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Abstract

Motivated by the EU concept of Pre-Commercial Procurement and the massive

presence of SMEs in the European economy, we study how budget constraints af-

fect R&D effort in sequential elimination tournaments. We show that introducing

budget constraints leads to a non-monotonicity in unconstrained contestants’ effort.

Furthermore, we show that if the budget asymmetry is not too large, unconstrained

contestants exert higher effort than when faced with unconstrained contestants only.
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1 Introduction

In this paper we study how asymmetric budget constraints affect firm behavior in se-

quential elimination tournaments. The research is motivated by a new concept called

Pre-Commercial Procurement (PCP) that has been introduced in the European Union to

stimulate innovation through public procurement.1

PCP concerns the R&D phase of an innovation and is a new approach compared to

standard auction-like practices of public procurement. An important feature of PCP

is that it is organised as a competitive stepwise process. In PCP a number of firms

enter the competition and start developing alternative solutions. At the end of each

phase, intermediate evaluations are conducted, which form the basis for the sequential

elimination of participating firms. This makes it suitable to model the procurement

process as a sequential contest game or elimination contest.

Importantly, we take into account asymmetries across firms. Paradoxically, EU public

procurement is mostly undertaken by big firms2, whereas the large majority of all busi-

nesses in the EU are small and medium-sized enterprises (SMEs)3. Moreover, SMEs are

in many cases thought to contribute importantly to innovation activities and growth4.

This raises a very natural question of what might happen in PCP when big firms that are

typically present in public contracting compete against small firms that are desirable to

involve in such innovative environments. An important feature of SMEs is their limited

access to finance and, thus, their budget constraints.5 In PCP, stimulating participation

among these firms will inevitably lead them to compete against bigger and less constrained

firms.6

The analysis in this paper is motivated by our desire to understand incentives for

financially asymmetric firms to exert R&D effort in PCP-like contests. We explicitly take

into account this characteristic of SMEs and show that a two-stage contest where all

1See European Commission (2007), Pre-commercial Procurement: Driving Innovation to
Ensure Sustainable High Quality Public Services in Europe, http://ec.europa.eu/invest-in-
research/pdf/download en/com 2007 799.pdf.

2Between 2009 and 2011, only 29% of the value of EU public procurement went to small and medium-
sized enterprises (European Commission, 2014).

399,8% of all EU registered firms are SMEs and they produce more than a half of European GDP
(European Commission, 2014).

4SMEs being a driver of innovation and growth goes, at least, back to Schumpeter (1910, 1943) and
is one of the important arguments behind the US Small Business Act and the Small Business Act of
Europe. See Rothwell (1989) for an introduction to the topic.

5See Abraham and Schmukler (2017) and references therein.
6See Arve (2014) for an analysis of the interaction between financially constrained and unconstrained

firms in traditional public procurement.
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contestants compete against each other at each stage and where only a limited number of

contestants are accepted to the next stage gives increasing incentives to exert effort over

time.

Our model also suggests that the asymmetry between budget-constrained and uncon-

strained contestants fundamentally changes competition within the contest. Introducing

budget constraints mechanically limits the ability to invest in effort and R&D. But, more

importantly, it leads to a non-monotonicity in the unconstrained firms’ first-stage effort.

For very tight budgets, the weakness of the budget-constrained contestants lowers the

incentives of the unconstrained contestants to exert effort relative to an environment with

no budget-constraints. However, there always exists an interval of values for the budget

constraints, which we can think of as moderate and minor budget constraints, for which the

unconstrained firms exert higher effort than when faced with unconstrained contestants

only.

In our model we abstract away from some firms (for instance SMEs) being better at

innovation or R&D and simply assume that everyone has the same ex ante ability to win

the innovation contest. Allowing SMEs to have a higher ability to come up with original

ideas would only strengthen our result of increased effort in contests that include such

firms.

In fact the driver of our result is the following: When exerting effort in the first

stage, the unconstrained contestants not only influence their likelihood of making it to

the final stage, but also whom to face in the final stage. Because the expected payoff of an

unconstrained contestant is decreasing in the budget-constrained firm’s potential to exert

effort in the final stage, we obtain a non-monotonicity in the unconstrained contestants

effort. This effect is present regardless of whether we allow for spillover effects across

stages or not. Spillovers is a natural assumption in an innovation environment, including

PCP. However, the fact that the result is not driven by them broadens the scope of our

result to more general contest environments.

Through our non-monotonicity result we differ from previous results in the contest

theory literature that suggest that even contests stimulate effort more than uneven con-

tests. In their seminal paper on rank-order tournaments, Lazear and Rosen (1981) argue

that contests with asymmetric types are inefficient and suggest a handicap scheme to level

the playing field between heterogeneous contests. Clark and Riis (2000) obtain a similar

result in a bribe tournament. In a one-stage Tullock (1980) contest, Baik (1994) shows

that both individual and total effort is maximised in an even contest.

PCP has not yet received a lot of attention in the economic literature. One exception
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is Che et al (2015) who investigate the extent to which the pure unbundling between

R&D and commercial phases of procurement, as it is called for in PCP, can be justified

on contract-theoretical grounds. Our model is very different in that it assumes that PCP

is the selection method and investigates how effort in this tender competition is affected

by the characteristics of the contestants.

Furthermore, in the contest literature, we build on Clark and Riis (1996) and Fu and

Lu (2012), who consider an all-against-all contest, and extend their analysis to also include

a final stage with only one winner.7 In fact, most papers on multi-stage contests (for in-

stance Rosen (1986), Gradstein (1998), Gradstein and Konrad (1999), Amegashie (1999),

Amegashie (2000), Baik and Lee (2000), Stein and Rapoport (2005) and Moldovanu and

Sela (2006)) focus on situations in which at each stage, subgroups of contestants compete

to become the unique group winner. In some settings such as sport tournaments this is

of course a more appropriate assumption, but in PCP all firms compete against all other

firms at each stage making an all-against-all contest more appropriate.

Budget constraints in contest environments have been studied by Che and Gale (1997),

Che and Gale (1998) and Gavious et al (2002) in one stage contests and by Stein and

Rapoport (2005), Amegashie (2004), Harbaugh and Klumpp (2005) and Ghosh and Stong

(2018) in a two-stage contest where at the first stage there are two or more groups and

there is only one winner within each group.8 We extend this literature to also consider

two-stage contests with all-against-all contests at each stage.

There is also a literature that looks at contests and all-pay auctions with head starts.

The closest paper to ours in Cohen et al (2016) who study the optimal head start in

two-stage elimination contests. In a related paper Klein and Schmutzler (2017) study

optimal head starts (vs prizes) in two-stage rank-order tournaments. Neither of these

papers consider budget constraints. Furthermore, they model spillovers as the first-stage

effort directly affecting the outcome of the second stage, regardless of what that first-

stage effort actually lead to. We think of spillovers as a fixed advantage coming from

having generated the best concept in the first stage and model the phenomenon as in

Franke et al (2018). This way of modeling spillovers is close to models of all-pay auctions

7Formally, they consider a contest in which effort is chosen once and for all, but the losers at each of
the first K stages continue to compete. The winners of the contest are all the winners of the different
stages where previous winners have been sequentially eliminated. In our model, this is how we model the
contest within each stage.

8 Klumpp and Polborn (2006) and Sela and Erez (2013) consider the role of budget constraints in
sequential contests with a different structure, namely where the two same players compete against each
other over several stages.
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where the score of each firm includes both the effort and potential head start or other

heterogeneities across contestants (see for instance, Kovenock and Roberson (2009) and

Clark and Nilssen (2017)) and it is also similar to contest models with homogeneous

spillovers or noise (Dasgupta and Nti, 1998; Amegashie, 2006; Myerson and Wärneryd,

2006).9

In our model environment, we consider that the spillovers are exogenous. As they

measure the benefits from having offered the best concept in the first-stage, they cannot

be considered as an instrument that the contest designer can choose. This is in contrast

to a small literature that looks at the optimal choice for head starts (Kirkekgaard, 2012;

Seel and Wasser, 2014). Relatedly, Konrad (2002) considers a contest where participants

can spend resources at earlier stages to increase the value of the prize. We touch upon

this topic in Section 5.3.

The rest of the paper is structured as follows: The model as well as benchmark results

in the case of no budget constraints are presented in Section 2. Our main results in the case

with both budget-constrained and unconstrained contestants are presented in Section 3.

In Section 4 we extend our model to allow for spillovers across periods. Section 5 discusses

extensions of our model to different pools of contestants, observability of contestants’ type

as well as some design issues.

2 The model

We consider a two-stage elimination contest with 3 contestants. Players are risk neutral

and can exert costly effort to influence their probability of winning the contest. We use

a standard Tullock contest function (Tullock, 1980) to model the probability of winning

a stage contest. Effort at stage t by contestant i is denoted xti, where t ∈ {1, 2} and

i ∈ {1, 2, 3}. The winner of the contest is the winner of the final stage. This contestant

obtains a prize of value v.

In the first stage, contestants exert effort levels to become one of two finalists who

continue to the second stage of the contest. We follow Clark and Riis (1996) and Fu and

Lu (2012) and assume that the probability of becoming a finalist equals the probability

of coming first or second in the first-stage contest. We can therefore define q̃ij as the

9 An alternative way of modeling spillovers is to assume that the level of first-stage effort directly
influences the second-stage win probability as in Baye et al. (2012) and Baik and Lee (2000) or the cost
of exerting effort in the second stage, as in Clark and Nilssen (2013) and Clark et al (2012). However,
for our purpose we feel that modeling spillovers as a fixed advantage from generating the best solution
in the first-stage captures important features of PCP.
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probability of contestants i and j continuing to the final and q1i as the probability that

contestant i makes it to the final (regardless of the identity of his opponent in the final).

