let A be a countably infinite set of alternatives, interpreted as potential issues. Given a finite

nonempty subset A ( A, preferences are taken to be strict priority rankings of these issues,

formalized as complete, antisymmetric and transitive binary relations over the set of alternatives

A. We denote the set of all preferences over A by L(A). Given a preference R ∈ L(A), and two

disjoint alternatives a and b, the case where a is preferred to b can be denoted by R = .a.b. or
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(a, b) ∈ R. To measure closeness we use the well-known Kemeny distance.8 Formally, for two

preferences R1 and R2, the Kemeny distance is δ(R1, R2) = (|R2 \R1|+ |R1 \R2|)/2, half of the

symmetric set difference.

Let N be a countably infinite set of agents, interpreted as potential individuals. Given a

finite nonempty subset N ( N with cardinality n, L(A)n denotes the set of all preference profiles

P , i.e., preferences of n agents where P (i) refers to the preference of agent i ∈ N and P (S)

refers to the preference profile, say a subprofile, of a subset of agents S ⊆ N . Given a profile

P ∈ L(A)n, and R ∈ L(A), we denote the number of agents who reported R in this profile as

p(R) = |{i ∈ N | P (i) = R}|.
Given any finite A ( A, let R1, R2, . . . , R|A|! be an enumeration of preferences in L(A), e.g.,

the lexicographic enumeration for A = {a, b, c} is “R1 = abc,R2 = acb,R3 = bac,R4 = bca,R5 =

cab,R6 = cba”. Given any such enumeration, a profile P ∈ L(A)n can also be interpreted as a

vector composed of the number of followers each preference has, e.g., p = (p1, p2, , p3, . . . , p|A|!)

on N|A|! with the interpretation that pt = |{i ∈ N | P (i) = Rt}| is the support for preference

Rt ∈ L(A) and p is the support for the preference profile P . As an example, for 3 alternatives

and the enumeration given above, the support for the following preference profile,

P ∈ L(A)6 = {abc, abc, abc︸ ︷︷ ︸
R1

, bac, bac︸ ︷︷ ︸
R3

, cab︸︷︷︸
R5

}

can be denoted by p = (3, 0, 2, 0, 1, 0). For simplicity, we also denote the “normalized support”

for the same profile similarly, e.g., p = (0.5, 0, 0.3̄, 0, 0.16̄, 0).

Consider two disjoint finite sets of agents N,N ′, and preference profiles P ∈ L(A)n, and

P ′ ∈ L(A)n
′
. Then, P̄ = (P, P ′) ∈ L(A)n+n′ denotes the merging of two profiles, i.e, P̄ (i) = P (i)

if i ∈ N and P̄ (i) = P ′(i) if i ∈ N ′. If P and P ′ are such that there exists a bijection σ : N ↔ N ′

such that P (i) = P ′(σ(i)) for all i ∈ N , then we call P̄ = (P, P ′) as a two-fold replica of P and

denote it by 2P . The definition naturally extends to all c-fold replicas cP of P , for any c ≥ 2 for

c ∈ N.

Given any finite N ( N and any A ( A, a delegation rule ϕ is a social welfare correspondence

which assigns every preference profile P ∈ L(A)n a nonempty subset of preferences ϕ(P ) ⊆ L(A),

interpreted as the set of delegates or the delegation for this society.

2.2 Conditions

Next, we introduce some conditions on how to choose a delegation. Unless otherwise mentioned,

we assume the conditions to hold for all set of alternatives, A ( A, and for all set of agents,

N ( N . The first condition requires that if everyone prefers an alternative over another, then no

delegate should say otherwise.

Definition 1. Pareto optimality: A rule ϕ is Pareto Optimal whenever for all P ∈ L(A)n and

for all a, b ∈ A, if for all i ∈ N , (a, b) ∈ P (i), then for all R ∈ ϕ(P ), (a, b) ∈ R.

8Kemeny (1959) introduced this distance. For a recent, improved characterization, see Can and Storcken (2013).
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The second condition we impose concerns merging of two societies each endowed with the

same delegation. In such situations, the delegation assigned to the merged society should remain

the same. This concept is well known in many contexts under varying names with slight changes,

including reinforcement, homogeneity9, etc.

Definition 2. Consistency: A rule ϕ is consistent whenever for any two disjoint finite sets

N,N ′ ( N (with cardinality n and n′ respectively) and for profiles, P ∈ L(A)n and P ′ ∈ L(A)n
′
,

if ϕ(P ) = ϕ(P ′) then ϕ((P, P ′)) = ϕ(P ) = ϕ(P ′).

The third condition we impose concerns variable alternative scenarios, wherein the fixed set

of individuals face more issues to report their preferences on. Consider, for instance, two sets of

alternatives A ( Ā such that |A| = 3 and |Ā| = 4. Consider two profiles on these sets with the

following frequency supports:

P ∈ L(A)n with p = (3, 2, 1, 0, 0, 0) and P̄ ∈ L(Ā)n with p̄ = (0, 1, 2, 3, 0, . . . , 0)︸ ︷︷ ︸
20 entries

Note that the nonzero entries in each vector are identical (except for the shuffling). Our

condition requires that shuffling the support for preferences should shuffle the delegates in

the exact same way.10 Formally, given A ⊆ Ā ( A, a profile P ∈ L(A)n and an injection11

π : {1, 2, . . . , |A|!} → {1, 2, . . . , |Ā|!}, we say P̄ ∈ L(Ā)n is an “expansion of P by π” if for all

i ∈ {1, 2, . . . , |A|!} we have pi = p̄π(i). We consider such profiles P, P̄ to have equivalent ballots

and call π as a corresponding injection.12

Definition 3. Ballot neutrality: A rule is ballot neutral whenever for any P ∈ L(A)n, P̄ ∈
L(Ā)n with equivalent ballots, and for any corresponding injection π, we have:

Ri ∈ ϕ(P ) if and only if R̄π(i) ∈ ϕ(P̄ ).

We provide an example in Appendix A.2 to demonstrate this condition.13 Next, we show that

ballot neutrality, together with Pareto optimality, implies that the delegation can only be chosen

from preferences that are reported. Thus we do not have to worry about finding a delegate whose

role would be to represent some “compromised” preference. Let RP (P ) = {R ∈ L(A) | p(R) > 0},
denote the set of reported preferences, preferences which are reported by at least one agent in

profile P .

9Homogeneity is a milder version of this concept, which requires that result would be insensitive to replicating

the population (Fishburn, 1977).
10This condition is, in fact, an amalgamation of two well-known conditions, neutrality and anonymity, and stronger

than both.
11For A = Ā, π is a permutation.
12There may be more than one corresponding injection for two equivalent ballots.
13Note that the definition of ballot neutrality even extends to profiles on two disjoint sets of alternatives. For

instance, let A = {x, y, z} and B = {a, b, c}, and consider two profiles P ∈ L(A)n and P̄ ∈ L(B)n with identical

ballots. Consider expansions of P and P̄ , say P ′ and P̄ ′ respectively, to A ∪B by some injection. Ballot neutrality

applies between P and P ′ (and between P̄ and P̄ ′). By construction, P ′ and P̄ ′ have equivalent ballots. Therefore

ballot neutrality applies between P ′ and P̄ ′. This, in turn, imposes ballot neutrality between P and P̄ .
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Proposition 2.1. If a rule ϕ satisfies Pareto optimality and ballot neutrality, then for all

P ∈ L(A)n, ϕ(P ) ⊆ RP (P ).

Proof. The proof is in Appendix B.1.

The following remark says that we can always find an expansion for a profile in which delegates

and non-delegates are clustered, that is, each agent whose preference is not in the delegation will

prefer any non-delegate to any delegate. In other words, every agent who supports a preference

which is not part of the delegation would like to enlarge the delegation set.

