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1 Introduction

Historical studies often report descriptive statistics conditional on categorical

classifications based on retrospectively estimated macroeconomic data. To name a few

recent examples, Reinhart and Rogoff (2010) estimate average GDP growth conditional

on various ranges of public debt as a share of GDP, Jorda et al. (2016) estimate average

real activity during periods with high and low credit growth, and Borio et al. (2015)

examine average GDP growth during inflation and deflation. The latter two can be cast

into a framework of regressing real activity on a binary indicator variable. If this binary

indicator is measured with error, however, OLS will suffer from a misclassification bias

(see Aigner 1973). To see this, let us assume that deflation is actually associated with low

GDP growth. If we use a mismeasured price index to classify deflations, some of those

periods will actually be associated with rising prices and therefore high GDP growth.

The average calculated conditional on the error-ridden deflation indicator will therefore

necessarily suffer from an upward bias.

We know from studies that replicate the methodological deficiencies of historical

macroeconomic series based on modern data sources that those deficiencies distort the

time-series properties of real activity measures (see Romer 1986a,b), as well as, nominal

wage, wholesale price and CPI inflation (see Allen 1992, Hanes 1998, Kaufmann 2017).

Providers of historical data therefore sometimes warn that such data are not suitable for

sophisticated time-series analysis (see Johnston and Williamson 2008, for historical GDP

data). Little is known, however, whether measurement issues hamper even seemingly

simple descriptive analyses, such as measuring the average state of the real economy

during deflation.

This paper sheds light on the misclassification bias arising when measuring the

association between real activity and deflation (see e.g. Borio et al. 2015, Eichengreen

et al. 2016). It provides estimates on the average shortfall in real activity during

19th century deflations in the US using a bias-adjustment, as well as, three proxy

variable approaches that can be used to derive bounds, sets, and point estimates. The

former use misclassification rates derived from comparing well-measured post-WWII price

indices to replications that mimick the methodologies applied by economic historians to
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retrospectively construct 19th century CPI data (see Kaufmann 2017). The latter build on

Kane et al. (1999) and Black et al. (2000) who deal with misreported categorical response

variables typically encountered in modern survey data. By focusing on a reduced-form

regression framework, the analysis remains silent on the direction of causation. Examining

the impact on structural analysis, for example along the lines of Bayoumi and Eichengreen

(1996), Bordo and Redish (2004) and Beckworth (2007), is beyond the scope of this paper.1

The main findings can be summarized as follows. After accounting for measurement

error, four interesting stylized facts emerge: (i) GDP growth fell on average by 2.4

percentage points during deflations. This decline is about 0.7 percentage point stronger

compared to the OLS estimate and similar across various approaches. Using an output

gap measure or industrial production growth to measure real activity, the decline is even

more pronounced. (ii) CPI deflations were associated with at least as severe shortfalls in

GDP growth than equity price declines and banking crises. While equity price declines

were associated with 1.9 percentage points lower GDP growth, there was no significant

association with banking crises. (iii) Only severe deflations, that is deflations with declines

in the price level of more than 3%, were associated with significant declines in real activity;

(iv) Transitory and persistent deflations, as well as, monetary and nonmonetary deflations

were associated with lower GDP growth and there were no significant differences among

those different types of deflations.

This paper is related to a wealth of studies on the real effects of deflation (see

e.g. Atkeson and Kehoe 2004, Bordo and Filardo 2005, Borio et al. 2015, Eichengreen

et al. 2016). This question has become more relevant recently against the backdrop of

nonconventional policy actions by central banks that are at least partially justified by an

imminent threat of deflation. The studies use large cross-country panels including data

from the 19th century. The main reason to use data from the distant past is that the

19th century comprises many interesting case studies. Regular deflation was a necessary

consequence of the metal-currency regimes that ensured long-term price-level stability

instead of focusing on short-term stabilization policies (see e.g. Bernholz 2003). For

1But, characterizing the nature and severity of measurement error is likely informative for dynamic
structural analysis. Komunjer and Ng (2014) discuss identifiability of dynamic models when measurement
errors are persistent. Moreover, Mumtaz et al. (2015) show that some strategies for identifying credit
supply shocks perform poorly in the presence of measurement error.
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example, during the 19th century US, the consumer price level declined nearly half of

the time and, on average over all deflations, the price level declined by 4.5% during a

deflationary episode. This shows that deflation was not only frequent but also substantial.

The controversial findings on the subject are in line with measurement issues in price

data. Atkeson and Kehoe (2004), Bordo and Filardo (2005), and Borio et al. (2015) find

only a weak link between real activity and deflation for sizeable panels of countries and,

in particular, when excluding the Great Depression. Eichengreen et al. (2016), however,

report that the link becomes more pronounced when they use wholesale prices instead of

consumer prices. One explanation for the weak link is that many 19th century deflations

were benign in the sense that they were driven by advances in productivity and therefore

associated with high real income growth (see Friedman and Schwartz 1963, Beckworth

2007). Another reason is that less rigid product and labour markets implied that 19th

century economies adapted more rapidly to adverse deflationary demand shocks and thus

the real consequences were less severe (see Bayoumi and Eichengreen 1996, and references

therein). This paper argues in favour of a third possibility, namely that measurement issues

in historical price data attenuates the empirical link between real activity and deflation

and misclassification error is particularly severe for 19th century CPI inflation.

The remainder of the paper is structured as follows. I first elaborate on the

misclassification bias arising from measurement error in binary variables and discuss

various approaches to recover the actual association between real activity and deflation.

Then, I discuss the data sources. The next section presents estimates of the shortfall of real

activity during deflationary episodes for the 19th century US. The last section concludes.

2 Econometric background

Against the backdrop of a reduced-form regression framework this section characterizes the

misclassification bias resulting from estimating the average of a variable conditional on an

erroneous binary indicator. Although dealing with measurement error is somewhat more

involved in the binary than in the continuous case, the framework is relevant for at least

two reasons. Many descriptive analyses using historical data report averages conditional

on a potentially mismeasured classification. Moreover, the main question asked in this
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paper implies that there is a discontinuity in the relationship between inflation and real

activity when inflation falls below zero.

2.1 Characterizing the misclassification bias

Researchers have examined the link between real activity and deflation by regressing GDP

growth on a deflation indicator (see e.g. Borio et al. 2015, Eichengreen et al. 2016). In

the simplest case of only one country and no additional control variables, the regression

equation reads:

yt = α+ βdt + εt , (1)

where yt is a measure of real activity and dt ≡ 1{πt<0} is an indicator variable assuming

unity if inflation is negative and zero otherwise. Moreover, εt is an i.i.d. error term

capturing unexplained factors including classical measurement error in the real activity

variable.2 The reduced-form OLS estimate is then used to examine whether deflation

is associated with lower real activity. A negative coefficient on the deflation dummy

indicates that real activity has been on average lower during deflationary episodes than

during inflationary episodes. This framework is relevant more broadly because studies

that report an average according to a binary classification report point estimates of α and

α+ β.

Unfortunately, retrospectively constructed measures of inflation are likely measured

with error (see Hanes 1998, Kaufmann 2017). We are therefore estimating

yt = α+ βxt + εt , (2)

with xt ≡ 1{π̃t<0} and π̃t = ρ0 + ρ1πt + ωt. Following Kane et al. (1999), the binary

indicator is based on a mismeasured proxy that is linearly related to the true inflation

rate and suffers from an i.i.d. measurement error ωt (see Kane et al. 1999). Consequently,

the mismeasured dummy xt will classify some periods as deflations, when prices were

actually rising, and some periods as inflations when prices were in fact falling. Following

2OLS is still consistent in the presence of classical measurement error in the dependent variable although
the estimates will become less precise (see e.g. Hausman 2001).
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Aigner (1973) we can assume that πt, ωt, εt are mutually independent and show that the

OLS estimate of β is biased:3

plim β̂OLS = E[yt|xt = 1]− E[yt|xt = 0] (3)

= α+ βP [dt = 1|xt = 1]− α− βP [dt = 1|xt = 0]

= β(1− P [dt = 0|xt = 1]− P [dt = 1|xt = 0]) .

Because probabilities are positive, it follows that the OLS estimate is biased upwards

(downwards) if β is negative (positive). If the dummy misclassifies a high share of inflations

and deflations, the OLS estimate may even be of the wrong sign. The bias is zero if xt

correctly classifies all inflations and deflations.

The bias has an intuitive interpretation. Assume that deflation is actually associated

with lower real activity but we use a mismeasured price index to classify deflationary

and inflationary episodes. If we calculate average real activity during deflations, some of

those periods were in fact associated with rising prices and relatively high real activity.

Therefore, average real activity based on the erroneous classification will wrongly include

some inflationary episodes and therefore overestimate real activity during deflations. By

contrast, if we calculate average real activity during inflations, some of them were actually

associated with falling prices and low real activity. Therefore, we will underestimate

average growth during inflationary periods.

