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Abstract
This paper proposes a model of the US unemployment rate which accounts for both its
asymmetry and its long memory. Our approach, based on the tests of Robinson (1994),
introduces fractional integration and nonlinearities simultaneously into the same frame-
work (unlike earlier studies employing a sequential procedure), using a Lagrange Mul-
tiplier procedure with a standard limit distribution. The empirical results suggest that the
US unemployment rate can be specified in terms of a fractionally integrated process,
which interacts with some non-linear functions of the labour demand variables (real oil
prices and real interest rates). We also find evidence of a long-memory component. Our
results are consistent with a hysteresis model with path dependency rather than a
NAIRU model with an underlying unemployment equilibrium rate, hence giving sup-
port to more activist stabilisation policies. However, any suitable model should also
include business cycle asymmetries, with implications for both forecasting and policy-
making.
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1. Introduction

Two well-known facts about the unemployment rate are (i) the high persistence of
shocks, or hysteresis (see Blanchard and Summers, 1987), which is a feature, among
others, of “insider” models (see Lindbeck and Snower, 1988), or of models in which
fixed and sunk costs make current unemployment a function of past labour demand (see
Cross, 1994, 1995), and (ii) its asymmetric behaviour, namely the fact that
unemployment appears to rise faster in recessions than it falls during recoveries. Both
are well documented, especially in the case of the US (see, e.g., Rothman, 1991). One
possible explanation for the latter is the presence of asymmetric adjustment costs of
labour, such as hiring and firing costs, which have been shown to account well for
movements in the unemployment rate in Europe after 1973 (see Bentolilla and Bertoli,
1990), even though, as pointed out by Hamermesh and Pfann (1996), asymmetry at firm
level does not necessarily imply asymmetry at macro level. Other suggested
explanations include asymmetry in job destruction (i.e., the fact that jobs disappear at a
higher rate during recessions than expansions – see Caballero and Hammour, 1994),
and/or in capital destruction (see Bean, 1989).
Any satisfactory model of the unemployment rate has to be able to account for these
two properties, i.e. long memory and non-linearity.  In particular, overlooking non-
linearities can result in misleading in-sample diagnostics (see Potter, 1995). Further,
non-linear specifications might lead to an improvement over conventional linear
forecasts (see, e.g., Parker and Rothman, 1997, Montgomery et al, 1998, and Rothman,
1998).
Various non-linear models have in fact already been estimated in the literature, starting
with the seminal paper by Neftci (1984) (see the extensive survey by Pfann, 1993, and
also Potter, 1995). In a number of cases models with a single or infrequent shifts in the
mean of the unemployment rate have been adopted. Prominent examples are Bianchi
and Zoega (1998), whose Markov-switching model only allowed for a switch in the
intercept in order to analyse the issue of multiple equilibria, and Papell et al. (2000),
who tested for multiple structural changes. Several studies are based on smooth
transition mechanisms. These include Rothman (1998), who estimated AR, (S)TAR
(smooth transition autoregressive) and bilinear models for predicting US
unemployment, and Hansen (1997), who fitted a TAR (threshold autoregressive) model
to US unemployment. Other contributions using different approaches are Parker and
Rothman (1998), who applied Beaudry and Koop’s (1993) current depth of recession
approach; and Franses and Paap (1998), who developed AR models with censored latent
effect parameters. More recently, Coakley et al. (2001) have tried to complement the
regime shift literature with business cycle asymmetries. Specifically, they combine a
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single regime shift in the equilibrium level with asymmetries in the speed of adjustment,
which are modelled using a momentum threshold autoregression (M-TAR) model
characterised by fast-up, slow-down dynamics over the business cycle. In a more
theoretical paper, Caner and Hansen (2001) examine a two-regime TAR(k) model with
an autoregressive unit root. They develop an appropriate asymptotic theory, and show
that the joint application of two tests – for a threshold and for a unit root – enables one
to distinguish between nonlinear and nonstationary processes. They find that the US
unemployment rate is a stationary nonlinear threshold autoregression.
An interesting study is due to Skalin and Teräsvirta (2000), who argue that the observed