Let us extend our definition of injections to sets of preferences. Given A ⊆ Ā ( A and any

injection π : {1, 2, . . . |A|!} → {1, 2, . . . |Ā|!}, and any X ⊆ L(A),

π(X) = {R̄π(i) ∈ L(Ā) | Ri ∈ X}.

Remark 2.1. Note that, since A is infinite, for any A ( A, for any preference profile on A and

for any two disjoint sets X,Y ( L(A), we can always find an expansion P by some π of the initial

preference profile such that the injections of the two sets X and Y (denoted respectively by π(X)

and π(Y )), form clusters that are “far away” from each other. Formally:

max
R,R′∈π(X)

δ(R,R′) < min
R∈π(X),R′∈π(Y )

δ(R,R′)

(The example in Appendix A.3 illustrates how this remark is implemented.)

Our third condition, strategy-proofness, implies that no agent should “benefit” from mis-

reporting his preference, i.e., truth telling is a weakly dominant strategy. We say an agent i

weakly prefers a delegate R1 to another delegate R2, whenever P (i) is weakly closer to R1 than

it is to R2 in terms of the Kemeny distance, i.e., δ(P (i), R1) ≤ δ(P (i), R2). Similarly, we say

an agent i weakly prefers a delegation D1 to another delegation D2, whenever P (i) is weakly

closer to the most preferred delegate in D1 than it is to the most preferred delegate in D2, i.e.,

min{δ(P (i), R1) | R1 ∈ D1} ≤ min{δ(P (i), R2) | R2 ∈ D2}. Strategy-proofness means that every

agent weakly prefers the delegation they get under true preferences to any delegation they achieve

by misreporting. In other words, there is no possibility of misreporting and getting a new delegate

in the delegation which is closer to the agent’s preference. Here, we take the closest delegate

as the only relevant one for the agents, meaning agents do not care about the distance to other

delegates.14 We first discuss the usual individual strategy-proofness and afterward the coalitional

version of it. In the sequel we shall only use the former. However, we show later in Proposition 2.2

that the latter is implied by the former under ballot neutrality.

Definition 4. Strategy-proofness: A rule ϕ is strategy-proof whenever for all i ∈ N and for

all P ∈ L(A)n, there exists no P ′ = (P ′(i), P (N \ {i})) ∈ L(A)n such that

min
R∈ϕ(P )

δ(P (i), R) > min
R∈ϕ(P ′)

δ(P (i), R).

14Here we do not assume any negative externality in representativeness, i.e., agents only care about the delegate(s)

that are closest to them in terms of representation. Note, however, that other methods, e.g., averaging the distances

to set D, or taking the median preference in D would give perfectly valid but different scenarios of representation.
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Definition 5. Coalitional strategy-proofness: A rule is coalitional strategy-proof whenever

for all coalitions S ⊆ N and for all P ∈ L(A)n, there exists no P ′ = (P ′(S), P (N \ S)) ∈ L(A)n

such that:

min
R∈ϕ(P )

δ(P (i), R) > min
R∈ϕ(P ′)

δ(P (i), R)

for all i ∈ S.

Remark 2.2. Note that our individual strategy-proofness concept is essentially different than

that of Bossert and Storcken (1992) and of Athanasoglou (2016). We allow multiple preferences in

the outcome (in the case of single-valued delegation rules they are equivalent). A recent paper by

Bossert and Sprumont (2014) differs from the former two interpretations since the manipulation is

based on a concept known as betweenness (see also Grandmont (1978), Kemeny (1959), and Sato

(2013)). In their interpretation, an agent can benefit only when the outcome is manipulated to

somewhere between herself and the preference corresponding to truth telling. In our interpretation

agents can benefit when the outcome is manipulated to anywhere, resulting a closer preference.

This makes the strategy-proofness we propose, ceteris paribus, stronger and harder to satisfy. We

provide an example in Appendix A.1 which is strategy-proof in the sense of Bossert and Sprumont

(2014), but not in the way we interpret it.

Next, we show that under ballot neutrality strategy-proofness implies coalitional strategy-

proofness. We use this implication throughout the proofs.

Proposition 2.2. If a rule ϕ is strategy-proof and ballot neutral, then it is also coalitional

strategy-proof.

Proof. Let ϕ be a strategy-proof and ballot neutral rule. For any A ( A, any N ( N and any

P ∈ An, and for any S ⊆ {i ∈ N | P (i) 6∈ ϕ(P )}, let us denote any deviation from P by agents in

S as P ′ = (P ′(S), P (N \ S)). Let W = ϕ(P ) and O = L(A) \ ϕ(P ) denote a partition of L(A).

By Remark 2.1, there exists an expansion of P by π, say P̄ , where W̄ = π(W ) and Ō = π(O)

such that

max
R̄,R′∈Ō

δ(R̄, R′) < min
R̄∈Ō,R′∈W̄

δ(R̄, R′). (2.1)

Consider any enumeration of i ∈ S, i.e. S = {1, 2, ..., s}. Let us construct expanded profiles,

P̄0, P̄1, . . . , P̄s, with P̄0 = P̄ , P̄s = P̄ ′ (the expansion of P ′ by π, i.e., P̄ ′ = (P̄ ′(S), P̄ (N \ S)), and

for all i ∈ {1, 2, . . . , s}, P̄i = (P̄ ′({1, 2, . . . , i}), P̄ (N \ {1, 2, . . . , i})). This is a formalization of the

idea that any deviation by a coalition can be constructed as a result of consecutive unilateral

deviations by a sequence of agents.

By Proposition 2.1, ϕ(P̄i) ⊆ RP (P̄i) for all i ∈ {1, 2, . . . , s}. Note that from P̄0 to P̄1,

there cannot be a preference R̄ ∈ Ō that becomes a new delegate for P̄1. This is because by

Inequality 2.1, we have that for all R′ ∈ W̄ , δ(R̄, P̄ (1)) < δ(R′, P̄ (1)) and this would contradict

individual strategy-proofness. A similar argument holds from P̄i to P̄i+1 for any i ∈ {1, 2, . . . , s−1}.
As the choice of enumeration of agents in S is arbitrary, eventually this implies that there exists no
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R̄ ∈ Ō such that R̄ ∈ ϕ(P̄s). As P̄s = P̄ ′, and P̄ ′ is an expansion of P ′, then there exists no R ∈ O,

such that R ∈ ϕ(P ′), since there exists no R̄ ∈ O with R̄ ∈ ϕ(P̄ ′). Then ϕ(P ′) ⊆W = ϕ(P ). As

ϕ(P ′) is a subset of ϕ(P ), this implies that no agent in S has become strictly better off, i.e.,

There exists no i ∈ S such that min
R∈ϕ(P )

δ(P (i), R) > min
R∈ϕ(P ′)

δ(P (i), R).

Since all agents whose preferences are already included in the delegation, i.e, P (i) ∈W has

distance of zero to the delegation, they will not have any incentive to deviate or to join a coalition.

This means that there cannot be any coalition S which can successfully manipulate.

3 Using thresholds for delegation rules

In this section, we introduce a large class of delegation rules which we call as threshold rules.

Every threshold rule is associated with a particular threshold function which we introduce below.

Thereafter we show that the rules are well-defined and provide some examples within this special

class of delegation rules.

Definition 6. Threshold Function: A threshold function is a function denoted by f : Z+ →
(1

2 , 1] ∩Q such that for all t:

f(t) ≥ f(t− 1) + 1

2
.

These functions simply assign a threshold for each possible delegation of size t. Let us

introduce some additional notation to define the threshold rules. Given any P ∈ L(A)n, consider

an enumeration which orders preferences according to their support from the agents from the

strongest to weakest, i.e., pi ≥ pi+1. For example, p = (0.5, 0.3̄, 0.16̄, 0, 0, . . . , 0) denotes the

normalized support for P . Let us also denote the corresponding preferences as R1, R2, . . . , R|A|

i.e., R1 is the preference with the strongest support and so forth.15 Then we can define the

cumulative support ρ as the cumulative vector of p, i.e., for all i, ρi = p1 + . . .+ pi. For instance,

the cumulative support for the aforementioned P is: ρ = (0.5, 0.83̄, 1, 1, . . . , 1).

