

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Bode, Sven; Jung, Martina

Working Paper

Carbon dioxide capture and storage (CCS): liability for non-permanence under the UNFCCC

HWWA Discussion Paper, No. 325

Provided in Cooperation with:

Hamburgisches Welt-Wirtschafts-Archiv (HWWA)

Suggested Citation: Bode, Sven; Jung, Martina (2005): Carbon dioxide capture and storage (CCS): liability for non-permanence under the UNFCCC, HWWA Discussion Paper, No. 325, Hamburg Institute of International Economics (HWWA), Hamburg

This Version is available at: https://hdl.handle.net/10419/19310

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Carbon dioxide capture and storage (CCS) – liability for non-permanence under the UNFCCC

Sven Bode, Martina Jung

HWWA DISCUSSION PAPER

325

Hamburgisches Welt-Wirtschafts-Archiv (HWWA)
Hamburg Institute of International Economics
2005

ISSN 1616-4814

Hamburgisches Welt-Wirtschafts-Archiv (HWWA) Hamburg Institute of International Economics Neuer Jungfernstieg 21 - 20347 Hamburg, Germany

Telefon: 040/428 34 355 Telefax: 040/428 34 451 e-mail: hwwa@hwwa.de Internet: http://www.hwwa.de

The HWWA is a member of:

- Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL)
- Arbeitsgemeinschaft deutscher wirtschaftswissenschaftlicher Forschungsinstitute (ARGE)
- Association d'Instituts Européens de Conjoncture Economique (AIECE)

HWWA Discussion Paper

Carbon dioxide capture and storage (CCS) – liability for non-permanence under the UNFCCC

Sven Bode, Martina Jung

HWWA Discussion Paper 325 http://www.hwwa.de

Hamburg Institute of International Economics (HWWA) Neuer Jungfernstieg 21 - 20347 Hamburg, Germany e-mail: hwwa@hwwa.de

This Version: 14 July 2005

Edited by Department World Economy

HWWA DISCUSSION PAPER Number 325

July 2005

Carbon dioxide capture and storage (CCS) –

liability for non-permanence under the UNFCCC

ABSTRACT

Prior to CoP 10, our discussion paper "On the Integration of Carbon Capture and

Storage into the International Climate Regime" argued that carbon capture and storage

(CCS) was similar to carbon sequestration in the area of Land Use, Land-Use Change

and Forestry (LULUCF). This was criticized by several readers who observed that

treating CCS as a removal activity (sink) would not be compatible with the UNFCCC

sink definition, what we already had mentioned in the paper. The present paper is based

on the UNFCCC definition and analyses how CCS could be integrated into the climate

regime.

As CO2 may re-enter the atmosphere after injection into geological reservoirs, the

question of long-term liability has to be considered. Apart from this aspect, additional

complexities arise from the fact that CO2 capture and storage can be carried out in two

different countries. A classification of CCS cross-border activities shows that not all

cases with non-Annex I participation fall under the CDM. Furthermore, we elaborate on

the problem that seepage of CO2 from reservoirs located in non-Annex I countries -

under current rules – would not be subtracted from the emission budget of any country.

For these cases, solutions guaranteeing liability for possible non-permanence of CCS

are proposed.

Keywords: Carbon Dioxide Capture and Storage, CDM, Climate Change, UNFCCC

JEL classification: Q 25, Q 28, Q 40

Address for correspondence:

Sven Bode, Martina Jung

Hamburg Institute of International Economics (HWWA)

Neuer Jungfernstieg 21 - 20347 Hamburg, Germany

Phone: +49-4042-834-356

Fax: +49-4042-834-451

http://www.hwwa.de

Acknowledgement

We would like to thank Heleen de Coninck and Claudio Forner for providing valuable

comments on an earlier version of this paper

1 INTRODUCTION

In order to reduce the adverse effects of human induced climate change, the international community agreed, inter alia, to work towards stabilising greenhouse gas concentration in the atmosphere "at a level that would prevent dangerous anthropogenic interference with the climate system" (Art. 2, UNFCCC). There are two ways to achieve this: either reduce GHG emissions at their source, or increase the removal of GHG emissions from the atmosphere by sinks. Regarding emission reductions options, the focus of climate policy has been on improving energy efficiency on both the supply and demand side, on fuel switching to less carbon intensive fuels, on the increase of renewable energy and on changes in industrial processes. Sinks enhancement options that have entered the climate regime thus far focus on activities enhancing the sequestration of carbon dioxide in the terrestrial biosphere.