Given a vector of first-period effort levels (x11, x12, x13), the probability that contes-

tants 1 and 2 make it to the final, q̃12, is defined as

q̃12(x11, x12, x13) =
x11

(x11 + x12 + x13)

x12

(x12 + x13)︸ ︷︷ ︸
Prob. that 1 is ranked first

and 2 is ranked second

+
x12

(x11 + x12 + x13)

x11

(x11 + x13)︸ ︷︷ ︸
Prob. that 2 is ranked first

and 1 is ranked second

. (1)

The formulas for other contestants are symmetrically defined so that the probability that

contestants i and j make it to the final, q̃ij, is

q̃ij(x11, x12, x13) =
x1i∑3
k=1 x1k

x1j∑
l 6=i x1l

+
x1j∑3
k=1 x1k

x1i∑
l 6=j x1l

, i, j, k, l ∈ {1, 2, 3}. (2)

Given first-period efforts (x11, x12, x13), contestant 1’s probability of making it to the

final, q11, is the sum of q̃12 and q̃13. This can be rewritten as

q11(x11, x12, x13) =
x11

x11 + x12 + x13︸ ︷︷ ︸
Prob. of being

ranked number one

+
x12

x11 + x12 + x13

x11

x11 + x13︸ ︷︷ ︸
Prob. that 2 wins

and 1 comes second

+
x13

x11 + x12 + x13

x11

x11 + x12︸ ︷︷ ︸
Prob. that 3 wins

and 1 comes second

.

(3)

or more compactly as

q11(x11, x12, x13) =
x11∑3
j=1 x1j

+
∑
k 6=1

x1k∑3
j=1 x1j

x11∑
j 6=k x1j

, i, j, k ∈ {1, 2, 3}. (4)

Again, the formulas for the other contestants are symmetrically defined so that the prob-

ability of contestant i continuing to the second stage, q1i can be written as

q1i(x11, x12, x13) =
x1i∑3
j=1 x1j

+
∑
k 6=i

x1k∑3
j=1 x1j

x1i∑
j 6=k x1j

, i, j, k ∈ {1, 2, 3}. (5)

For notational simplicity we sometimes write (x11, x12, x13) as (x1i, x1−i).

In the second, and final, stage, the two finalists compete to win the prize v. In PCP,

the tender for the R&D contract is separated from the tender for the commercialization

of the innovative product. Thus, the contest is for the value of the R&D contract, not

the firm specific value of the innovation itself.
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Given the two finalists, i and j, and their effort levels, (x2i, x2j), the probability of i

winning is equal to

q2i(x2i, x2j) =
x2i

x2i + x2j

. (6)

In the baseline model we ignore spillovers across periods. This is merely for exposi-

tional reasons since winning the first round in an innovation contest probably means that

that contestant has a better idea or design and this should increase his chance of winning

the entire contest. We account for this more realistic assumption in Section 4 and show

that our results from the baseline model straightforwardly carry over to the setting with

spillovers.

The solution concept is subgame perfect Nash equilibrium. Szidarovszky and Okuguchi

(1997) ensures that we have existence of a unique equilibrium under these assumptions.

2.1 Benchmark without budget constraints

Without any budget concerns, in the final stage, the two finalists choose effort levels that

solve

max
x2i

v
x2i

x2i + x2j

− x2i. (7)

The equilibrium effort level for each finalist is xno2 = v
4
. This is in fact the well-known

n-player Tullock contest formula for a prize equal to v.10 This yields a second-period

expected payoff of Πno = v
4
.

Compared to a one-stage contest (where equilibrium effort would be equal to 2
9
v), the

two-stage mechanism gives the finalists greater incentives to exert effort. This is a direct

consequence of the well-known result in Tullock contests which says that the higher the

number of contestants the lower the individual effort.

Given this equilibrium behaviour, each contestant i chooses first-period effort that

solves

max
x1i

q1i(x1i, x1−i)Π
no − x1i. (8)

Straightforward computations of first-order conditions yield an equilibrium level of first-

stage effort xno1 = 5
18
v
4
. Since there are two ways of “winning” the first stage (coming first

or second in the first stage), the standard n-player Tullock contest formula mentioned

previously does not apply. Clark and Riis (1996) provides a generalisation of this formula

to the many-prize setting.11 This formula applies in our setting where the prizes for

10The general n-player formula is x = n−1
n2 v.

11The general n-contestant-k-prize formula in Clark and Riis (1996) is x =

6



coming first or second in the first-stage is Πno, the expected payoff from the second stage.

The individual first-stage effort is higher than the effort had there only been one first-

period prize of value Πno, but it is lower than the total effort from two contests each with

a single prize of Πno. This is a direct consequence of there being two ways of “winning”

the first stage in our setting.

3 Two-stage contest with both budget-constrained

and unconstrained contestants

To illustrate how asymmetric budget constraints influence contestants’ incentives to choose

effort xti, we limit the analysis to the case where one contestant’s budget-constraint is

indeed a relevant concern.12 The case of two budget-constrained contestants is provided

as an extension in Section 5.1 but does not qualitatively alter the results. To focus on the

interesting case of a binding budget constraint, we assume in the following that the budget

is less than the sum of total equilibrium effort when there are no budget constraint.

Assumption 1. Contestants 1 and 2 face no budgetary restrictions whereas contestant

3’s total budget, w3, satisfies

w3 < wmax
3 ≡

[
1 +

5

18

]
v

4
. (9)

This assumption implies that contestant 3 cannot choose first-period effort equal to

xno2 = v
4

and second-period effort equal to xno1 = 5
18
v
4
.

For completeness, we provide the solution to the alternative benchmark, in which all

contestants are budget-constrained in Appendix B. However, this is less relevant for the

analysis of settings in which SMEs are introduced into PCP contests where they will face

larger firms.

Second stage: The equilibrium outcome of the final stage now depends on the iden-

tity of the finalists and on their budgets. If the two finalists are contestants 1 and 2, then

the second-period effort is the same as in the benchmark, i.e., the symmetric second-stage

effort is x2,ij = v
4
. However, if contestant 3 is one of the finalists, he can only exert effort

1
n

[
k(n−1)

n −
∑k−1

j=1
k−j
n−j

]
V (k), where V (k) is a contestant’s valuation of winning one of the k prizes.

12As much as possible we use the notation xti for effort of contestant i in period t. Whenever it is
necessary to clarify who the other contestant (in the second period) is, we extend the notation to x2,ij .
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up to the level min{w3 − x13,
v
4
}. The following observation will be useful to obtain our

results.

Lemma 1. Contestant 3 will always be (weakly) budget constrained in the second stage,

i.e.,

w3 − x13 ≤
v

4
. (10)

Lemma 1 establishes that the budget constraint binds in the second period. This is

a straightforward proof by contradiction. If this does not hold, then contestant 3 should

spend more in the first-stage contest as this would increase his expected payoff and could

still choose the first-best level of effort in the second stage. Using this observation, we

can apply results from Che and Gale (1997) that shows that, in this budget-constrained

case, it is indeed optimal for contestant 3 to spend his entire remaining budget in the

final stage.

Lemma 2. (Che and Gale (1997), Section 3.2) When contestant 3 is budget constrained

in the final stage, it is optimal for him to spend his entire budget:

x23 = w3 − x13. (11)

Contestant 3 would like to spend v
4

in the final stage, but does not have enough

budget. He therefore chooses to spend as much as he can to get as close as possible to

this optimal, but unattainable, level of effort. Importantly, this constraint on x23 has

an effect on the other finalist’s choice of effort; their optimal response is given by the

first-order condition associated with (7) but where x23 = w3 − x13. Thus, the optimal

level of effort for an unconstrained contestant facing a budget-constrained contestant is

x2,i3 =
√

v(w3 − x13)−(w3−x13). It is straightforward to check that x2,i3 < x2,ij = v
4
. The

unconstrained contestant optimally bids less against the weaker contestant than against an

equal competitor. Furthermore, to increase his probability of winning, an unconstrained

contestant spends more than his constrained counterpart (x2,i3 > x23) and the larger the

budget of the constrained contestant, the more effort is exerted in the second-stage, by

both contestants.

Contestant 3’s expected payoff when entering the final stage is

Π3(w3 − x13) =
√

v(w3 − x13)− (w3 − x13). (12)

When facing contestant 3 in the final stage, unconstrained contestant i’s expected second-

8



period payoff is:13

Πi3(w3 − x13) =
(√

v(w3 − x13)− (w3 − x13)
)(√ v

w3 − x13

− 1

)
, (13)

Otherwise, it is Πno = v
4
.

The three levels of expected payoff in the final stage can be ordered as follows.

Lemma 3. For all x13 ∈ (0, w3),

Π3(w3 − x13) ≤ v

4
≤ Πi3(w3 − x13). (14)

Contestant 3 is limited in his expenditures and can never earn as much as he could

without this constraint. This gives us the first inequality. For an unconstrained contestant,

facing a budget-constrained contestant weakens competition and, consequently, leads to

higher expected payoffs than when facing an equal competitor.

First stage: Contestant 3 chooses first-period effort x13 that solves

max
x13≤w3

q13(x11, x12, x13)Π3(w3 − x13)− x13. (15)

His best-response to contestants 1 and 2’s symmetric14 strategy x1i is characterized in

the following lemma.