How does the misclassification bias differ from the continuous case, where we regress real

activity on the inflation rate directly? Recall that the probability limit of the regression

coefficient in the continuous case amounts to (see e.g. Griliches 1986):

plim β̂OLS = β
ρ1σ

2
π

ρ21σ
2
π + σ2ω

, (4)

Under the classical assumptions ρ1 = 1 and the bias only depends on the signal to

noise ratio, that is, the relative volatility of the correctly measured inflation rate and the

measurement error process. In this case, because variances are positive, the attenuation

3Pakes (1982) shows that Wald-type estimators are generally biased if the underlying data are subject
to error. In such estimators, we divide observations in groups with above and below median observations
on the independent variable and then fit a line through the group means.
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factor lies between zero and unity and therefore the OLS estimate will be attenuated

towards zero. If the variance of the measurement error tends to zero, the attenuation

factor tends to unity and OLS is unbiased.

Data transformations, for example squaring the variable, sometimes lead to a more

severe bias (see Griliches 1986). Forming a binary indicator also alters the bias relative

to the continuous case.4 To gain some insights, I simulate the misclassification and

attenuation factors for the binary and continuous case, respectively, where the inflation

rate and measurement error are assumed to be i.i.d. normally distributed.5

Panels (A) and (B) in Figure 1 provide simulations with classical measurement error

in the mismeasured inflation rate (ρ1 = 1). In Panel (A) the overall volatility of the

error-ridden inflation rate is set to
√
σ2π + σ2ω = 6, which corresponds to the volatility

of CPI inflation in the 19th century US, and then simulates the misclassification and

attenuation factors for various signal to noise ratios. The solid line, representing the

attenuation factor for the continuous case, is higher if the signal to noise ratio is larger than

one. Thus, for relatively mild classical measurement error, the bias is more pronounced in

the binary than in the continuous case.

The misclassification bias becomes more severe when we mismeasure the mean of

inflation. Setting the mean of the measurement error process to ρ0 = 2 lowers the

misclassification factor when the signal to noise ratio is larger than unity (dotted line).

This bias does not vanish as the signal to noise ratio approaches infinity because we

always misclassify at least some episodes. Interestingly, the bias also depends on the

specific threshold value we use to form the binary indicator. If this threshold differs

from the mean of inflation, for example 2 instead of 0, the bias becomes more severe

(dash-dotted line). Notably, this is even the case for signal to noise ratios smaller than

unity. The intuition for this result is that a threshold differing from the mean of the signal

renders the event less probable.6 Observing such a rare event is therefore likely due to a

4Kreider (2010) shows that with arbitrary forms of classification error, even moderate rates of
misclassfification can lead to very serious biases.

5Appendix A derives some analytical results for a more restrictive special case.
6This case is particularly relevant for studies reporting averages conditional on categorical variables

covering relatively rare events. Reinhart and Rogoff (2010), for example, calculate average GDP growth
over long historical episodes and various advanced economies in bins of debt to GDP ratios of below 30%,
30% to 60%, 60% to 90% and above 90%. They report that GDP growth was lower in the highest category
than in the other categories. If a debt to GDP ratio of above 90% is a relatively rare event, econometric
theory suggests that the misclassification bias is more severe in this particular bin.
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Figure 1 — Simulated attenuation and misclassificaiton factors
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Note: The figure shows misclassification and attenuation factors for various signal to noise ratios. Their
analytic counterparts are given in equations (3) and (4). The mismeasured inflation rate takes the form
π̃t = ρ0 +ρ1πt+ωt and the dummy variable is formed as xt ≡ 1{π̃t<c}. The actual inflation rate as well as
the additive measurement error (ωt) are assumed to be normally distributed with zero mean. The overall
volatility of the inflation rate and measurement error (

√
σ2
π + σ2

ω) is fixed at 6 standard deviations (Panels
A and C) and 2.6 standard deviations (Panel B). For the binary case, the simulations are shown form
measurement error with nonzero mean (ρ0 = 2) and threshold differing from the true mean of inflation
(c = 2 6= E(πt) = 0). Panel (C) simulates non-additive measurement error setting the slope parameter to
ρ1 = 2 so that the proxy is more volatile than the actual underlying inflation rate.
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misclassification.7

The bias becomes particularly severe if the overall volatility of the process is low, while,

in the continuous case the overall volatility does not affect the size of the bias at all. Panel

(B) shows the simulations for an overall volatility of 2.6 standard deviations, which is

in line with the post-WWII volatility of the CPI inflation rate. It turns out that if we

mismeasure the mean by 2, the misclassification factor drops to 0.6 in the binary case

even for high signal to noise ratios. Moreover, if the threshold differs from the mean of

the error-free inflation rate the bias becomes even more severe.

Panel (C) shows the results under nonclassical measurement error where I assume that

ρ1 = 2 so that the proxy for the inflation rate is necessarily more volatile even absent

classical measurement error. The attenuation factor declines in the continuous case. In

the binary case, however, the bias becomes less severe as the signal becomes stronger.

Therefore, if we obtain a well measured proxy with the only deficiency being that it is

too volatile, the classification can be less severe even if the attenuation bias becomes more

pronounced.

To summarize, relative to the attenuation bias, the misclassification bias is particularly

relevant in the presence of measurement error in the mean, if the threshold does not

correspond to the mean of the error-free inflation rate, and if the overall volatility of the

process is low. Meanwhile, a proxy whose only deficiency is that it is too volatile can be

less affected by the misclassification bias than the attenuation bias.

2.2 Bias adjustments, bounds and point estimates

To resolve the misclassification bias, I make use of four approaches requiring various

assumptions. First, as Aigner (1973) suggests, if we obtain information on the

misclassification rates we can bias-adjust our estimates using equation (3). The main

assumption underlying this approach is that the misclassification rates are accurate.

Second, let us assume that we obtain another error-ridden measurement of the deflation

dummy zt ≡ 1{π̂t<0}, where π̂t = γ0+γ1πt+ψt and πt, ωt, ψt, εt are mutually independent.8

7The same intuition applies to medical testing. If the illness to be detected is rare, a small false positive
rate may imply that most of the positively tested individuals are healthy.

8Typically, this involves two independent surveys on the same binary indicator. For example, Black
et al. (2000) obtain independent surveys from employers as well as employees on whether the employee is
eligible for health insurance or not.
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More specifically, we require that the two deflation indicators are independent conditional

on the actual outcome of the true deflation dummy dt. Then, Black et al. (2000) propose a

simple way to estimate a bound that, even in finite samples, is closer to the true parameter

than the individual OLS estimates. The OLS estimate of β11 in

yt = α+ β111{xt=1,zt=1} + β101{xt=1,zt=0} + β011{xt=0,zt=1} + εt (5)

will in expectation be closer to the true value of β. In this regression, β11 measures the

association between real activity and deflation for episodes during which both proxies

decline. Intuitively, if we obtain two independent signals that a period was indeed

associated with deflation, the probability of a misclassification is lower and therefore the

bias smaller. The OLS estimate will still be biased, however, because it is possible that

both indicators misclassify a deflation period at the same time. Therefore, this approach

yields a conservative estimate of the shortfall in real activity during deflations.

With classical measurement error, we can use the second proxy as an instrument (see

Hausman 2001). It is worth noting, however, that the classical assumptions are violated in

the binary model because the classification error is necessarily negatively correlated with

the outcome (see Kane et al. 1999). If dt = 1, the classification error can only amount to

0 or −1, whereas if dt = 0, the classification error amounts to either 0 or 1. Kane et al.

(1999) show that IV will actually deliver a biased estimate in the opposite direction:

plim β̂IV =
β

1− P [xt = 0|dt = 1]− P [xt = 1|dt = 0]
.

The IV estimate therefore provides a lower bound if β < 0.9

Third, under the same assumption, we can consistently estimate the coefficient using

GMM (see Kane et al. 1999, Black et al. 2000). We can calculate three independent

sampling fractions conditional on each combination of outcomes of the two binary

indicators, as well as, four averages of the real activity variable conditional on each

combination of outcomes. From these empirical moments, we have to estimate seven

parameters (two model coefficients, four misclassification rates, and the true rate of

9Note that the IV estimates reported in the working paper version of this paper therefore represent a
lower bound (see Kaufmann 2016).
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deflation) such that the model is just identified. Appendix A provides more details and

shows that the model can be extended to interaction terms and additional well-measured

binary covariates. In the latter case, it turns out the model is over-identified.

Without the conditional independence assumption the parameter of interest is not point

identified. From the seven empirical moments we can estimate from the data, we have

to identify nine parameters (see Appendix A). As a fourth approach, this paper uses

extraneous information derived from the modern replications and explores estimates of

β fixing two of the unknown parameters at reasonable values.10 To be concrete, I fix

the probabilities that the two indicators jointly misclassify a deflationary (P [xt = 0, zt =

0|dt = 1]) or an inflationary episode (P [xt = 1, zt = 1|dt = 0]). If measurement error in

the two indicators is not too severe, those probabilities are small.11 If we are willing to

assume that the two joint misclassification probabilities are smaller than a certain value,

our parameter of interest is set identified.

The four approaches have several advantages and disadvantages. Bias-adjustment

hinges on the assumption that we can obtain accurate information on the misclassification

rates but does not require an additional error-ridden indicator. The bounding approach

and GMM have the advantage that we do not need to know the misclassification rates.

