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ABSTRACT

An accurate assessment of tail inequalities and tail asymmetries of financial
returns is key for risk management and portfolio allocation. We propose a new
test procedure for detecting the full extent of such structural differences in the
dependence of bivariate extreme returns. We decompose the testing problem
into piecewise multiple comparisons of Cramér-von Mises distances of tail cop-
ulas. In this way, tail regions that cause differences in extreme dependence
can be located and consequently be targeted by financial strategies. We derive
the asymptotic properties of the test and provide a bootstrap approximation
for finite samples. Moreover, we account for the multiplicity of the piecewise
tail copula comparisons by adjusting individual p-values according to multiple
testing techniques. Monte Carlo simulations demonstrate the test’s superior
finite-sample properties for common financial tail risk models, both in the i.i.d.
and the sequentially dependent case. During the last 90 years in US stock mar-
kets, our test detects up to 20% more tail asymmetries than competing tests.
This can be attributed to the presence of non-standard tail dependence struc-
tures. We also find evidence for diminishing tail asymmetries during every
major financial crisis – except for the 2007-09 crisis – reflecting a risk-return
trade-off for extreme returns.

Keywords: Tail dependence, tail copulas, tail asymmetry, tail inequality, ex-
treme values, multiple testing

JEL classification: C12, C53, C58
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1 INTRODUCTION

Asymmetric dependence both within and between bivariate extreme returns in

different market conditions is not only a key criterion for asset and risk man-

agement, but also a main focus of market supervision. During financial crises,

financial markets exhibit pronounced cross-sectional co-movements of (lower)

tails of return distributions. Thus, the tendency of joint extreme events inten-

sifies, see e.g. Longin and Solnik (2001); Ang and Chen (2002); Li (2013). For

investment strategies, this should be taken into account by timely and adequate

re-allocations of assets, e.g. profiting from arbitrage trading opportunities, and

by appropriate adjustments of hedging decisions. Conversely, risk managers

and market supervisors might need to set larger capital buffer requirements if

the tendency for joint occurrences of extreme losses rises in times of market dis-

tress. Specifically aiming at dependence between extreme events, we provide a

robust non-parametric statistical test against tail dependence differences. The

test accurately detects all types and the full extent of deviations between two

tail dependence functions. Our test procedure is based on multivariate ex-

treme value techniques which remain valid during turbulent market periods,

e.g. Mikosch (2006). Particular to finance, Ang and Chen (2002), Patton (2006),

Chollete et al. (2011), Li (2013) document the economic merits for asset diversi-

fication of asymmetric dependence structures, e.g. for optimal portfolio alloca-

tion. Under adverse market conditions, standard linear dependence measures

are flawed which demands for alternative statistical models. Most prominently,

the Gaussian copula is a convenient tool to model dependence near the mean of

multivariate distributions. However, it is not capable of measuring dependence

in the far tails (Embrechts (2009)). Furthermore, our test connects concepts of

multivariate extreme value theory with multiple testing techniques. Recently,

the latter have gained in practical importance in times of abundant data and

the risk of data snooping, see e.g. in the finance context Barras et al. (2010),

Bajgrowicz and Scaillet (2012) and Bajgrowicz et al. (2015) .

We propose a novel non-parametric test procedure against pairwise differ-
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ences in tail dependence structures which we measure with tail copulas de-

noted by Λ(x(1), x(2)), (x(1), x(2)) ∈ R2
+. A tail copula is a functional of the complete

tail dependence. The flexibility of using empirical tail copulas avoids possi-

ble parametric misspecification risk; see e.g. Longin and Solnik (2001); Patton

(2013); Jondeau (2016) for parametric approaches. Furthermore, the general-

ity of this approach is in sharp contrast to established approaches, which only

estimate and compare scalar summary measures of extreme dependence, such

as the tail dependence coefficient (Hartmann et al. (2004), Straetmans et al.

(2008)), or the tail index of aggregated tails (Ledford and Tawn (1996)). Specif-

ically, we compare tail copulas over their entire relevant domain in a locally

piecewise way. Thus, we study a multiple testing problem of tail copula equal-

ity. Piecewise testing allows to pin down specific quantile regions where tail

dependence differences are most serious. Such areas then indicate those types

of extreme market conditions that typically cause tail asymmetry (inequality).

Moreover, our test is still consistent if one (or both) of the two considered tail

copulas is non-exchangeable, i.e. Λ(x(1), x(2)) 6= Λ(x(2), x(1)). Existing procedures

fail to address such intra-tail asymmetric dependence structures. Therefore,

for non-exchangeable tail copulas, those tests are inconsistent.

Our test builds on the idea of a two-sample goodness-of-fit test for tail copu-

las as in Bücher and Dette (2013). However, for increased sensitivity against vi-

olations of the null, we compare both tail copulas in a piecewise way on disjoint

subintervals of the unit simplex hull. This way, a number of individual tests

against tail dependence equality is carried out. For an accurate overall assess-

ment, we use multiple testing principles, such as the familywise error control

and the false discovery rate, to jointly control the error rate of all marginal tests.

Asymptotic properties of the test are provided. Moreover, a multiplier bootstrap

procedure is suggested by extending ideas of Bücher and Dette (2013) to non-

i.i.d. data.

A simulation study with widely used factor and Clayton copulas reveals the

test’s attractive finite sample properties both for i.i.d. and sequentially de-
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pendent time series data. In standard cases, our test is slightly superior to

competing tests, while it is much more powerful in case of intra-tail asymmet-

ric copulas. Simulation results strongly suggest that accounting for time series

dynamics is essential. This can be achieved by either GARCH pre-filtering or

by directly adjusting the bootstrap approximation for serial dependence.

In an empirical application, we establish tail asymmetry dynamics of 49 US

stock sectors for the last 90 years, i.e. dynamics of the differences between

upper and lower tails of all bivariate industry pairs. We find empirical evidence

that tail asymmetries substantially diminish in times of financial distress. The

only strong exception is the 2007-2009 financial crisis which apparently was

completely different in structure than any other crisis. We conclude dependence

between extreme gains increases in crisis. As the danger of joint extreme losses

surges during bear markets, this finding documents a type of extreme risk-

return trade-off as joint extreme gains are more likely compensating for the

increased risk of joint extreme losses. This contrasts with other studies that

analyze and compare market index pairs. Overall, our test detects up to 20%

more tail asymmetries than competing tests. This can specifically be attributed

to tail events not detected by standard tail dependence measures as the tail

dependence coefficient (TDC) (Hartmann et al. (2004); Jondeau (2016)), or the

tail copula-based test by Bücher and Dette (2013). Thus, our test could serve as

a more accurate tool for investors when assessing tail asymmetry in the market,

e.g. our test reveals more opportunities for improved tail asymmetry-based

portfolio allocation strategies. In the Appendix D of the online supplement

material, we also study tail inequalities between foreign exchange rates.

This paper is structured as follows. Section 2 introduces theoretical results

on tail dependence necessary for the testing procedures. Section 3 introduces

our testing technique. It also provides asymptotic properties and respective fi-

nite sample versions of the test procedures. Section 4 studies the finite sample

performance in a thorough simulation study, and Section 5 studies tail asym-

metries of US stock sectors. Additionaly, we analyze tail inequalities between
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major foreign exchange rates in Appendix D of the online material. Finally,

Section 6 concludes. All proofs are contained in the Appendix of the paper.

2 TAIL DEPENDENCE AND TAIL COPULAS

To understand the test idea and test statistics, we shortly introduce necessary

tools from extreme value statistics. A complete treatment thereof can be found

e.g. in de Haan and Ferreira (2006). For a two-dimensional (random) return

vector X = (X(1), X(2)) its marginal components X(i) are assumed to have a con-

tinuous distribution function Fi(x
(i)) and thus a well-defined marginal quantile

function F−1
i for i = 1, 2.

Our test is based on the full dependence structure in the tails captured

by a tail copula. Note, standard dependence measures such as point corre-

lations, quantify the likelihood of aligned return movements of X(1) and X(2).

However, if returns of both assets are extreme, i.e. {X(i) > F−1
i (1 − t)}, or

{X(i) < F−1
i (t)}, i = 1, 2, for t → 0, standard dependence measures are insuf-

ficient, and thus measures that focus on the tails should be used, see e.g.

Embrechts (2009). For example, the Gaussian copula, which is completely

parametrized by the correlation coefficient, is unable to model any tail depen-

dence. That is to say, dependence may vary over different parts of the distribu-

tion, and correlation may be unable to measure dependence in the tails.

Measuring the complete tail dependence between X(1) and X(2), the upper

and lower tail copula ΛU
X(x(1), x(2)),ΛL

X(x(1), x(2)), x := (x(1), x(2)), x ∈ R2
+, are defined

by

ΛU
X(x(1), x(2)) := lim

t→0
t−1P(X(1) > F−1

1 (1− tx(1)), X(2) > F−1
2 (1− tx(2))),

ΛL
X(x(1), x(2)) := lim

t→0
t−1P(X(1) < F−1

1 (tx(1)), X(2) < F−1
2 (tx(2))), t ∈ R+ (1)

i.e. the tail copula measures how likely both components jointly exceed ex-

treme quantiles, see e.g. de Haan and Ferreira (2006), Schmidt and Stadtmüller
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(2006), for details. If ΛU
X(x) > 0 (ΛL

X(x) > 0), gains (losses) of X are said to be tail

dependent. For the sake of notational brevity, we omit the superscripts U and

L unless it becomes important. With x = (1, 1), the tail copula boils down to the

tail dependence coefficient (TDC), ι := Λ(1, 1). The TDC is a standard tool in fi-

nancial applications to measure tail dependence, e.g. Frahm et al. (2005), Aloui,

Aïssa and Nguyen (2011), Garcia and Tsafack (2011). However, the TDC covers

only a fragment of tail dependence, namely dependence between joint quantile

exceedances of marginals thresholds along the line (F−1
1 (1− t), F−1

2 (1− t)), t→ 0.