asymmetry can be captured by a simple model based on the standard logistic smooth
transition autoregressive (LSTAR) model for the first difference of unemployment, but
also including a lagged level term. Such a specification allows for asymmetry by
introducing “local” nonstationarity in a globally stable model. They stress that their
analysis has implications for policy-makers, who should take into account the fact that
asymmetric forecast densities mean that the probability of erring is also asymmetric.
Further, there are implications for multivariate modelling: if the unemployment rate is
in fact a stationary nonlinear process, linear VARs based on the assumption that it is a
I(1) variable and including cointegrating relationships with other I(1) regressors will be
mis-specified. Therefore, some papers analyse the joint dynamics of US output and
unemployment in the context of nonlinear VARs. For instance, Altissimo and Violante
(2001) estimate a threshold VAR model of output and unemployment in the US, in
which nonlinearity arises from including a feedback variable measuring the depth of the
current recession, and the threshold growth rate separating the two regimes (expansions
and recessions) is endogenously determined.
Further evidence on nonlinearities in unemployment has been obtained by estimating
linear models, and then carrying out the time domain test of time reversibility (TR) on
the residuals introduced by Ramsey and Rothman (1996). For instance, Rothman (1999)
finds that ARMA models of US unemployment display TR, indicating that the true
DGP is not linear, a result which appears to be robust to differencing and linear
detrending when the model allows for conditional mean nonlinearity; however, it is not
robust to allowing for GARCH effects.
All these studies typically assume that the disturbances follow an I(0) stationary
process, and adopt an AR, MA or ARMA specification for the error term. One of the
few exceptions is the study by van Dijk et al (2002), where a fractional integration
smooth transition autoregression time series [FISTAR] model is estimated and shown to
outperform rival specifications. In this paper we also model unemployment as a non-
linear process, and allow for the disturbances to be fractionally integrated. However,
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unlike van Dijk et al (2002), who employ a sequential procedure, we introduce both
fractional integration and nonlinearities simultaneously into the same framework, which
has the obvious advantage of requiring a single procedure for testing the order of
integration of the series. Moreover, it is a Lagrange Multiplier (LM) one, and, therefore,
it has a standard null limit distribution. A limitation of our approach lies in the
specification of the non-linear (in variables) process, which is such that it becomes
linear in the parameters to avoid the interaction with the fractional differencing
parameter. Specifically, we use non-linear transformations of the variables, which are
regressed in a linear model and do not involve non-linear estimation. Thus, the
parameters to be estimated and tested are those corresponding to the short-run
components of the series and the order of integration respectively. However, despite this
limitation, our specification does enable us to account not only for asymmetry (as other
nonlinear models do), but also for the high persistence of shocks and the long memory
of the unemployment process. The outline of the paper is as follows: Section 2 presents
the model and a procedure of Robinson (1994) for testing the degree of integration of
the series. In Section 3, the procedure is applied to the US unemployment rate, while
Section 4 concludes.

2. Testing of I(d) hypotheses in non-linear models

Let us suppose that {yt, t = 1, 2, ...T} is the time series we observe (in our case,
unemployment) and that it is related to some exogenous components from both the
demand and the supply side, zt, through the relationship:

    ...,2,1,);( =+= txzfy ttt θ ,      (1)

where θ represents the unknown coefficients and xt is driven by:
...,2,1,)1( ==− tuxL tt

d ,   (2)

where d may be a real value and ut is I(0).1 Note that the fractional polynomial can be

expressed in terms of its Binomial expansion, such that:
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for all real d. Clearly, if d = 0 in (2) xt = ut, and a ‘weakly autocorrelated’ xt is allowed
for. However, if d > 0, xt is said to be a long memory process, also called ‘strongly
                                                          
1   For the purpose of the present paper, we define an I(0) process as a covariance stationary process with
spectral density function that is positive and finite at the zero frequency.
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autocorrelated’, so-named because of the strong association between observations
widely separated in time.