In fact, GMM will deliver consistent estimates thereof (see Appendix A). We have to

assume, however, that the error-ridden indicators are conditionally independent of each

other and that the measurement error is uncorrelated with the actual inflation rate and

other covariates. The bounding approach is particularly useful compared to GMM in finite

samples. In fact, at least in the present application, GMM becomes infeasible if we include

multiple covariates as many cells for which we have to calculate sampling fractions contain

no observations. By contrast, the bounding approach delivers a conservative estimate even

in finite samples. Finally, to relax the conditional independence assumption, we have to

obtain additional information to determine sensible ranges to fix the joint misclassification

10I would like to thank Bo Honoré bringing this possibility to my attention.
11The intuition for this assumption is similar to medical testing. Testing whether a patient has a rare

illness can be subject to testing error. However, if two separate tests diagnose the illness, the probability
of jointly misdiagnosing the illness is small and we have greater confidence in the result. The assumption
underlying the identification strategy is that the joint misclassification error is relatively small while the
individual misclassification error can still be high.
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probabilities.12 But even then, the coefficient of interest is only set identified rather than

point identified. Because of those advantages and disadvantages, the remainder of the

paper will provide estimates based on all three approaches.

3 Data

The analysis uses historical US data from 1800-1899. To form a binary deflation indicator,

I use the composite annual CPI by Officer and Williamson (2016). This index is based

on a careful selection of alternative retrospective estimates of CPI inflation as discussed

by Officer (2014). Although this series likely represents the most accurate estimate at

any given point in time, it suffers from various methodological deficiencies which can be

traced back to scarce retail data (see Kaufmann 2017). Those measurement problems lead

to misclassification of inflationary and deflationary episodes and therefore give rise to a

misclassification bias.

To take into account potential non-classical measurement error in the dependent

variable, I consider various measures of real activity: Real per capita GDP growth,

industrial production growth, both in percent, and percentage deviations of the two

variables from their trends. Real per capita GDP stems from Johnston and Williamson

(2016) and industrial production from Davis (2004). The GDP series is already linked with

modern data sources. Davis’ series ends in 1914, and the modern industrial production

series from the Board of Governors of the Federal Reserve System starts only in 1919. I

bridge this gap using the manufacturing production series by Fabricant (1940). The gap

measures are calculated using the procedure by Hamilton (2016).13 For detrending the real

activity series, I use a sample spanning from 1790-2015 to avoid potential end-of-sample

instabilities.

12An additional advantage of the bounding approach is that it scales to more than two indicators. Adding
a third indicator, the joint probability of misclassification can not increase relative to two indicators. By
contrast, for the conditional independence approach, we have to establish independence of the measurement
error for each of the three indicators.

13Hamilton (2016) proposes to use the residual of the regression yt = β0+β1yt−s+β2yt−s−1+β3yt−s−2+
β4yt−s−3 + εt as a gap measure and recommends to set s = 2 for annual data. The results are robust to
using a Hodrick-Prescott-filter, following Davis et al. (2009), using a smoothing parameter set to 100.
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3.1 Misclassification rates from modern replications

Misclassification rates to bias-adjust the OLS estimates are based on replications of 19th

century CPIs for the post-WWII US. The data stem from Kaufmann (2017), where I

construct CPIs for the period 1956-2016 that are affected by the same methodological

deficiencies as the 19th century segments of the composite CPI by Officer and Williamson

(2016). Because we observe both, the erroneous as well as the well-measured inflation

series, we can gauge the misclassification bias and use this information to bias-adjust the

OLS estimates.14

The measurement issues vary over the various segments. For simplicity, the

misclassification rates are calculated using a replication of a typical retrospective estimate

of the period 1860-1880. In this particular segment, rents are approximated by a

reproduction cost index, that is an average of wholesale prices for building materials and

wages of low-skilled workers, services prices are lacking, and the number of individual price

quote observations to compute the CPI is small. Those deficiencies are replicated by using

the modern BLS CPI less services, replacing rent with a replication of a reproduction cost

index, and adding classical measurement error.15

Panel (A) of Table 1 provides descriptive statistics for official CPI inflation series and

the modern replication of a typical 19th century CPI. The statistics include the mean (µ),

standard deviation (σ) and the persistence of inflation (ρ(1)).16 Compared to the official

CPI inflation series, the replication exhibits a lower mean, higher volatility and lower

persistence. The latter is in line with the fact that classical measurement error attenuates

measures of persistence, for example, the autoregressive parameter in the AR(1) model

(see Staudenmayer and Buonaccorsi 2005).

The remaining columns of the table show to what extent the different time series

properties give rise to attenuation and misclassification biases. I calculate two measures

14That the modern CPI is measured without error is not exactly right. First, the Boskin Commission
(1996) shows that the CPI may underestimate actual CPI inflation because of neglected changes in quality.
However, the sampling error in modern CPIs is small (see Shoemaker 2014).

15The last deficiency is simulated by adding draws from an i.i.d. normal distribution with sampling error
variance scaled by the relative number of observations in modern and historical price data (see Kaufmann
2017).

16The persistence is the sum of autoregressive coefficients, where the number of lags is determined
following Ng and Perron (1995). The maximum number of lags in the autoregressive model is determined
according to a rule of thumb (see Schwert 1989). The final lag length is determined by iteratively reducing
the lag length as long as the t-statistic of the last autoregressive term is larger than 1.6.
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Table 1 — Misclassification rates for modern replications

(A) CPI inflation (1957-2016)
µ σ ρ(1) Γc1 Γc2 mc+ mc− Γb

(1) Official data 3.7 2.8 0.85

(2) Replication 3.4 3.0 0.73 0.88 0.86 0.00 0.77 0.23

(3) Demeaned replication -0.4 3.0 0.73 0.88 0.86 0.21 0.10 0.69

(B) PPI inflation (1957-1990)
µ σ ρ(1) Γc1 Γc2 mc+ mc− Γb

(1) Official data 4.1 4.8 0.76

(2) Replication 4.0 5.9 0.47 0.67 0.61 0.00 0.43 0.57

(3) Demeaned replication -0.2 5.9 0.47 0.67 0.61 0.25 0.10 0.66

Note: Descriptive statistics for official inflation measures and replications of methodological deficiencies
in 19th century CPI and WPI data. The modern replications stem from Kaufmann (2017) for the CPI
and Hanes (1998) for the WPI. Descriptive statistics include the mean (µ), standard deviation (σ) and
the persistence of inflation (ρ(1)). The latter is the sum of autoregressive coefficients, where the number
of lags is determined following Ng and Perron (1995). The maximum number of lags in the autoregressive
model is determined according to a rule of thumb (see Schwert 1989). The final lag length is determined
by iteratively reducing the lag length as long as the t-statistic of the last autoregressive term is larger
than 1.6. For the replications, the table reports two measures of the attenuation factor in the continuous
case (Γc1,Γc2). The first is the variance of the official inflation measure divided by the variance of the
replication. The second is the persistence of the replication divided by the persistence of the official
measure. Finally, the table reports the share periods that the indicator wrongly signals an inflation (mc+)
and deflation (mc−), as well as, the misclassification factor in the binary case (Γb = 1 − mc+ − mc−).
These are sample analogues of the attenuation factor in equation (3).

of the attenuation factor in the continuous case (Γc1,Γc2). The first measure is calculated

as the variance of the official inflation rate divided by the variance of the replication.

This measure corresponds to the attenuation factor for classical measurement error in

equation (4) when ρ1 = 1. The second measure is calculated as the persistence of the

replication divided by the persistence of the official inflation series. Finally, the table

reports the share of wrongly reported inflations (mc+) and deflations (mc−), as well as

the misclassification factor in the binary case (Γb = 1−mc+−mc−). Those measures are

sample analogues of equation (3).

The changing time-series properties imply that the CPI wrongly classifies many periods

as deflations and thus the misclassification factor falls to 0.23. This implies that we would

underestimate the negative association between real activity and deflation by a factor of

four. However, this is related to the fact that deflations were an anomaly in the post-WWII

era. Recall from the previous section that the bias becomes more severe if the threshold

to form the binary indicator differs from the mean of the actual inflation rate. Because

average inflation was closer to zero in the 19th century than today, and the threshold
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value for the deflation indicator is zero, the corresponding misclassification bias for the

19th century is smaller.

Therefore, a conservative measure of the misclassification factor can be calculated by

subtracting the well-measured average inflation rate. The misclassification bias is indeed

less severe. Nevertheless, the misclassification factor in the binary case (0.69) is still smaller

than the attenuation factor in the continuous case (0.88). Because the average inflation

rate is now zero, the misclassification bias stems from both, misclassified inflations as well

as deflations.

To check the robustness of the result, Panel (B) reports the statistics for the the modern

replication of a 19th century wholesale price index by Hanes (1998). The replication is

compared to official PPI inflation from the BLS. Similar to the CPI, we observe a slightly

lower mean, higher volatility and lower persistence of inflation. But, the attenuation bias

is somewhat more severe than in the case of the CPI. By contrast, the misclassification

factor is similar as for the CPI.

3.2 A proxy variable

The proxy variable approach requires a second, independent, error-ridden measure of CPI

inflation. I construct such a proxy variable based on wholesale prices (see Figure 2).

For the 19th century, wholesale prices stem from Warren and Pearson (1933) and Hanes

(1998). I obtain wholesale prices for the commodity groups food, textile products, fuel

and lighting, as well as house furnishings, and aggregate them to a Laspeyres-type index

assuming constant consumer expenditure weights by Gordon (2016).17 The proxy covers

approximately 70% of a 19th century consumption basket. The most important missing

item, making up 18% of the consumption basket, is rent. Moreover, because house

furnishings prices are not available before 1840, I impute the series with the weighted

average of the other available inflation rates.