Lemma 4. Contestant 3’s optimisation problem is concave and his best response x13 to

the other contestants’ (symmetric) strategy x1i solves[
2x2

1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

]
Π3(w3−x13) = 1+

x13

2x1i + x13

(
1 +

2x1i

x1i + x13

)[√
v

4 (w3 − x13)
− 1

]
.

(16)

Contestant 3’s best response equalises the marginal benefit from the first-stage effort to

the marginal cost of exerting such effort. The marginal benefit is the (marginal) increase

in expected payoff from a higher probability of winning. There are two costs associated

with effort in the first stage. It involves the actual cost of effort, but it also affects

the expected payoff in the final stage. A marginal increase in first-stage effort reduces

13The subscript indicates that i is facing contestant 3.
14By anticipation, we use the result from Lemma 5, that shows that contestants 1 and 2 choose

symmetric strategies.

9



the final-stage effort because of the budget constraint. Less effort in the final stage is

associated with a lower expected payoff.

For contestant i ∈ {1, 2}, the expected final-stage payoff depends on the identity of

the other finalist. With our notation q̃ij for the probability that i and j make it to the

final, the first stage problem becomes:

max
x1i

q̃ij(x1i, x1−i)
v

4
+ q̃i3(x1i, x1−i)Πi3(w3 − x13)− x1i. (17)

Lemma 5. Contestant i’s optimisation problem is concave and his best response solves

x1ix13(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

v

4
+

x13(4x1i + x13)

4x1i(2x1i + x13)2
Πi3(w3 − x13) = 1. (18)

For each unconstrained contestant, the associated first-order condition also balances

the marginal cost and benefit from effort. In this case, notice that the expected second-

stage payoff depends on the identity of the second finalist. As pointed out in Lemma 3,

facing a constrained finalist yields a higher expected second-period payoff. This observa-

tion allows us to show that first-stage equilibrium effort is higher for the unconstrained

contestants than for contestant 3.

Proposition 1. The unique equilibrium levels of effort, (x∗1i, x
∗
13), solve (16) and (18)

and are such that

x∗1i > x∗13. (19)

The constrained contestant always exerts less effort than his unconstrained counter-

parts. This is because he has a limited budget and must stay within it. The two uncon-

strained contestants can exert more effort in order to improve their chances of getting to

the final. This is illustrated in Figure 1.

Figure 1 also suggests a less straightforward result: first-stage effort by unconstrained

contestants is not monotone in the strength of the weak contestant (as measured by

w3). The remainder of this section formally proves this non-monotonicity and shows that

changes to the budget constraint, w3, has two opposing effects on the first-stage effort by

unconstrained contestants.

Proposition 2. The effect of an increase in the constrained contestant’s budget w3 on

10



Figure 1: First-stage effort as a function of w3 (x1i in blue, x13 in red and xsym in yellow)
for v = 10.

the unconstrained contestants’ effort can be decomposed a follows:

dx∗1i
dw3

=
∂x1i

∂x13

∂x13

∂w3︸ ︷︷ ︸
Competition Effect

+
∂x1i

∂w3︸︷︷︸
Payoff Effect

(20)

• A competition effect:
∂x1i

∂x13

≥ 0, and
∂x13

∂w3

≥ 0. (21)

An increase in w3 increases the best response x13, which in equilibrium increases

x1i.

• A payoff effect:
∂x1i

∂w3

≤ 0. (22)

An increase in w3 decreases the best response x1i.

The intuition for Proposition 2 is as follows. First, when w3 increases, as a response to

a more competitive contestant 3, the unconstrained contestants increase their first-stage

effort in order to ensure a high enough probability of making it to the final stage. This

is the competition effect. In fact, when w3 is close to zero, the unconstrained bidders

need to exert very little effort to reach the final since competition from the constrained

contestant is virtually non-existing. As the budget w3 increases, more effort needs to be

exerted as a response to competition. This can be seen in Figure 1 where first-stage effort

is increasing for small enough w3.

11



However, the first-stage effort also depends on whom they face in the final. This

is because expected payoff in the final stage depends on the identity of the finalists.

For the unconstrained contestant, the expected payoff when facing a budget-constrained

contestant is decreasing in w3. This means that as the budget w3 increases the expected

gains in the final stage decreases, thus making it less attractive to exert effort. This is

the payoff effect. As suggested in Figure 1, for high enough values of w3 the payoff effect

is sufficiently negative so that first-stage effort x1i is decreasing in w3.

The following two corollaries confirm the result in Figure 1 and show that both effects

are always relevant and may dominate for some values of w3.

Corollary 1. The competition effect dominates for small enough values of w3:

lim
w3→0

dx∗1i
dw3

≥ 0. (23)

When contestant 3 has a very small budget, the expected payoff from facing this

contestant in a final is very high. The decrease in expected payoff from a small increase

in contestant 3’s budget is negligible. An unconstrained contestant will increase his effort

as w3 increases so as to optimise his chance of making it to the final stage of the contest.

Corollary 2. The payoff effect dominates for high enough values of w3:

lim
w3→wmax

3

dx∗1i
dw3

≤ 0. (24)

For high enough values of w3, the expected payoff from facing a budget-constrained

contestant in a final is not very different from the expected payoff from facing an equal

competitor. It becomes less attractive to exert effort as the gains from facing a disad-

vantaged contestant decreases. Therefore x1i decreases in w3 for high enough values of

w3.

These two corollaries taken together establish the non-monotonicity of x1i in w3.

Corollary 3. x∗1i is non-monotone in w3.

This corollary suggests that when first-period effort is important for the contest de-

signer, an interior value of the budget constraint may be preferable to no budget con-

straints as it gives unconstrained contestants an extra incentive via the larger gains they

can expect when facing a weaker finalist. This, along with other design issues, are dis-

cussed in Section 5.3.
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4 Spillovers between stages

In the previous section we provided results in the case where effort at one stage of the

contest does not influence the outcome of other stages of the contest. However, in an

innovation contest like PCP this might seem very restrictive and, perhaps, it is more

reasonable to assume the winner of the initial stage has an advantage in terms of the idea

or design that this contestant has produced and his chances of winning the entire contest

has therefore increased. In this section we account for this more realistic assumption and

show that our results from the baseline model straightforwardly carry over to the setting

with spillovers.

In this section we follow Franke et al (2018) and assume that winning the first stage

increases the winner’s probability of winning the second stage15:

qs2i(x2i, x2j) =

qh2i(x2i, x2j) = x2i+h
x2i+x2j+h

if i is the first-stage winner,

qnh2i (x2i, x2j) = x2i
x2i+x2j+h

if not.
(25)

This definition of winning probabilities implies that for given (x2i, x2j), winning the

first stage increases the winner’s probability of winning the second stage relative to the

benchmark case with no spillovers (qh2i(x2i, x2j) > q2i(x2i, x2j)), while losing the first stage,

reduces it (qnh2i (x2i, x2j) < q2i(x2i, x2j)).
16 For the second-stage effort to still have some

influence on the outcome of the contest we impose the following restriction on h:17

Assumption 2. 0 < h < v
4
.

In the benchmark case without budget-constraints it is straightforward to show that

effort levels in the final stage are:

xno2i =

v
4
− h if i is the first-stage winner,

v
4

if not.
(26)

In the second stage, both contestants equalise marginal benefit from exerting effort to

marginal cost. However, due to the first-stage winner enjoying a head start, this contestant

15This way of modeling a head start is also very close to how a head start is modeled in all-pay
auctions. For instance Kovenock and Roberson (2009) and Clark and Nilssen (2017) assume that the win
probability in an all-pay auction depends on the comparison between effort levels and head start h in the
following way: x1i + h ≶ x2j .

16The former is true as
∂qh2i(x2i,x2j)

∂h =
x2j

(x2i+x2j+h)2 > 0. The latter is straightforward.
17With this assumption we rule out the uninteresting case where x2 is optimally set to zero.
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does not need to exert as much effort. These effort levels are associated with the following

expected second-period payoffs

Πno
i =

Πh = v
4

+ h if i is the first-stage winner,

Πnh = v
4

if not.
(27)

The lower optimal effort level for the contestant with the head start implies that he

enjoys a higher second-period payoff, both relative to the contestant with no head start

and relative to the benchmark with no spillovers (while the equilibrium probability of

winning is the same in the three cases and equal to 1/2).

In the first stage without any budget constraints, we can also show that the possibility

of obtaining a head start in the final gives contestants incentives to exert higher effort in

the initial stage. Namely,

xno1 =
5

18

v

4
+

2

9
h. (28)

As winning the first contest gives the contestant an advantage in the second-stage

competition which results in an extra payoff, the contestants are willing to exert an extra

effort in the first stage, relative to the benchmark case (where xno1 = 5
18
v
4
).

When contestant 3 faces a budget constraint, the same reasoning as in the previous

section applies, but we have to take into account which contestant got a head start.

Analogously to the case with no spillovers, we adopt the following assumption which

ensures that h is small enough for the budget constraint in the final stage to always be

an issue:

Assumption 3.

w3 <

[
1 +

5

18

]
v

4
− 7

9
h. (29)

The following lemma summarizes final-stage strategies x2j.