Today, there are increasing problems regarding the reduction of greenhouse gas emissions, particularly in industrialised countries. In the late eighties and the early nineties, it was believed that deep cuts in emissions could be generated by energy efficient no-regret measures and an increased penetration of renewable energies. No-regret measures on the demand side have failed to materialise; on the contrary, efficiency improvements have slowed during the nineties while consumption levels of goods and services continue to increase (Michaelowa, 2005).

In this context, the capture of carbon dioxide at power plants and industrial facilities and its subsequent storage in reservoirs - carbon capture and storage (CCS) - recently entered the political discussion. If CCS is to be implemented in the international climate regime, two issues have to be addressed: the possible non-permanence of storage, and potential cross-border cases. These issues are dealt with in the present paper. It should be underlined, that reference is made only to the international climate regime. CCS may be treated differently in other trading schemes such as the European Emissions Trading Scheme that started 2005.

2 CARBON DIOXIDE CAPTURE AND STORAGE

The term 'Carbon Dioxide Capture and Storage' refers to the capture of CO₂, and its subsequent storage in reservoirs. CCS can be separated into three elements:

- 1. capture (including compression)
- 2. transport
- 3. storage

The most suitable sources for CO₂ capture are large point sources¹ such as industrial facilities or power plants.² In some industrial processes, CO₂ is separated from gas flows (hydrogen production, natural gas sweetening) in order to be able to continue downstream operations. Most of the separated CO₂ is vented into the atmosphere and only a small fraction is used in, for example, the food industry.³

The bulk potential for CO_2 capture, however, can be found in the power sector. Three processes are available for the capture of CO_2 from such large point sources (Thambimuthu et al. 2002, VGB 2004):

- a. Post-combustion capture, in which the CO₂is scrubbed from the flue gas.
- b. *Pre-combustion capture*, in which the CO₂is removed prior to combustion by producing a hydrogen-rich fuel gas mixed with CO₂. The CO₂ is separated from the latter by physical absorption, while the hydrogen is used for combustion.
- c. Oxyfuel combustion uses oxygen instead of air for combustion, resulting in a flue gas consisting mainly of water vapour and CO₂.

Additional energy use caused by the capture processes is referred to as the energy penalty, which can range from 15-40 percent of energy output (Haefeli et al. 2004). Prior to transportation, compression is generally required, resulting in additional energy use that is, however, much smaller than the penalty for capture.

Transport of CO₂ is a mature technology, as the technical requirements are similar to transporting other gases. Experience with CO₂ transport via pipelines already exists, especially in the USA, where around 2800 km of pipelines are currently in place (Gale and Davison 2004). The alternative is to transport carbon dioxide by ship⁴, especially if

-

¹ Ha-Duong and Keith (2002) and Lackner et al. (no year) have also proposed to capture CO₂ directly from the air, showing that this might become a feasible option in the future.

² OECD/IEA (2004) mentions the fuel extraction and transformation sector as an additional important emissions source where capture might be applied.

³ Storage of CO₂ due to utilization in the food and fertilizer industry results in very low retention times, though, and is therefore, not a relevant option for CCS.

⁴ Trucks and trains are also possible media of transport.

transport distances are longer or if the capture and storage site are separated by water (Wildenborg and van Meer, 2002).

After transportation, the CO₂ is injected into the storage reservoir, which can be either a geological reservoir or the ocean. Presently, only storage in geological reservoirs is seriously considered as a climate mitigation option (OECD/IEA 2004), and as such will form the focus of this paper. Three main groups of geological reservoirs can be identified:

- a. Oil and gas reservoirs (depleted, or in combination with Enhanced Oil Recovery, EOR or Enhanced Gas Recovery, EGR)⁵
- b. Saline aquifers
- c. Unminable coal seams (possibly in combination with Enhanced Coal Bed Methane Recovery, ECBM)

The size of the reservoirs available is a major determinant as regards to the relevance of CCS as a mitigation option. Various figures have been published (Grimston et al. 2001, IEA 2001). However, the most detailed and most recent data are provided by Hendriks et al. (2004), and summarised in Table 1 below.