Panel (A) of Figure 2 shows the composite CPI inflation rate by Officer and Williamson

(2016) as well as the proxy based on wholesale prices from 1800-1900. The two series

17I match the Warren and Pearson (1933) commodity groups with the weights from Gordon (2016)
as follows: foods with food, alcohol for off-premises consumption; textile products with clothing and
footwear as well as dry goods for making clothing at home; fuel and lighting with tobacco, printed material,
heating/lighting fuel; and house furnishing goods with furniture, floor coverings, house furnishings. See
Appendix B for data sources.
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Figure 2 — CPI inflation and a proxy
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Note: Proxy calculated based on wholesale and producer prices using consumer expenditure weights by
Gordon (2016). Composite CPI inflation from Officer and Williamson (2016).
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display reasonably similar turning points. Because the proxy is constructed using

wholesale prices, it is more volatile. The correlation between the two series, however,

is substantial. Interestingly, despite their high correlation, the two variables give different

signals concerning deflationary or inflationary episodes. In 25% of all years, the two

indicators do not agree on whether it was a deflationary or inflationary episode. This

share is surprisingly stable and varies only from 20% to 30% across various episodes.

For the proxy variable approach to be valid, the measurement errors of the proxy based

on wholesale prices should be independent from the measurement error of the composite

CPI. As a necessary condition, it therefore has to be based on different data sources than

the individual segments of the composite CPI by Officer and Williamson (2016). The

Warren and Pearson (1933) data up to 1890 stem from New York newspapers supplemented

by prices published in the U.S. Finance Report for 1863 (see Hanes 2006).18 After 1890,

Hanes (1998) provides WPI data consistent with the Warren and Pearson (1933) series

based on official BLS data.

The composite CPI is largely based on distinct data sources than the proxy (see Officer

2014, and references therein). From 1800 to 1851, the composite CPI uses retail prices

for some benchmark years and prices paid by Vermont farmers to interpolate in between.

From 1851 to 1860, Hoover (1960) mainly uses retail prices from the so-called Weeks

Report.19 Partly, it is partly based on wholesale prices for fruits. However, the sources

are distinct: Hoover (1960) uses prices for Philadelphia and from the so-called Aldrich

Report.20 The Lebergott (1964) segment from 1860-1880 mainly uses the Weeks Report

as well. The only wholesale prices used are for building materials in the reproduction

cost index, which are not used to construct the proxy. From 1880 to 1890, the segment

by Long (1960) is based on thin and sketchy retail data because it refers to the difficult

period after the Weeks Report. There is no indication that wholesale prices were used.

From 1890-1914, the underlying data sources of the composite CPI and the proxy show

some overlap.21 The CPI segment by Rees (1961) from 1890-1914 uses wholesale prices

18Report of the Secretary of the Treasury on the State of the Finances (38th Congress, 1st Session, 1863).
19In 1880 Census of the United States, Vol. xx, Joseph D. Weeks, Report on the Statistics of Wages in

Manufacturing Industries, with Supplementary Reports.
20Wholesale Prices, Wages, and Transportation (Senate Committee on Finance, 52nd Congress., 2nd

Session, Report 1394, Part 2, 1893).
21This concern is addressed by excluding this particular period in a robustness test.
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for eleven items from the BLS (1923). Officer (2014) suggests that the index otherwise

comprises mainly retail prices. Therefore, the overlap should be modest.

In addition, we can perform some specifications tests using modern data. For the

post-WWII era, I construct the proxy using modern PPI data from the BLS.22 This proxy

covers only 13.7% of the consumption basket in 2013. Panel (B) of Figure 2 shows that

the proxy is also correlated with post-WWII CPI inflation and reflects major up- and

downturns.

Panel (A) of Table 2 tests whether the error-ridden replication as well as the proxy

variable are linearly related to the official CPI inflation rate. For the CPI replication and

the proxy, the R2 is higher than 0.5. However, the actual CPI inflation rate is a better

proxy because the root-mean-squared error (RMSE) is lower than the RMSE of the proxy.

Everything else equal, this would indicate that the bias associated with the CPI inflation

rate is less severe than the bias implied by the proxy. In addition, we cannot reject the

null hypothesis at the 5% level that the slope coefficient on CPI inflation is unity. For

the proxy, the slope coefficient is larger than unity, although, only significant at the 10%

level. Note that this is a desirable property because the econometric discussion shows that

a slope parameter larger than unity reduces the misclassification bias.23 For the CPI, the

residuals of the regression exhibit significant first-order autocorrelation at the 5% level.

For the proxy, we cannot reject the null hypothesis of no serial correlation, at least at

the 5% level. These results suggest that the two proxies are sensible, albeit, not ideal

indicators.

Serial correlation in the errors is less worrisome than potential correlation of the

indicators among each other and with other covariates. The measurement error in the

underlying series should be independent of each other, the well-measured inflation rate,

as well as of other covariates. Panel (B) shows pairwise rank correlations between CPI

inflation, equity prices inflation, which is one of the covariates used in the following

application, and the difference between the well-measured CPI and error-ridden inflation

rates. The first column shows that the well-measured CPI inflation rate is not significantly

22See Appendix B for data sources. The BLS PPI commodity groups are matched with the 2013 weights
from Gordon (2016) as follows: Processed foods and feeds with food, alcohol for off-premises consumption;
Apparel with clothing and footwear; Fuels and related products and power with tobacco, printed material,
heating/lighting fuel; and Textile house furnishings with furniture, floor coverings, house furnishings.

23In the continuous case it would amplify the attenuation bias.
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Table 2 — Specification tests modern data

(A) Linearity assumption
Replication
CPI

Proxy
CPI

CPI inflation 0.96*** 1.33***
(0.07) (0.19)

Constant -0.29 -1.84**
(0.23) (0.75)

RMSE 0.86 3.46
AC(1) (p-value) 0.02 0.06
ρ1 = 1 (p-value) 0.58 0.08
R2 0.90 0.53
N 59 59

(B) Pairwise rank correlations
CPI Equity Error CPI Error

Proxy
CPI 1.00
Equity -0.25* 1.00
Error CPI -0.01 0.20 1.00
Error Proxy -0.14 0.23* 0.52*** 1.00

Note: Panel (A) gives regressions of the CPI replication and the CPI proxy on the well-measured modern
CPI inflation rate of the form π̃t = ρ0 + ρ1πt + ωt. HAC-robust standard errors are given in parentheses.
Coefficients with superscripts ***,**,* are statistically significant at the 1%, 5%, 10% level. AC(1) tests
whether the residuals exhibit first-order autocorrelation (see Baum and Schaffer 2013). Panel (B) shows
rank correlation coefficients between actual CPI inflation, equity price inflation, and the measurement
errors associated with the CPI replication and the CPI proxy. The latter two are calculated as simple
differences between the actual CPI inflation rate and the mismeasured inflation rates.
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related to the measurement errors of the three inflation measures. The second column,

however, shows that the errors are partly correlated with equity price inflation. The

correlation is not significant for the CPI replication and only significant at the 10% level

for the proxy.

The main issue of the two proxies is that their measurement errors are positively

correlated. This is not surprising since both inflation series lack services prices and

accurate measures of rent inflation. The positive correlation implies that we only partially

recover the actual association and that the estimates based on the bounding strategy and

GMM are still conservative. In addition, it emphasizes that we should aim to relax the

conditional independence assumption.

4 Estimates for the 19th century

The first set of results show estimates of the shortfall in real activity during deflations in

the 19th century US using various approaches assuming conditional independence of the

two indicators. Panel (A) of Table 3 shows that 19th century deflations in terms of the

CPI were associated with 1.5 percentage points lower GDP growth. The improved upper

bound for the association using the additional information from the proxy variable shows

a stronger association. GDP growth was on average at least 2.2 percentage points lower

during a 19th century deflation. The two point estimates corroborate this finding. The first

point estimate, using the misclassification rates to bias-adjust OLS, is almost identical to

the improved OLS estimate. Meanwhile, the point estimate using GMM suggests that the

shortfall in real activity even amounts to 2.4 percentage points. Finally, the IV estimates

suggest that real activity declined at most by 3.7 percentage points.

Using industrial production growth or the two measures of the output gap corroborates

this finding. The decline in real activity during a deflationary episode becomes more

pronounced according to the improved OLS estimate and point estimate based on GMM.

Focusing on the point estimate, industrial production growth declined by 4.2 percentage

points and the two output gap measures declined by 5.8 percentage points (GDP) and 9.4

percentage points (industrial production), respectively.