In contrast, the tail copula varies marginal thresholds as (x(1), x(2)) ∈ R2
+, and

describes tail association for every possible tail event. It can be shown that

ΛX(x(1), x(2)) ∈ [0,min(x(1), x(2))], and ΛX(ax) = aΛX(x), a ∈ R. Due to this homo-

geneity of the tail copula, it is sufficient to analyze the tail copula ΛX(x) only on

the domain S ⊂ R2, where we set wlog S := {(x(1), x(2)) : x(1), x(2) ≥ 0, ||x||1 = 1}, as

the unit simplex hull. This restriction to the relevant domain of the tail copula

reduces computational efforts in practical implementation and is key for our

test.

In the following, we require the tail copulas of interest to exist and work in

the following setup.

Assumptions 1. For a bivariate random vector X, we assume that

(A1) X1, . . . ,Xn are i.i.d. observations of X ∼ FX.

(A2) FX is in the max-domain of a bivariate extreme value distribution with tail

copula ΛX > 0.

Assumption (A1) is standard in extreme value theory, yet restrictive for fi-

nancial time series. We use it to illustrate our test idea and to formally derive

its statistical properties. In Section 4.1, we then show how (A1) can be re-

laxed to stationarity and strongly mixing making the test applicable to financial

data. Assumption (A2) requires that sample tails can be modeled by bivariate

extreme value distributions and are asymptotically dependent for nonparamet-

ric estimators to be unbiased, see Schmidt and Stadtmüller (2006) for details
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why this excludes ΛX(x) = 0. Standard distributions with actual tail depen-

dence, such as e.g. the bivariate t-distribution with dispersion parameter ρ 6= 0,

meet this assumption. The Gaussian copula, however, violates (A2) due to tail

independence (Λ = 0 for |ρ| < 1).

The main focus of this paper is on comparing two tail copulas, in particular

in determining if differences of tail copulas exist and where there are located.

We formally distinguish between two important cases: tail asymmetry and tail

inequality. For their definition we require some notation first. We say two

tail copulas ΛX and ΛY differ if there exists a set I on the unit simplex S with

I ⊆ S ⊂ R2
+ P(I) > 0 such that for all (x(1), x(2)) ∈ I

{
ΛX(x(1), x(2)) 6= ΛY(x(1), x(2))

}
or
{
{ΛX(x(1), x(2)) 6= ΛY(x(2), x(1))}

}
. (2)

We write shorthand ΛX 6= ΛY for Equation (2). Tail asymmetry occurs if upper

and lower tail copula of the same return vector X differ.

Definition 1 (Tail asymmetry). A return vector X is tail asymmetric if ΛL
X 6= ΛU

X .

To detect tail asymmetry, one should compare ΛU
X(x(1), x(2)) not only with

ΛL
X(x(1), x(2)) and but also with the flipped components version ΛL

X(x(2), x(1)). In

practice, the return vector X exhibits tail asymmetry whenever the likelihood

for co-movements of extreme losses differs from that of extreme gains. For

example, in terms of Value at Risk (VaR) exceedances, ΛL
X > ΛU

X implies joint

exceedances of loss VaRs are more likely to occur than those of gain VaRs.

If for two different return vectors ΛX 6= ΛY, we call this tail inequality.

Definition 2 (Tail inequality). Return vectors X and Y exhibit tail inequality if

ΛW
X 6= ΛZ

Y ,W, Z = U,L.

Tail inequality can be assessed in order to compare competing portfolios with

respect to their sensitivity to extreme events. For example, ΛL
X > ΛL

Y implies

joint exceedances of loss VaRs for those portfolio X are more likely to occur

than those portfolio Y, i.e. X exhibits a stronger tail risk of joint losses than Y.
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Similarly, if ΛU
X < ΛL

Y, joint extreme losses in portfolio Y are more intertwined

than joint extreme gains in X.

One reason for differences in tail copulas may be intra-tail asymmetry of at

least one of the tail copulas considered, where intra-tail asymmetry refers to

asymmetry within a single tail copula in the following sense. A return vector

X is intra-tail asymmetric if ΛW
X (x(1), x(2)) 6= ΛW

X (x(2), x(1)), (x(1), x(2)) ∈ S,W = U,L.

Intra-tail asymmetry refers a single vector X and a single tail and occurs when-

ever the corresponding tail copula is not symmetric with respect to its argu-

ments x = (x(1), x(2)), i.e. if the tail copula is not exchangeable with respect to

X(1) and X(2). For example, let x(1) = 0.2, x(2) = 0.8 and t = 0.05. Then, intra-tail

asymmetry is present if the tail event {X(1) > V aR1(0.99)} ∩ {X(2) > V aR2(0.96)}

is differently likely than the tail event {X(1) > V aR1(0.96)} ∩ {X(2) > V aR2(0.99)}.

The following proposition illustrates the importance of intra-tail asymmetry for

comparisons of tail dependence functions.

Proposition 1. If ΛW
X (x(1), x(2)) with W ∈ {U,L} is intra-tail asymmetric, then ΛW

X 6=

ΛH
Z for (Z, H) ∈ {(X,W ), (Y, U), (Y, L)}, whereW denotes the complement ofW , and

X,Y are bivariate random vectors with according tail copulas.

To see this, assume ΛW
X (x(1), x(2)) = ΛH

Z (x(1), x(2)). As ΛW
X (x(1), x(2)) 6= ΛW

X (x(2), x(1)),

it holds ΛW
X (x(2), x(1)) 6= ΛH

Z (x(1), x(2)), and Equation (2) applies. If ΛW
X (x),W = U,L,

is asymmetric with respect to x, any comparison with that tail copula auto-

matically amounts to tail asymmetry (inequality) as there is always a point on

the unit simplex hull where both tail copulas differ. While parametric mod-

els for intra-tail asymmetric tails exist, e.g. the asymmetric logistic copula in

Tawn (1988), and factor copulas in Einmahl et al. (2012), intra-tail symmetry

is implicitly assumed to hold in all standard tests for tail dependence differ-

ences. However, we find this phenomenon should not be ruled out ex- ante as

we detect a considerable amount of intra-tail asymmetries in our comprehen-

sive empirical study for the U.S. stock market in Section 5, and also for foreign

exchange rate pairs, similar findings hold, see Bormann (2016).

As the tail copula is the main component for our test, we sketch relevant
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statistical results for appropriate estimators. To keep notation short, for the

remainder of this section we only state the definition, assumptions and re-

sults for the estimator in the lower tail case. The upper tail version follows

analogously from (1). For estimation of ΛX(x), marginal quantile functions

F−1
i,X , i = 1, 2, are approximated non-parametrically by the empirical counterpart

F̂−1
i,X (x) = 1

n+1

∑n
j=1 1{X(i)

j ≤ x} for each x and i = 1, 2. As marginals are typically

unknown, empirical distributions yield sufficient flexibility for obtaining con-

sistent estimates in a general setup. The reduced model misspecification risk,

however, comes at the price of lower efficiency in comparison to parametric es-

timates based on the correct but in practice unknown form of the marginals. In

the case of the later discussed multiplier bootstrap for tail copulas, however, in-

ference is substantially complicated by accounting for pre-estimated marginals

requiring multipliers also in the input marginals for an overall unbiased proce-

dure (Bücher and Dette (2013)).

For an estimator of ΛL, the limit in the definition of the tail copula (1) is

replaced by the value at an arbitrary small point t = kX/n = O(n) with the

sample size n→∞ and the effective sample size kX →∞, kX ∈ O(n). A consistent

estimator is then given by

Λ̂L
X(x(1), x(2)) =

1

kX

n∑
m=1

1
{
X(1)
m < F̂−1

1,X(kX/nx
(1)), X(2)

m < F̂−1
2,X(kX/nx

(2))
}
,

(x(1), x(2)) ∈ S. By directly defining the quantile threshold F−1
i,X (kX/nx

(i)), i = 1, 2,

the effective sample size kX determines which observations are considered ex-

treme. The choice of the tuning parameter kX is subject to a bias-variance

trade-off: For small values of kX only few observations are used for estimation,

which increases the variance while the approximation of empirical tails by ex-

treme value distributions becomes more precise (low bias). On the other hand,

using many observations for tail estimation (large kX) amounts to less disperse

estimates (low variance), but the tail approximation may not be valid for less

extreme observations (large bias).
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Under assumption1 asymptotic results for the empirical tail copula can thus

be derived for appropriate assumptions on the tuning parameter kX and minor

smoothness conditions on Λ(x), see Bücher and Dette (2013).

Assumptions 2. For a bivariate random vector X we assume

(A3) kX →∞ and kX
n
→ 0 for n→∞.