Table 1: Storage potential (Gt CO₂)

	Remaining Oil Fields	Depleted Oil Fields	Remaining Gas Fields	Depleted Gas Fields	ECBM			
Onshore								
Total Annex-1*)	2,6 - 186,2	8,4 – 16,8	91,2 - 382	2,5 - 156,7	0 - 401,7			
Total non Annex-1*)	6,4 - 547,8	13,6-27,2	127,8 - 543	1,5 - 234,3	0 - 1078,3			
Total	9 - 734	22 - 44	219 - 925	4 - 391	0 - 1480			
Offshore								
Total Annex-1 *)	0,6 - 67,2	6,1 – 32,6	38,3 - 412,3	13,6 - 20,5	10,4 - 374,1			
Total non Annex-1 *)	2,4 - 240,8	13,9 – 74,4	110,7 - 365,7	6,4 - 11,5	19,6 - 706,9			
Total	3 - 308	20 - 107	149 - 778	20 - 32	30 - 1081			

^{*)} Own calculation based on data from: Hendriks et al. (2004, p.28) (for example, Former S.U. may include both Annex I and non Annex I countries)

As can be seen in Table 1, there exists great uncertainty regarding the storage capacity. Global potential in geological reservoirs is in the range of about 476 to 5880 Gt CO2,

⁵ While little experience exists with ECBM, EOR has already been applied for some decades to enhance oil production. Depending on the location, EOR is profitable today, especially when oil prices are high. Contrary to EOR, Enhanced Gas Recovery (EGR) is not yet technically mature or a commercially viable technology (OECD/IEA 2003).

with a best estimate of 1660 Gt. The geographical distribution of the possible storage capacity differs for different types of reservoirs. Saline aquifers seem to be distributed most evenly across the world, but also the distance to large amounts of point sources of CO₂ is of relevance. The bigger part of the world-wide storage potential seems to be located in the non Annex I countries of the UNFCCC.

When analysing the costs of CCS as a climate mitigation option, the full chain, from capture to storage and monitoring has to be taken into account. The cost of CCS therefore, consists of:

$$C_{CCS} = C_{capture} + C_{transportation} + C_{storage} + C_{monitoring}$$

The largest part of CCS costs consists of capture costs, with values ranging from about 24 to 52 €t CO₂-avoided (Hendriks et al. 2004, VGB 2004). However, the costs for CO₂ capture per ton avoided vary with the plant characteristics and capture system applied. Significantly lower costs are only achieved in capture of CO₂ from ammonia and hydrogen production.

Transportation costs by pipeline vary with the transportation distance, the amount transported, the pressure of CO_2 , landscape characteristics, pipeline diameter, and country regulations. Per 100 km pipeline, the cost estimates range from 1-6 $\mbox{\ensuremath{\ensuremath{\mathbb{C}}}} tCO_2$, with decreasing costs for larger throughputs (Hendriks et al. 2004; Freund and Davison 2002). The transport of CO_2 by ship vessels will be cheaper over longer transportation distances (Freund and Davison 2002).

Storage costs reported in the literature are mainly based on the technical investment to be made, notably the drilling of wells and operation costs. Hendriks et al. (2004) estimates costs for storage in aquifers, natural gas and empty oil fields at 1 to 11 €tCO₂, varying with the depth and permeability, as well as the type of the storage reservoir. For EOR, the

-

⁶ However, whenever talking about costs in relation to the avoided emissions, the baseline plant used to calculate the emission reduction costs is of crucial importance. For detailed discussion of this issue see Anderson et al. (2003).