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null
hypothesis:

oo ddH =: .   (3)

for any real given value do in a model given by (2), where xt may be the errors from the
regression (linear) model:

    ....,2,1,' =+= txzy ttt β   (4)

The test is based on the null differenced model in (2) – (4):

    ...,2,1,)1(')1( =+−=− tuzLyL tt
d

t
d oo β ,   (5)

and its functional form can be found in various empirical applications (e.g., Gil-Alana
and Robinson, 1997; Gil-Alana, 2000, 2001a).

In this paper, we extend Robinson’s (1994) procedure to the case of non-linear
regression models, i.e., testing Ho (3) in a model given by (1) and  (2). Note that under
the null hypothesis (3), (1) and (2) becomes:
    ...,2,1,);()1()1( =+−=− tuzfLyL tt

d
t

d oo θ  .   (6)

The main problem with this equation lies in the interaction between the fractional
polynomial odL)1( − and the possibly non-linear function f, and the estimation of the

parameters involved in such a relationship. For the purpose of the present study, let us
assume that f(zt; θ) = θ g(zt), where g is of a non-linear nature. In such a case, (6)
becomes:

...,2,1,')1( =+=− tuwyL ttt
do θ ,   (7)

where wt = ).()1( t
d zgL o−  We can obtain the OLS estimate of θ and residuals:
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and the same type of analysis as in Robinson (1994) can be conducted here. Denoting
the periodogram of ut,

,ˆ
2

1)(
2

1
�

=

=
T

t

ti
tj

jeu
T

I λ

π
λ



5

the test statistic takes the form:
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Note that these tests are purely parametric, and, therefore, they require specific
modelling assumptions about the short-memory specification of ut. Thus, if ut is white
noise, g ≡ 1, and if ut is an AR process of form φ(L)ut = εt, g = |φ(eiλ)|-2, with σ2 = V(εt),
so that the AR coefficients are function of τ.
It is clear then that θ̂  is a consistent estimate of θ, tû satisfying the same properties as in

Robinson (1994), and thus, under certain regularity conditions:2

.,ˆ 2
1 ∞→→ TasR d χ      (9)

Consequently, unlike in other procedures, we are in a classical large-sample testing
situation for the reasons explained by Robinson (1994), who also showed that the tests
are efficient in the Pitman sense against local departures from the null. Because R̂

involves a ratio of quadratic forms, its exact null distribution can be calculated under
Gaussianity via Imhof’s algorithm. However, a simple test is approximately valid under
much wider distributional assumptions: an approximate one-sided 100α% level test of
Ho (3) against the alternative: Ha: d > do (d < do) will be given by the rule: “Reject Ho if

                                                          
2   These conditions are very mild and concern technical assumptions to be satisfied by ψ(λ).
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r̂  > zα ( r̂   < - zα)”, where the probability that a standard normal variate exceeds zα is
α.3

To capture nonlinear features in a time series, one can choose from a wide
variety of nonlinear models (see Franses and Van Dijk, 2000, for a recent survey). A
model which enjoys a fair amount of popularity, mainly due to its empirical tractability,
is the smooth transititon autoregressive (STAR) model, that is,

,);;()...();;(1()...( 212120111110 ttptpttptptt czGyyczGyyy εγθθθγθθθ +++++−+++= −−−−

where εt is a white noise process and the transition function G(zt; γ; c) usually is
assumed to be the logistic function:

   1)/)({exp1();;( −−−+= zttt czczG σγγ    (10)

with γ > 0, and where zt is the transition variable (possibly a set of exogenous
regressors), σzt is the standard deviation of zt, γ is a slope parameter and c is a location
parameter. The parameter restriction γ > 0 is an identifying restriction. The value of the
logistic function (10), which is bounded between 0 and 1, depends on the transition
variable zt as follows: G(zt; γ; c) → 0 as zt → -∞, G(zt; γ; c) = 0.5 for zt = c, and G(zt; γ;
c) → 1 as zt → +∞.4