(A4) It holds that |Λ(x) − tCX(x/t)| = O(A(t)), for t → ∞, and some function A :

R+ 7→ R+ with limt→∞A(t) = 0 and
√
kXA(n/kX)→ 0 for n→∞, where CX(x) :=

P(F1(X(1)) ≤ x(1), F2(X(2)) ≤ x(2)) denotes the copula of X.

(A5) The partial derivatives ∂Λ(x(1),x(2))

∂x(i)
, exist and are continuous for x(i) ∈ R+\{0}.

Assumption (A3) requires that the effective sample size kX increases more

slowly than n for n → ∞ for consistency. The second-order regular variation

condition (A4) (see Bücher and Dette (2013)) requires the bias of the tail cop-

ula approximation to vanish sufficiently fast with rate A which is also key for

an appropriate multiplier bootstrap procedure to work. In practice, this only

imposes a corresponding slightly tighter condition on the expanding rate of kX.

It is satisfied by standard tail distributions such as e.g. the Clayton copula,

where A(t) is asymptotically of order 1/tθ with θ > 0. Then kX should be at

most of order n
2θ

1+2θ < n in order to satisfy the conditions. For completeness, we

state Assumption (A5). Nevertheless, this smoothness assumption may also be

omitted. This results in a more complex limiting behavior of the empirical tail

copula, which permits consistent estimation of tail copulas of factor models,

see Bücher et al. (2014).

Under Assumptions (A1)-(A5), the asymptotic distribution for the tail copula

can be derived as

√
kX(Λ̂X(x(1), x(2))− ΛX(x(1), x(2)))

w→ GΛ̂,X(x(1), x(2)) (3)

where w→ denotes weak convergence in sup-norm over each compact set in R2
+ in

the sense of Hoffmann-Jørgensen (see, e.g., ?) , and GΛ̂,X is a bivariate Gaussian
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field of the form

GΛ̂,X(x(1), x(2)) = GΛ̃,X(x(1), x(2))− ∂Λ(x(1), x(2))

∂x(1)
GΛ̃,X(x(1),∞)− ∂Λ(x(1), x(2))

∂x(2)
GΛ̃,X(∞, x(2))

with GΛ̃,X(x(1), x(2)) a centered Gaussian field with covariance

E(GΛ̃,X(x(1), x(2))GΛ̃,X(v(1), v(2))) = Λ(min(x(1), v(1)),min(x(2), v(2))), (v(1), v(2)) ∈ R2
+.

These results were first established in Schmidt and Stadtmüller (2006); Bücher

and Dette (2013) and Bücher et al. (2014) provide related results while also

relaxing (A5), i.e. existence of partial derivatives of the tail copula is generally

not needed. This is important in practice, as it covers not only smooth standard

models for tail models, but also practically relevant tail dependence model that

may arise from (tail) factor models.

3 A NEW TESTING METHODOLOGY AGAINST TAIL

ASYMMETRY AND INEQUALITY

3.1 Test Idea, Asymptotic Properties, and Implementation

Generally, we test the global null hypothesis of equality between tail copulas

by checking for local violations of the null over a collection of disjoint subsets

of the relevant support (S). This localization provides additional insights on

specific quantile areas which might be a valuable target for adequate risk or

portfolio management strategies.

When testing against tail equality, our test takes into account that each of

the return vectors could be intra-tail asymmetric. In case of intra-tail asym-

metry, statistical tests are only consistent if all possible permutations of argu-

ments in the tail copulas are considered, i.e. checking both ΛZ(x(1), x(2)) and

ΛZ(x(2), x(1)),Z = X,Y). This contrasts sharply with the TDC-based test by Hart-

mann et al. (2004), abbreviated as TDC test, which only compares tail copulas
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at a single point of the domain. Yet, we account for possible tail differences

within the entire domain of both tail copulas. Our test is closely related to the

test by Bücher and Dette (2013), abbreviated as BD13 test, which compares

the tail copula of X with the tail copula of Y = (Y (1), Y (2)) along the unit cir-

cle. However, as tail copula differences are only evaluated in one direction,

their test statistic is not exchangeable, i.e. for the test statistic S it holds that

S(X, (Y (1), Y (2))) 6= S(X, (Y (2), Y (1))). To fix this, we propose to analyze tail copula

differences in both directions of the unit simplex hull searching for differences

between tail copulas over distinct, pre-determined subintervals of the unit sim-

plex. In this way, test power strongly benefits from intra-tail asymmetric tail

copulas, while in standard intra-tail symmetric cases it features similar, yet

slightly better test properties as competing tests.

For ease of exposition, in the following we focus in notation on the test

against tail inequality. Results for the test against tail asymmetry can be di-

rectly obtained by exchanging ΛX by ΛU
X and ΛY by ΛL

X. We apply M Cramér-von

Mises tests on M/2 disjoint subintervals of the unit simplex S where the decom-

position of S is complete, i.e. the union of these subsets equals S. The global

null hypothesis is

H0 : ΛX = ΛY over S, a.s.,

consisting of M individual null hypotheses of the form

H0,m : ΛX(φ, 1− φ) =

 ΛY(φ, 1− φ), φ ∈ Im, m = 1, . . .M/2

ΛY(1− φ, φ), φ ∈ Im−M/2, m = (M/2) + 1 . . .M,

where I1, ..., IM/2 are complete decomposition of [0, 1] into disjoint, equidistant

subintervals. Note that global tail equality H0 :
⋂M
m=1 H0,m naturally implies tail

equality over each subset. Empirical marginal test statistics are given by

Ŝm(X,Y) =


kXkY
kX+kY

∫
Im(Λ̂X(φ, 1− φ)− Λ̂Y(φ, 1− φ))2 dφ, m = 1, . . .M/2

kXkY
kX+kY

∫
I
m−M

2

(Λ̂X(φ, 1− φ)− Λ̂Y(1− φ, φ))2 dφ, m = (M/2) + 1 . . .M.
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Each marginal test corresponds to a specific subset of S, which can be

translated to a subspace of the sample. The switch of arguments in ΛY for

m ≥ (M/2) + 1 guarantees that tail copulas are compared over the entire unit

simplex, e.g. in both directions. If H0,m is true, Ŝm ≈ 0, while Sm > 0 otherwise.

The following proposition provides the marginal test distributions in the i.i.d.

case. Subsection 4.1 discusses extensions for time series data.

Proposition 2. Let Assumptions (A1)-(A4) hold for X,Y.

Then under H0 for each m = 1, ...,M

Ŝm
w→ Sm ,

where

Sm =

∫
Im

(√
1− λGΛ̂,X(φ, 1− φ)−

√
λGΛ̂,Y(φ, 1− φ)

)2

dφ,

with λ = limn→∞
kX

kX+kY
∈ (0, 1).

Under H1,however, ∃m : Ŝm
P→∞.

Note, the processes GΛ̂,X,GΛ̂,Y correspond to GΛ̂(x(1), x(2)) from Equation (3).

Due to the complexity of the limiting stochastic processes, closed forms of the

asymptotic distributions do not exist and have to be simulated. Therefore we

follow Bücher and Dette (2013) and approximate the finite sample distribution

of (Ŝm) by a multiplier bootstrap for each m = 1, . . . ,M . See also Scaillet (2005)

and Rémillard and Scaillet (2009) who introduced multiplier techniques for cop-

ula inference. For the construction of the bootstrap version of the test statistic,

we require the definition of Z-specific multipliers ξZi where Z ∈ {X,Y} helps to

streamline notation.

Assumptions 3 (cont.).

(A6) Multipliers ξZi are iid random variables with E(ξZi ) = V(ξZi ) = 1. and E[|ξZi |ν ] <

∞ for ν > 1 which are independent of Z for all i = 1, . . . , nZ.

For each bootstrap draw b = 1, . . . , B of these multipliers ξ
Z,(b)
1 , . . . , ξ

Z,(b)
nZ , we

13



can construct Ŝm,(b) for m = 1, . . . ,M

Ŝm,(b)(X,Y) =
kXkY
kX + kY

∫
Im

(
(Λ̂

(b)
X (φ, 1− φ)− Λ̂X(φ, 1− φ))−

(Λ̂
(b)
Y (φ, 1− φ)− Λ̂Y(φ, 1− φ))

)2 dφ, (4)

where Λ̂
(b)
Z (x) for Z ∈ {X,Y} is obtained with standardized multipliers ξ̃

Z,(b)
i =

ξ
Z,(b)
i /ξ

Z,(b)
i , i = 1, ..., nZ as

Λ̂
(b)
Z (x(1), x(2)) =

1

kZ

nZ∑
i=1

ξ̃
Z,(b)
i 1

{
Z

(1)
i ≥ F̃−1

1,Z(1− (kZ/nZ)x(1)), Z
(2)
i ≥ F̃−1

2,Z(1− (kZ/nZ)x(2))
}

F̃j,Z(x) =
1

nZ

nZ∑
i=1

ξ̃Zi 1
{
Z

(j)
i ≤ x

}
, j = 1, 2, (5)

Note that not only the empirical tail copula, but also the empirical marginal dis-

tributions require multiplier bootstrapping for the procedure to yield consistent

results. The sample size could theoretically differ for X and Y which is marked

by the index of nZ.

Then the bootstrap version Ŝm,? of the test statistic Sm is obtained as the

empirical distribution of Ŝm,(1), . . . Sm,(B)

The following asymptotic result shows the weak convergence of Ŝm,? to the

same asymptotic distribution as Ŝm, conditional on the bootstrap samples.