GMM delivers point estimates for the bias implied by the CPI inflation rate and the
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Table 3 — Real activity during deflations

(A) GDP growth
Upper bound Point estimate Lower bound

Deflation -1.45** -2.21*** -2.10** -2.37*** -3.74**
(0.72) (0.77) (1.04) (0.81) (1.54)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(B) GDP output gap
Upper bound Point estimate Lower bound

Deflation -3.56*** -5.31*** -5.15*** -5.80*** -8.71***
(1.05) (1.17) (1.52) (1.37) (2.40)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(C) Industrial production growth
Upper bound Point estimate Lower bound

Deflation -2.06 -4.18*** -2.99 -4.22*** -8.59***
(1.49) (1.35) (2.16) (1.55) (3.11)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(D) Industrial production output gap
Upper bound Point estimate Lower bound

Deflation -5.92*** -8.78*** -8.58*** -9.36*** -14.63***
(1.98) (2.02) (2.87) (2.25) (4.17)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

Note: Estimates of the model yt = α+ βxt + εt. The upper bounds of the association are OLS estimates,
as well as, the improved OLS estimates by Black et al. (2000) using the proxy as a second indicator. Point
estimates are based on bias adjustment using the misclassification rates from the modern replications and
GMM using the proxy variable. The lower bound is based on IV. HAC-robust standard errors are given in
parentheses. Coefficients with superscripts ***,**,* are statistically significant at the 1%, 5%, 10% level.
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proxy, which amounts to Biasx = −P [dt = 1|xt = 0]−P [dt = 0|xt = 1].24 The implied bias

for the CPI is significantly different from zero in all specifications and broadly consistent

with the misclassification factors based on modern data (see Table 4). The bias ranges

from −0.37 to −0.51. For the proxy, the bias is only statistically significantly different from

zero at the 5% level when using the GDP output gap. The reason is that the estimates are

relatively imprecise. In fact, a Wald-test of whether the bias implied by the two variables

is equal cannot be rejected at any conventional significance level. Therefore, the data do

not provide evidence in favour of the hypothesis that the proxy based on wholesale prices

is more accurately measured.

Table 4 — Point estimates of bias

GDP Growth GDP gap IP growth IP gap
Bias CPI -0.39** -0.39*** -0.51** -0.37***

(0.18) (0.12) (0.21) (0.13)

Bias proxy -0.25 -0.29** -0.03 -0.26*
(0.21) (0.13) (0.35) (0.14)

Method GMM GMM GMM GMM
Observations 100 100 100 100
Biasx = Biasz (p-value) 0.69 0.60 0.38 0.64

Note: Point estimates for Biasx = −P [dt = 1|xt = 0] − P [dt = 0|xt = 1]. Standard errors are based on
the Delta method. HAC-robust standard errors are given in parentheses. Coefficients with superscripts
***,**,* are statistically significant at the 1%, 5%, 10% level.

The literature has suggested that asset price declines are more strongly related with

real activity shortfalls than CPI deflations (see e.g. Borio et al. 2015). The model can

be extended to the case of additional binary covariates. But, the extension hinges on the

additional assumptions that the covariates are accurately measured, as well as, that they

are conditionally independent of the two proxies. Table 5 includes dummies to control for

equity price deflations as well as banking crises.25 For the model estimated using GMM the

table gives the p-value for the J-statistic according to Hansen (1982). The over-identifying

restrictions are not rejected in any of the specifications.

Controlling for additional covariates leaves the association between deflation and real

activity intact. Both, the bounds as well as the GMM point estimates, suggest that CPI

deflations were associated with significantly lower GDP growth. Wald-tests for the GMM

24See Appendix A for how this bias term depends on the estimated parameters.
25The results based on the improved OLS estimates are robust to including both covariates at the same

time. GMM becomes infeasible, however, because many sampling fractions are zero in this case.
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specifications suggest that CPI deflations were associated with more-serious declines in real

activity than banking crises. In addition, we also find a stronger association for deflation

than for equity price declines, at least, when using the output gap measures as dependent

variables. Meanwhile, there is no significant difference between CPI deflations and equity

price declines when using growth rates of the real activity variables.

Table 5 — Comparison with equity price declines and banking crises

(A) Comparison with equity price declines
GDP Growth GDP gap IP growth IP gap

Deflation -2.37*** -2.28*** -5.46*** -5.80*** -4.50*** -4.83*** -9.06*** -10.12***
(0.74) (0.72) (1.16) (1.26) (1.28) (1.28) (1.99) (2.03)

Equity -1.80** -1.91*** -1.78* -2.03** -3.80*** -3.85*** -3.30* -3.72**
(0.73) (0.66) (0.97) (0.90) (1.38) (1.28) (1.70) (1.88)

Method Improved GMM Improved GMM Improved GMM Improved GMM
Observations 100 100 100 100 100 100 100 100
β = δ (p-value) 0.53 0.66 0.00 0.00 0.69 0.55 0.01 0.01
J-test (p-value) 0.34 0.29 0.73 0.43

(B) Comparison with banking crises
GDP Growth GDP gap IP growth IP gap

Deflation -2.18*** -2.89*** -5.29*** -6.97*** -4.13*** -4.95*** -8.77*** -10.94***
(0.76) (0.79) (1.16) (1.30) (1.35) (1.52) (2.02) (2.27)

Crises -2.37* 0.30 -1.77 2.24** -3.12 4.26** -0.83 7.52***
(1.42) (0.85) (1.96) (1.14) (3.10) (1.85) (3.71) (1.92)

Method Improved GMM Improved GMM Improved GMM Improved GMM
Observations 100 100 100 100 100 100 100 100
β = δ (p-value) 0.90 0.02 0.11 0.00 0.76 0.00 0.04 0.00
J-test (p-value) 0.25 0.33 0.46 0.45

Note: Estimates of the model yt = α+ βxt + δqt + εt. The upper bounds of the association are improved
OLS estimates by Black et al. (2000) using the proxy variable as a second indicator. Point estimates are
based on GMM. For GMM, the table reports the p-value for the J-statistic by Hansen (1982). HAC-robust
standard errors are given in parentheses. Coefficients with superscripts ***,**,* are statistically significant
at the 1%, 5%, 10% level.

So far, the improved OLS estimates were relatively close to the GMM point estimates

making them quite informative. Therefore, we can estimate more complicated models

that would be in principle identified but are difficult to estimate using GMM because

of the relatively low number of observations. Panel (A) in Table 6 provides estimates

separated into mild and severe deflations using OLS and the improved OLS estimates by

Black et al. (2000).26 A severe deflation is defined as a decline in the CPI and proxy of at

26Note that all specifications control for equity price deflations and banking crises but the coefficients
are not reported for brevity.
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least 3%. The improved OLS estimates measure the shortfall in real activity when both

indicators agree that a period was associated with a severe or mild deflation, respectively.

The coefficients on mild deflations are not statistically significantly different than zero in

most specifications. Meanwhile, severe deflations are associated with significantly lower

real activity. Moreover, the bounds are more strongly negative than the OLS estimates

suggesting that the misclassification particularly affects severe deflations. This is in line

with econometric theory, which implies that the misclassification bias is more severe when

the threshold value differs from the unconditional mean of inflation.

In addition, we can examine whether short-lived deflations have a different association

with real activity than long-lived ones. Panel (B) splits up deflations into transitory and

persistent deflations. A persistent deflation is defined as lasting two years or longer.

Focusing on the OLS estimate for GDP growth, we find that there is no significant

association for transitory deflations, whereas persistent deflations go hand in hand with

shortfalls in economic activity. The bound tells a different story. Both, persistent

and transitory deflations are associated with significantly lower GDP growth and the

coefficients do not significantly differ from each other. Therefore, the evidence suggests

that severe deflations are associated with lower real activity independently of the length

of the deflationary episode. Over all specifications, there is little evidence that transitory

deflations differ significantly from persistent deflations at least when controlling for

measurement error.

The last Panel of Table 6 considers whether monetary deflations have a different

association than nonmonetary deflations. A monetary deflation is defined as a decline

in the price level that is associated with particularly low growth in M2 of less than 3%.27

Focusing on GDP and instustrial production growth, neither monetary nor nonmonetary

deflations are significantly associated with lower real activity (note that those results are

based on a smaller sample from 1868-1899). The bounds, however, indicate that monetary

deflations, at the 1% level, as well as other deflations, at the 10% level, are associated with

significantly lower GDP growth. For the output gaps, there is no significant difference

between the two kinds of deflation as well, and the coefficients become more negative

27The M2 series stems from Friedman and Schwartz (1963) as reported by Anderson (2003). The
specification hinges on the additional assumption that M2 is measured without error.
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Table 6 — Bounds for severe, persistent, and monetary deflations

(A) Severe deflations of more than −3%
GDP Growth GDP gap IP growth IP gap

Mild 0.09 2.16* -1.65 1.91 0.07 -0.70 -5.90** -3.17
(1.04) (1.26) (1.33) (2.04) (1.89) (3.57) (2.43) (4.77)

Severe -3.01*** -3.56*** -5.45*** -7.17*** -4.57*** -5.95*** -6.74*** -9.66***
(0.67) (0.72) (1.13) (1.27) (1.42) (1.49) (2.25) (2.34)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.00 0.00 0.00 0.00 0.01 0.17 0.75 0.22

(B) Persistent deflations longer than one year
GDP Growth GDP gap IP growth IP gap

Transitory -1.31 -2.83*** -4.35** -4.99*** -3.18 -8.66** -10.27*** -13.56***
(1.00) (0.76) (1.71) (1.81) (2.31) (3.37) (2.53) (5.15)

Persistent -1.72** -2.30*** -3.63*** -5.24*** -2.35 -4.32*** -5.40** -8.86***
(0.77) (0.77) (1.12) (1.19) (1.48) (1.31) (2.16) (2.03)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.70 0.49 0.67 0.88 0.72 0.17 0.07 0.35

(C) Monetary deflations with M2 growth lower than 3% (1868-1899)
GDP Growth GDP gap IP growth IP gap

Other -2.36 -3.02* -8.62*** -10.53*** -3.54 -5.73* -12.13*** -16.24***
(1.67) (1.74) (2.21) (1.46) (2.75) (2.93) (3.11) (2.27)

Monetary -1.83 -5.30*** -7.15** -6.02** -3.85 -10.04*** -12.72*** -15.88***
(2.83) (1.68) (3.13) (2.97) (4.44) (1.97) (3.67) (3.10)

M2 -3.91 -0.37 -3.00 -6.03*** -4.89 0.68 -4.98 -5.01*
(2.50) (1.23) (2.26) (1.55) (4.18) (1.82) (3.86) (2.73)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.86 0.37 0.71 0.19 0.96 0.25 0.90 0.91

Note: Estimates of the models yt = α+β1x
1
t +β2x

2
t +δqt+εt using OLS, as well as the improved bound by

Black et al. (2000). x1t and x2t denote deflations separated into mild and severe, transitory and persistent, as
well as monetary and other deflations. All specifications include equity price deflations as well as banking
crises dummies as controls. Those coefficients are not reported for brevity. HAC-robust standard errors
are given in parentheses. Coefficients with superscripts ***,**,* are statistically significant at the 1%, 5%,
10% level.
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when controlling for measurement error.