We first introduce the threshold rules as an algorithm, then proceed with the formal definition.

Take any profile P and the cumulative support for it as ρ. Consider any threshold function f .

Let R1, R2, . . . R|A| denote an ordering of preferences according to their support, with ties

broken arbitrarily.

Step 1: Check whether ρ1 ≥ f(1). If yes, ϕf (P ) = {R1} and the algorithm stops.

Otherwise, go to the next step.

15Note that some preferences in profiles might have equal support with a tie. In that case, the enumeration of

those preferences can be chosen arbitrarily.
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Step 2: Check whether ρ2 ≥ f(2). If yes, ϕf (P ) = {R1, R2} and the algorithm stops.

Otherwise, go to the next step.
...

Step t: Check whether ρt ≥ f(t). If yes, ϕf (P ) = {R1, R2, R3, . . . , Rt} and the algorithm

stops. Otherwise, go to the next step.
...

Note that the algorithm stops after finite steps since we are dealing with a finite subset A of

A. Next, we propose the formal definition. Again, given any profile P , we use the enumeration

R1, R2, . . . R|A| which orders according to the size of the support.

Definition 7. Threshold Rule: Given a threshold function f and P ∈ L(A)n, a threshold rule

is ϕf (P ) = {R1, R2, . . . , Rt∗} where t∗ = arg min
t
{t ∈ Z+ | ρt ≥ f(t)}.

Thus the threshold rule select the lowest number of delegates at which the relevant threshold

for total support is reached. However, there are two immediate concerns about these delegations

rules. The first is whether we can always find a delegation that exceeds the threshold. The second

is what happens when the algorithm stops at t∗, where two preferences have equal support, i.e.,

pt∗ = pt∗+1 and Rt∗ ∈ ϕf (P ) but Rt∗+1 6∈ ϕf (P ). We address both concerns in Proposition 3.1

which shows that the rules are well-defined.

Proposition 3.1. For all A ( A, N ( N , P ∈ L(A)n, and all threshold functions f , the threshold

rule ϕf (P ) is well-defined.

Proof. The proof is in Appendix 3.1.

Example 3.1. We will show four different delegation rules that are their threshold rules in the

case of three alternatives. Let us consider the three different preference profiles, P 1, P 2, and P 3

denoted below by the normalized support (on the left side) and the cumulative support (on the

right side) for preferences. Note that for the sake of simplicity we use profiles with the same

enumeration wherein the support for Ri is decreasing in i.

p1 = (0.31, 0.29, 0.29, 0.11, 0, 0) ρ1 = (0.31, 0.6, 0.89, 1, 1, 1)

p2 = (0.78, 0.12, 0.1, 0, 0, 0) ρ2 = (0.78, 0.9, 1, 1, 1, 1)

p3 = (0.55, 0.12, 0.11, 0.11, 0.11, 0) ρ3 = (0.55, 0.67, 0.78, 0.89, 1, 1)

The visualizations which is provided below capture the essence of threshold rules. Even though

neither cumulative supports nor the relevant thresholds for each cardinality are continuous values,

connecting discrete values via lines makes visualization easier. In the following graphs, the first

number of delegates that a cumulative support is above the corresponding threshold indicates the

number of delegates in the delegation.
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Throughout these examples, let us denote the threshold function as f = (., . . . , 1, . . .), where

the ith entry corresponds to f(i). Since this function is increasing and has the bound of 1, once

the value of 1 is reached, all further values is equal to 1.

• The first rule, ϕ1 is defined by the threshold function f1 = (0.51, 0.76, 0.89, 0.95, 1, . . .). This

rule checks whether the total support for some delegation reaches the relevant threshold for

the size of the delegation, and if it does, picks that delegation with the smallest number of

delegates.

• The second rule we deal with, ϕ2 is characterized by the threshold vector, f2 = (0.51, 1, . . .).

This rule checks whether there exists any preference that is supported by more at least 51%

of the agents and if it is the case makes it the singleton delegate. If it is not the case, the

rule picks all reported preferences instead.

• The third rule we deal with, ϕ3 is characterized by the threshold vector, f3 = (0.6̄, 1, . . .).

This rule checks whether there exists any preference that is supported by more at least

two-thirds of the agents (a.k.a. qualified majority), and if it is the case, then makes it the

singleton delegate. If it is not the case, the rule picks all reported preferences instead.

• The last rule we deal with, ϕ4 is the reported preference rule RP (P ), which chooses all

preferences reported. The relevant threshold vector is f4 = (1, . . .), i.e. the total support for

any delegation should be at least 100%.

Visualizations of the rules and the delegations for each example profile is provided below. The

bold numbers for ρi, indicates that Ri is a chosen delegate for the profile p under the rule ϕf .
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f1 = (0.51, 0.76, 0.89, 0.95, 1, . . .)

ρ1 = (0.31,0.6,0.89, 1, 1, 1)

ρ2 = (0.78, 0.9, 1, 1, 1, 1)

ρ3 = (0.55, 0.67, 0.78, 0.89, 1, 1)

As it can be seen from the graph, ϕ1(P 1) = {R1, R2, R3}, while ϕ1(P 2) = ϕ1(P 3) = {R1}.
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f2 = (0.51, 1, . . .)

ρ1 = (0.31,0.6,0.89,1, 1, 1)

ρ2 = (0.78, 0.9, 1, 1, 1, 1)

ρ3 = (0.55, 0.67, 0.78, 0.89, 1, 1)

As it can be seen from the graph, ϕ2(P 1) = {R1, R2, R3, R4}, while ϕ2(P 2) = ϕ2(P 3) = {R1}.
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ρ2 = (0.78, 0.9, 1, 1, 1, 1)

ρ3 = (0.55,0.67,0.78,0.89,1, 1)

As it can be seen from the graph, ϕ3(P 1) = {R1, R2, R3, R4}, ϕ3(P 2) = {R1}, and ϕ3(P 3) =

{R1, R2, R3, R4, R5}.
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f4 = (1, . . .)

ρ1 = (0.31,0.6,0.89,1, 1, 1)

ρ2 = (0.78,0.9,1, 1, 1, 1)

ρ3 = (0.55,0.67,0.78,0.89,1, 1)

As it can be seen from the graph, ϕ4(P 1) = {R1, R2, R3, R4}, ϕ4(P 2) = {R1, R2, R3}, and

ϕ4(P 3) = {R1, R2, R3, R4, R5}.

4 Characterization of the threshold delegation rules

In this section, we show that the conditions of Pareto optimality, consistency, ballot neutrality,

and strategy-proofness characterize the class of delegation rules which we explained in the previous

section. We show that these conditions lead to some implications concerning the behavior of the

delegation rules. The first four lemmas shape the structure of the rules concerning the support of

delegates. Another four lemmas prove the existence of a series of critical thresholds for choosing

delegates and set forth the structure of these thresholds. We conclude the section with our main

theorem which states that the only rules satisfying the conditions we demand are the threshold

delegation rules.

4.1 Delegates and their support in the society

In what follows, Lemma 4.1 shows that if a preference is chosen as a delegate, then any other

preference with stronger support in the society should also be chosen. Lemma 4.2 argues that

rules should only care about the percentage of the support, i.e., only the normalized support of

preference profiles matter. Lemma 4.3 proves that i) equal redistribution of the total support for

the delegates among themselves does not change the delegation, and ii) equal redistribution of the

total support for the rest among themselves also does not modify the delegation.

Lemma 4.1. If a rule ϕ satisfies consistency, ballot neutrality, and strategy-proofness, then for

all A ( A, N ( N and P ∈ L(A)n if R ∈ ϕ(P ) and p(R′) ≥ p(R), we have R′ ∈ ϕ(P ).