Moreover, it ensures consistency of the multiplier bootstrap version of the test

in the i.i.d. case.

Proposition 3. Let (A1)-(A6) hold. Then underH0, conditionally on the multipliers,

Ŝm,?
w→ Sm,m = 1, ...,M,

while under H1,∃m : Ŝm,?
P→∞.

In practice for the i.i.d. case, we set ξi ∼ Exp(1). Note, whenever X and Y are

dependent, one has to use the same multiplier series for both X and Y. Finally,
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a consistent Monte Carlo p-value for hypothesis H0,m is given by

p̂m =
1 +

∑B
b=1 1{Ŝm ≥ Ŝm,(b)}

B + 1
.

Joint testing of M hypothesis requires an adjustment of the individual test

level α to control the error rate of the global hypothesis, α∗, say. Common error

rates are the familywise error rate (FWER) and the false discovery rate (FDR).

In general, for a family of M individual hypotheses H0,1, H0,2, ..., H0,M , FDR

controls for the expected number of falsely rejected marginal null hypotheses

among all rejections, i.e.

FDR := E
(∑M

m=1 1{pm ≤ αm|H0,i}∑M
m=1 1{pm ≤ αm}

)
≤ α.

The Benjamini-Hochberg algorithm (Benjamini and Hochberg (1995)) sorts all

p-values p(1), ..., p(M), starting with the smallest one, and compares p(i) with i
M
α

where i denotes the rank of p-value p(i). If p(i) < i
M
α, marginal hypotheses

corresponding to p-values p(1), ..., p(i) are rejected. Adjusted p-values are p̃(i) =

p(i)M
i

and are compared with α∗. The FWER controls for the probability of at

least false rejection at a prefixed threshold α, say α = 5%, i.e.

P(∪Mm=1{pm ≤ αm|H0,m}) ≤ α,

where pm denotes the marginal p-value and αm is determined by the multiple

testing method such that the inequality holds. For the well-known Bonferroni

control, αm = α/M . Equivalently, individual p-values are adjusted as p̃m = pmM

and marginal hypotheses are rejected if p̃m < α.

In general, controlling the BH-FDR control is not as conservative as the

FWER-Bonferroni correction. Also, BH-FDR is better suited for (positively) de-

pendent p-values, which is a natural assumption for our setting. However, as

we find in our simulations, test performance is only slightly affected by the

choice of error rate, and thus we choose BH-FDR with α∗ = 0.05. See Romano
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and Wolf (2005) for an overview of multiple testing methods with applications

to financial data.

The practical implementation of the basic test works as follows.

Test algorithm (1).

1. Determine kX, kY, and estimate both tail copulas, i.e. calculate Λ̂X(φ, 1 −

φ), Λ̂Y(φ, 1− φ), φ ∈ [0, 1].

2. Set M . Decompose [0, 1] into M/2 disjoint, equally sized subintervals, i.e. I1,

..., IM/2.

3. Calculate Ŝm,m = 1, ...,M .

4. Set B. Calculate Ŝm,? with Ŝm,(b), b = 1, ..., B for m = 1, ...,M,.

5. Calculate p̂m,m = 1, ...,M .

6. Fix an error rate α. Apply a multiple testing routine on p̂1, ..., p̂M and decide

on the global null hypothesis.

This test is, independent of the multiple testing method, asymptotically

valid. E.g. for the FDR it holds that limn,B→∞ FDR = e ≤ α, and in case of

FWER, limn,B→∞ P
(
∪Mm=1 {pm ≤ αm|H0}

)
= f ≤ α. Unless otherwise stated, in sim-

ulations and applications we work with B = 1499 bootstrap repetitions; note the

necessary correction of B (1499 instead of 1500) which ensures consistency of

the p-value.

The choice of M is subject to a trade-off between test power and precision

of localization of tail differences. A larger M amounts to lower power as less

data fall into finer subintervals, and the multiplicity penalty of the individual

p-values increases in M , making rejections even less likely. A larger M also

means, the tests very precisely pin down very narrow subintervals with sig-

nificant tail dependence differences. In the extreme case, where M → ∞, the

test algorithm carries out an infinite number of TDC-type tests. While this is a

theoretically valid test, test power would implode as the harsh p-value adjust-

ment and the decreasing number of observations in small subsets would almost

never suggest a test rejection due to the strong multiplicity penalty. Simula-
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tions suggest a choice of M = 26 is reasonable as this also keeps computational

effort manageable.

However, as we do not strive to determine an optimal number of subsets

we suggest to apply the test several times over a set of grids. Consequently,

we combine p-values of the different grids to one embracing test and we refrain

from any further multiplicity adjustment.

Test algorithm (2).

1. For J different grids that increase in grid fineness, individually execute Test

Algorithm (1) with Mj subsets, where Mj = 2j, j = 1, ..., J.

2. For each grid, adjust the p-values for multiplicity: (p̃1
1, p̃

2
1), ..., (p̃1

J , ..., p̃
2J
J ).

3. For each grid, pick the minimal adjusted p-value:

(p̃∗1 = min(p̃1
1, p̃

2
1), ..., p̃∗J = min(p̃1

J , ..., p̃
2J
J )).

4. Reject the global H0 if at least one p̃∗j is smaller than α.

Note, this aggregating test does not adjust the grid-specific p-values a sec-

ond time. This approach would control exactly for the error rate α, if p̃∗1, ..., p̃
∗
J

were perfectly dependent, i.e. . For asymptotic control, however, we can re-

lax this condition to nearly perfect dependence, see condition 6 below. This is

important, as assuming perfect dependence between grid-minimal p-values is

much more rigid than postulating only nearly perfect dependence. For simplic-

ity, we state the following result only for FWER control. We denote αj as the

asymptotic test size of the jth Test (1).

Proposition 4. For Test (2), if

P(∪Jj=1p̃
∗
j ≤ α|H0) ↑ max(α1, ..., αJ), as J →∞, (6)

it holds that

lim
n,B,→∞

P(∪Jj=1p̃
∗
j ≤ α|H0) = α.
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The the proof of Proposition 4 condition 6 is key, and also that (realized) test

sizes of Test (1) converge to zero as M →∞.

Simulation results from Section 4 confirm that Condition 6 appears to be

satisfied in standard settings. We find Test (2) consistently obeys the α-limit

due to individual undersizedness of Test (1) and nearly perfect dependence

between grid-minimal p-values. Figure 1, which shows p-values of one specific

setting, illustrates that both these points hold; results of other settings are in

line, but not reported. We see that individual test sizes are consistently below α,

and decrease in the number of marginal hypotheses. Furthermore, correlation

between minimal p-values of different grids is close to one, indicating nearly

perfect (linear) dependence. Hence, we find Test (2) is appropriate.

Generally, it would be desirable to provide a lower bound of the strength of

dependence between the p-values, i.e. a sufficient convergence rate in Con-

dition 6. Convergence rates of individual test sizes and the unknown p-value

dependence structure determine this lower bound. Unfortunately, to explicitly

state this bound in our setting, we would have to assume specific closed-form

distributions for the test statistics (Proschan and Shaw (2011)), or specific para-

metric dependence model for the p-values, see Stange et al. (2015) and Bodnar

and Dickhaus (2014). Yet, the precise dependence structure between the p-

values is unknown, whereas tails of the test distributions may be approximated

by χ2 distributions, see Beran (1975).

3.2 Local Tail Asymmetry

One main feature of our test is that we can localize tail dependence differences.

This enriches the binary test decision on tail asymmetry/inequality as we can

find subspaces in R2
+ where tail asymmetry/inequality can be expected. If the

global null is rejected, significant individual p-values trace the subsets of the

unit simplex hull where both tail copulas differ. The boundary points of the

significant subsets amount to empirical quantile threshold vectors which span
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Figure 1: Exemplary p-values from the simulation study for Test (1) with j =
1, ..., 13 (GARCH marginals equipped with a Factor model, k = 0.1n, n = 1500,
tapered bootstrap). In this case, test size is estimated with 500 repetitions. Left:
Scatterplots of p-values for all grid pairs. Middle: J, the fineness of the grids,
is plotted against estimated test sizes according to Test (1). Right: Histogram of
estimated correlations between all pairs of grid-minimal p-values.
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a tail asymmetric subspace in the sample space, i.e.

QX =
(
F−1

1,X(1− k/nx(1)), F−1
1,X(1− k/nx(2))

)
×
(
F−1

2,X(1− k/nx(1))), F−1
2,X(1− k/nx(2))

)
,

QY =
(
F−1

1,Y(1− k/nx(1)), F−1
1,Y(1− k/nx(2))

)
×
(
F−1

2,Y(1− k/nx(1))), F−1
2,Y(1− k/nx(2))

)
.

Due to the homogeneity of the tail copulas, these extreme sets can be extrap-

olated arbitrarily far into the tail, given the extreme value conditions hold. In

particular, Figure 2 illustrates how to trace tail asymmetry.

Thus, when comparing tail dependencies of return vectors, our test pro-

vides precise information on which specific tail events, or VaR events, cause

tail dependence differences. Conditional on realized returns of X (Y) falling into

QX (QY), tail dependence of X and Y differ; conditional on X(Y) /∈ QX (QY), ΛX

and ΛY do not differ significantly.