So far, we have made extensive use of the assumption that the indicators based on

the CPI inflation rate and the proxy are independent conditional on the true deflation

indicator. We have seen, however, that the measurement errors of the two inflation

measures are positively correlated in modern data. Relaxing this assumption we can still

set-identify the parameter of interest. The identifying assumption is that the measurement

error in the two indicators is not too severe so that the joint probabilities of misclassfiying

inflations (P [xt = 1, zt = 1|dt = 0]) and deflations (P [xt = 0, zt = 0|dt = 1]) is small.

This assumption is supported by the modern replications. The sample analogues of these

probabilities amount to 0.05 (misclassified deflation) and 0.15 (misclassified inflation). I

therefore estimate the model over a grid of all possible combinations of the two probabilities

from 0 to 0.2 in steps of 0.05.28

Each panel of Figure 3 shows estimates of the real activity shortfall during deflation.

The estimates do not include covariates and therefore correspond to the estimates

presented in Table 3. Point estimates are displayed as circles where the horizontal lines

represent 95% confidence intervals. The first estimate in each panel, marked by the

dashed line, shows the OLS estimate based on the CPI inflation indicator. The remaining

estimates are based on GMM at fixed misclassification probabilities. We see that the GMM

point estimates are all higher than the OLS point estimates and statistically significantly

different from zero. The differences are more pronounced for the output gaps and industrial

production growth than for GDP growth. For the former three real activity measures, the

GMM estimates are often statistically significantly different from the value of the OLS

point estimate. Although the confidence intervals are wide in some cases, it is worth

pointing out that accounting for measurement error, the point estimates using GMM

are up to three times larger than the OLS estimates, which underlines that descriptive

statistics based on erroneous classifications can be substantially biased.

28Simulations suggest that, if the measurement error in the two proxies is not too severe (meaning that
the signal to noise ratio is unity or larger), the range encompasses a correlation between the measurement
error of the two indicators up to 0.9. For a signal to noise ratio of only 0.5, the range of values encompasses
a correlation between the errors of 0.7.
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Figure 3 — Relaxing conditional independence

Deflation

−8 −6 −4 −2 0
Percentage points

(A) GDP growth

Deflation

−20 −15 −10 −5 0
Percentage points

(B) GDP output gap

Deflation

−15 −10 −5 0
Percentage points

(C) IP growth

Deflation

−30 −20 −10 0
Percentage points

(D) IP output gap

Note: OLS point estimate (blue, dashed vertical line) and GMM estimates (red) on the shortfall of growth
during deflations. Circles display point estimates and the solid lines 95% confidence bands based on
HAC-robust standard errors. GMM estimates conditional on fixing the joint misclassification rates of
inflationary and deflationary periods on a grid of from 0 to 0.2 in steps of 0.05.
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4.1 Robustness

The results are robust with respect to various alternative specifications (see Appendix C).

In the baseline specification using GDP growth, I excluded the period from 1890-1899

because some of the series underlying the proxy were also used to construct the CPI

segment by Rees (1961). I also additionally controlled for severe inflations, and varied the

definition of severe deflations (at least −5%), persistent deflations (3 years or longer), as

well as monetary deflations (M2 growth lower than 2%). The results are similar. Using

HP-filtered output gaps instead of the procedure of Hamilton (2016) is inconsequential as

well. In addition, I examined whether using the real per capita GDP growth from The

Maddison-Project (2013), which are largely based on Sutch (2006), changes the result.

OLS implies a weak association with an insignificant 0.6 percentage points drop in GDP

growth. The improved bound is significantly different from zero at the 10% level and

amounts to -1.2 percentage points. Therefore, while the estimation uncertainty is larger,

the implied bias is more severe.

Then, I changed the deflation threshold to 1%, taking into account for the possibility

that similar measurement issues as emphasized by the Boskin Commission (1996) affects

historical inflation data. Qualitatively, the results are similar although less precisely

estimated. It turns out that individual estimates using the CPI deflation indicator are

not significant. The improved upper bound suggests that deflation was associated at least

with 1.8 percentage points drop in GDP growth. The GMM point estimate is significant

only at the 10% level and amounts to −1.6 percentage points. The lower bound based on

IV, however, suggests that the GDP growth shortfall amounts up to 4.4 percentage points.

5 Conclusions

Estimating average real economic performance during deflations is hampered by

measurement error. Replications of deficiencies in 19th century CPI estimates suggest that

those measurement issues bias the link between real economic activity and deflation. Using

four different approaches to alleviate the errors-in-variables problem I find that deflations

were associated with substantially lower real activity for the 19th century US. Moreover,

perhaps surprisingly, transitory deflations were associated with similar shortfalls in real
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activity as more persistent ones. The association, however, is limited to severe deflations.

Many empirical studies using 19th century data fail to uncover a significant link

between real economic activity and deflation. A possible explanation is that 19th century

deflations were benign, short-lived, or a by-product of beneficial advances in productivity.

In addition, researchers find that during the 19th century prices and wages were quite

flexible. This paper argues that measurement problems in historical price data is partly

responsible for the lacking association.

Whether deflation causes lower real activity or whether it is a consequence of falling

aggregate demand remains an open question. Accurately estimating reduced-form

correlations, however, is a necessary condition for reliable structural analysis. Most

estimation approaches to identify the impact of structural shocks will suffer from the

errors-in-variables problem. Exploring the impact of measurement error on structural

analysis is beyond the scope of this paper but would be an interesting avenue for future

research.
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Appendices

A Technical appendix

This section derives some analytic results for comparing the attenuation and

misclassification biases and discusses the GMM estimation approach in detail.

A.1 Attenuation and misclassification bias

Let yt denote the dependent variable, πt the correctly measured variable (signal), and

ωt the measurement error (noise). In addition, let the proxy of inflation be denoted by

π̃t = ρ0 + ρ1πt + ωt and the error-ridden deflation dummy as xt ≡ 1{π̃t<c}. Finally, let

εt denote a stochastic disturbance. All variables, except yt, are normally distributed and

mutually independent. Note that, for simplicity, I assume that there is no mismeasurement

in the mean and scale of inflation (ρ0 = 0, ρ1 = 1).

It is well known that classical measurement error in a continuous variable in the

regression

yt = α+ βcπ̃t + εt

implies that the OLS estimate is biased and depends on the relative amount of

measurement error in the observed variable (see e.g. Griliches 1986):

plim β̂c = βc
σ2π

σ2π + σ2ω
,

where the estimate is attenuated towards zero because variances are strictly positive. It

follows that the attenuation bias only depends on the signal to noise ratio but not on

mismeasurement of the mean.

Aigner (1973) showed that in the corresponding binary model

yt = α+ βbxt + εt ,

OLS is inconsistent as well with

plim β̂b = βb(1− P [dt = 0|xt = 1]− P [dt = 1|xt = 0]) ,
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where dt ≡ 1{πt<c} is the well-measured deflation dummy. Because probabilities lie

between zero and unity, the OLS coefficient is generally biased upwards (downwards)

if β is negative (positive).

To derive some analytical insights into the differences of the bias in the binary relative

to the continuous case let us assume that the signal and the noise variable both follow a

normal distribution with the same standard deviation σ. This implies that the signal to

noise ratio is unity. In the continuous case, the attenuation factor therefore amounts to

0.5.

In addition, let us assume that both variables are of zero mean. A nonzero threshold

therefore implies that it differs from the mean of the signal. Because of the independence

assumption it follows that we can write the second term of the misclassification bias as:

P [πt < c|πt + ωt > c] = P [max(πt, ωt) < c] = P [πt < c]P [ωt < c] ,

and because of normality we obtain

P [πt < c|πt + ωt > c] = Φ
( c
σ

)2
,

where Φ(z) is the cdf of a standard normal distribution.