Lemma 6. Second-stage strategies depend on the identity of the finalist and who has a

head start. These strategies are summarized as follows:

• For the constrained contestant, xh23 = xnh23 = w3 − x13

• For an unconstrained contestant i ∈ {1, 2},

14



– facing the other unconstrained contestant:

x2,ij =

xh2,ij = v
4
− h if i is the first-stage winner,

xnh2,ij = v
4

if not.
(30)

– facing the constrained contestant:

x2,i3 =

xh2,i3 =
√

v(w3 − x13)− (w3 − x13)− h if i is the first-stage winner,

xnh2,i3 =
√

v(w3 − x13 + h)− (w3 − x13)− h if not.

(31)

Contestant 3 is budget constrained and can therefore not choose his optimal level of

effort. He therefore chooses the highest admissible effort level given the budget constraint

(which is the same regardless of whether he has a head start or not). As in the case

without budget constraints, an unconstrained contestant with the head start optimally

exerts a lower level of effort. It can be shown that, for a given x13, when a contestant has

the head start the optimal level of effort is lower relative to the benchmark case, while

if he does not have the head start his optimal effort is higher: xh2,i3 < x2,i3 < xnh2,i3.18

Also, analogously to the benchmark with no spillovers, it holds that xh2,i3 < xh2,ij and

xnh2,i3 < xnh2,ij.

These second-stage strategies give rise to the following expected second-stage payoffs:

• For the constrained contestant:

Π3 =

Πh
3 =

√
v(w3 − x13 + h)− (w3 − x13) if 3 is the first-stage winner,

Πnh
3 =

√
v(w3 − x13)− (w3 − x13) if not.

(32)

• For an unconstrained contestant i ∈ {1, 2},

– facing the other unconstrained contestant:

Πij =

Πh
ij = v

4
+ h if i is the first-stage winner,

Πnh
ij = v

4
if not.

(33)

18The first inequality is straightforward and the latter is true as
∂xnh

2,i3

∂h =
√

v
4(w3−x13+h) − 1 > 0.
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– facing the constrained contestant:

Πi3 =

Πh
i3 = Πnh

3

(√
v

w3−x13 − 1
)

+ h if i is the first-stage winner,

Πnh
i3 =

(
Πh

3 − h
) (√

v
w3−x13+h

− 1
)

if not.

(34)

It is straightforward to check that a contestant’s expected payoff against a given op-

ponent is always higher when the contestant in question has a head start. This result is

obvious since a head start in an innovation contest is always beneficial. Despite exerting

the same effort regardless whether he has the head start or not, the constrained contes-

tant has a higher chance of winning in case of a head start, which results in a higher

expected payoff relative to the benchmark with no spillovers: Πh
3 > Πnh

3 = Π3(w3 − x13).

A similar result holds for an unconstrained meeting another unconstrained contestant

Πh
ij > Πnh

ij = Πij, while when he meets a constrained contestant Πh
i3 > Πi3(w3−x13) > Πnh

i3

(where Πi3(w3 − x13) is defined by (13)).19

The following lemma extends the comparison of expected payoffs along the same lines

as Lemma 3.

Lemma 7. For all x13 ∈ (0, w3), expected payoffs can be ordered as follows:

Πh
3(w3 − x13) < Πh

ij < Πh
i3(w3 − x13), (35)

and

Πnh
3 (w3 − x13) < Πnh

ij ≤ Πnh
i3 (w3 − x13). (36)

In terms of expected payoff, a contestant with a head start has the highest payoff if he

is unconstrained and faces a constrained contestant. But a favored contestant facing an

equal contestant also has a higher expected payoff than a favored constrained contestant.

The same payoff ranking holds for the unfavored contestant.

These rankings of expected payoffs, along with the best responses from the first stage

give us the equivalent to Proposition 1 in the presence of spillovers.

Proposition 3. The unique equilibrium levels of first-stage effort in the presence of

spillovers, (xs∗1i , x
s∗
13), are such that

xs∗1i > xs∗13. (37)

19The latter inequality is true as
∂Πnh

i3

∂h = −
(√

v
w3−x13+h − 1

)
< 0 and Πnh

i3 |h=0 = Πi3(w3 − x13).
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Furthermore, in the presence of spillovers we can still decompose the effect of changes

in the constrained contestant’s budget as in the model without spillover and the signs of

the effects remain unchanged.

Proposition 4. In the presence of spillovers in the form of a head start to the winner of

the first stage, the effect of an increase in the constrained contestant’s budget w3 on the

unconstrained competitors’ effort can still be decomposed as follows:

dxs∗1i
dw3

=
∂x1i

∂x13

∂x13

∂w3︸ ︷︷ ︸
Competition Effect

+
∂x1i

∂w3︸︷︷︸
Payoff Effect

(38)

• A competition effect:
∂x1i

∂x13

≥ 0, and
∂x13

∂w3

≥ 0. (39)

An increase in w3 increases the best response x13, which in equilibrium increases

x1i.

• A payoff effect:
∂x1i

∂w3

≤ 0. (40)

An increase in w3 decreases the best response x1i,

An increase in the budget of the constrained contestant on the one hand raises the

optimal effort of the unconstrained contestant as a response to the increase in competi-

tiveness of the latter (competition effect). On the other hand it lowers the optimal effort

since the expected payoff of competing against the constrained in the second stage (which

depends negatively on w3) is lower (payoff effect).

Also, we can show that the following result holds:

Proposition 5. The optimal first-stage effort of both constrained and unconstrained con-

testants is higher than in the case with no spillovers

xs∗1i > x∗1i, xs∗13 > x∗13. (41)
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5 Discussion

5.1 Two budget-constrained contestants

To show that the results in the main model do not depend on just having one budget-

constrained firm, we now focus on the case where two players are (symmetrically) budget

constrained, such that w2 = w3 = w. Again, to focus on the interesting case of binding

budget constraints we assume that w satisfies Assumption 1.

Second stage: The equilibrium outcome of the final stage again depends on the

identity of the finalists and on their budgets. If the two finalists are 2 and 3, their second

period effort would be their remaining budget, as in the benchmark with symmetric bud-

gets i.e., x2i = w−x1i, i = 2, 3 (See Appendix B). On the other hand, if the unconstrained

player 1 is one of the finalists, he will optimally exert effort as in Section 3:

x21 =
√

v(w − x1i)− (w − x1i). (42)

Second-period expected payoffs are therefore as follows:

• if the unconstrained contestant 1 enters the final stage and faces contestant i with

remaining budget w − x1i, his expected payoff is (the same as in (13))

Π1(w − x1i) =
(√

v(w − x1i)− (w − x1i)
)(√ v

w − x1i

− 1

)
, (43)

where i = 2, 3.

Notice that because contestant 1 is not budget constrained, his second-period payoff

does not directly depend on his first-period choice of effort.

• if constrained contestant i = 2, 3 enters the final stage, his expected payoff is

Πi(w − x1i) =


√

v(w − x1i)− (w − x1i) if facing contestant 1,

v
2
− (w − x1i) otherwise.

(44)

For notational reasons we define

Πi1(w − x1i) =
√

v(w − x1i)− (w − x1i). (45)
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Πij(w − x1i) =
v

2
− (w − x1i). (46)

The ranking of expected payoff levels in the final stage is stated in the following lemma

Lemma 8. For all x1i ∈ (0, w),

Πi1 ≤ Πij ≤ Π1(w − x1i). (47)

Intuitively, a constrained contestant expects a larger second-period payoff from com-

peting against another constrained player than against an unconstrained one. This gives

the first inequality. An unconstrained contestant gets a higher expected payoff than an

unconstrained competitor regardless of competition.

First stage: Turning to the first stage of the contest, we focus on the case where

the two constrained contestants play symmetric equilibrium strategies.20

Contestant 1 chooses first-period effort x11 to maximize21:

q11(x11, x1i, x1i)Π1(w − x1i)− x11. (48)

The following lemma characterizes his best response against contestants 2 and 3’

symmetric strategy x1i:

Lemma 9. Contestant 1’s best response, x11, solves

Π1(w − x1i)

[
2x1i(x11 + x1i)

2 − 2x1ix11(x11 + x1i) + 2x2
1i(x11 + 2x1i)

(x11 + 2x1i)2(x11 + x1i)2

]
= 1. (49)

Again, the unconstrained contestant’s optimal effort equalises the marginal cost of

effort and the marginal benefit of effort in terms of increased probability of making it to

the final stage.

Simultaneously, for i, j = {2, 3}, j 6= i, constrained contestant i chooses effort x1i to

solve:

max
x1i

q̃ij(x1i, x1−i)Πij(w − x1i) + q̃i1(x1i, x1−i)Πi1(w − x1i)− x1i

subject to x1i ≤ w.
(50)

20This can easily be shown to be equilibrium behaviour.
21In the statement of expected payoff of contestant 1 we have replaced x12 and x13 by x1i to sim-

plify notations. Since this simplification is not on contestant 1 strategy x1i it is without mathematical
consequence, but greatly simplifies the notation.
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The symmetric best response of constrained contestants 2 and 3 to unconstrained

contestant 1 is characterized in the following lemma.

Lemma 10. Contestants 2 and 3’s best response, x1i, solves

2x2
1i

(x11 + 2x1i)(x11 + x1i)
+ Πij(w − x1i)

[
x1i(x11 + x1i)

2 − x2
1i(x11 + x1i) + x11x1i(x11 + 2x1i)

(x11 + 2x1i)2(x11 + x1i)2

]
+Πi1(w − x1i)

[
2x1ix11 + (x11 + 2x1i)x11

(x11 + 2x1i)24x1i

]
= 1 +

(√
v

4(w − x1i)
− 1

)[
2x11x1i + x11(x11 + x1i)

2(x11 + 2x1i)(x11 + x1i)

]
(51)

The interpretation is analogous to the one of Lemma 4, namely the best response

of the constrained contestants equalises the marginal benefit of an increase of effort, in

terms of increased probability of winning (left-hand side) and its marginal cost, in terms

of actual cost (first term on the right-hand side) plus decrease in the expected payoff of

the second stage due to spending a lower effort in the second stage (second term on the

right-hand side).