This additional information might improve tail risk anticipation for regula-

tors, or tail risk-based hedge and trading strategies for investors as those mar-

ket times are identified which typically induce behavior of bivariate extremes to

shift.
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Figure 2: Left and right: Upper-right quadrants of scatterplots for X,Y, both
equipped with an asymmetric logistic copula and marginal distributions X(i) ∼
t(df = 3), Y (i) ∼ t(df = 10), i = 1, 2. The corresponding tail copula is Λ(x(1), x(2)) =
x(1) + x(2) −

[
(1 − ψ(1))x(1) + (1 − ψ(2))x(2) + ((ψ(1)x(1))−θ + (ψ(2)x(2))−θ)θ

]
(see Tawn

(1988)), with parameters (ψ(1), ψ(2), θ) = (0.1, 0.6, 0.1), (ψ(1), ψ(2), θ) = (0.1, 0.5, 0.4).
The shaded rectangles show the tail asymmetric tail regions; the homogeneity of
the tail copula allows to extrapolate this region far into the sample tail. Center:
Estimated tail copulas for x(1) ∈ {0.01, 0.02, ..., 0.99}, k = 500, n = 10000,M = 8. The
shaded area indicates over which subset both tail copulas significantly differ.
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4 FINITE SAMPLE STUDY

4.1 Serially Dependent Data

In general for financial time series, the i.i.d. assumption (A1) cannot be fulfilled

as financial data typically exhibit strong serial dependence. Though, standard

extreme value theory and the multiplier bootstrap rely on the independence

assumption. We therefore consider two different approaches to address this

problem.

The standard applied approach is to fit an appropriate time series speci-

fication, such as e.g. ARMA-GARCH, to the financial raw returns and work

with obtained standardized residuals. For a valid time series pre-filter, the lat-

ter should roughly resemble an i.i.d. series, and can thus be used for further

inference (see, e.g. McNeil and Frey (2000) in the univariate case). It is in-

tuitively clear, that asymptotically such parametric pre-whitening at rate
√
n

should not affect rate and consistency of the slower converging nonparametric

tail dependence estimates and thus of the test statistics. In practice, however,

the pre-step might still lead in particular to second order effects in the variance

for finite samples. In the following subsection we show that such effects are

negligible for our test at considered standard sample sizes.

For empirical copulas of dependent data, another remedy is to assume sta-

tionarity coupled with appropriate mixing conditions, which consequently allow

to directly use unfiltered returns for estimation. Valid statistical inference is

ensured by adjusting the bootstrap procedure: For strongly mixing time series,

convergence of the block bootstrap and the so-called tapered block multiplier

bootstrap has been shown for the empirical copula process, Bücher and Rup-

pert (2013). Necessary assumptions are met for a wide class of time series

models, such as ARMA and GARCH models. We suggest to use the dependent

data bootstrap methodology also for empirical tail copulas.

We therefore replace the iid multipliers with a dependent multiplier sequence

defined as follows
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Assumptions 2.

(A6a∗) The tapered block multiplier process (ξj,n)j=1,...,n is strictly stationary with

E[ξ0,n] = 0, E[ξ2
0,n] = 0 , and E[|ξ0,n|ν ] < ∞ for all ν ≥ 1 independent of

Z1, . . . ,Zn.

(A6b∗) For any j, ξj,n is independent of ξj+h,n for all h ≥ l(n) where l(n) is a strictly

positive, deterministic sequence with l(n)→∞ and l(n) = O(n).

(A6c∗) For any h ∈ Z, there exists v : R → [0, 1] such that E(ξ0,n, ξh,n) = v(h/l(n))

where v continuous at 0 and symmetric around 0 with v(0) = 1 and v(x) = 0

for |x| > 1.

Instead of the i.i.d. Assumption (A1) the underlying stochastic process

Z ∈ {X,Y} is required to be strictly stationary and αZ-mixing with αZ(r) =

αZ(Fs,Fs+r) = supA∈Fs,B∈Fs+r |P(A∩B)−P(A)P(B)|, for the (Z1, . . .Zt)-induced filtra-

tion Ft. The rate of decay αZ(r) = O(r−aZ) where aZ > 0 for r > 0 marks the degree

of admissible serial dependence. In contrast to standard copulas, weak conver-

gence of empirical tail copulas in an α-mixing set-up is a challenging problem

which has only been touched upon very recently in special cases so far, see e.g.

Bücher and Ruppert (2013) and Bücher and Segers (2017). A general proof is

beyond the scope of this paper, however, the later paper suggests, that this is

possible under fairly general conditions in our bivariate set-up, in particular

allowing for processes of ARMA-GARCH-type which are key to financial appli-

cations. For the case aZ > 6, Bücher and Kojadinovic (2016) show a general

multiplier bootstrap theorem for dependent data and multipliers of the type

as in Assumption 2 for the case of standard copulas. This is key for formally

deriving the consistency of the tapered multiplier bootstrap with block length

l(n) → ∞, where l(n) = O
(
n1/2−ε) , 0 < ε < 0.5., but the theoretical extension to

tail copulas is non-trivial and left for future research.

We construct the tapered multiplier bootstrap with a dependent multiplier

series as in Assumption 2 entering both empirical copula and marginal empiri-

cal distribution in (5). In each bootstrap round b, these yield the tapered version
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of test statistic Ŝm,(b),tap by plugging them into equation (4), from which the final

Ŝm,?,tap can be constructed for each m = 1, . . . ,M .

For the choice of multiplier block length l under which the generated mul-

tiplier series mimics the resulting dependence structure of Z we follow Bücher

and Ruppert (2013) in their implementation guidelines setting l(n) = 1.25n1/3.

Moreover, for the tapered block multiplier bootstrap, we employ the uniform

kernel κ1, and use Γ(q, q)-distributed base multipliers, with q = 1/(2l(n) − 1),

where l(n) is the multiplier block length, which can be automatically deter-

mined using from the R-package npcp, see Kojadinovic (2015). Our compre-

hensive simulation study underlines the validity of the tapered multiplier boot-

strap for the empirical tail copula, suggesting that Ŝm,?,tap w→ Sm for m = 1, . . . ,M .

With this approach the tail dependence structure is not polluted due to poten-

tial model misspecification from pre-filtering which may be a problem for large,

high-dimensional data sets where automatic GARCH fitting is challenging and

computationally expensive.

4.2 Simulations

We now compare the finite sample performance of our test with the TDC test,

and the BD13 test. We focus on non-parametric tests as in practice parametric

specifications may suffer from a model bias, especially if intra-tail asymmetry is

not accounted for. We study two types of dependence models that are frequently

used in finance. First, we employ the (implicit) factor model copula. See Fama

and French (1992), Einmahl et al. (2012), and Oh and Patton (2017) for factor

models in finance, tail dependence of factor models, and tail dependence of

factor copulas in finance, respectively. Second, representing the broad class

of Archimedean copulas, we employ the Clayton copula, which models solely

lower tail dependence. Its lean parametric form makes the Clayton copula a

popular building block for more complex copula models, such as mixtures of

copulas, see Rodriguez (2007) and Patton (2006). For each copula, we impose

one parametrization that fulfills the null, and one that violates the null, leaving
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us with four DGPs.

DGP1 and DGP2 are based on the tail factor model. Bivariate return vectors

Z = (Z(1), Z(2)),Z = X,Y, follow a bivariate factor model with r factors V (j), j =

1, ..., r, and loadings aij, i = 1, 2, j = 1, ..., r, when

Z(i) =
r∑
j=1

aijV
(j) + ε(i), i = 1, 2, (7)

where factors are i.i.d. Fréchet with ν = 1, independent of the error term ε(i)

which feature thinner tails than V (j); we set ε(i) as Fréchet with νε = 2. In this

way, the matrix of factor loadings A = (aij) directly determines the tail copula

of Z. In particular, the (upper) tail copula of Z is equivalent to the tail copula of

the max factor model Z̄(i) = maxj=1,...,r(aijV
(j)), which is

ΛU(x(1), x(2)) = x(1) + x(2) −
r∑
j=1

max

(
a1j∑r
j=1 a1j

x(1),
a2j∑r
j=1 a2j

x(2)

)
,

see Einmahl et al. (2012) for further details. DGP1 consists of X,Y both result-

ing from a factor model as in Equation (7), but with loading matrix

A1 = [ 2 1 0
0 1 2 ] .

Here, the first factor only influences X(1) (Y (1)), the second factor influences

both X(1) (Y (1)) and X(2) (Y (2)), and the third factor only influences X(2) (Y (2)).

That is, A1 amounts to intra-tail symmetry and to tail equality between X and Y,

and thus the null is true. See Figure 3, first from the left, for Λ(x(1), 1−x(1)), x(1) ∈

[0, 1]. For DGP2, both X and Y stem from a factor model as in Equation (7) with

A2 = [ 1 0
1 2 ] ,

where the second factor only influences X(2) (Y (2)), causing the tail copula to

become intra-tail asymmetric, Λ(x(1), x(2)) 6= Λ(x(2), x(1)), and consequently tail

copulas of X and Y coincide only when x(1) = x(2), see Figure (3), second from
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Figure 3: Tail copulas of DGPs 1 to 4 from left to right. Note, for DGP2, the
solid lines represents Λ(x(1), x(2)), x(2) = 1 − x(1), whereas the dashed line shows
Λ(x(2), x(1)). For DGP4, two different specifications of the Clayton copula are
used for X and Y .
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the left. DGP2 thus represents the class of intra-tail asymmetric copulas which

violate the null according to Proposition (1).