Proof. The proof is in Appendix B.3.
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This lemma and Proposition 2.1 implies that any rule satisfying these conditions will have a

delegation composed of preferences with relatively higher support compared to preferences that

are not in the delegation. The following lemma proves the delegations to be the same for two

different societies with identical normalized supports. Let p/n = (p1n ,
p2
n , . . . ,

p|A|!
n ) denote the

normalized support.

Lemma 4.2. If a rule ϕ satisfies consistency and ballot neutrality, then for all A ( A, N,N ′ ( N
and for all P ∈ L(A)n, P ′ ∈ L(A)n

′
such that p/n = p′/n′, we have ϕ(P ) = ϕ(P ′).

Proof. The proof is in Appendix B.4.

The following lemma proves that neither averaging between supports of chosen delegates nor

averaging between supports of non-delegates will change the delegation.

Lemma 4.3. If a rule ϕ satisfies consistency and ballot neutrality, then for all A ( A, N ( N
and P ∈ L(A)n, denoting |ϕ(P )| = t, and picking an enumeration on L(A) such that pi ≥ pj for

all i < j, the following holds:

i) For any P ′ ∈ L(A)n such that
p′j
n =

t∑
i=1

pi
nt for all j ∈ {1, 2, . . . , t} and

p′j
n =

pj
n for all

j ∈ {t+ 1, t+ 2, . . . , |A|!} we have ϕ(P ) = ϕ(P ′).

ii) For any P ′′ ∈ L(A)n such that
p′′j
n =

pj
n for all j ∈ {1, 2, . . . , t} and

p′′j
n =

|A|!∑
i=t+1

pj
n(|A|!−t) for all

j ∈ {t+ 1, t+ 2, . . . , |A|!} we have ϕ(P ) = ϕ(P ′′).

Proof. The proof is in Appendix B.5.

Example 4.1. As an example for those two cases, let us take some A with |A| = 3. Let us take

P ∈ L(A)n with support p = (8,7,6, 3, 0, 0) where bold numbers indicate the support for the

chosen delegates. As an example for two subcases of the Lemma 4.3, let us take P ′, P ′′ ∈ L(A)n

with supports p′ = (7, 7, 7, 3, 0, 0), p′′ = (8, 7, 6, 1, 1, 1) respectively. Then, Lemma 4.3 implies

ϕ(P ) = ϕ(P ′) = ϕ(P ′′) = {R1, R2, R3}.

Remark 4.1. Using permutations and merging as in the proof of Lemma 4.3, it is straightforward

to see that the lemma also applies to any subset of delegates or non-delegates. That is, averaging

between supports of some subset of chosen delegates or some subset of non-delegates will not

change the delegation.

In the next lemma, we show that if a preference is chosen as a delegate, it must have more

support than the total support for all the preferences which are not in the delegation. This is

mainly due to the strategy-proofness condition.

Lemma 4.4. If a rule ϕ satisfies ballot neutrality and strategy-proofness, then for all A ( A,

N ( N , and P ∈ L(A)n if R ∈ ϕ(P ), then we have

p(R) >
∑

R′ 6∈ϕ(P )

p(R′).

Proof. The proof is in Appendix B.6.
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4.2 When to choose a delegate, and when not to?

As seen in the previous four lemmas, any well-defined delegation rule satisfying the conditions of

Pareto optimality, consistency, ballot neutrality, and strategy-proofness takes the most supported

preference in the delegation. However, for this preference to be the only delegate, it has to be really

powerful, i.e., powerful enough to eliminate all the other opinions. We need a new tool to capture

this. Take any ϕ which satisfies all the conditions. Categorize all P ∈ L(A)n for any N ( N
and A ( A according to the size of the delegations as follows: Pt = {P ∈ L(A)n | |ϕ(P )| = t}.
Lemma 4.1 and 4.2 imply that we only have to focus on the normalized support of the profiles

from stronger to the weaker. Therefore, we can define a vector for this ϕ for any A ( A as

kϕ(A) = [k1, k2, . . . . , k|A|!] ,where each kt = min
P∈Pt

(
t∑
i=1

pi)/n.

To ease the notation, we will omit ϕ from kϕ whenever it is clear. Furthermore, by ballot

neutrality, we know that for these rules the vector k is the same for every A with equal cardinality.

To understand these vectors, consider all profiles which end up with a single delegate under ϕ.

Then k1 gives us the relative support of the delegate with minimal value, among all the profiles

with a single delegation. Similarly, ki gives the total relative support of the delegation with the

minimal value, among all the profiles with a delegation of size i. In what follows, we discuss some

features of these vectors.

Lemma 4.5 shows how ki values relate to one another. Lemma 4.6 shows if a preference has

more relative support than k1 it has to be chosen uniquely. Lemma 4.7 shows how the choice

of delegates depends on k in general. Finally, Lemma 4.8 shows how the vectors for sets of

alternatives of different sizes relate to each other.

Lemma 4.5. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, and N ( N the corresponding vector satisfies that kϕt (A) ≥ kϕt−1(A)+1

2

for all t ∈ {2, 3, . . . , |A|!}.

Proof. The proof is in Appendix B.7.

In the following two lemmas, Lemma 4.6 and 4.7, we assume an enumeration which orders

preferences according to their support from the agents from the strongest to weakest, i.e., pi ≥ pj
for all i < j. Lemma 4.6 shows that for profiles in which a strongest single preference has a

relative support p1/n more than k1, the delegation should only consist of this preference, R1.

Lemma 4.7 extends this to larger delegation sizes, i.e., the delegation should comprise of the first

t strongest preferences whose relative total support surpasses their corresponding threshold kt

while no smaller subdelegation satisfies this.

Lemma 4.6. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, N ( N and for any P ∈ L(A)n such that p1 ≥ nkϕ1 (A), we have

that ϕ(P ) = {R1}.
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Proof. The proof is in Appendix B.8.

Lemma 4.7. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, N ( N and for any P ∈ L(A)n such that

i) for some t > 1,
t∑
i=1

pi ≥ nkϕt (A) and,

ii) for all l < t,
l∑

i=1
pi < nkϕl (A)

we have: ϕ(P ) = {R1, R2, . . . , Rt}.

Proof. The proof is in Appendix B.9.

The next lemma shows that the corresponding vectors of the rules are independent of the

number of alternatives.

Lemma 4.8. If a rule ϕ satisfies ballot neutrality, then for any A ( Ā ( A, the corresponding

vector satisfies that kϕ(A)t = kϕ(Ā)t for all t ∈ {1, 2, . . . , |A|!}.

Proof. The proof is in Appendix B.10.

Note that Lemma 4.8 has further implications. In fact, for any two sets of alternatives, A,B

the kϕ(A)t and kϕ(B)t values will always correspond to each other. That can be achieved by

extending each of the sets to A ∪B by separately by implementing the lemma above.

Next, our main theorem finalizes the result by showing there is only one class of delegation

rules, i.e., the threshold rules, associated with a threshold function that satisfies all the conditions

we have imposed.

Theorem 4.1. A rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness if and only if for all A ( A, N ( N and P ∈ L(A)n we have that ϕ(P ) = ϕf (P ) for

some threshold function f .

Proof. We leave the if part to the reader and prove the only if part. Proposition 2.1 and Lemma 4.1

together imply that only preferences with higher support will be assigned as delegates as opposed

to those with lower support. Lemma 4.2 implies that the degree of this relative power will be

independent of the number of agents. Lemma 4.3 states that averaging of supports for delegates

will not change the delegation. This implies that only the normalized supports for the delegations

matter.

Given any rule ϕ satisfying the conditions, we can then construct a corresponding vector k(A)

where the ith entry is the minimum support needed for a delegation of size i across all preference

profiles on A. By consistency, k is constant across all possible subsets of agents N ( N , and by

Lemma 4.8, k(A)i = k(B)i, i.e., k is also constant across all possible sets of alternatives A ( A.