In our application we do not consider the parameters affecting (10) because of
the interaction with the fractional integration polynomial, and thus we assume that γ = 1
and c = 0.5 Moreover, we do not have to take into account the lag structure of the
dependent variable yt, since this will be contained in the (possible) weak autocorrelation
structure of ut in (2). Thus, a simple smooth transition model is:
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where zt contains each of the variables affecting unemployment. Clearly, G(zt) does not
involve the estimation of any parameters, and thus the model under the null becomes:

                                                          
3 This version of the tests of Robinson (1994) was used in empirical applications in Gil-Alana and
Robinson (1997) and Gil-Alana (2000), and other versions of his tests, based on seasonal (quarterly and
monthly), and cyclical data can be respectively found in Gil-Alana and Robinson (2001) and Gil-Alana
(1999, 2001b).
4   Illustrative applications of the STAR model and the closely related TAR model to unemployment rates
can be found in Montgomery et al. (1998); Koop and Potter (1999); Caner and Hansen (2001) and Skalin
and Teräsvirta (2000) among others.
5   In the empirical application carried out in the following section, we work with demeaned series to
avoid the influence of the location parameter.
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where [ ])(1)1(1 it
di

t zGLS o −−=  and ),()1(2 it
di

t zGLS o−= which is supposed to be I(0),

and therefore standard techniques can be applied.

3. The US experience

In this section the testing procedure described in Section 2 is used to identify the
dynamics of the US unemployment rate. The unemployment series used is the logistic
transformation of the unemployment rate in the US6, and we also consider real oil prices
and real interest rates, quarterly, for the time period 1960q1 to 2002q3. Specifically, we
use an oil price index (the industrial price index for refined petroleum and coal
products, which is the available series with the longest time span), and the 5-year
benchmark government bond yield (end of the month). The real oil price and real
interest rates series have been constructed using the GDP deflator. All series are
seasonally unadjusted, and are taken from Datastream.
The variables employed are the same as in Carruth et al. (1998). In that paper, the
authors examine the relationship between these three variables by means of classical
cointegration techniques. We use the term “classical” in the sense that it is assumed that
all individual series are nonstationary I(1), while the equilibrium long-run relationship
is stationary I(0). Carruth et al. (1998) assume that causality in the model is uni-
directional: only prices matter, while real interest rates are also included as another
relevant variable operating at the world level, and hence causality links may also be bi-
directional. If one wanted to rationalise it in terms of general equilibrium, one would
say that the US is an economy with a stable set of supply-side policies implying a high
degree of wage flexibility in the labour market. The main variables that have shifted the
long-run labour demand up the (“wage-curve” or efficiency wage) labour supply would
be world changes in input prices and in the cost of capital. (Note that real interest rates
are implicitly assumed to have no or at most a weak effect on the labour supply via
intertemporal substitution).

In this paper, we depart from the Carruth et al. (1998) model from an
econometric viewpoint. Thus, instead of assuming a linear relationship, we introduce
non-linearities. Moreover, instead of using integer orders of integration, we allow for
the possibility of fractional values. This is motivated by earlier work reported in

                                                          
6  See Wallis (1987) for a justification based on the logistic transformation being defined between ∞± so
that standard distributions apply.
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Caporale and Gil-Alana (2002), who found cointegration between the same set of
variables for Canada in the presence of autocorrelated disturbances, suggesting that their
relationship also has a dynamic component. Furthermore, they reported evidence of
fractional (as opposed to classical) cointegration, which implies long memory and slow
reversion to equilibrium.