For the Clayton copula, only the lower left part of the distribution features

tail dependence,

ΛL(x(1), x(2); θ) = (x(1)−θ + x(2)−θ)−1/θ,

ΛU(x(1), x(2); θ) = 0,

where (lower) tail dependence increases in the parameter θ ∈ [0,∞). DGP3

is given by X,Y ∼ Clayton(θ = 0.5); this specific choice of θ implies a TDC

of ι = 0.25, which roughly corresponds to a TDC of a bivariate t-distribution

with correlation 0.5 and four degrees of freedom (McNeil et al. (2005), p.211).

For DGP3, the null is true. See Figure (3), second from the right. For DGP4,

X ∼ Clayton(θ = 0.5), and Y ∼ Clayton(θ = 1). Thus, tail equality is violated as

the TDC of Y is ι = 0.5. See Figure (3), first from the right.

To check whether the test also works for financial time series data, we com-

bine all DGPs with i.i.d. as well as GARCH marginals. We apply the test to raw

GARCH returns, and to standardized GARCH residuals as it is important to an-

alyze whether using estimated residuals affects test performance. Moreover, we

study the test performance for unfiltered returns using the block bootstrap and
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the tapered block multiplier bootstrap. In particular, we employ GARCH(1,1)

dynamics for any marginal return process. We follow Oh and Patton (2013) and

employ bivariate AR-GARCH models. We can link serially dependent marginals

by the (implicit) copulas of DGPs 1 to 4, allowing us to study the effect of condi-

tional heteroscedasticity on test performance. For both bivariate return series

Z = (Z(1), Z(2)),Z = X,Y, it holds

Z
(i)
t = σ

(i)
t η

(i)
t,Z,

σ
2,(i)
t,Z = ω + α(i)Z

(i)
t−1 + β(i)η

2,(i)
t−1,Z,

ηZ := (η
(1)
Z , η

(2)
Z ) ∼ iid Fη,Z(x(1), x(2)) = Cη,Z(Fη,Z,1(η

(1)
Z ), Fη,Z,2(η

(2)
Z )), t = 1, ..., nZ,

where we set ω = 0.01, α = 0.15 and β = 0.8 such that ω + α + β is close to

one. This mimics parameter values often found in financial returns, see for

example Engle and Sheppard (2001). To impose the tail structures of DGPs

1 to 4 on the time series, we use DGPs 1 to 4 to model the error copula

Cη,Z(Fη,Z,1(η(1)), Fη,Z,2(η(2))) and to generate ηt,Z = (η
(1)
t,Z , η

(2)
t,Z): In a first step, we sim-

ulate observations ηt,Z according to DGPs 1 to 4. Consequently, we transform

simulated errors to pseudo-observations by means of the marginal empirical

cumulative distribution, F̂η,Z,i(η
(i)
t,Z), i = 1, 2. Finally, we apply the quantile func-

tion of the t-distribution function with 10 degrees of freedom to the pseudo-

observations. Thus, the final errors are linked by the copulas of DGPs 1 to

4 with fat-tailed t-marginals. Those are used to generate the GARCH series

for X and Y, and standardized residuals obtained from estimation by quasi

maximum likelihood. Note, monotone transformations, such as the quantile

transformation, do not alter the tail dependence structure, and should not al-

ter test results. However, t-transformed error distributions are a more realistic

approximation of asset returns.

For sample sizes n = 750, 1500, varying values of the effective sample size

k, and a nominal test level of α = 0.05, we compare empirical rejection fre-

quencies. Also, for Test Algorithm ((1)), we employ two subset discretizations

(M = 6, 18) to evaluate the sensitivity of the test performance with regard to the
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user-dependent test calibration. Furthermore, we employ Test Algorithm ((2))

which merges 15 different grids with grid sizes Mj = 2j, j = 1, ..., 15,. For some

grids, this implies that subintervals are only roughly of equal length. The TDC

test is carried out using the multiplier bootstrap at points x(1) = x(2) = 0.5. The

number of simulations is S = 500 for each setting.

Table (1) reports empirical rejection frequencies for i.i.d. marginals, fil-

tered GARCH marginals, unfiltered GARCH marginals, GARCH marginals with

the block and tapered bootstrap, and sample size n = 1500 while we refer to

the online appendix for simulation results with n = 750; As non-parametric

methods for tail dependence are often criticized for unsatisfactory small sam-

ple performance, it is worth studying test behavior for small and moderate

sample sizes. Also, we study the effect of varying the effective sample size,

k ∈ {b0.1nc, b0.2nc, b0.3nc}. Note, Λ(x(1), x(2); k = k∗) = Λ(ax(1), ax(2); k = ak∗). Hence,

these values for k correspond to b0.05nc, b0.1nc, b0.15nc in the standard case of

TDC estimation with x(1) = x(2) = 1.

In general, both Test ((1)) and Test ((2)) appear to be consistent. For i.i.d.

marginals, both obey the nominal test size of α = 0.05 (DGP1 and DGP3), ir-

respective of the choice of k. This is particularly important for Test ((2)) as

it points out that grid-specific p-values appear to be sufficiently dependent to

keep empirical size below α, although no additional multiplicity penalty is ap-

plied. While empirical test size remains untouched by k, the choice of effective

sample size notably affects empirical power; for example, for DGP4, power in-

creases by up to 25% both for M = 6, 18. Hence, this suggests a larger choice of

k is favorable. As noted in Bücher and Dette (2013), for a large k, bias terms

in Λ̂X and Λ̂Y cancel out. This suggests the choice of k, which in essence is

a bias-variance problem for Λ̂, is slightly facilitated compared to other extreme

value-based peaks-over-threshold problems. Thus, k ≈ 0.1n seems a reasonable

rule of thumb.

While single-grid tests (Test ((1))) show larger power than the TDC test, the

BD13 test is more powerful in standard cases compared to Test ((1)). However,
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combining a multiple of single-grid tests, e.g. Test Algorithm ((2)), makes our

test consistently more powerful than BD13.

Importantly, our test successfully rejects in case of intra-tail asymmetries,

as shown by the empirical rejection frequencies for DGP2. Both the TDC test

and BD13 test fail to reject the null in this case and completely ignore intra-

tail asymmetries. If the tail copula is intra-asymmetric, our power of our tests

increases in the number of employed subsets. If the tail copula is symmetric,

however, power decreases in M . It is thus advisable to apply Test ((2)).

Also, test results for GARCH filtered returns are in line with i.i.d. series. The

estimation step of the GARCH residuals does not downgrade neither test power

nor size. However, unfiltered GARCH returns should not be used: In the case

of DGP4, test power implodes by roughly 50− 75% for all three tests. Empirical

sizes for DGP1 are still fine, whereas empirical size of DGP3 generally is too

large.

The tapered block multiplier bootstrap produces results comparable to the

multiplier bootstrap-based on i.i.d. and GARCH filtered marginals. Thus, we

prefer a bootstrap adjustment over GARCH-filtering to address serial depen-

dence it can handle serially dependent data and does not require pre-estimation

of a parametric model. However, as Table (1 Appx) in Appendix B of the online

supplement suggests, the tapered block bootstrap should only be applied for

larger sample sizes, since for n = 750 and GARCH marginals the tapered mul-

tiplier block bootstrap appears to be oversized and hence GARCH-filtered data

should be used instead.

Finally, we find our aggregating test (Test ((2))) is throughout most powerful,

while the test with fixed grids (Test ((1))) is consistently more powerful than the

TDC test, slightly less powerful than the BD13 test, and more powerful than

the latter in case of intra-tail asymmetry.
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Table 1: Empirical rejection probabilities for α = 5%, S = 500 repetitions
and sample size n = 1500. Effective sample fraction k/n is evaluated at
(x(1), x(2)) = (1, 1). DGP1: factor model satisfying H0. DGP2: factor model violat-
ing H0. DGP3: Clayton copula satisfying H0. DGP4: Clayton copula violating
the null. Rejection frequencies are shown for a varying effective sample size,
i.i.d. marginals and GARCH marginals for which the tests are applied to raw
observations (unfiltered) and also to standardized residuals (filtered). For the
latter, estimation was carried out by quasi maximum likelihood.