⁷ Costs per ton avoided include the costs of the energy penalty. They are, thus, greater than the costs per ton captured. The literature costs is extensive. see for example OECD/IEA (2004), Audus 2000, Condorelli et al. (1991), Herzog (1999), David and Herzog (2001), Freund and Davison (2002), Göttlicher and Pruschek (1999), Reimer et al. (1999), Rubin and Rao (2003), Simbeck (1999), and Smelser (1991).

cost range is from -10 to 30 €tCO₂, taking into account the revenues resulting from the enhanced fossil fuel production.⁸

Theoretically, possible combinations of the different capture, transport and storage options based on the cost estimates mentioned above, may range from profitable values of minus 3 to plus 106 €t CO₂-avoided. The vast majority of options will probably be somewhere in the middle of this range. Further cost reductions require additional R&D. Learning effects seem to be limited, as the single components are already widely developed and deployed, rendering economies of scale less important (OECD/IEA 2004, p 78). Information on and experience with monitoring costs seems to be very limited.

3 PERMANENCE OF STORAGE

Apart from the technical and economic potential, the issue of the non-permanence of storage is also relevant for the implementation of CCS as a mitigation option.

The term non-permanence describes the likely releases of CO₂ after capture has taken place. Figure 1 illustrates possible emissions along the whole chain of CCS, which will have to be accounted for when integrating CCS into the international climate regime. In the following, however, we are focusing on emissions from the reservoir.

While some experts consider seepage rates in well-selected geological reservoirs very low (DTI 2004), it is still difficult to predict these rates from long-term storage of very large volumes of CO2 (OECD/IEA, 2004, p. 94 - 97). Storage site integrity depends on various factors, like the geological characteristics of the reservoir, the history of human usage, and the quality of well and sealing packages (e. g. Jimenez et al., 2003). The retention time of CO2 is therefore site specific. Furthermore, unforeseeable events like earthquakes could lead to the rapid release of larger volumes of CO2 from the reservoir. Strict criteria for site selection could be seen as one means of guaranteeing the high environmental integrity of geological storage (Haefeli et al. 2004). We consider such criteria a necessary, but not a sufficient condition for the integration of CCS into the international climate regime. They do not guarantee the complete accounting of emissions, which is one of the main principles of every greenhouse gas accounting framework (Haefeli et al. 2004). The fact that there is a possibility of non-permanence of storage makes it necessary to incorporate liability for future releases into the accounting

_

⁸ Further storage cost estimates can be found in e.g. Gupta et al. (2002), Hendriks et al (2001), Reeves and Schoeling (2001), Smith et al. (2001), as well as Wildenborg and Van der Meer (2002).

scheme in order to guarantee that the burden relating to such potential releases cannot be shifted onto others.

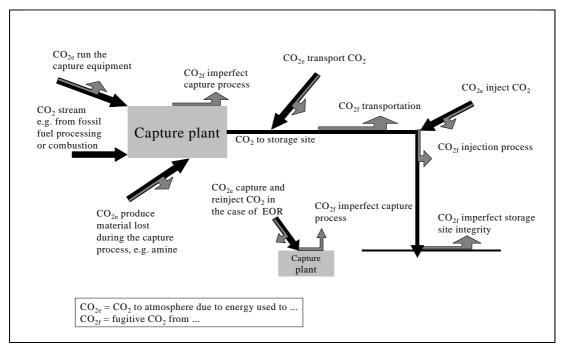


Figure 1: Possible emissions occurring during CCS (source: Haefeli et al. 2004, p. 15)

4 INTEGRATION OF CCS INTO THE CLIMATE REGIME

4.1. CCS: removal or emission reduction

The special characteristic of CCS that results in the formation of CO_2 without its emission into the atmosphere, gives rise to the important question of whether CSS is dealt with as:

- 1. a removal (sink enhancement) or
- 2. an emission reduction (at source) activity.