Denoting unemployment in the US by UNE, real oil prices by ROP, and real
interest rates by RIR, we employ throughout  the model:

[ ] [ ] ,(1)()(1 2
10

1
20

1
10 ttttt xRIRGROPGROPGUNE +−++−= θθθ    (11)

and (2), testing Ho (3) for values do = 0, (0.20), 2, using white noise and autocorrelated
disturbances.7

Table 1 reports the values of the one-sided statistic r̂  in (8). We observe that if
we assume that ut is white noise, the only value of do for which Ho cannot be rejected is
0.80, implying long memory and mean-reverting behaviour. However, if we allow for
autoregressive behaviour in ut, the unit root null cannot be rejected. Similarly, if ut

follows the Bloomfield’s (1973) exponential spectral model,8 the unit root (i.e., do = 1)
is the only non-rejected value. Finally, in view of the quarterly structure of the series,
we also tried seasonal autoregressions of the form:

�
=

− ==
p

r
rtrt tuu

4

4

...,,2,1,φ (12)

with p = 1 and 2. In this case, we find that the null is rejected for all values of d smaller
than or equal to 1. If p = 1, the non-rejection values occur for do = 1.20, 1.40 and 1.60,
and if p = 2, do = 1.20 is the only non-rejection value. Thus, the results appear to be very
sensitive to the specification of the I(0) disturbances, values of d smaller than, equal to,
or higher than 1 being obtained depending on whether the disturbances are white noise,
non-seasonally and seasonally autocorrelated.

                                                          
7   Note that we do not include in the regression model G(RIR) to avoid the problem of multicollinearity.
8 This is a non-parametric approach to modelling the I(0) disturbances, which produces autocorrelations
decaying exponentially as in the AR case (see, e.g., Gil-Alana, 2001b).
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TABLE 1

Testing the order of integration with the tests of Robinson (1994) in a fractional
d l0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

White noise 15.55 11.98 8.22 3.98 -0.05 -2.83 -4.40 -5.27 -5.80 -6.15 -6.41

AR (1) 5.01 4.08 3.42 2.80 1.79 -0.09 -1.69 -2.75 -3.39 -3.77 -4.00

AR (2) 3.51 2.96 2.48 1.90 0.08 -1.22 -2.75 -4.00 -4.90 -5.50 -5.92

Bloomfield 5.08 3.15 2.95 2.49 1.97 0.10 -2.10 -3.95 -5.35 -6.38 -7.17

Bloomfield 7.01 4.96 3.68 3.44 2.72 0.13 -2.89 -5.45 -7.37 -8.80 -9.89

Seasonal 11.36 9.22 7.07 5.23 3.70 2.41 1.26 0.19 -0.82 -1.79 -2.69

Seasonal 16.10 15.22 13.58 10.4 6.16 2.85 0.20 -1.85 -3.36 -4.41 -5.15
 In bold, the non-rejection values of the null hypothesis at the 5% level.

TABLE 2
Confidence Intervals of the non-rejection values of

do at the 95% significance level

Disturbances Confidence Intervals
[0 72 0 90]

d

White noise [0.72   -   0.90] 0.80

AR (1) [0.82   -   1.19] 0.99

AR (2) [0.69   -   1.05] 0.82

Bloomfield (1) [0.85   -   1.15] 1.01

Bloomfield (2) [0.89   -   1.11] 1.01

Seasonal AR (1) [1.14   -   1.76] 1.44

Seasonal AR(2) [1.09   -   1.37] 1.22

Table 2 displays, for each type of disturbances, the 95%-confidence intervals of
those values of do for which Ho cannot be rejected, along with the value of do (do

*),
which produces the lowest statistic in absolute value across d. We see that if ut is white
noise, all values are below unity. If ut follows an AR process, the intervals include the
unit root and the same happens with the Bloomfield model, while d is higher than 1 for
seasonal autoregressions.