k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA(2) 18 6 TA(2) 18 6 TA(2) 18 6 TA(2)

iid
5% 4.0 3.2 3.2 2.4 4.8 3.2 4.2 100 100 100 5.0 4.8 3.2 4.2 6.8 73.8 86.2 78.2 82.2 88.2
10% 2.0 3.8 2.0 2.4 5.4 4.0 4.4 100 100 100 2.2 3.6 3.4 2.8 4.8 91.8 97.6 94.8 95.8 98.2
15% 4.4 3.2 2.8 2.6 6.0 5.2 5.8 100 100 100 3.0 3.0 3.0 2.4 7.0 96.6 99.8 98.4 98.6 100
fil.
5% 3.4 4.4 2.8 3.4 5.8 5.4 7.6 100 100 100 3.6 4.0 3.0 2.8 5.8 73.8 86.2 78.2 82.2 87.2
10% 4.0 4.4 2.4 3.8 5.8 5.0 7.6 100 100 100 4.4 3.8 3.4 2.6 6.6 92.6 97.4 95.6 96.0 97.8
15% 5.2 4.0 3.0 3.0 5.4 9.2 8.8 100 100 100 3.0 3.0 3.0 2.4 7.0 97.2 98.8 97.6 98.4 98.8

unfil.
5% 6.0 6.6 4.2 4.6 8.0 8.6 12.6 83.2 52.0 86.8 9.6 12.4 8.6 9.8 14.2 17.8 21.2 18.0 19.2 24.6
10% 4.6 5.8 4.0 4.6 7.4 6.6 8.8 100 100 100 7.0 11.4 9.0 9.8 14.8 22.0 31.0 25.4 26.2 34.6
15% 4.8 4.2 3.0 4.2 6.4 5.6 7.8 100 100 100 6.8 7.4 6.4 6.0 10.2 33.2 44.2 35.8 39.8 48.0
blo.
5% 6.6 5.0 3.6 3.4 6.6 8.0 8.0 73.4 40.2 81.4 7.4 11.0 8.8 9.4 14.6 37.0 44.6 39.0 42.6 49.0
10% 6.0 4.8 3.4 4.0 5.4 6.6 6.6 100 99.8 100 5.6 8.0 8.4 7.8 13.0 70.4 80.0 70.2 76.0 82.8
15% 6.0 5.0 3.2 3.4 5.8 5.6 6.4 100 100 100 4.0 7.2 8.0 6.6 12.8 88.0 94.0 90.8 92.2 95.0
tap.
5% 3.8 4.8 2.6 3.8 6.0 5.4 6.8 100 100 100 3.8 4.2 2.6 2.2 6.0 75.8 85.6 77.8 82.6 87.8
10% 3.8 4.6 2.6 3.2 5.6 5.4 7.4 100 100 100 4.2 3.4 4.0 2.6 6.4 92.8 97.6 95.2 96.8 97.8
15% 5.2 4.0 2.8 3.0 4.8 4.4 4.6 100 100 100 4.4 5.0 3.8 3.4 6.8 97.0 99.0 97.4 98.4 99.0
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5 TAIL ASYMMETRIES IN THE US STOCK MARKET

Related studies, e.g. Ang and Chen (2002), focus on tail asymmetries in pairs

of international stock indices, and point out that, especially during financial

crises, correlations mainly between extreme losses increase. We are inter-

ested whether this finding also applies for sector pairs in the US stock market.

Hence, we study possible tail asymmetries between daily returns of 49 US in-

dustry sectors. The dataset, available at http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html, accessed on 03/01/2016,

contains nearly 90 years of weighted returns of CRSP SIC codes-based indus-

tries of NYSE, AMEX, and NASDAQ stocks. Fama and French (1994) and Chang

et al. (2013) analyze earlier versions of this dataset.

We proceed as follows. We aim to detect tail asymmetry dynamics within

the US stock market. Applying a rolling window analysis with window length of

n = 1500, i.e. nearly six years, and a step size of 250 trading days, i.e. roughly

14 months, we arrive at 74 (overlapping) time periods. In each period, we build

all possible bivariate industry combinations ,X = (X(i), X(j)), and test the nulls

H0 : ΛU
X = ΛL

X.

Discarding pairs with missing data, in each period, there are at most 1176 pairs

to test against tail asymmetry. In total, we apply the test approximately 85, 000

times. To avoid possible model risk by pre-filtering the returns, we throughout

analyze raw returns using the tapered block multiplier bootstrap; Section 4.1

and the results of the simulation study justify this approach. For completeness,

however, we also computed results from GARCH pre-filtering. As there are

only minor differences to the results from tapered bootstrap we only provide

them in Appendix C of the Web-Appendix. We set the window parameter of the

tapered block multiplier bootstrap to l = 8. Yet, we find no change of results

worth mentioning when altering l. Also, we fix the effective sample size to

k = 0.2n. This, too, is inspired by the findings in the simulation study. We are
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not interested in particular industry pairs as our focus is on tail asymmetry

of the general market. Hence, a fixed k for all pairs is an operable solution

to the question of number of extremes as over- and underestimation might

eventually balance out when aggregating test decisions over all 1176 pairs. Note,

this section studies tail asymmetries. In the online appendix, we also provide

an empirical study on tail inequalities between foreign exchange rates.

To grasp the general evolution of lower and upper bivariate tails, we intro-

duce a descriptive measure for upper and lower market tail dependence. In

period t, for each pair i, we integrate the empirical tail copula Λ̂i(φ, 1 − φ) over

[0, 1] and provide empirical location statistics across all pairs, e.g. the mean and

empirical quantiles. For the mean,

Λt :=
1(
nt
2

) (nt2 )∑
i=1

∫ 1

0

Λ̂i(φ, 1− φ)dφ,

where nt is the number of sectors in period t, and empirical quantiles are com-

puted accordingly. It is easy to see that
∫ 1

0
Λ(φ, 1 − φ)dφ ∈ [0, 0.25]. The lower

(upper) bound is attained if pair i has no (perfect) tail dependence. Figure (4)

shows the trajectory of the mean and q-quantiles, q ∈ {0.01, ..., 0.99}, for both

upper and lower tails covering 1931 - 2015.

The null hypothesis of tail equality is tested by the TDC test, the BD13 test

and Test ((2)), which aggregates over 15 grids in the spirit of the simulation

study. Figure 5 displays trajectories of the share of rejections for each test, i.e.

the share of tail asymmetric pairs according to each test. Figure 6 documents

the importance of non-standard tail events, i.e. non-TDC events that occur off

the diagonal (x(1) = x(2)).

All tests indicate that most of the time, a substantial amount of tail asymme-

tries exists in the market. We find that our test reveals more tail asymmetries

than competing tests which we attribute to non-diagonal tail dependence and

intra-tail asymmetry. Furthermore, we find tail asymmetry typically vanishes

during financial crises, expect for the subprime crisis when tail asymmetries
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occurred more frequently than shortly before and afterwards. This finding may

reflect the classical risk-return trade-off with a new livery: As lower tail de-

pendence, i.e. the risk of joint extreme losses, spikes during financial distress,

opportunities for joint extreme gains must counteractively increase as we detect

more tail asymmetries during bear markets.

On average, our test finds that 64% (sd=0.25) of all pairs exhibit tail asym-

metry. We can identify a long lasting phase of pronounced tail asymmetries

between 1940-70 where on average 80% (sd=0.10) of all pairs are tail asym-

metric. Collapses of the number of tail asymmetries strikingly coincide with

of financial crises, such as the beginning of the Great Depression (1932-37),

the Oil Crisis (1968-74 until 1972-78), Black Monday (1987) and the Asian

and millennium crisis accumulating into the Dot-Com crisis (1995 - 2003). It

is empirically documented that in crises losses increasingly move in extreme

ways. We can only conclude that, during crises, the tendency of extreme gains

to co-move also increases. The latter might compensate investors for facing

extreme downside risk in large cross-sections. That is to say, when bivari-

ate losses occur more frequently, one can also expect more bivariate extreme

gains. In contrast, the recent financial crisis 2007-09 is characterized by a

temporary bump in tail asymmetries which subtends a phase of steady decline

of tail asymmetries since the mid 1990s. One might argue that, in contrast to

former financial crises, only tail dependence between losses was affected. But

tail dependence between gains did not experience such change. This makes the

subprime crises particularly disastrous as investors did not encounter much

extreme upside potential. However, aggregated tails of the market (Figure 4)

hardly back this conclusion as we observe a nearly parallel progression of both

upper and lower tail measures. Thus, by aggregating bivariate tails to an index

measure, much information on the tail dependence between tails of the index’

constituents is lost. While the summary measures for market tail dependence

suggest left and right tails are connected equally strongly during the 2000s, all

three tests report otherwise and reveal a pattern not captured by descriptive
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statistics. This implies tail measures for indices do not tell the same story their

constituents can.

In comparison to the two competing tests, our test consistently detects more

asymmetries, see Figure 6 (left), which we attribute to the fact that competing

tests overlook non-central tail dependence structures (TDC test), or intra-tail

asymmetry (TDC test, BD13 test). Hence, our test provides a more accurate

assessment of tail asymmetry within the market and suggests tail asymmetry

is more common than expected. With respect to the TDC test (BD13 test), we

find 2.5%−27% (0%−12%) more tail asymmetric pairs. We also plot the trajectory

of the percentage of rejections where, for Test (1) with M = 14, the adjusted p-

value of the central subinterval does not suggest a rejection, while at least one

non-central p-value does (solid line, Figure 6). This line runs nearly parallel

to the graph of the differential in found tail asymmetries between the TDC test

and our test.

To further underline the importance of non-standard tail dependence struc-

tures, we quantify the number of tail asymmetric pairs that scalar approaches

would miss due to off-diagonal tail asymmetries. In Figure 6 (right), for each

period, we compare the number of rejections of non-central subintervals with

the number of rejections found in the central subinterval. We find that our test,

when restricted to non-diagonal subintervals, finds up to 20% more asymme-

tries than a TDC-based analysis that solely focuses on the central subinterval.