The answer to this question to a great extent determines how CCS will be accounted for in the climate regime. When treating CCS as a *removal activity*, the captured CO₂ would have to be considered as emitted - even though not vented - into the atmosphere at the source, and would therefore appear as an emission in the national emission inventory. Any CO₂ stored would be accounted for as a removal of CO₂ - similar to the accounting of sequestration in the LULUCF area (Haefeli et al. 2004). Regarding the removal approach, it should to be noted that the term 'sink' is defined by the UNFCCC as "any process, activity or mechanism which removes a greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere" (Article 1.8 UNFCCC). This legal definition does

not apply to the process of CCS, since this option mainly refers to the capture of CO₂ from point sources and not from the atmosphere. Therefore, CCS has to be considered an emission reduction in the framework of the UNFCCC. Thus, a change in the emission factor will have to account for the captured CO₂. The status of the discussion in the framework of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories is that the captured CO₂ should be metered and subtracted from the source emissions. Emissions from transport and injection should be accounted for by the country where they occur by using estimates based on industrial experience. Site investigation, models and measurements are supposed to provide the estimates of releases from the storage site. ¹⁰

4.2. CCS Cross-border projects

The fact that CCS is considered an emission reduction has implications regarding the characterisation of this activity under the flexible mechanisms. An overview is given in Table 2.

Table 2: Possible combinations of capture and storage countries and resulting type of mechanism under the Kyoto-Protocol

Case	Capture	Storage	Type of mechanism
1 2 3	Annex I (same as storing country) Annex I (other than storing country) non- Annex I country	Annex I country	Annex I mitigation* Annex I mitigation* CDM
4 5 6	Annex I non- Annex I ((same as storing country) non- Annex I(other than storing country)	non- Annex I country	Annex I mitigation* CDM CDM

^{*}Annex I mitigation can either be domestic mitigation or JI.

All the cases where capture (the emissions reduction) takes place in a non-Annex I country (case 3, 5 and 6 in Table 2) fall under the CDM. In these cases, emission reduction credits would be generated.¹¹ Regardless of where the CO₂ is stored, projects with capture in an Annex I country (case 1, 2 and 4 in Table 2) can be considered Annex

7

⁹ Biomass combustion will have to be dealt with differently.

¹⁰ This information is based on a presentation at the Side Event "2006 IPCC Guidelines for National Greenhouse Gas Inventories, held by Simon Eggleston, 20 May 2005 at the SB Meeting in Bonn.

¹¹ For further detail on this, see the analysis below.

I mitigation, either conducted as domestic mitigation or as a JI project. Those CCS activities in which CO₂ is stored in an Annex I country (cases 1-3) account for the possible non-permanence of storage. Seepage from the reservoir will appear in the national emissions inventory of the storing Annex I country. A new inventory category would have to be introduced for such purposes. However, as non-Annex I countries do not have emission targets, possible seepages from the reservoir located in non-Annex I countries will not be subtracted from the emissions budget of whatever country. Thus, the overall emissions budget of the Annex I countries might be inflated and environmental integrity of the climate regime endangered.

4.3. Dealing with liability for non-permanence in non-Annex I countries

In order to account for the non-permanence in the case of storage in non-Annex I countries, three different solutions are possible.

- 1. Ban on CCS with storage in non-Annex I countries
- 2. Consideration of seepages by discounting
- 3. Creation of rules that account for actually occurring releases

The first option of restricting CCS to projects with storage in Annex I countries¹⁴ would, however, decrease the storage potential significantly. Furthermore, is may conflict with the objective of technology transfer to non-Annex I countries.¹⁵ Another option is the discounting of emission reductions based on an assumed standard rate of seepage (see Haefeli et al. 2004). However, discount factors for seepages would have to be estimated ex ante for the whole time frame of storage.¹⁶ At present, credible values for discounting are not available.¹⁷ Another reason why discounting is problematic is that it is difficult to

¹² Regarding JI, a third Annex I country in which CO₂ is neither captured nor stored, could be part of the project buying the emission reduction units. The country in which the emission reduction takes place is always the capture country, which is likely to be financially compensate the storing country for costs associated with storage (storage, monitoring, risks of later releases etc.).

¹³ Similar problems occur if the country has not ratified the Kyoto Protocol or does not have sufficient inventory quality.

¹⁴ Those Annex I countries which have ratified the Kyoto Protocol and comply with a minimum standard of inventory quality.

¹⁵ See decision 5/CP.7 of the Marrakech Accords.