The large differences observed in the values of d when seasonal
autoregressions are taken into account suggest that seasonality should also be
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considered. Seasonal dummy variables were first included in the regression model (11),
but the coefficients corresponding to the dummies were found to be insignificantly
different from zero. Note that the tests of Robinson (1994) are based on the null
differenced model, which exhibits short memory, and thus standard t-tests apply. On the
other hand, the large values of d observed in Table 1 when ut is seasonally AR may
suggest that seasonality is of a nonstationary nature. Therefore, we decided also to use
another version of Robinson’s (1994) tests, which is based on the model,

...,2,1,)1( 4 ==− tuxL tt
d  . (13)

In such a case, r̂  takes a similar form to (8), but tû  is now defined as:

,'ˆ)1(ˆ 4
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and the test statistic still has the same standard null limit distribution. Ooms (1995) also
proposed tests based on seasonal fractional models. They are Wald tests, requiring
efficient estimates of the fractional differencing parameter. He used a modified
periodogram regression estimation procedure due to Hassler (1994). Also, Hosoya
(1997) established the limit theory for long memory processes with the singularities not
restricted at the zero frequency, and proposed a set of quasi log-likelihood statistics to
be applied to raw time series. Unlike these methods, the tests of Robinson (1994) do not
require estimation of the long-memory parameters, since the differenced series have
short memory under the null.9

                                                          
9 Empirical applications based on this version of Robinson’s (1994) tests can be found, among others, in
Gil-Alana and Robinson (2001) and Gil-Alana (2002).
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TABLE 3

Testing the order of integration with the tests of Robinson (1994) in a seasonal fractional model

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

White noise 6.64 6.09 5.53 4.80 3.73 2.55 1.54 0.74 -0.08 -0.47 -1.96

AR (1) 3.14 2.89 2.44 2.20 -0.86 -1.44 -1.92 -2.32 -2.65 -2.94 -3.18

AR (2) 6.61 6.24 5.19 3.85 2.33 0.92 -0.26 -1.23 -1.98 -2.55 -2.97

Bloomfield (1) 2.34 2.19 1.88 1.73 0.89 0.05 -0.73 -1.38 -1.94 -2.42 -2.84

Bloomfield (2) 2.13 2.01 1.92 1.76 0.92 0.05 -0.75 -1.42 -1.99 -2.49 2.92

Seasonal AR(1) 4.73 3.98 3.16 3.16 2.95 2.59 1.50 1.39 1.17 0.26 -1.92

Seasonal AR(2) 6.17 4.09 2.91 2.15 1.95 1.69 1.20 1.00 0.17 -1.34 -2.33
 In bold, the non-rejection values of the null hypothesis at the 5% level.

TABLE 4
Confidence Intervals of the non-rejection values of

do at the 95% significance level

Disturbances Confidence Intervals
[0 72 0 90]

d

White noise [1.22   -   1.91] 1.59

AR (1) [0.70   -   1.13] 0.94

AR (2) [0.90   -   1.50] 1.15

Bloomfield (1) [0.66   -   1.50] 1.06

Bloomfield (2) [0.69   -   1.48] 1.05

Seasonal AR (1) [1.17   -   1.90] 1.70

Seasonal AR(2) [1.08   -   1.84] 1.62

Table 3 reports the results for the same values of do and the same type of
disturbances as in Table 1, but using (11) along with the new model (13). We see that if
ut is white noise, the unit root null hypothesis is now rejected in favour of higher orders
of integration, and Ho (3) cannot be rejected when do = 1.20, 1.40, 1.60 and 1.80. If ut is
AR(1), the non-rejection values are do = 0.80 and 1.00, and if it is AR(2) the values are
slightly higher: 1, 1.20 and 1.40. Using the Bloomfield exponential spectral model, the
results are the same with one or two parameters, and Ho cannot be rejected at do = 0.80,
1, 1.20 and 1.40. Finally, including seasonal ARs of form as in (12), the values coincide
with those using white noise disturbances, i.e., 1.20, 1.40, 1.60 and 1.80. Table 4 is the
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counterpart of Table 2 with seasonal fractional integration, reporting the confidence
intervals and the values of do

* for each type of disturbances. If ut is white noise or
seasonal AR, the values are higher than 1. For the remaining four cases (AR and
Bloomfield ut) the values are around 1. In the following section, we try to select the best
model specification from all these potential models.