The additional effect in Lemma 10 complicates calculations of the equilibrium, but

as can be seen from the illustration in the following figure, equilibrium effort in the first

stage of the contest is similar to the case of one budget-constrained contestant and two

unconstrained contestants.

Figure 2: First-stage effort as a function of w (x11 in blue and x1i in red) for v = 10.

As before, a contestant without a budget constraint can clearly exert more first-stage

effort and increase, his chances of making it to the final stage. With only one uncon-

strained contestant, there is no incentive to choose your fellow-finalist as both other
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contestants are symmetric and budget-constrained. However, as the budget of these con-

testants increase the unconstrained contestant still decreases his first-stage effort. This is

now solely to give the budget-constrained contestants incentives to exert more effort in

the first stage and thus become less fierce in the second stage.

In a more general framework with a larger number of contestants, we would have

all the effects described in this section as well as different levels of second-period payoff

depending on the type of the finalists as in Lemma 5. However, this extension is beyond

the scope of this paper and does not add something fundamentally new to our main

insights.

5.2 Non-observability of finalist identity

In our baseline model, the identities of the finalists are common knowledge. That implies

that each contestant in the final knows the type (budget-constrained or not) of his com-

petitor and can fine-tune his second-period strategy to this information. That is why the

second-stage effort by an unconstrained bidder is higher when facing an equal contestant

compared to when he faces a budget-constrained finalist. This is in line with the Principle

of Transparency in European public procurement. From a theoretical perspective, it is

nevertheless interesting to study how incentives to exert effort change when the identity

of the finalists is not common knowledge.

For a budget-constrained finalist, nothing changes as he knows that he faces one of

the two unconstrained contestants and with a limited budget it will still be optimal to

spend it all. The following proposition compares the optimal strategy of an unconstrained

contestant who does not know whether he faces another unconstrained, and thus equal,

contestant or a weak, budget-constrained contestant.

Proposition 6. When the identity of the finalists remains secret, an unconstrained finalist

chooses effort xu2 between the levels of effort he would have chosen had he known the

identity of his competitor:

x2,i3 ≤ xu2 ≤ xno2 .

Since an unconstrained finalist takes into account the probability of the type of the

other finalist, his best-response lies between the strategy he would choose when facing an

equal finalist for sure and the one chosen when facing a budget-constrained finalist for

sure. The exact level of this second-stage effort, depends on the beliefs about the identity

of the competitor. This in turn depends on effort in the first-stage as they determine the

likelihood of each contestant making it to the final stage.
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Turning to expected second-stage payoffs, we get a similar ranking as in the previ-

ous cases. The constrained contestant cannot expect to gain as much as had he been

unconstrained and the constrained contestant makes more than had he faced an equally

constrained contestant.

Lemma 11. Denote the expected second-stage payoff of a budget-constrained contestant

Π̃3 and the expected second-stage payoff of an unconstrained contestant Π̃i. These expected

payoffs can be ranked in the following way:

Π̃3 ≤
v

4
≤ Π̃i.

In the first stage of the contest, the budget-constrained contestant still solves the same

maximization problem as in the baseline model where finalists’ types are observable,

except that expected payoff from the final is lower since the other finalist exerts more

effort.

However, the first-stage choice of effort for the unconstrained bidders gets more com-

plicated. The expected second-stage payoff now depends on the beliefs about the type of

the other finalist. The first-order condition does not simply equalise the marginal change

in probability of winning multiplied by the expected second-stage payoff to marginal cost.

It also takes into account how a change in first-stage effort changes the beliefs about the

other finalist and thus second-stage expected payoff.

5.3 Design issues

While an in-depth analysis of design issues is beyond the scope of this paper, in this section

we provide some illustrations that the design of PCP presented in our model (i.e., two

stages, final prize only and asymmetric contestants) may perform well for some objectives

of the principal.

We start by showing that the presence of a budget-constrained contestant may induce

higher total effort in the first stage of the contest relative to the symmetric case with

no constraints. As it is possible to see in Figure 3, provided the budget asymmetry is

not too large (i.e., w3 is high enough) total first-stage effort is larger in the asymmetric

contest. This is the case because for w3 high enough, the two unconstrained contestants’

additional effort (relative to the symmetric case) more than compensates for contestant

3’s reduced effort (see Figure 4 for the difference between individual effort in our main

model and the benchmark). The illustration suggests that if the principal is concerned
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with the total first-stage effort, then small budget constraints is in fact not a concern, but

rather beneficial.

Figure 3: Total effort in the first stage as a
function of w3: asymmetric case (2x1i+x13,
in blue) vs symmetric case (3xno1 , in red) for
v = 10.

Figure 4: Contestant i’ s additional effort
(x1i − xno1 , in blue) compensating for 3’ s
reduced effort (xno1 −x13, in red) in the first
stage, as a function of w3, for v = 10.

Second, we show that the expected level of total effort for the unconstrained player

is higher relative to the symmetric case. As shown in Figure 5 the unconstrained player

exerts an overall larger expected effort in the asymmetric case than in the symmetric

case. This is mainly because expected second-stage effort is higher in the asymmetric case

relative to the symmetric case. Although the actual level of effort in the asymmetric case

is lower or equal to the one in the symmetric case, the likelihood of making it to the second

stage is much higher. For w3 high enough, the first-stage effort is also higher. However

this level of effort is much smaller than the second-stage level22 and the lower level of

first-stage effort for low w3 does not outweigh the positive effect of the increased expected

second-stage effort. This result suggests that a principal who expects the unconstrained

contestants to win and therefore cares about their expected effort throughout the contest

should not be worried about introducing weaker contestants and thus making the contest

asymmetric.

The principal could of course have other objectives, including minimizing costly du-

plication of effort. Our main point is to show that introducing asymmetries into an

all-against-all elimination contest has a non-monotone effect on effort and provide some

casual evidence that this might also be beneficial to the principal. A deeper discussion of

the design issues and what the principal’s objective is, or should be, is beyond the scope

of this paper.

22Recall that in the symmetric case xno2 = 2.5 and xno1 = 25
36 < 1.
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Figure 5: Sum of efforts for the unconstrained player in the asymmetric case (x1i+E[x2i],
in blue) vs symmetric case (xno1 + E[xno2 ], in red), as a function of w3, for v = 10.
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Appendix A

Proof of Lemma 1. Assume that w3 − x13 >
v
4 . This implies that contestant 3’s budget con-

straint is not binding and he can choose is optimal level of effort xno2 = v
4 in the final stage and

still have some budget left. Denote this budget ε ≡ w3 − x13 − v
4 .

By Assumption 1 the total budget does not allow the contestant to choose his unconstrained,

optimal level of effort in both periods. That means that x13 < xno1 . However, by spending the

budget ε in the first stage, contestant 3 can still choose the optimal level of effort xno2 = v
4 in the

second stage. But doing so increases his first-period expected utility since q13(x13, x1−3)Πno−x13

reaches its maximum at xno1 . Thus, we necessarily have w3 − x13 ≤ v
4 .

Proof of Lemma 3. The assumption w3 ≤ v
4 implies that w3 − x13 is also less than v

4 .

To prove that v
4 ≤ Πi3(w3−x13), it suffices to prove that dΠi3(w3−x13)

d(w3−x13) < 0 and that Πi3(v4 ) ≥
v
4 . Since w3− x13 ≤ v

4 , Πi3(v4 ) gives a lower bound for expected payoff with a budget-constraint

w3.

Differentiating (13) with respect to w3 − x13 and simplifying yields dΠi3(w3−x13)
d(w3−x13) =

−
(√

v
w3−x13 − 1

)
< 0. Furthermore, Πi3

(
v
4

)
= v

4 and we can conclude that v
4 ≤ Πi3(w3 − x13).

The proof of Π3(w3 − x13) ≤ v
4 follows in the same way. In fact when w3 − x13 ≤ v

4 ,
dΠ3(w3−x13)
d(w3−x13) ≥ 0. It can easily be checked that Π3

(
v
4

)
= v

4 and we can conclude that Π3(w3 −
x3) ≤ v

4 .

Proof of Lemma 4. The first-order condition associated with contestant 3’s maximization prob-

lem is

− 1 +

[
2x1i

(2x1i + x13)2
− 2x1ix13

(2x1i + x13)2(x1i + x13)
+

2x2
1i

(2x1i + x13)(x1i + x13)2

]
Π3(w3 − x13)

− x13

2x1i + x13

(
1 +

2x1i

x1i + x13

)[√
v

4 (w3 − x13)
− 1

]
= 0. (A.1)

This can easily be rearranged to give (16).

Denoting this derivative as LHS3(x3) gives

LHS3(x13) = −1 +

[
2x2

1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

]
Π3(w3 − x13)

− x13

2x1i + x13

(
1 +

2x1i

x1i + x13

)[√
v

4 (w3 − x13)
− 1

]
. (A.2)
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To ensure concavity of the maximization problem, we need ∂LHS3
∂x13

≤ 0:

∂LHS3

∂x13
= −

(√
v

4(w3 − x13)
− 1

)(
2x2

1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

)
(A.3)

− 2x2
1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

(√
v

4(w3 − x13)
− 1

)
−

x13

(
1 + 2x1i

x1i+x13

)
2(w3 − x13)(2x1i + x13)

√
v

4(w3 − x13)

+
Π3(w3 − x13)

(2x1i + x13)3(x1i + x13)3

[
−28x4

1i − 36x3
1ix13 − 12x2

1ix
2
13

]
≤ 0.