Throughout the sample, there exists at least one non-central subinterval with

more test rejections than the central subinterval. Furthermore, there are peri-

ods of time – which match the major financial crises – where not considering

off-diagonal parts of the TC is especially serious. Yet, in the finance literature,

e.g. Jondeau (2016), it is common practice to analyze tail dependence solely by

the tail dependence coefficient ι, i.e. the tail copula along the diagonal where

x(1) = x(2). We document that this approach might overlook non-standard types

of tail dependence leading to a substantial misconception of tail asymmetry. A

more detailed picture of the local impact on tail asymmetry is provided in Figure
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7 which marks rejection frequencies for specific quantile regions as discussed

in Subsection 3.2. This could directly translated into investment and hedging

strategies.

Furthermore, the difference in found asymmetries between our test and

BD13 suggests some degree of intra-tail asymmetry among all pairs. The

simulation study demonstrated both tests’ power differs mainly in intra-tail

asymmetric cases. Applying tests against intra-tail symmetry (Kojadinovic and

Yan (2012); Bormann (2016)), we quantify the importance of intra-tail asym-

metries for tail asymmetries. Both test check the (tail) copula against non-

exchangeability with Cramér-von Mises tests, while the latter tests explicitly

accounts for serial dependence, and is thus more appropriate here. We use a

significance level of α = 0.05. For periods with the smallest and the largest dis-

crepancy in the number of test rejections between our test and the BD13 and

the TDC test, respectively, we test for intra-tail asymmetries. Table 2 contains

the test results. Intra-tail asymmetry of a sector implies one sector’s extremes

are more likely to trigger extreme events of the other sector. This demands

special care in hedging as anticipation of (conditional) extremes is uneven. For

small (large) discrepancies, we expect no (a) significant portion of test rejec-

tions. When our test does not find substantially more tail asymmetries than

BD13 during 1975–81 (TDC during 1977-83), we detect only 4.1% (3.5%) intra-

tail asymmetric pairs. On the other hand, this share rises to 12.5% (9.13%)

when our test is more powerful with respect to detecting tail asymmetry (BD13

during 1938–1943, TDC during 1945–51). Although the share of found intra-

tail asymmetries is relatively small, this supports the conjecture that intra-tail

asymmetry explains the differences in test results.
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Figure 4:
∫ 1

0
Λ̂(x, 1 − x)du for all possible pairs (up to 1176) in each period; dark

line: empirical mean; gray lines: empirical quantiles: 0.01i, i = 1, ..., 99. Left:
losses. Right: gains.
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Table 2: ITA test results. We test against ITA in periods when results of our
test and competing tests are most (least) similar, i.e. when the shares of test
rejections is the largest (the closest). See also Figure 5. In such periods, we
report the share of bivariate tails that the test identifies as intra-asymmetric.

BD13 TDC
test results period ITA period ITA

similar
1975-81 4.1% 1977-83 3.5%

maximally different
1938-43 12.5% 1945-51 9.13%
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Figure 5: Dynamics of the percentage of detected tail asymmetries among all
pairs using a rolling window of size n = 1500, and a step size of 250 trading days
for the TDC test (dashed), BD13 test (dotted) and our test (solid), respectively.
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Figure 6: (Left) Difference of detected asymmetries in percentage points with
respect to the TDC test (dashed) and BD13 test (dotted), and percentage of
our test’s rejections that are induced by subintervals off the diagonal, based
on a grid with M = 14. (Right) Number of rejections in subsets Ii, i = 1, 2, ..., 7,
i.e. off-diagonally, compared to number of rejections in subsets I4, i.e. around
(x(1) = 0.5, x(2) = 0.5), based on a grid with M = 14.
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Figure 7: Localization of test rejections. Both figures show applications the
localization idea of Figure 2. (Left) Histogram of rejection frequencies of spe-
cific quantile regions for J = 14, aggregated over every tail comparioson over
all periods. (Right) Test rejection frequencies translated to quantile regions in
[0, 1]2.
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6 CONCLUSION

We propose a novel test against asymmetries/inequalities between tail depen-

dence functions. The test is based on the empirical tail copula and conducts

piecewise comparisons between tail copulas. Importantly, our test consid-

ers intra-tail asymmetries and achieves higher power in intra-tail asymmet-

ric cases, and slightly higher power else. The test idea may also be applied

for general copula comparisons, and also for tail dependence comparisons in

higher dimensions. An empirical study of US stock market sectors and foreign

exchange rates shows our test typically finds more asymmetries/inequalities

than competing tests; we find time periods where our test clearly benefits from

respecting non-diagonal TC differences, meaning our test detects substantially

more opportunities to hedge tail risks.
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APPENDIX A: Proofs

Proof of Proposition 2. .

Equation (3) guarantees convergence of the empirical tail copula
√
kZΛ̂Z(x(1),

x(2)),Z = X,Y, for (x(1), x(2)), (v(1), v(2)) ∈ R2
+. Define

∆̂(x(1), x(2), v(1), v(2)) =:
√
kY/(kX + kY)Λ̂X(x(1), x(2))−

√
kX/(kX + kY)Λ̂Y(v(1), v(2)),

38



which is a sum of rescaled tail copula processes with GΛ̂,Z,Z = X,Y, is a bivariate

Gaussian process. It directly follows from Equation (3) that

∆̂(x(1), x(2), v(1), v(2))
w→ ∆(x(1), x(2), v(1), v(2))

:=
√
kY/(kX + kY)GΛ̂,X(x(1), x(2))−

√
kX/(kX + kY)GΛ̂,Y(v(1), v(2)).

Only under the null E(∆(x(1), x(2), v(1), v(2))) = 0 for corresponding vectors x,v. By

the continuous mapping theorem ∆̂2(x(1), x(2))
w→ ∆2(x(1), x(2)). For a fixed grid

I(i), and some subinterval [a, b] ⊂ I(i), 0 < a < b < ∞, consider the test statistic

corresponding to the ith null H0,i that integrates over [a, b], i.e. Ŝi,[a,b]. Then it

directly follows ∆̂2
i (x

(1), 1 − x(1))
w→ ∆2

i (x
(1), 1 − x(1)), x(1) ∈ [a, b]. Under the null of

H0 : ΛX = ΛY, for all i, ∆̂2
i
w→ 0 as ∆2

i = 0. Under the alternative, there naturally is

at least one subinterval where the test statistic does not converge to zero.

Proof of Proposition 2. . The statement directly follows from Theorem 3.4. in

Bücher and Dette (2013).

Proof of Proposition 4. .

We show that individual tests are asymptotically undersized. Due to this,

grid-specific p-values need not to be perfectly dependent.

For Test (1) with Mj subsets, denote the test statistic corresponding to

the minimal p-value by S∗j , and the denote the factor of S∗j by υj := (kX,j +

kY,j)/(kX,jkY,j), where kX,j, kY,j denote the realized effective sample sizes of X and

Y in the subinterval corresponding to p∗j . Obviously,

υj ≤ υ := (kX + kY)/(kXkY),

and υj decreases in both kX,j and kY,j, while kZ,j, kY,j both decrease in the fine-

ness of the grid (j → ∞): The finer the grid, the smaller kZ,j, i.e. less observa-

tions are in each subinterval. For υ, a test against copula equality would be

asymptotically exact, i.e. P(p ≤ α|H0)→ α, under (A1)-(A4).

Realize that – under the null – the test statistic integrates over squared dif-
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ferences of centralized normal variables. We may approximate the right tail

of the null distribution by a centered χ2 distribution with, say, $j > 0, de-

grees of freedom; see Beran (1975). Hence, for x large enough, test size can

be approximated as αj := P(S̃∗j > x|H0) ∼ χ2($j), j = 1, ..., J, where S̃∗j denotes

the theoretical test statistic corresponding to the adjusted p-value p̃∗j . Also, for

the variance of the test statistic, it holds that V(S̃j) = O(υ2
j ), i.e. the variance

increases as grid fineness increases (j ↓) and less observations enter the esti-

mation (kX,j, kY,j ↓, υi ↑). According to the Markov inequality, with fixed critical

values xj,

αj := P(S̃∗j ≥ xj|H0) ≤
E(S̃∗j )

xj
=

V(S̃∗j )/2

xj
) = O(V(S̃∗j )),

i.e. under the null, realized test sizes αj decrease with rate υ2
j . Furthermore,

grid-specific p-values are continuous and uniformly distributed. Now, Sklar’s

Theorem implies their dependence under the null can be characterized by a

copula, Cα, say, i.e. Cα(u) = P(p̃∗1 ≤ u(1), ..., p̃∗J ≤ u(J)|H0). Under the null, the

FWER in terms of the copula Cα, is given by

P(∪Jj=1p̃
∗
j ≤ α|H0) = 1− Cα(1− α1, ..., 1− αJ), . (8)

For illustration, let nearly any observations at all fall in relevant subintervals,

i.e. ∀j : υj ≈ 0,

1− Cα(1− α1(υ1), ..., 1− αJ(υJ)) ↓ 1− Cα(1, ..., 1) = 0,

and Test (2) naturally obeys the α-limit in this unrealistic case. In all other

cases, as J →∞, for FWER control P(∪Jj=1p
∗
j ≤ α|H0) ≤ α, it must hold that

1− Cα(1− α1(υ1), ..., 1− αJ(υJ))↗ α?(υ?),

where α? := max(α1(υ1), ..., αJ(υJ)) → 0. This means, for FWER control, the cop-

ula Cα must approach its upper bound – (α1, ..., αJ) must be nearly perfectly

dependent – but the upper bound does not need to be exactly obtained due to
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αj → 0, j = 1, ..., J.
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