4. Model selection

First, we focus on the models presented in Tables 1 and 2 and choose, for each type of
disturbances, the model with the lowest statistic in absolute value. The selected models
are described in the upper part of Table 5 (denoted by NS#).10 Simple visual inspection
of the residuals for the models NS1-NS3 suggests that these are not adequate
specifications, in view of the seasonal structure still apparent in the residuals (the charts
are not included in the paper). Thus, we only compare the models NS4 and NS5 on the
basis of their diagnostics.

(Insert Table 5 about here)

The lower part of Table 5 describes the selected models in Tables 3 and 4 based
on seasonal fractional integration. They are now denoted by S#. Here, we observe that
S4 asnd S5 (the models based on seasonal autoregressions) produce results very similar
to S1 (based on a white noise ut) in terms of the estimated coefficients of the non-linear
variables. Moreover, the coefficients of the seasonal AR parameters are in both cases
close to zero, suggesting that seasonal autoregressions are not required in the context of
seasonal fractional integration. Therefore, we have five potential models to describe the
series of interest: NS4, NS5, S1, S2 and S3. We test for no serial autocorrelation by
means of a slight modification of the test proposed by Eitrheim and Teräsvirta (1996)
for the standard STAR model.

                                                          
10  Note that the models based on Bloomfield (1973) disturbances are not considered since they do not
have a parametric formula for the weak dependence structure.
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TABLE 5

Selected models across Tables 1 and 2

NS1
)050.1()110.1()001.1(

)1(;624.2960.0136.2 80.0
321 tttt xLxVVVUNE ε=−++−−=

NS2
)097.1()223.1()017.1(

268.0;)1(;870.2462.1073.2 1
99.0

321 ttttttt uuuxLxVVVUNE ε+−==−++−−= −

NS3
)038.1()106.1()987.0(

165.0090.0;)1(;665.2033.1132.2 21
82.0

321 tttttttt uuuuxLxVVVUNE ε++−==−++−−= −−

NS4
)766.0()895.0()678.0(

839.0;)1(;824.2494.1755.1 4
44.1

321 ttttttt uuuxLxVVVUNE ε+==−++−−= −

NS5
)841.0()781.0()757.0(

781.0091.0;)1(;908.2606.1926.1 84
22.1

321 tttttttt uuuuxLxVVVUNE ε++−==−++−−= −−

Selected models across Tables 3 and 4

S1
)707.0()712.0()775.0(

)1(;075.4815.2268.4 59.14
321 tttt xLxVVVUNE ε=−++−−=

S2
)440.0()158.0()427.0(

791.0;)1(;141.0770.2725.2 1
14.04

321 ttttttt uuuxLxVVVUNE ε+==−+++−= −

S3
)511.0()155.0()418.0(

110.0714.0;)1(;567.0254.3212.2 21
15.14

321 tttttttt uuuuxLxVVVUNE ε++==−+++−= −−

S4
)615.0()627.0()650.0(

014.0;)1(;882.3312004270.4 4
69.14

321 ttttttt uuuxLxVVVUNE ε+−==−++−−= −

S5
)729.0()818.0()617.0(

08.0011.0;)1(;078.4805.2268.4 84
61.14

321 tttttttt uuuuxLxVVVUNE ε++−==−++−−= −−

Standard errors in parentheses.