Proof of Lemma 5. The first-order condition associated with contestant i’s optimization prob-

lem (where after derivation we have used x11 = x12 = x1i) is

− 1 +

[
x13x1i

(2x1i + x13)2(x1i + x13)
+

x13x1i

(2x1i + x13)(x1i + x13)2

]
v

4
(A.4)

+

[
(x1i + x13)x13

(2x1i + x13)2(x1i + x13)
− x13x1i

(2x1i + x13)22x1i
+

x13x1i

(2x1i + x13)(2x1i)2

]
Πi3 = 0.

This can be rearranged as (18).

It is straightforward to check that the second-order condition (obtained before using x11 = x12)

holds.

Proof of Proposition 1. The concavity of the contestants’ first-stage optimisation problem as

shown in the proofs of Lemma 4 and 5 ensures the existence and uniqueness of the equilibrium

following arguments in Szidarovszky and Okuguchi (1997).

Define the left-hand side of (A.4) as LHS(x1i):

LHS(x1i) =
x1ix13(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

v

4
+

x13(4x1i + x13)

4x1i(2x1i + x13)2
Πi3(w3 − x13)− 1. (A.5)

Differentiating this yields

∂LHS(x1i)

∂x1i
=
x13(−12x3

1i − 12x2
1ix13 + 2x3

13)

(2x1i + x13)3(x1i + x13)3

v

4
+
x13(−16x2

1i − 6x1ix13 − x2
13)

4x2
1i(2x1i + x13)3

Πi3(w3 − x13).

(A.6)

Since from Lemma 3 Πi3(w3 − x13) ≥ v
4 , we get:

∂LHS(x1i)

∂x1i
≤ −12x13(x3

1i + x2
1ix13)

(2x1i + x13)3(x1i + x13)3

v

4
(A.7)

− x13Πi3(w3 − x13)(16x5
1i + 54x4

1ix13 + 67x3
1ix

2
13 + 29x2

1ix
3
13 + 9x1ix

4
13 + x5

13)

4x2
1i(2x1i + x13)3(x1i + x13)3

,
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and we can conclude that ∂LHS(x1i)
∂x1i

< 0 (since x1i > 0 and x13 > 0).

Since LHS(x1i) is strictly decreasing and LHS(x∗1i) = 0, it suffices to prove that LHS(x∗13) >

0.

From Lemma 3, we have both Π3(w3 − x13) < v
4 and Π3(w3 − x13) < Πi3(w3 − x13). This

implies:

LHS(x1i) ≥ −1 +

[
x1ix13(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2
+
x1ix13(4x1i + x13)

4x2
1i(2x1i + x13)2

]
Π3(w3 − x13). (A.8)

Using the definition of LHS3 we can write:

LHS(x1i) >LHS3(x13) +
Π3(w3 − x13)

4x2
1i(2x1i + x13)2(x1i + x13)2

[
17x3

1ix
2
13 + 6x2

1ix
3
13 + x1ix

4
13 − 24x5

1i

]
.

(A.9)

Assume that x13 > x1i. This implies that the last bracket is positive and we get a contra-

diction (because LHS(x1i) = 0 = LHS3(x13)).

Proof of Proposition 2. The proof of Proposition 2 relies on a series of derivatives of LHS and

LHS3:

·
∂LHS

∂w3
= − x13(4x1i + x13)

4x1i(2x1i + x13)2

(√
v

w3 − x13
− 1

)
< 0. (A.10)

· Straightforward differentiation and simplification yield:

∂LHS

∂x13
=

v

4(2x1i + x13)3(x1i + x13)3

[
6x4

1i − x3
1ix13 − 9x2

1ix
2
13 − 4x1ix

3
13

]
(A.11)

+
2x1iΠi3(w3 − x13)

(2x1i + x13)3
+

x13(4x1i + x13)

4x1i(2x1i + x13)2

(√
v

w3 − x13
− 1

)
.

The last term is positive and since from Lemma 3 we have v
4 ≤ Πi3(w3 − x13):

∂LHS

∂x13
≥ v

4(2x1i + x13)3(x1i + x13)3

[
8x4

1i + 5x3
1ix13 − 3x2

1ix
2
13 − 2x1ix

3
13

]
. (A.12)

Since x1i ≥ x13 > 0, we can conclude that ∂LHS
∂x13

> 0.

·

∂LHS3

∂w3
=

(
2x2

1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2

)(√
v

4(w3 − x13)
− 1

)
(A.13)

+
x13

2x1i + x13
(1 +

2x1i

x1i + x13
)

1

2(w3 − x13)

√
v

4(w3 − x13)
> 0.
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Recall that from previous proofs, we also have ∂LHS
∂x1i

< 0 and ∂LHS3
∂x13

≤ 0. The payoff effect is

obtained by differentiating (18) with respect to x1i and w3. This yields:

∂x1i

∂w3
= −

∂LHS
∂w3

∂LHS
∂x1i

≤ 0. (A.14)

The competition effect is obtained in two steps. First from (16) we get

∂x13

∂w3
= −

∂LHS3
∂w3

∂LHS3
∂x13

≥ 0. (A.15)

Finally, from (18) we get

∂x1i

∂x13
= −

∂LHS
∂x13
∂LHS
∂x1i

≥ 0. (A.16)

Proof of Corollary 1. From the proof of Proposition 2 we know that the payoff effect is measured

by

∂x1i

∂w3
= −

∂LHS
∂w3

∂LHS
∂x1i

. (A.17)

Its value, compared to the competition effect depends on ∂LHS
∂w3

(since both effects are normalized,

i.e., divided by ∂LHS
∂x1i

> 0.).

Notice that for any equilibrium values (x13, x23), we can write x13 = αw3 and x23 = (1−α)w3

for some α ∈ (0, 1). We can use this to write (A.10) as

∂LHS

∂w3
= −

√
α

1−αw3(4x1i + αw3)(
√
v −

√
(1− α)w3)

4x1i(2x1i + αw3)2
(A.18)

Even if the value of α varies with w3, it always remains bounded within (0, 1). It is thus

straightforward to conclude that

lim
w3→0

∂LHS

∂w3
= 0. (A.19)

For small enough w3, the payoff effect becomes negligible and, using Proposition 2 we can

conclude that limw3→0
dx1i
dw3
≥ 0.

Proof of Corollary 2. Recall from the proof of Lemma 3 that for w3 < wmax3 , we have Π13(x23) <
v
4 . Thus, we can obtain the following inequality from the first-order condition with respect to
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x1i defined in (A.5)

LHS(x1i) >

[
x1ix13(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2
+
x1ix13(4x1i + x13)

4x2
1i(2x1i + x13)2

]
v

4
− 1. (A.20)

In the limit when w3 is close to wmax3 , it is easily checked that x1i goes to xno1 and the

right-hand side of the above inequality goes to 5
18xno

1

v
4 − 1; This is the first-order condition for

the symmetric solution xno1 . Since both problems are concave and the first-order conditions are

continuous functions in all their arguments, we can conclude that there always exists an interval

(ŵ3, w
max
3 ) where x1i > xno1 . Since lim{w3→wmax

3 }x1i = xno1 , this means that x1i needs to be

strictly decreasing on this interval. With continuity of x1i, we can finally conclude that dx1i
dw3

< 0

on (ŵ3, w
max
3 ) and thus the payoff effect dominates for large enough budgets.

Proof of Corollary 3. This is a direct consequence of Corollaries 1 and 2.

Proof of Lemma 6. When the budget-constrained contestant 3 makes it to the final, he is by

assumption limited by his budget and following Che and Gale (1997) it is optimal for him to

spend his entire budget. As in Lemmas 1 and 2 we get x23 = w3 − x13 regardless of whether

this contestant has a head start or not.

A finalist i with a head start facing the budget-constrained contestant chooses xh2,i3 to max-

imize the following:

max
xh2,i3

v
xh2,i3 + h

xh2,i3 + x23 + h
v − xh2,i3. (A.21)

The first-order condition for this yields

vx23

(xh2,i3 + x23 + h)2
= 1. (A.22)

Rearranging terms yields

xh2,i3 =
√
vx23 − x23 − h. (A.23)

A finalist i who does not have a head start (but is facing contestant 3 with a head start)

chooses xnh2,i3 to maximize the following:

max
xnh
2,i3

v
xnh2,i3

xnh2,i3 + x23 + h
− xnh2,i3. (A.24)

The first-order condition for this yields

v(x23 + h)

(xnh2,i3 + x23 + h)2
= 1. (A.25)
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Rearranging terms yields

xnh2,i3 =
√
v(x23 + h)− x23 − h. (A.26)

When the budget-constrained contestant is not in the final, we are back to the benchmark

without budget constraints and it is straightforward to see that the finalist with a head start

chooses v
4 − h and the finalist without a head start chooses v

4 .