Similarly, we obtain for the first term that:

P [πt > c|πt + ωt < c] = P [−πt < −c| − πt − ωt > −c]

because the random variables are assumed to have zero mean and are symmetrically

distributed it follows that

P [πt > c|πt + ωt < c] = Φ

(
−c
σ

)2

Therefore, under these admittedly strong assumptions, we can derive that the

misclassification factor for the binary variable amounts to:

1− P [dt = 0|xt = 1]− P [dt = 1|xt = 0] = 1− Φ
( c
σ

)2
− Φ

(
−c
σ

)2
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Some interesting observations emerge. In contrast to the continuous case the bias now

depends on the threshold value, that is, the deviation of the threshold from the mean of

the signal. If this deviation is zero (c = 0), the bias amounts to 0.5, which is equal to

the bias in the continuous case. If the threshold is different from the mean of the signal

(c 6= 0), however, the bias becomes more severe.

In addition, the overall volatility, not only the signal to noise ratio, matters for the

bias. If the overall variance of the process, which depends on σ, is large, then the bias will

be less severe than if the overall variance is small. This suggests that the misclassification

bias will be less severe if the signal is stronger, even if the noise process gets proportionally

more volatile. This suggests that the misclassification bias may be particularly severe for

variables with little variation, whereas, in the continuous case the bias does not depend

on the overall volatility but only on the signal to noise ratio.

A.2 GMM estimators with mismeasured binary regressors

Resolutions to the misclassification bias differ from the well-known attenuation bias in

the case of classical measurement error. With classical measurement error, a widely used

solution is to find a proxy variable with the same properties as the error-ridden variable,

but with independent measurement error, and use it as an instrument (see Hausman

2001). It is worth noting, however, that the classical assumptions are violated in our case

because the classification error is necessarily negatively correlated with the outcome (see

Kane et al. 1999). Following Kane et al. (1999) and Black et al. (2000) this appendix

derives a consistent GMM estimator for the regression model with an error-ridden binary

regressor and two extensions.

A.2.1 The basic model

Suppose that the true model reads

yt = α+ βdt + εt ,

with dt ≡ 1{πt<0} but we have at our disposal only two error-ridden indicators xt ≡ 1{π̃t<0},

where π̃t = ρ0 + ρ1πt + ωt, and zt ≡ 1{π̂t<0}, where π̂t = γ0 + γ0πt + ψt. Assume that

ψt, ωt, εt are i.i.d. and mutually independent of each other and of πt.
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Based on information of only one of the indicators, the model is not identified and we

will not be able to recover the coefficients. For example, using only the information in xt

we can estimate three independent moments from the data, namely the expectation of yt

conditional on each outcome of xt and the population probability of xt = 1:

E[yt|xt = 1] = α+ βP [dt = 1|xt = 1]

E[yt|xt = 0] = α+ βP [dt = 1|xt = 0]

P [xt] = P [xt = 1|dt = 1]P [dt = 1] + P [xt = 1|dt = 0]P [dt = 0]

= (1− P [xt = 0|dt = 1])P [dt = 1] + P [xt = 1|dt = 0](1− P [dt = 1]) .

We can apply Bayes’ theorem to rewrite the conditional probabilities in the conditional

expectation as

P [dt = 1|xt = 1] =
P [xt = 1|dt = 1]P [dt = 1]

P [xt]

=
(1− P [xt = 0|dt = 1])P [dt = 1]

(1− P [xt = 0|dt = 1])P [dt = 1] + P [xt = 1|dt = 0]P [dt = 0]
.

Let us define the population probability of deflation as p ≡ P [dt = 1], as well as the

probability that a deflationary and inflationary episode is misclassified by the indicator

as ηx ≡ P [xt = 0|dt = 1], νx ≡ P [xt = 1|dt = 0]. Then, we can rewrite the moment

conditions as

E[yt|xt = 1] = α+ β
(1− ηx)p

(1− ηx)p+ νx(1− p)

E[yt|xt = 0] = α+ β
ηxp

ηxp+ (1− νx)(1− p)
P [xt] = (1− ηx)p+ νx(1− p) .

We see that we have to estimate five coefficients from three moment conditions. Thus

the model is not identified. It is easy to show that OLS is not consistent:
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plim β̂OLS = E[yt|xt = 1]− E[yt|xt = 0]

= β

(
(1− ηx)p

(1− ηx)p+ vx(1− p)
− ηxp

ηxp+ (1− νx)(1− p)

)
.

However, using the information of the two binary indicators it is possible to consistently

estimate β using GMM (see Kane et al. 1999, Black et al. 2000). To see this, note that we

can derive the expected value of yt conditional on all combinations of outcomes of the two

indicators which yields four moments. In addition, we can derive the probability of each

of the four combinations of outcomes which yields another three independent moments.29

For example, for the case of xt = 1 and zt = 1 we have:

E[yt|xt = 1, zt = 1] = α+ βP [dt = 1|xt = 1, zt = 1] .

Applying Bayes’ theorem we can rewrite the conditional probability as

P [dt = 1|xt = 1, zt = 1] =
P [xt = 1, zt = 1|dt = 1]P [dt = 1]

P [xt = 1, zt = 1]
.

Using the assumption that xt and zt are independent conditional on the actual outcome

of dt we have

P [dt = 1|xt = 1, zt = 1] =
P [xt = 1|dt = 1]P [zt = 1|dt = 1]P [dt = 1]

P [xt = 1, zt = 1]
(A.1)

=
(1− P [xt = 0|dt = 1])(1− P [zt = 0|dt = 1])P [dt = 1]

P [xt = 1, zt = 1]
.

The same strategy can be applied to rewrite the denominator as:

P [xt = 1, zt = 1] = P [xt = 1, zt = 1|dt = 1]P [dt = 1] (A.2)

+P [xt = 1, zt = 1|dt = 0]P [dt = 0]

= (1− P [xt = 0|dt = 1])(1− P [zt = 0|dt = 1])P [dt = 1]

+P [xt = 1|dt = 0]P [zt = 1|dt = 0](1− P [dt = 1]) .

29One probability is redundant because the joint probabilities over all combinations of outcomes of xt
and zt have to sum to unity.
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Using equation (A.2) in equation (A.1) and previously introduced notation yields

expressions for two of the seven moments:

E[yt|xt = 1, zt = 1] = α+ β
(1− ηx)(1− ηz)p

(1− ηx)(1− ηz)p+ νxνz(1− p)
P [xt = 1, zt = 1] = (1− ηx)(1− ηz)p+ νxνz(1− p) .

We can derive similar expressions for the remaining three conditional expectations and

two non-redundant probabilities in terms of the misclassifcation probabilities (ηx, νx, ηz,

νz), model parameters (α, β) and the population probability of deflation p. Therefore

we have seven parameters to estimate and seven moments that we can estimate from the

data. Generally, if we obtain M noisy binary indicators this yields 2 × 2M − 1 moment

conditions and 3 + 2 ×M coefficients to estimate. So with two indicators, the model is

just identified and with more indicators, the model is over-identified.

GMM allows us to estimate various measures of interest. In particular, we can derive a

point estimate of the implied bias associated with the two indicators. Given the discussion

so far, it is easy to show that the for indicator xt amounts to

Biasx = −P [xt = 0|dt = 1]− P [xt = 1|dt = 0]

= − ηxp

ηxp+ (1− νx)(1− p)
− νx(1− p)

(1− ηx)p+ νx(1− p)
.

An analogous formula applies to indicator zt. Given the the parameters estimates based

on GMM, we can derive standard errors for the bias using the Delta method.

A.2.2 Well-measured binary covariates

The estimator can be extended to including binary covariates. Let us assume that we have

one additional binary covariate and estimate the model:

yt = α+ βxt + δqt + εt .
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Focusing on the case with xt = 1, zt = 1 and qt = 1 we have:

E[yt|xt = 1, zt = 1, qt = 1] = α+ βP [dt = 1|xt = 1, zt = 1, qt = 1]

+δP [qt = 1|xt = 1, zt = 1, qt = 1] .

Assuming that the covariate is accurately measured implies P [qt = 1|xt = 1, zt = 1, qt =

1] = 1. Therefore, can proceed analogous to the previous case applying Bayes’ theorem:

P [dt = 1|xt = 1, zt = 1, qt = 1] =
P [xt = 1, zt = 1, qt = 1|dt = 1]P [dt = 1]

P [xt = 1, zt = 1, qt = 1]
.

Let us again assume that the deflation indicators are conditionally independent of each

other and of the additional covariate to obtain:

P [dt = 1|xt = 1, zt = 1, qt = 1] =
(1− ηx)(1− ηz)(1− ηq)p

(1− ηx)(1− ηz)(1− ηq)p+ νxνzνq(1− p)
.

Therefore we have

E[yt|xt = 1, zt = 1, qt = 1] = α+ β
(1− ηx)(1− ηz)(1− ηq)p

(1− ηx)(1− ηz)(1− ηq)p+ νxνzνq(1− p)
+ δ ,

where the corresponding population moment for the sampling fraction, P [xt = 1, zt =

1, qt = 1], equals the denominator. Again, we can derive analogous expressions for all

combinations of outcomes, which yields 2 × 2M+1 − 1 = 15 with M = 2 indicators.

However, we only have to estimate 3 + 1 + 2× (M + 1) = 10 coefficients implying that, if

we include an accurately measured binary covariate, the model is over-identified.

The estimator readily extends to more than one binary covariate, categorical outcomes,

as well as deterministic time-period interaction terms. In these extensions the model is

always just or over-identified, if we have two conditionally independent deflation indicators.