In particular, the null hypothesis of no autocorrelation in the residuals εt can be tested
against the alternative of serial dependence up to order q, that is, under the alternative εt

satisfies:
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,...11 tqtqtt e+++= −− εαεαε

where et ∼  i.i.d. (0, σ2). The null hypothesis is given by Ho: α1 = α2 = … =  αq  =  0
which, following Eitrheim and Teräsvirta (1996), is tested by means of an LM test. Here
the only difference compared to that test is that one needs to include the gradient of et

with respect to the fractional differencing parameter d, evaluated under Ho. Under the
null εt = et, so that
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Performing the tests on the five selected models, the results reject the null hypothesis of
no serial correlation in all models except S3, suggesting that a plausible model might
be:

[ ] [ ] ;)(1567.0)(254.3)(1212.2 ttttt xRIRGROPGROPGUNE +−++−−=

,101.0714.0;)1( 21
15.14

tttttt uuuuxL ε++==− −−

with the implication that unemployment is nonstationary and non-mean-reverting.
These findings allow us to discriminate between rival unemployment theories.
Specifically, a natural rate model would require the process to obey mean reversion, the
effects of shocks dying away and the unemployment rate reverting to its underlying
equilibrium level. By contrast, in a hysteresis model the short-run equilibrium level
depends on actual past levels, as shocks are not mean reverting, at least in a finite time
horizon. The evidence presented here clearly gives support to the latter type of model,
and to arguments in favour of more active stabilisation policies.
A limitation of the procedure we follow is that it imposes the same order of integration
at zero and the seasonal frequencies. Note that the polynomial (1-L4) can be
decomposed into (1-L)(1+L)(1+L2), where each of these polynomials correspond to the
zero, the annual (π) and the bi-annual (π/2 and 3π/2) frequencies. The tests of Robinson
(1994) described in Section 2 also allow us to consider this case (e.g. Gil-Alana, 2003),
but this is not within the scope of the present paper.

5. Conclusions

This paper has proposed a model of the US unemployment rate which can account for
both its asymmetry and its long memory. Our approach, which is based on the tests of
Robinson (1994), introduces fractional integration and nonlinearities simultaneously
into the same framework, unlike earlier studies employing a sequential procedure (see
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van Dijk et al, 2002). Conveniently, ours is instead a single-step procedure based on the
Lagrange Multiplier, therefore following a standard null limit distribution. The
empirical results indicate that unemployment in the US can be specified in terms of a
fractionally integrated process, which interacts with some non-linear functions of the
labour demand variables (real oil prices and real interest rates). We find that the order of
integration of the series is higher than 1, implying that, even when taking first
differences, they still possess a component of long memory behaviour, with the
autocorrelations decaying (exponentially) slowly to zero.
These findings suggest that a hysteresis model with path dependency (see, e.g.,
Blanchard and Summers, 1987) is suitable for the US unemployment rate. This implies
that there exists no constant long-run equilibrium rate, with the effects of exogenous
shocks not dying away within a finite time horizon, and unemployment being
nonstationary. Evidence of nonstationarity was also reported, within a standard unit root
framework, by Mitchell and Wu (1995) Carruth et al. (1998), and Strazicich et al.
(2001) inter alia, whilst Wilkins (2003) found evidence of an order of integration higher
than 1. By contrast, in a NAIRU (Non Accelerating Inflation Rates of Unemployment)
model, in which shocks are not long-lived, and the unemployment rate reverts back to
its underlying equilibrium level (see, e.g., Friedman, 1968). The implications for policy-
makers are of great importance, as, on the basis of our results, activist policies to
combat unemployment can be pursued. In particular, monetary policy can be effectively
used without immediate inflationary consequences, since it can affect the
microeconomic foundations of the labour market equilibrium. However, our analysis
also confirms that any adequate model should include business cycle asymmetries,
which might arise for a variety of micro- or macro-economic reasons (see, e.g.,
Bentolilla and Bertoli, 1990, and Caballero and Hammour, 1994). The existence of such
nonlinearities should be an essential feature of empirical models of the unemployment
rate, and represents important information for both forecasters and policy-makers. For
instance, it implies that the probability of erring in forecasting is asymmetric, and so are
the costs in terms of foregone output and higher output variability for a given objective
function. This should be clearly taken into account when formulating stabilisation
policies.
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