Proof of Lemma 7. To establish the expected-payoff ranking for the contestant with a head

start, we first notice that Πh
3 is increasing and Πh

i3 is decreasing in the second-stage effort of

contestant 3 (recall that x23 = w3 − x13):

∂Πh
3

∂(w3 − x13)
=

(√
v

2(w3 − x13 + h)
− 1

)
> 0. (A.27)

∂Πh
i3

∂(w3 − x13)
= −

(√
v

w3 − x13
− 1

)
< 0. (A.28)

In the limit when the budget-constraint becomes irrelevant and contestant 3 can play his

unconstrained optimal strategy, we get that Πh
3 and Πh

i3 are equal to Πh
ij :

lim
x23→ v

4

Πh
3(x23) = Πh

ij . (A.29)

lim
x23→ v

4

Πh
i3(x23) = Πh

ij . (A.30)

However since this limit is excluded we obtain the first ranking in Lemma 7.

Similarly, in the case of the non-favored contestant, we show that Πnh
3 is increasing and Πnh

i3

is decreasing in the second-stage effort of contestant 3:

∂Πnh
3

∂(w3 − x13)
=

(√
v

4(w3 − x13)
− 1

)
> 0. (A.31)

∂Πnh
i3

∂(w3 − x13)
= −

(√
v

4(w3 − x13 + h)
− 1

)
< 0. (A.32)

In the limit when the budget-constraint becomes irrelevant and contestant 3 can play his

unconstrained optimal strategy, we get that Πnh
3 and Πnh

i3 are equal to Πh
ij . This allows us to

obtain the second ranking in Lemma 7.

Proof of Proposition 3. Before proving that xs∗1i > xs∗13 (where we, for simplicity, drop the super-

script in the proof), we state the first-stage optimisation problems and the first-order conditions

that characterize these equilibrium values. Notice also that the concavity of the optimisation
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problems ensures the existence and uniqueness of the equilibrium (Szidarovszky and Okuguchi,

1997).

At the first stage, the unconstrained contestants i ∈ {1, 2} face the following optimisation

problem:

max
x1i

x1i

x1i + x1j + x13

x1j

x1j + x13
Πh
ij +

x1i

x1i + x1j + x13

x13

x1j + x13
Πh
i3 (A.33)

+
x1j

x1i + x1j + x13

x1i

x1i + x13
Πnh
ij +

x13

x1i + x1j + x13

x1i

x1i + x1j
Πnh
i3 − x1i

The associated first-order condition (when at equilibrium x1i = x1j) is

x1i + x13

(2x1i + x13)2

x1i

x1i + x13
Πh
ij +

x1i + x13

(2x1i + x13)2

x13

x1i + x13
Πh
i3 (A.34)

+

[
x1ix13

(2x1i + x13)(x1i + x13)2
− x2

1i

(2x1i + x13)2(x1i + x13)

]
Πnh
ij

+

[
x1ix13

4x2
1i(2x1i + x13)

− x1ix13

2x1i(2x1i + x13)2

]
Πnh
i3 − 1 = 0

All of the four coefficients in front of the expected second-stage payoffs can be shown to be

positive.

Denote the left-hand side of (A.34) as FOC(x1i). To ensure concavity of the maximization

problem we need ∂FOC(x1i)
∂x1i

≤ 0.

Differentiating FOC(x1i) yields:

∂FOC(x1i)

∂x1i
=

x2
13 − 2x2

1i − x1ix13

(2x1i + x13)3(x1i + x13)
Πh
ij −

4x13(x1i + x13)

(2x1i + x13)3(x1i + x13)
Πh
i3

−x
4
13 + 2x4

1i − x1ix
3
13 − 9x2

1ix
2
13 − 7x3

1ix13

(2x1i + x13)3(x1i + x13)3
Πnh
ij −

x2
13(6x1i + x13)

4x2
1i(2x1i + x13)3

Πnh
i3 . (A.35)

Since from Lemma 7 we have Πh
i3 > Πh

ij and Πnh
i3 ≥ Πnh

ij , plus Πh
ij > Πnh

ij holds, we get:

∂FOC(x1i)

∂x1i
<

−4x1ix13 − 3x2
13

(2x1i + x13)3(x1i + x13)
Πh
i3 −

5x3
1ix13 + 4x2

1ix
2
13 + x1ix

3
13

(2x1i + x13)3(x1i + x13)3
Πh
ij

−x1ix
3
13 + 9x2

1ix
2
13 + 7x3

1ix13

(2x1i + x13)3(x1i + x13)3
Πnh
ij −

17x2
1ix

4
13 + 6x4

1ix
2
13 + 19x3

1ix
3
13 + 9x1ix

5
13 + x6

13

4x2
1i(2x1i + x13)3(x1i + x13)3

Πnh
i3 < 0.

(A.36)

At the first stage of the contest, the budget-constrained contestant 3 has the following
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maximization problem:

max
x13

x13

x1i + x1j + x13
Πh

3 +
x13

x1i + x1j + x13

[
x11

x12 + x13
+

x12

x11 + x13

]
Πnh

3 − x13. (A.37)

The associated first-order condition (when at equilibrium x1i = x1j) is

2x1i

(2x1i + x13)2
Πh

3 +

[
2x1i

(2x1i + x13)2

2x1i

x1i + x13
− 2x13

(2x1i + x13)

x1i

(x1i + x13)2

]
Πnh

3

−1− x13

(2x1i + x13)

(√
v

4(w3 − x13 + h)
− 1

)
− 2x13

(2x1i + x13)

x1i

x1i + x13

(√
v

4(w3 − x13)
− 1

)
= 0,

(A.38)

where all the three last terms are negative.

Denote the left-hand side of (A.38) as FOC3(x13). Differentiation and simplification yield:

∂FOC3(x13)

∂x13
= − 4x1i

(2x1i + x13)3
Πh

3 +
−24x4

1i − 24x3
1ix13 + 4x1ix

4
13

(2x1i + x13)3(x1i + x13)3
Πnh

3

− x13

(2x1i + x13)

√
v

2(w3 − x13 + h)3/2
− 2x1ix13

(2x1i + x13)(x1i + x13)

√
v

2(w3 − x13)3/2

Since Πh
3 > Πnh

3 and the two last terms are negative, the following holds:

∂FOC3(x13)

∂x13
<
−4x4

1i − 12x3
1ix13 − 12x2

1ix
2
13

(2x1i + x13)3(x1i + x13)3
Πh

3

− 24x4
1ix13 + 24x4

1i

(2x1i + x13)3(x1i + x13)3
Πnh

3 < 0. (A.39)

So we can conclude that also the problem of the constrained contestant is concave.

From Lemma 7 we obtain the following inequality:

FOC(x1i) >

[
x1i + x13

(2x1i + x13)2

x1i

x1i + x13
+

x1i + x13

(2x1i + x13)2

x13

x1i + x13

]
Πh

3 (A.40)

+

[
x1ix13

(2x1i + x13)(x1i + x13)2
− x2

11

(2x1i + x13)2(x1i + x13)

+
x1ix13

4x2
1i(2x1i + x13)

− x1ix13

2x1i(2x1i + x13)2

]
Πnh

3 − 1.
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Adding FOC3(x13) and subtracting its value gives the following inequality

FOC(x1i) >

[
x1i + x13

(2x1i + x13)2

x1i

x1i + x13
+

x1i + x13

(2x1i + x13)2

x13

x1i + x13

]
Πh

3

(A.41)

+

[
x1ix13

(2x1i + x13)(x1i + x13)2
− x2

11

(2x1i + x13)2(x1i + x13)

+
x1ix13

4x2
1i(2x1i + x13)

− x1ix13

2x1i(2x1i + x13)2

]
Πnh

3

+FOC3(x13)− 2x1i

(2x1i + x13)2
Πh

3 −
[

2x1i

(2x1i + x13)2

2x1i

x1i + x13
− 2x13

(2x1i + x13)

x1i

(x1i + x13)2

]
Πnh

3

+
x13

(2x1i + x13)

(√
v

4(w3 − x13 + h)
− 1

)
+

2x13

(2x1i + x13)

x1i

x1i + x13

(√
v

4(w3 − x13)
− 1

)
.

The last two terms are clearly positive and rearranging the rest yields

FOC(x1i) > FOC3(x13) +

[
(x1i + x13)[x13 − x1i]

(2x1i + x13)2(x1i + x13)

]
Πh

3 (A.42)

+

[
−20x5

1i + 4x4
1ix13 + 13x3

1ix
2
13 + 2x2

1ix
3
13 + x1ix

4
13

4x2
1i(2x1i + x13)2(x1i + x13)2

]
Πnh

3

Assume that x1i < x13. This implies that the coefficient in front of Πh
3 is strictly positive

Under this assumption, the coefficient in front of Πnh
3 is also strictly positive because

−20x5
1i < 4x4

1ix13 + 13x3
1ix

2
13 + 2x2

1ix
3
13 + x1ix

4
13. (A.43)

This implies that FOC(x1i) > FOC3(x13). However, for the optimal values of x1i and x13 these

are both zero and we obtain our contradiction (0 > 0). Thus xs∗1i ≥ xs∗13.

Proof of Proposition 4 . The proof of this proposition mirrors that of the proof of Proposition

2. We therefore only need to prove the sign of the following derivatives: ∂FOC
∂w3

< 0, ∂FOC3
∂w3

> 0

and ∂FOC
∂x13

> 0 (from the previous proof we have ∂FOC
∂x1i

< 0 and ∂FOC3
∂x13

< 0). The rest follows

from the arguments in the proof of Proposition 2.

∂FOC

∂w3
=

x13(x1i + x13)

(2x1i + x13)2(x1i + x13)

∂Πh
i3

∂w3
(A.44)

+
x1ix

2
13

4x2
1i(2x1i + x13)2

∂Πnh
i3

∂w3
.