A.2.3 Relaxing conditional independence

Without the conditional independence assumption, we cannot write the joint conditional

probabilities as separate parameters. As a consequence, we have for the case that xt =

1, zt = 1:
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E[yt|xt = 1, zt = 1] = α+ β
η11p

η11p+ ν11(1− p)
. (A.3)

where η11 ≡ P [xt = 1, zt = 1|dt = 1] and ν11 ≡ P [xt = 1, zt = 1|dt = 0]. Conditioning

on every combination of outcomes shows that we can still estimate seven independent

moments from the data. However, we have to estimate nine coefficients: the two model

parameters, the probability of deflation, and three joint conditional probabilities for every

outcome of the true deflation indicator (η11, η10, η00, ν11, ν10, ν00).

Two of the parameters to be estimated are the conditional probability that both

indicators misclassify a deflationary period and inflationary period, respectively, at the

same time:

η00 = P [xt = 0, zt = 0|dt = 1], ν11 = P [xt = 1, zt = 1|dt = 0] .

If we fix those probabilities at sensible values, we only have to estimate 7 parameters and

the model is identified.

The two parameters are particularly useful to fix because, if we think that the two

indicators exhibit measurement error that is not too severe and the measurement error is

not too strongly correlated, the joint misclassification probabilities should be small. If we

can define a reasonable upper threshold for the two joint probabilities the parameter of

interest is set-identified.
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B Data

Table B.1 — Sources

Name Time Source Identifier Comments
Composite aggregate price indices
CPI 1774-2015 MW Officer and Williamson (2016)
WPI/PPI 1749-1890 HSUS Cc113 Warren and Pearson (1933)

1860-1990 HSUS Cc125 Hanes (1998); 1941-1947 missing. The
series is a consistent replication of
Warren and Pearson (1933) for the 19th
century

1913-2015 FRED PPIACO

Composite real activity
Real GDP 1790-2015 MW Johnston and Williamson (2016); per

capita
Industrial
production

1790-1915 Davis (2004)

1899-1937 HSUS Dd495 Fabricant (1940)
1919-2015 FRED INDPRO

Output gaps 1790-2015 Detrended GDP and industrial
production using the approach by
Hamilton (2016) and a HP-filter with
smoothing parameter set to 100

Modern replications
WPI 1890-1990 HSUS Cc125 Hanes (1998); 1941-1947 missing. The

series is a consistent replication of
Warren and Pearson (1933) for the 19th
century

CPI 1956-2015 Kaufmann (2017) the series is a
replication of the 1860-1880 segment
of the CPI provided by Officer and
Williamson (2016)

BLS PPI data for proxy
Processed foods
and feeds

1947-2015 FRED 02

Apparel 1947-2015 FRED 0381
Fuels and related
products and power

1926-2015 FRED 05

Textile house
furnishings

1947-2015 FRED 0382

Historical WPI data for proxy
Foods 1798-1941 HSUS Cc115,

Cc128
Warren and Pearson (1933) extended
by Hanes (1998)

Textile products 1798-1941 HSUS Cc117,
Cc130

Fuel and lighting 1798-1941 HSUS Cc118,
Cc131

continued on next page
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Table B.1 – continued from previous page
Name Time Source Identifier Comments
House furnishing
goods

1840-1941 HSUS Cc122,
Cc135

Other historical variables
Banking crises Jalil (2015); 1833-1834, 1837-1839,

1857, 1873, 1893, 1907
Equity prices 1802-1870 HSUS Cj797 Index of common stocks

1870-2015 JST
Money supply 1867-1947 M2 by Friedman and Schwartz (1963)

as reported by Anderson (2003)

Note: All composite series spliced using the most recent series available. MW: MeasuringWorth; HSUS:

Historical Statistics of the United States; FRED: Federal Reserve Bank of St. Louis Economic Data; BLS:

U.S. Bureau of Labor Statistics; JST: Jorda et al. (2016) and Knoll et al. (2017).
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C Robustness
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Table C.2 — Real activity during deflations

(A) GDP growth (1800-1889)
Upper bound Point estimate Lower bound

Deflation -1.44** -2.09*** -2.08** -2.18*** -3.26**
(0.64) (0.75) (0.93) (0.75) (1.35)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(B) HP-filtered GDP output gap
Upper bound Point estimate Lower bound

Deflation -2.59*** -3.88*** -3.76*** -4.20*** -6.42***
(0.71) (0.72) (1.03) (0.79) (1.60)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(C) HP-filtered Industrial production output gap
Upper bound Point estimate Lower bound

Deflation -3.23** -5.30*** -4.68** -5.70*** -9.37***
(1.29) (1.36) (1.87) (1.39) (2.69)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

(D) GDP growth from The Maddison-Project (2013)
Upper bound Point estimate Lower bound

Deflation -0.58 -1.20* -0.84 -1.24 -2.44*
(0.74) (0.67) (1.08) (0.80) (1.48)

Method OLS Improved Adjusted GMM IV
Observations 99 99 99 100 99

(E) Deflation threshold at 1%
Upper bound Point estimate Lower bound

Deflation -0.65 -1.75** -0.94 -1.60* -4.41**
(0.65) (0.74) (0.94) (0.87) (1.84)

Method OLS Improved Adjusted GMM IV
Observations 100 100 100 100 100

Note: Estimates of the model yt = α+βxt+εt. The upper bounds of the association are OLS estimates, as
well as, the improved OLS estimates by Black et al. (2000) using the proxy variable as a second indicator.
Point estimates are based on bias adjustment using the misclassification rates from the modern replications
and GMM using the proxy variable. The lower bound is based on IV. HAC-robust standard errors are
given in parentheses. Coefficients with superscripts ***,**,* are statistically significant at the 1%, 5%,
10% level.
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Table C.3 — Bounds for severe, persistent, and monetary deflations

(A) Severe deflations of more than −5%
GDP Growth GDP gap IP growth IP gap

Mild -1.23 0.58 -3.15*** -1.44 -1.83 -1.63 -5.97*** -6.20**
(0.79) (0.92) (1.15) (1.13) (1.50) (1.91) (2.11) (2.42)

Severe -2.61*** -3.51*** -5.26*** -7.48*** -4.16** -6.52*** -7.32*** -10.58***
(0.79) (0.84) (1.30) (1.39) (1.85) (2.17) (2.71) (2.64)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.01 0.00 0.09 0.00 0.19 0.06 0.62 0.14

(B) Severe inflations of more than 3%
GDP Growth GDP gap IP growth IP gap

Severe inflation -1.14 -1.19 -2.37 -2.55* -2.98 -3.01* -4.74 -4.83*
(0.87) (0.84) (1.53) (1.36) (1.90) (1.79) (2.93) (2.71)

Mild deflation -0.25 1.79 -2.35 1.11 -0.81 -1.65 -7.30*** -4.68
(1.10) (1.30) (1.43) (2.14) (1.92) (3.70) (2.62) (4.99)

Severe deflation -3.36*** -3.94*** -6.18*** -7.99*** -5.48*** -6.92*** -8.18*** -11.21***
(0.74) (0.78) (1.23) (1.35) (1.52) (1.66) (2.37) (2.46)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100

(C) Persistent deflations longer than two years
GDP Growth GDP gap IP growth IP gap

Transitory -1.12 -1.53** -3.48*** -3.30*** -2.01 -4.88** -6.00*** -6.84**
(0.78) (0.76) (1.18) (1.25) (1.65) (1.98) (2.25) (3.39)

Persistent -2.00** -2.69*** -3.97*** -5.87*** -2.86* -4.91*** -6.62*** -10.00***
(0.86) (0.91) (1.30) (1.38) (1.67) (1.37) (2.43) (2.21)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.35 0.23 0.72 0.07 0.64 0.99 0.82 0.39

(D) Monetary deflations with M2 growth lower than 2% (1868-1899)
GDP Growth GDP gap IP growth IP gap

Other -2.55 -3.55** -8.86*** -10.48*** -4.26 -6.96*** -13.13*** -17.23***
(1.59) (1.56) (2.00) (1.34) (2.68) (2.69) (2.96) (2.25)

Monetary -1.14 -3.10* -6.17** -5.92*** -1.44 -4.89 -9.36** -11.45***
(2.21) (1.88) (2.64) (2.25) (3.64) (3.61) (3.73) (3.63)

M2 -4.44*** -2.60 -3.65** -5.56*** -7.00** -4.43 -7.94** -8.89***
(1.69) (1.59) (1.53) (0.76) (3.20) (3.46) (3.22) (2.96)

Method OLS Improved OLS Improved OLS Improved OLS Improved
Observations 100 100 100 100 100 100 100 100
β1 = β2 (p-value) 0.48 0.80 0.34 0.05 0.38 0.54 0.35 0.12

Note: Estimates of the models yt = α+β1x
1
t +β2x

2
t +δqt+εt using OLS, as well as the improved bound by

Black et al. (2000). x1t and x2t denote deflations separated into mild and severe, transitory and persistent,
as well as monetary and other deflations. All specifications include equity price deflations as well as
banking crises dummies as controls. HAC-robust standard errors are given in parentheses. Coefficients
with superscripts ***,**,* are statistically significant at the 1%, 5%, 10% level.
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