Hence, regardless of the domain of the delegation rule, one can construct a function f on positive
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integers such that f(i) = ki for all possible delegations of size i. By Lemma 4.4, we have that

f(1) > 1/2. By Lemma 4.5, for all t > 1 we have that

f(t) ≥ f(t− 1) + 1

2
.

Thus, by construction, f : Z+ → (1
2 , 1]∩Q is the unique threshold function induced by ϕ as in

Definition 6, and hence ϕ = ϕf is a threshold delegation rule.

5 Conclusion

This paper brings about a novel class of rules for choosing a delegation, characterized by intuitive

fairness, efficiency, and non-manipulability properties. The nature of these threshold delegation

rules is such that they provide a good compromise in at least three aspects, inclusivity, minimalism,

and non-manipulability. Inclusivity is often deemed as crucial since it results in the legitimacy

of the political settlement (Dudouet and Lundström (2016)). Minimalism, in the sense that

not everyone can be invited to the table, is an important parameter of simplicity of design in

conflict resolution. Finally, non-manipulability of a delegation rule is essential so that people’s

true opinions are always reflected in the conflict resolution, preventing further re-escalation of

post-truce conflicts.

As hinted in the abstract, the lower bound of all the threshold rules follow a well-known

elementary geometric series related to Zeno’s Dichotomy (somehow also related to Aristotle’s story

on Achilles and the Tortoise). Let t denote the size of the delegation, and f denote a threshold

function. Then all the threshold functions obey the following lower bounds:

f(t) >
1

2
+

(
1

2

)2

+ . . .+

(
1

2

)t
=

t∑
i=1

(
1

2

)i
.

On top of this common lower bound feature, each of the threshold rules we characterize differs

in the amount of representation they require from a delegation. For instance, if a single delegate is

sent by the rule to the table, then that delegate, and the opinion she represents must have strictly

more than 50% support in the society. However, let us consider a more demanding threshold rule,

such as one that requires a 60% for a single delegate representation. In that case, the minimal

required support for a delegation of size 2 becomes “at least” 80% (averaging 60% and 100%).

The thresholds for larger delegations quickly increase by averaging each threshold with 100% to

find the next threshold, making it harder for small delegations to reach. Therefore, these rules are

fairly inclusive in most of the cases. In addition to that, the more fragmented the society gets, the

more inclusive the rules become.

There are directions that we foresee for future research concerning the delegation choice. For

instance, our selection of minimal Kemeny distance as a measure of representation of agents leads

to a particular definition of strategy-proofness, which implies non-externality in representation.

That is, we define a manipulation to be beneficial for an individual when the individual can

successfully alter the “minimal distance” to the delegation. This interpretation implies that agents
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do not benefit or get harmed by other farther opinions in the delegation. Of course, one might

define strategy-proofness as the inability of individuals to manipulate the “average distance to

the delegation” or “distance to the farthest delegate” instead. Both these interpretations include

externality in representation, i.e., introducing additional delegates might reduce the representation

of agents.

Another direction is the choice of metric used to define strategy-proofness. Although Kemeny

distance is quite standard in the literature, one might employ other metrics to see the robustness

of these findings. We would like to note, however, that none of our proofs uses the properties of

Kemeny distance specifically. As long as the clustering result in Remark 2.1 can be reached, we

expect that our results can be generalized. We suspect that any metric that satisfies a minimal

set of common features/axioms16 will lead to similar results.

We conclude our paper by suggesting the policy makers that next time a peace delegation, a

committee or a board of size t is summoned from different opinions, then the ratio of uninvited

opinions should be less than (0.5)t of the population, e.g., if only 3 delegates are invited, then

uninvited groups should account for less than 12.5% of the population. This gives us a minimal

bound for inclusivity, furthermore can help us to quantify “negligible minorities”.

16We suspect one of this particular axioms to be the betweenness axiom introduced in Kemeny (1959)
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A Examples

A.1 Example for showing the Kemeny rule is not strategy-proof

Example A.1. Given a profile P ∈ L(A)n, a preference R is a Kemeny ranking for P, if for all

R′ ∈ L(A), we have that
∑

i∈N δ(R,P (i)) ≤
∑

i∈N δ(R
′, P (i)). A rule which assigns all Kemeny

rankings to each profile is called the Kemeny rule. More formally, the Kemeny rule, denoted by

ϕK , assigns to a profile P ∈ L(A)n: ϕK(P ) = {R ∈ L(A) | R is a Kemeny ranking for P}.
Our counterexample is just with 4 alternatives, and 11 agents. P is as follows:

d d d a c c a b b b b

a a a d a a b c c c c

b b c c b b d d d d a

c c b b d d c a a a d

It can be seen that ϕ(P ) = {abcd}. δ(abcd, bcad) = 2. The last agent can manipulate to

reach the following P ′:

d d d a c c a b b b b

a a a d a a b c c c c

b b c c b b d d d d d

c c b b d d c a a a a

It can be seen that ϕ(P ′) = {bcda}. δ(bcda, bcad) = 1. So, the last agent is in a better

position with reporting a false profile. So, even though both the Kemeny rule and our strategy-

proofness condition is defined upon minimal Kemeny distance, we show that the Kemeny rule is

not strategy-proof.

A.2 Example for a rule which is Ballot Neutral

Example A.2. Let us take two sets, A and B with A ( Ā , |A| = 3 and |Ā| = 4. Let us have 7

agents. For this example, we use the lexicographic enumeration where alternatives are ordered

with their place in the alphabet, so R1 = abc, R2 = acb and so on, and R̄1 = abcd, R̄2 = abdc and

so on.

Let us define P ∈ L(A)7 as

a a a a a b b

b b b c c a c

c c c b b c a

Here, p = (3, 2, 1, 1, 0, 0).
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Take some ϕ where ϕ(P ) = {abc} = {R1}. Next, we define P̄ ∈ L(Ā)7 as

a a a a a a a

b b b b b c c

c c c d d b d

d d d c c d b

Here, p̄ = (3, 2, 1, 1, 0 0. . . 0︸ ︷︷ ︸
20 zeros.

).

There is an injective function from A to Ā that satisfies our condition. For π(t) = t, we

have pt = p̄π(t) = p̄t for all t ∈ {1, 2, . . . , 6}. So, for ϕ to satisfy ballot neutrality, we must have

ϕ(P̄ ) = {R̄π(1)} = {R̄1} = {abcd}.
Or, since ballot neutrality is binding two ways, we can claim that if ϕ(P̄ ) = {abcd} = {R̄π(1)} =

{R̄1}, then we must have that ϕ(P ) = {abc} = {R1}.

A.3 Example for a profile in which ballot neutrality is used to increase coali-

tional options.

Example A.3. ConsiderA = {a, b, c}, N = 16, and a profile P whose support is p = (5, 4, 3, 2, 1, 1).

If ϕ(P ) = {R1, R2, R3, R4}, then agents whose preferences are not in the delegation have distance

of 1 to the nearest delegate in all possible permutations. So, there is not a possible clustering, in

which every agent strictly prefers some other non-delegate to the closest delegate for this particular

alternative set. However, when we move to Ā = {a, b, c, d}, it is easy to see that there is such a

cluster with correct injection.

B Proofs

B.1 Proof of Proposition 2.1

Proposition 2.1. If a rule ϕ satisfies Pareto optimality and ballot neutrality, then for all

P ∈ L(A)n, ϕ(P ) ⊆ RP (P ).