It is straightforward to check that the derivative of both of these expected payoffs is strictly
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negative and therefore we can conclude that ∂FOC
∂w3

< 0.

∂FOC3

∂w3
=

2x13

(2x1i + x13)2

∂Πh
3

∂w3
+

2x1i(2x
2
1i − x2

13)

(2x1i + x13)2(x1i + x13)2

∂Πnh
3

∂w3
(A.45)

+
x13

(2x1i + x13)

√
v

4(w3 − x13 + h)3/2
+

2x1ix13

(2x1i + x13)(x1i + x13)

√
v

4(w3 − x13 + h)3/2
.

It is straightforward to check that the derivative of both of these expected payoffs is strictly

positive. In addition the two last terms are strictly positive and we can conclude that ∂FOC3
∂w3

> 0.

Finally, we also need to prove that ∂FOC
∂x13

> 0.

∂FOC

∂x13
= −∂FOC

∂w3
+X1Πh

ij +X2Πh
i3 +X3Πnh

ij +X4Πnh
i3 , (A.46)

where

X1 =
−2x1i

(2x1i + x13)3
,

X2 =
−2x1i − x13

(2x1i + x13)3
,

X3 =
8x4

1i + 5x3
1ix13 − 3x2

1ix
2
13 − 2x1ix

3
13

(2x1i + x13)3(x1i + x13)3
,

X4 =
x13

(2x1i + x13)3
.

Since ∂FOC
∂w3

< 0, the first term is clearly positive.

From previous results we also have that Πh
ij = Πnh

ij + h < Πh
i3 and Πnh

i3 > Πnh
ij . Therefore,

∂FOC

∂x13
> Πnh

ij (X1 +X2 +X4) +X3Πnh
ij + hX1. (A.47)

One can easily check that X1 +X2 +X4 = 0. Furthermore, by Assumption 2, Πnh
ij > h so that

∂FOC

∂x13
> (X1 +X3)Πnh

ij . (A.48)

To prove that ∂FOC
∂x13

> 0, it suffices to prove that X1 +X3 > 0.

X1 +X3 =
8x4

1i + 4x3
1ix13 − 6x2

1ix
2
13 − 5x1ix

3
13 − x4

13

(2x1i + x13)3(x1i + x13)3
. (A.49)

Since x13 ≤ x1i, this is positive.
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Proof of Proposition 5. Notice that if the head start h is zero, then the first-order condition for

the unconstrained player in the benchmark (equation (18)) and the first-order condition in the

model with spillovers (equation (A.34)) are the same.

If we can prove that h increases the marginal benefit (marginal cost is constant), then because

of concavity of the problem we can conclude that the best-response function x1i(x13) shifts up

as h increases (in particular the best-response with h is higher than without).

Recall that the first-order condition associated with the unconstrained contestant’s problem

in the spillover model is

FOCh =
x1i + x13

(2x1i + x13)2

x1i

x1i + x13
Πh
ij +

x1i + x13

(2x1i + x13)2

x13

x1i + x13
Πh
i3 (A.50)

+

[
x1ix13

(2x1i + x13)(x1i + x13)2
− x2

11

(2x1i + x13)2(x1i + x13)

]
Πnh
ij

+

[
x1ix13

4x2
1i(2x1i + x13)

− x1ix13

2x1i(2x1i + x13)2

]
Πnh
i3 − 1.

Differentiating this function with respect to h gives us

FOCh =
x1i

(2x1i + x13)2
+

x13

(2x1i + x13)2
(A.51)

+
x13 (x13 − 2x1i)

4x1i(2x1i + x13)2

∂Πnh
i3

∂h
.

From Proposition 5, we know that in the relevant domain x1i > x13. Thus if proving
∂Πnh

i3
∂h < 0, allows us to complete the proof and conclude that x1i(x13) = xh1i(x13)|h=0 ≤ xh1i(x13)

(where the last inequality is strict for h > 0).

Proof of
∂Πnh

i3
∂h < 0:

∂Πnh
i3

∂h
=

(
∂Πh

3

∂h
− 1

)(√
v

w3 − x13 + h
− 1

)
−
(

Πh
3 − h

)√ v

4(w3 − x13 + h)

1

w3 − x13 + h
.

(A.52)

Straightforward computations give

∂Πh
3

∂h
=

√
v

4(w3 − x13 + h)
, (A.53)
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and

Πh
3 − h =

√
v(w3 − x13 + h)− (w3 − x13 + h) =

(√
v

(w3 − x13 + h)
− 1

)
(w3 − x13 + h) .

(A.54)

Inserting these results into
∂Πnh

i3
∂h yields

∂Πnh
i3

∂h
=

(√
v

4(w3 − x13 + h)
− 1

)(√
v

w3 − x13 + h
− 1

)
(A.55)

−
(√

v

(w3 − x13 + h)
− 1

)√
v

4(w3 − x13 + h)

w3 − x13 + h

w3 − x13 + h

=

(√
v

(w3 − x13 + h)
− 1

)[√
v

4(w3 − x13 + h)
− 1−

√
v

4(w3 − x13 + h)

]
(A.56)

= −
(√

v

(w3 − x13 + h)
− 1

)
< 0. (A.57)

Similarly, for the constrained player if the head start h is zero, then the first-order condition

in the benchmark (equation (16)) and the first-order condition in the model with spillovers

(equation (A.38)) are the same. If we can show that h increases the marginal benefit and

decreases the marginal cost, then because of concavity we can conclude that the best-response

x13(x1i) is higher with h than without. Recall that the marginal benefit in the spillover case

(writing in more compact way first line of equation (A.38)) is

MBh =
2x1i

(2x1i + x13)2
Πh

3 +

[
4x3

1i − 2x1ix
2
13

(2x1i + x13)2(x1i + x13)2

]
Πnh

3 (A.58)

Since Πh
3 > Πnh

3 = Π3(w3 − x13) the following holds

MBh >

[
2x1i

(2x1i + x13)2
+

4x3
1i − 2x1ix

2
13

(2x1i + x13)2(x1i + x13)2

]
Π3(w3−x13) =

2x1i(3x1i + 2x13)

(2x1i + x13)2(x1i + x13)2
Π3(w3−x13)

(A.59)

Where it is straightforward to see that the last term is equal to the marginal benefit in the

benchmark case (LHS equation (16)). On the other hand, the marginal cost in the spillover case

is

MCh = 1+
x13

(2x1i + x13)

(√
v

4(w3 − x13 + h)
− 1

)
+

2x13

(2x1i + x13)

x1i

x1i + x13

(√
v

4(w3 − x13)
− 1

)
(A.60)
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Since
∂
√

v
4(w3−x13+h)

∂h = −
√

v
4(w3−x13+h)

1
w3−x13+h < 0, the following inequality is true:

MCh < 1 +
x13

(2x1i + x13)

(√
v

4(w3 − x13)
− 1

)
+

2x13

(2x1i + x13)

x1i

x1i + x13

(√
v

4(w3 − x13)
− 1

)
(A.61)

where the RHS is equal to the marginal cost in the benchmark case (RHS equation (16)).

Appendix B

Suppose that each contestant i ∈ {1, . . . , n} has wealth wi = w, which is publicly known. To

focus on the interesting case of a binding budget constraint, we assume in the following that w

is less than the sum of total equilibrium effort when there are no budget constraints.

Assumption 4.

w <

[
(2n− 1)(n− 2)

n2(n− 1)
+ 1

]
v

4
. (B.1)

In the final stage the two finalists solve the following maximization problem:

max
x2i

v
x2i

x2i + x2j
− x2i

subject to x2i ≤ w − x2i.

(B.2)

Following Che and Gale (1997), it can easily be shown that equilibrium effort in this situation

is:

x2i =

v
4 if v < 4(w − x1i),

w − x1i if v ≥ 4(w − x1i).
(B.3)

In the first case the contestants are de facto unconstrained, so the solution is the same as

in the previous benchmark. This case occurs when the value of the contract is not high enough

for the player to be willing to spend the entire budget left after the first stage. The reverse is

true in the second case. As in the main analysis, we can show that the second case is the only

relevant case.

Lemma 1. The remaining budget in the second period is always less than v
4 :

w ≤ v

4
.

The proof follows the same line of argument as the proof of Lemma 1 and is therefore omitted.

In this case when second-period budgets are binding, a contestant’s expected payoff in the

second stage is therefore:
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Π2
sym(w − x1i) =

v

2
− (w − x1i). (B.4)

Given the equilibrium behavior in the final stage, each contestant i chooses a first-period

effort level to solve

max
x1i

q1
i (x1i, x1−i)Π

2
sym(w − x1i)− x1i

subject to x1i ≤ w.
(B.5)

The symmetric equilibrium yields:

xsym1 = min

{
w;

2n− 1

n2 − 3n+ 1

[v
2
− w

]}
. (B.6)

For low numbers of contestants it is optimal to spend the entire budget in the first stage.

In a symmetric equilibrium, the contestants all face the same probability of reaching the final

stage. However, since first-stage effort limits second-stage effort, the expected payoff in the final

stage is increasing in first-stage effort. It is thus optimal for the contestants to spend all the

resources in the first stage and thereby maximizing the expected payoff from the second stage.

This burning-out result is also derived in Amegashie (2004) who shows that burning out occurs

when contestants are constrained, incentives are extreme high-powered and the playing field is

even.23 In our model, the reward is higher (and incentives higher powered) the lower the number

of contestants as this increases the expected payoff from the contest.

23See Amegashie et al (2007) for a burning-out result in the case of an all-pay auction.
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