¹⁶ For an overview of methods for the estimation of default factors and an outline of accounting rules, see Yoshigahara et al. (2004).

¹⁷ DTI (2004) comes to the conclusion that "whilst a conservative approach to discounting could be adopted, based on estimates from some type of CO2 seepage scenario modelling, current constraints in the

account for unforeseeable events or wilful releases.¹⁸ If the discount factor acknowledges the possibility of these events or releases it is very conservative and thus provides little incentives to invest in CCS. If, on the other hand, the discount factor is low and thus provides incentives, it can not include the possible undesirable releases.

The third option mentioned above relies on a determination of releases from the reservoir by monitoring. Thus, the ability of monitoring technologies to quantify possible seepage events is an essential condition for creating such a liability framework. In the following section we will analyse in further detail, which rules in the framework of the international climate regime might be able to guarantee liability for releases from storage reservoirs located in non-Annex I countries. In outlining how liability for these releases could be established in the Kyoto Protocol, one has to distinguish between the CCS projects falling under Annex I mitigation (case 4) and those falling under the CDM (case 5 and 6). In case 4, as mentioned above, the emission reduction due to capture of CO₂ is accounted for by subtracting the captured CO₂ from the total CO₂ emissions formed at the source. Thus, the capturing Annex I country would have to be liable for possible emissions from the storage reservoir if it is exporting CO2 into a non-Annex I country. Creating liability for emissions in the non-Annex I country could thus be seen simply as an inventory question. 19 Similar inventory issues have been discussed regarding the treatment of harvested wood products (HWP). Emissions from the reservoir in the non-Annex I country could, for example, be included in the national emissions inventory of the capturing Annex I country.²⁰

In the two CDM cases with storage in a non-Annex I country (case 5 and 6), liability has to be dealt with differently.²¹ The buyer of the CERs resulting from a CSS project should remain liable for possible emissions. Therefore, expiring CERs²² similar to those issued

understanding of specific CO₂ fluxes from potential storage reservoirs presents a barrier to setting credible rates"

For monitoring technologies available, see for example Pearce et al. (2004)

 $^{^{18}}$ Depending on the rule for liability, there might be incentives for reservoir operators in non-Annex I countries to release CO_2 after "permanent" CERs have been issued and to subsequently refill the reservoir and to receive CERs again for the same reservoir.

¹⁹ See also Haefeli et al. (2004), pp. 21-22

²⁰ This is similar to the 'Production approach' proposed for the consideration of HWPs which includes the emissions from the HWP pool in a non-Annex I country in the national inventory of the exporting Annex I country. For an overview of the HWP discussion, see UNFCCC (2003).

²¹ Issuance of permanent CERs is unproblematic if CO₂ is stored in an Annex I country (case 3).

²² For forestry projects, two types of expiring credits exist (temporary CERS, tCERs and long-term CERs, lCERs). For more information on temporary credits for LULUCF, see Dutschke et al. (2004).

for CDM forestry projects could be one option for guaranteeing liability for the stored CO_2 in the framework of the international climate regime.

The respective mechanisms guaranteeing liability in each of the described cases are summarised in Table 3.

Table 3: Different CCS cases and respective mechanisms to guarantee liability for non-permanence of storage

Case*)	Case*) Capture - Storage		Rule guaranteeing liability		
1 & 2	Annex I – Annex I	Annex I mitigation	Possible emissions appear in inventory of country storing CO ₂		
4	Annex I – non-Annex I	Annex I mitigation	Possible emissions appear in inventory of country capturing CO ₂		
3	non-Annex I – Annex I	CDM	CER issued, possible emissions appear in inventory of country storing CO ₂		
5 & 6	non- Annex I – non-Annex I	CDM	Temporary credits issued (buyer liability)		

^{*)} see Table 2

The above analysis shows that the way in which CCS is accounted for in the international climate regime is likely to depend largely on where capture and storage takes place. This suggests that the elaboration of rules and modalities for integrating CCS into the international climate regime is likely to be a complex task.