Proof: Take some finite A ( A and N ( N . Take some preference profile P ∈ L(A)n with

RP (P ) ⊆ L(A). First, note that with equality, we are done. Suppose, for a contradiction, that

there exists a preference R ∈ ϕ(P ) with p(R) = 0 that is, a preference with zero support. Consider

any x ∈ A \A and let us construct the expansion of P to Ā = A ∪ x by P̄ ∈ L(Ā)n as follows: for

all i ∈ N , P̄ (i) = P (i)||x where P (i)||x = P (i) ∪ (x, x) ∪ {(a, x) | a ∈ A}, i.e., concatenation of x

with P (i). Clearly, for any a ∈ A and i ∈ N , (a, x) ∈ P̄ (i). Take any a ∈ A, and R∗ ∈ L(Ā) such

that (x, a) ∈ R∗. By Pareto optimality, R∗ 6∈ ϕ(P̄ ). Note that p̄(R∗) = 0 = p̄(R||x). Then by

ballot neutrality R||x 6∈ ϕ(P̄ ). As P̄ is an expansion of P , again by ballot neutrality, we conclude

that R 6∈ ϕ(P ).
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B.2 Proof of Proposition 3.1

Proposition 3.1. For all A ( A, N ( N , P ∈ L(A)n, and all threshold functions f , the threshold

rule ϕf (P ) is well-defined.

Proof: Let us pick some threshold function f , and consider the corresponding threshold rule

ϕf (P ). To show that the rule is well-defined, we need to show the following.

1. There is always a t that satisfies ρt ≥ f(t).

For any p ∈ L(A)n, t = |A|!, satisfies this. Since any reported preference should be within

L(A), including all preferences in the delegation ensures to have cumulative support of 1. Since

by definition any f(t) ≤ 1, we have: ρ|A|! ≥ f(|A|!). This shows that the universal set is always

guaranteed to pass the relevant threshold.

2. There is always a unique way to pick the first t preferences.

Case 1: For all distinct i, j, we have pi 6= pj .

If this is the case, powers of the preferences are well ordered, there is a unique ordering

enumeration, so there is always a unique way to pick the first t preferences.

Case 2: For some distinct i, j, we have pi = pj .

We will show that for any pi = pj it is either Ri, Rj ∈ ϕf (P ) or Ri, Rj 6∈ ϕf (P ).

First, consider the case where the number of delegates is one. In that case, we must have

ρ1 = p1
n ≥ f(1) > 1

2 . This directly shows that any enumeration has the same preference as its

first, whenever the first preference is passing the relevant threshold.

Second, consider the case when t∗ > 1. By definition, for all t > 1 we have that

f(t) ≥ 1 + f(t− 1)

2
. Multiply both sides by 2 to get

2f(t) ≥ 1 + f(t− 1). Subtract f(t) + f(t− 1) from both sides to get

f(t)− f(t− 1) ≥ 1− f(t). (B.1)

From definition of the rule, we know the following is true for some t∗:

ρt∗−1 < f(t∗ − 1), (B.2a)

ρt∗ ≥ f(t∗). (B.2b)

Multiplying both sides of B.2b by −1 and adding 1 to both sides we get

1− ρt∗ ≤ 1− f(t∗). (B.3)

Subtracting B.2a from B.2b leads to

p(t∗)

n
> f(t∗)− f(t∗ − 1). (B.4)

If we combine B.3, B.4, and B.1 we get
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p(t∗)

n
> f(t∗)− f(t∗ − 1) ≥ 1− f(t∗) ≥ 1− ρt∗ =

|A|!∑
i=t∗+1

pi
n
. (B.5)

The rightmost term is the total support for the preferences which are not part of the delegation,

where the leftmost term is the support for the weakest delegate. This implies that not only the

weakest delegate has strictly more support than the next preference, but he also has strictly more

support than the total support for non-delegates. This says that there is again a unique way to

select the topmost t preferences as delegates, even though the relevant enumeration is not unique

this time. In other words, when there is any tie between support for some preferences, by design

all of those preferences belong to the delegation or none of them.

B.3 Proof of Lemma 4.1

Lemma 4.1. If a rule ϕ satisfies consistency, ballot neutrality, and strategy-proofness, then for

all A ( A, N ( N and P ∈ L(A)n if R ∈ ϕ(P ) and p(R′) ≥ p(R), we have R′ ∈ ϕ(P ).

Proof: Suppose, for a contradiction, that there exists two preferences Rh (preference with (h)igher

support), and Rl (preference with (l)ower support) with Rl ∈ ϕ(P ) and Rh 6∈ ϕ(P ). Let p(Rh) = h

and p(Rl) = l. Without loss of generality, we can assume that h+ l is even since by consistency

we can replicate the profile once by using the two-fold replica with no changes in the delegation.

This will ensure that h− l can also be assumed to be even.

First, assume that h− l = 0. This contradicts ballot neutrality since h = l. Next, assume that

h− l = 2. In that case, an agent whose original preference is Rh may misreport Rl. Denoting the

modified profile by P ′, that will cause p′(Rh) = p′(Rl). From ballot neutrality, either both of Rh

and Rl will be in the delegation, or none will be included. If both are included, this means that

the agent deviated to his benefit, contradicting strategy-proofness. If none is included, some agent

with Rl as his original preference may report Rh to get back to the original preference profile,

resulting in Rl ∈ ϕ(P ) again, this also contradicts strategy-proofness. So for h− l = 2, we showed

that with the original preference profile, if Rl is included in the delegation, so must Rh be.

Assume that our hypothesis holds for h− l = k for some even k, that is, if Rl ∈ ϕ(P ), then

Rh ∈ ϕ(P ). Now, let h − l = k + 2. Then an agent whose original preference is Rh can report

Rl to trigger the situation with h− l = k. Since this violates strategy-proofness, we must have

Rh ∈ ϕ(P ) even when h− l = k + 2. By induction, this completes the proof.

B.4 Proof of Lemma 4.2

Lemma 4.2. If a rule ϕ satisfies consistency and ballot neutrality, then for all A ( A, N,N ′ ( N
and for all P ∈ L(A)n, P ′ ∈ L(A)n

′
such that p/n = p′/n′, we have ϕ(P ) = ϕ(P ′).

Proof: From consistency, we know that ϕ(P ) = ϕ(2P ) = ϕ(3P ) = . . . = ϕ(nP ). So, ϕ(P ) =

ϕ(n′P ) and ϕ(P ′) = ϕ(nP ′). Since n′p = np′, ballot neutrality implies that ϕ(n′P ) = ϕ(nP ′),

completing the proof.
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B.5 Proof of Lemma 4.3

Lemma 4.3. If a rule ϕ satisfies consistency and ballot neutrality, then for all A ( A, N ( N
and P ∈ L(A)n, denoting |ϕ(P )| = t, and picking an enumeration on L(A) such that pi ≥ pj for

all i < j, the following holds:

i) For any P ′ ∈ L(A)n such that
p′j
n =

t∑
i=1

pi
nt for all j ∈ {1, 2, . . . , t} and

p′j
n =

pj
n for all

j ∈ {t+ 1, t+ 2, . . . , |A|!} we have ϕ(P ) = ϕ(P ′).

ii) For any P ′′ ∈ L(A)n such that
p′′j
n =

pj
n for all j ∈ {1, 2, . . . , t} and

p′′j
n =

|A|!∑
i=t+1

pj
n(|A|!−t) for all

j ∈ {t+ 1, t+ 2, . . . , |A|!} we have ϕ(P ) = ϕ(P ′′).

Proof: i) Let P and p = (p1, p2, . . . , p|A|!) be as in the Lemma with |ϕ(P )| = t and P ′ as

defined in the Lemma. Consider the following profiles with the same enumeration on L(A)

where p1, p2, . . . , pt rotates and bold numbers indicate the support for the chosen delegates:

P 1 ∈ L(A)n such that p1 = (pt,p1,p2, . . . ,pt−1, pt+1, pt+2, . . . , p|A|!)

P 2 ∈ L(A)n such that p2 = (pt−1,pt,p1, . . . ,pt−2, pt+1, pt+2, . . . , p|A|!)

...

P t−1 ∈ L(A)n such that pt−1 = (p2,p3,p4, . . . ,p1, pt+1, pt+2, . . . , p|A|!)

From ballot neutrality, we know that ϕ(P ) = ϕ(P i) for any i ∈ {1, . . . , t − 1}. By design,

merging all these profiles (P, P 1, P 2, . . . , P t−1) gives us tP ′, and from consistency, we get that

ϕ(tP ′) = ϕ(P ). From Lemma 4.2, ϕ(P ) = ϕ(tP ′) = ϕ(P ′) is guaranteed.

ii) Let P and p = (p1, p2, . . . , p|A|!) be as in the Lemma with |ϕ(P )| = t and P ′′ as defined

in the Lemma. Consider the following profiles with the same enumeration on L(A) where

pt+1, pt+2, . . . , p|A|! rotates and bold numbers indicate the support for the chosen delegates:

P 1 ∈ L(A)n such that p1 = (p1,p2, . . . ,pt, p|A|!, pt+1, pt+2, . . . , p|A|!−1)

P 2 ∈ L(A)n such that p2 = (p1,p2, . . . ,pt, p|A|!−2, p|A|!, pt+1, . . . , p|A|!−2)

...

P t−1 ∈ L(A)n such that pt−1 = (p1,p2, . . . ,pt, pt+2, pt+3, pt+4, . . . , pt+1)

From ballot neutrality, we know that ϕ(P ) = ϕ(P i) for any i ∈ {1, . . . , t − 1}. By design,

merging all these profiles (P, P 1, P 2, . . . , P t−1) gives us tP ′′, and from consistency we get that

ϕ(tP ′′) = ϕ(P ). From Lemma 4.2, ϕ(P ) = ϕ(tP ′′) = ϕ(P ′′) is guaranteed.
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B.6 Proof of Lemma 4.4

Lemma 4.4. If a rule ϕ satisfies ballot neutrality and strategy-proofness, then for all A ( A,

N ( N , and P ∈ L(A)n if R ∈ ϕ(P ), then we have

p(R) >
∑

R′ 6∈ϕ(P )

p(R′).

Proof: Let us denote by W = ϕ(P ) the preferences of “winning” agents, and by L = RP (P )\ϕ(P )

the preferences of “losing” agents, where RP (P ) = {R ∈ L(A) | p(R) > 0} is again the set of

reported preferences. Suppose, for a contradiction, that there exists a profile P ∈ L(A)n and a

preference Rt ∈ ϕ(P ) such that:

p(Rt) ≤
∑
R̄∈L

p(R̄).

That is, a preference Rt in the delegation has weakly less support than the total support for

all preferences of losing agents combined. By Remark 2.1, there exists an expansion of P , in which

the corresponding injections of W and L are clustered far away from each other. By the same

logic, one can find an expansion by π, say P̄ , if needed to an even larger alternative set, in which

in addition to having π(W ) and π(L) as far away clusters, Rπ(t) is relatively closer to π(L) than

to the other preferences in π(W ). Formally:

max
R,R′∈π(L)

δ(R,R′) < min
R∈π(L),R′∈π(W )

δ(R,R′) (B.6)

and for any R,R′ ∈ π(L), R̃ ∈ π(W ),

δ(R,R′) < δ(R,Rπ(t)) < δ(R, R̃) (B.7)

Now consider a transformation of this expansion, denoted by P̄ ′, where all losing agents

concentrate on a preference of a fellow losing agent, say Rs. By construction:

∑
R∈L

p(R) = p̄′(Rs)

By supposition, p̄(Rπ(t)) ≤ p̄(Rs). Note that by coalitional strategy-proofness, we have

Rs 6∈ ϕ(P̄ ′). Then we have two cases:

Case 1: If Rπ(t) ∈ ϕ(P̄ ′), then by Lemma 4.1, Rs should also be in the delegation ϕ(P̄ ′), which

is a contradiction.

Case 2: If Rπ(t) 6∈ ϕ(P̄ ′), furthermore by Inequality B.7, Rπ(t) is a favorable preference for

all agents with P̄ (i) ∈ π(L). Then the agents in L can misreport (and disperse back to their

preferences in P̄ ). As Rπ(t) ∈ ϕ(P̄ ), this contradicts strategy-proofness.
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B.7 Proof of Lemma 4.5

Lemma 4.5. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, and N ( N the corresponding vector satisfies that kϕt (A) ≥ kϕt−1(A)+1

2

for all t ∈ {2, 3, . . . , |A|!}.

Proof: Let us start with some A ( A and some t < |A|! − 1. Using consistency, we can pick

some N ( N with |N | = n divisible by all numbers up to t+ 1 without loss of generality. Let us

take a specific P ∈ L(A)n, which is defined as pi = a for all i ∈ {1, 2, . . . , t + 1} and pi = 0 for

i ∈ {t+ 2, t+ 3, . . . , |A|!}. From Proposition 2.1 and ballot neutrality, we know that the delegation

includes only the first t+ 1 preferences. Let us denote this profile as (with bold numbers indicating

the support for the chosen delegates)

p = (a,a, . . . ,a︸ ︷︷ ︸
t+1 times

, 0, 0, . . . , 0︸ ︷︷ ︸
|A|!−t−1 times

).

Now, let us deal with a modification P ′ ∈ L(A)n for this profile which is defined as p′i = a′ = nkt
t

for all i ∈ {1, 2, . . . , t}, p′t+1 = b = n(1− kt) and p′i = 0 for i ∈ {t+ 2, t+ 3, . . . , |A|!}. Since the

first t preferences have kt support in total, by definition of kt and by Lemma 4.3, we know that

the delegation includes only the first t preferences. Let us denote this profile as

p′ = (a′,a′, . . . ,a′︸ ︷︷ ︸
t times

, b, 0, 0, . . . , 0︸ ︷︷ ︸
|A|!−t−1 times

).

Another relevant modification of this profile, P ′′ ∈ L(A)n will be defined as p′′i = a′′ = n−2b
t−1 for

all i ∈ {1, 2, . . . , t}, p′′i = b = n(1− kt) for i ∈ {t, t+ 1} and p′′i = 0 for i ∈ {t+ 2, t+ 3, . . . , |A|!},
e.g. p′′ = (a′′, a′′, . . . , a′′, b, b, 0, 0, . . . , 0). By Proposition 2.1 we have that ϕ(P ′′) ⊆ RP (P ), and by

ballot neutrality either i) ϕ(P ′′) = {R1, R2, . . . , Rt+1} or ii) ϕ(P ′′) = {R1, R2, . . . , Rt−1}. Suppose,

for a contradiction, that the former is the case. Let us take the average of support for the

first t preferences to get P ′. By Remark 4.1, this should not change the delegation. However,

ϕ(P ′) = {R1, R2, . . . , Rt} 6= {R1, R2, . . . , Rt+1} = ϕ(P ′′), which is a contradiction. So, it must be

that ii) is the case, ϕ(P ′′) = {R1, R2, . . . , Rt−1}. Let us denote this profile as

p′′ = (a′′,a′′, . . . ,a′′︸ ︷︷ ︸
t−1 times

, b, b, 0, 0, . . . , 0︸ ︷︷ ︸
|A|!−t−1 times

).

By definition, kt−1 is the minimal support for all delegations with size t− 1. Since only the

first t− 1 preferences are in the delegation, total support for the first t− 1 preferences could be at

least kt−1. Then, (t− 1)a′′ = (t− 1)n−2b
t−1 = n(1− 2(1− kt)) ≥ nkt−1. After rearranging we get

that

kt ≥
kt−1 + 1

2
.
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B.8 Proof of Lemma 4.6

Lemma 4.6. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, N ( N and for any P ∈ L(A)n such that p1 ≥ nkϕ1 (A), we have

that ϕ(P ) = {R1}.

Proof: Let P ∗ ∈ L(A)n
∗

be one of the profiles where |ϕ(P ∗)| = 1 and p∗1 = n∗kϕ1 (A), i.e., one of

the profiles wherein only a single delegate is assigned whose relative support defines k1 in the

corresponding vector. Consider now any P ∈ L(A)n with p1 ≥ nkϕ1 (A). By Lemma 4.1, R1 ∈ ϕ(P )

and by ballot neutrality we can assume that ϕ(P ∗) = {R1}, i.e., the strongest ranking is the same

both in P and P ∗. Next, we show that R1 is the only delegate assigned to P , i.e., {R1} = ϕ(P ).

By consistency, we can replicate profiles P and P ∗ (n∗ and n times respectively) with no

changes in the delegation. With abuse of notation, let us denote these replicated profiles by

P, P ∗ ∈ L(A)n×n
∗
. So, we have p∗1 = nn∗kϕ1 (A) and p1 ≥ nn∗kϕ1 (A).

Suppose, for a contradiction, that ϕ(P ) ) {R1}, so there is another delegate, say Rk in the

delegation. Let us partition L(A) into two sets, X = L(A) \ {R1} and Y = {R1}. By Remark 2.1,

there exists an expansion of P by π, say P̄ , in which the injection of X, i.e., π(X) is clustered far

away from the injection of R1, i.e., Rπ(1). Formally:

max
R,R′∈π(X)

δ(R,R′) < min
R∈π(X)

δ(R,Rπ(1)) (B.8)

Note that Rπ(1) = π(Y ) and Rπ(k) ∈ π(X). Let P̄ ∗ denote the expansion of P ∗ by the same

injection, π. By ballot neutrality, i) Rπ(k) 6∈ ϕ(P̄ ∗), implying kth strongest preference of P̄ ∗ is

not in the delegation of P̄ ∗, and ii) Rπ(k) ∈ ϕ(P̄ ), implying that the kth strongest preference

of P̄ is in the delegation of P̄ . Note that as p̄∗1 ≤ p̄1, from P̄ ∗ to P̄ this means that there is a

coalition of agents moving from π(X) to Rπ(1), resulting in Rπ(k) ∈ ϕ(P̄ ). As Rπ(k) ∈ π(X),

by Inequality B.8, this contradicts coalitional strategy-proofness. Hence Rπ(k) 6∈ ϕ(P̄ ). Ballot

neutrality then implies that Rk 6∈ ϕ(P ).

B.9 Proof of Lemma 4.7

Lemma 4.7. If a rule ϕ satisfies Pareto optimality, consistency, ballot neutrality, and strategy-

proofness, then for all A ( A, N ( N and for any P ∈ L(A)n such that

i) for some t > 1,
t∑
i=1

pi ≥ nkϕt (A) and,

ii) for all l < t,
l∑

i=1
pi < nkϕl (A)

we have: ϕ(P ) = {R1, R2, . . . , Rt}.

Proof: Take any P ∈ L(A)n as defined in the lemma. As
l∑

i=1
pi < nkl for all l < t, by definiton

of the corresponding vector, we have |ϕ(P )| 6= l. This means that |ϕ(P )| ≥ t. By Lemma 4.1 we

get that ϕ(P ) ⊇ {R1, R2, . . . , Rt}. Next, we show that ϕ(P ) = {R1, R2, . . . , Rt}.
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By consistency, we can assume that
t∑
i=1

pi is divisible by t without loss of generality. By

Remark 4.1, we can take the average support for the first t preferences without changing the

delegation. Let us denote this modified profile by P ′, which is defined as p′i = a′ =
t∑
l=1

pl
t if i ≤ t

and p′i = pi if i > t.

Let P ∗ ∈ L(A)n
∗

be one of the profiles where |ϕ(P ∗)| = t,
t∑
i=1

p∗i = n∗kt, i.e., one of the profiles

wherein only the strongest t delegates are assigned whose relative total support defines kt in the

corresponding vector.

By consistency, we can assume that
t∑
i=1

p∗i is divisible by t without loss of generality. By

Remark 4.1, we can take the average support for the first t preferences without changing the

delegation. Let us denote this modified profile also by P ∗, where p∗i = a = n∗kt
t for all i ≤ t.

Using consistency, we can replicate profiles P ′ and P ∗ (n∗ and n times respectively) with

no changes in the delegation. With abuse of notation, let us denote these replicated profiles by

P ′, P ∗ ∈ L(A)n×n
∗
. By construction, the total support for the strongest t preferences in P ′ is

larger than those in P ∗, i.e., n∗a′t ≥ nat.
Suppose, for a contradiction, that ϕ(P ′) ) {R1, R2, . . . , Rt} so there is another delegate, say

Rk with k > t in the delegation. Let us partition L(A) into two sets, X = L(A) \ {R1, R2, ..., Rt}
and Y = {R1, R2, ..., Rt}. By Remark 2.1, there exists an expansion of P ′ by π, say P̄ ′, in which

the injection of Y is clustered far away from the injection of X. Formally:

max
R,R′∈π(X)

δ(R,R′) < min
R∈π(X),R′∈π(Y )

δ(R,R′) (B.9)

Note that {Rπ(1), Rπ(2), . . . , Rπ(t)} = π(Y ) and Rπ(k) ∈ π(X). Let P̄ ∗ denote the expansion of

P ∗ by the same injection, π. By ballot neutrality, Rπ(k) 6∈ ϕ(P̄ ∗) while Rπ(k) ∈ ϕ(P̄ ′). Note that

from P̄ ∗ to P̄ ′ there is a coalition of agents moving from π(X) to π(Y ), resulting in Rπ(k) ∈ ϕ(P̄ ′).

As Rπ(k) ∈ π(X), by Inequality B.9, this contradicts coalitional strategy-proofness.

B.10 Proof of Lemma 4.8

Lemma 4.8. If a rule ϕ satisfies ballot neutrality, then for any A ( Ā ( A, the corresponding

vector satisfies that kϕ(A)t = kϕ(Ā)t for all t ∈ {1, 2, . . . , |A|!}.

Proof: We denote corresponding threshold vectors as

kϕ(A) = [k1, k2, . . . , k|A|!],

kϕ(Ā) = [k′1, k
′
2, . . . , k

′
|Ā|!].

Suppose, for a contradiction, that there exist A, Ā ( A such that A ( Ā with for some

t ∈ {1, 2, . . . , |A|!}, kt 6= k′t while for all i ∈ {1, 2, . . . , t− 1}, ki = k′i. Without loss of generality,

assume that kt < k′t.
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Then we construct a profile P ∈ L(A)n and an expansion of P , by some π, denoted by P̄ such

that ρt > kt, ρt < k′t and ρi < ki for all i ∈ {1, 2, . . . , t− 1}.
By Lemma 4.6 and Lemma 4.7 we have that ϕ(P ) = {R1, R2, . . . , Rt}, while ϕ(P ′) )

{Rπ(1), Rπ(2),...,Rπ(t)}. Since ϕ(P ′) includes other elements than the image of ϕ(P ) under π,

this contradicts ballot neutrality.

C Independence of the conditions

The conditions used in the characterization were: Pareto optimality, consistency, strategy-proofness,

and ballot neutrality. Below, to put forward the logical independence of those, let us take a look

at the following four social welfare correspondences.

• All but Pareto optimality: ϕ(P ) = L(A) for any P ∈ L(A)n.

• All but consistency:

ϕ(P ) =


R, if n is odd and ∃R with p(R) > N

2

R, if n is even and ∃R with p(R) > 2N
3

RP (P ), otherwise.

• All but strategy-proofness: ϕ(P ) = {R | p(R) ≥ p(R′) for all R′ ∈ L(A)}.

• All but ballot neutrality:

ϕ(P ) =

L(A), if |L(A) \RP (P )| = 1

RP (P ), otherwise.

29