5 ECONOMIC IMPLICATIONS OF NON-PERMANENCE OF CCS

With the exception of EOR, CCS does not produce any additional income except for that generated by the credits for the CO₂ storage. Kallbekken and Torvanger (2004) compare the net economic benefit of geological storage with different levels of permit prices. However, when comparing costs with the benefits of CCS, the cost term must also include the costs of the non-permanence of carbon dioxide storage.²³ Therefore, in the following economic analysis, we apply the approach of temporary credits in the CDM to CCS.

10

²³ For a detailed analysis on the effectiveness of carbon storage with a focus on non-permanence, see Herzog et al. (2003)

In case of releases of CO_2 , temporary credits have to be replaced by the country which has used them for compliance. We call the cost incurred to compensate for future releases of CO_2 replacement costs (RC). The replacement costs are equal to the discounted costs incurred for buying (permanent) credits on the market to compensate for future CO_2 releases.²⁴ Therefore, the benefit of temporary storage in economic terms lies in the postponement of the purchase of a permanent permit. Consequently, the value of temporary storage (V^{temp}) is equal to the value of a permanent emissions reduction (V^{perm}) minus the replacement costs²⁵:

$$V^{\text{temp}} = V^{\text{perm}} - RC$$

With decreasing replacement costs, the value of the temporary credit will increase. Due to these additional costs related to the future releases of CO₂, any (temporary) CCS activity must be cheaper than permanent mitigation options by an amount equivalent to the replacement costs. Based on this concept, the value of temporary storage for different release and discount rates, expressed in a percentage of the value of a permanent emission reduction, is calculated (see Table 4). In the calculation, we assumed a stable price for (permanent) emission reduction credits. ²⁶ While at low release and high discount rates, the value of temporary storage is almost equal to the value of permanent emissions reductions, high release rates and low discount rates lead to substantial decreases in the value of temporary storage. With permanent storage, the value of a temporary credit would, of course, be equal to the value of a permanent one.

In spite of the fact that the temporary credits approach has only been proposed for cases 5 and 6, the results represented in Table 4 are, from an economic perspective, also valid for the other CCS cases.

_

²⁴ See also Ha-Duong and Keith (2003).

²⁵ The value of temporary storage consists of the price obtained for the chain of temporary credits generated during the crediting period.

²⁶ When assuming e.g continuously increasing prices in the future, the general tendency remains the same.

Table 4: Value of temporary storage

Value (in perc permanent em reduction) *)	Release rate (%)				
		0	0.01	0.1	1
Discount Rate (%)	1	100	98.8	90.6	48.5
	5	100	99.6	97.7	80.8
	10	100	99.7	98.7	88.0

^{*)} Constant carbon price assumed

As long as liability for future releases is guaranteed, either the capture country (as in case 4), or the storing country (as in cases 1, 2 and 3), have to incur the cost related to future releases from the reservoir. As release rates are expected to be rather low in most cases, it can therefore be concluded that the decrease in the value of temporary storage due to non-permanence is almost negligible for CCS in general.

For those CDM cases for which the temporary credits approach was proposed (cases 5 and 6), this conclusion is not generally valid. The assumption underlying such a calculation is that a CCS CDM project can generate temporary credits over an unrestricted period of time. However, the time for receiving CERs under the CDM, the so called crediting period, is currently limited. For energy projects, the maximum crediting period is 21 years, for forestry, 60 years.²⁷ While permanent CERs do not have to be replaced after the end of the crediting period, all temporary credits generated by forestry projects expire after the end of the crediting period. The latter is equivalent to the assumption that after 60 years, all the sequestered carbon is released into the atmosphere, even if it remains sequestered in the biomass thereafter. The special case of temporary credits with restricted crediting periods in the CDM will make temporary carbon storage less attractive since it reduces the value of temporary storage. The reason for such a pattern originates in the fact that crediting periods considerably shorter than retention times neglect a great part of the storage taking place beyond the crediting period. Therefore, the benefit from postponing the purchase of permanent credits can only be realised in part, as illustrated by Figure 2.

12

²⁷ The rules and modalities offer a choice between a non-renewable crediting period of (10) 30 and a twice renewable crediting period of (7) 20 years.

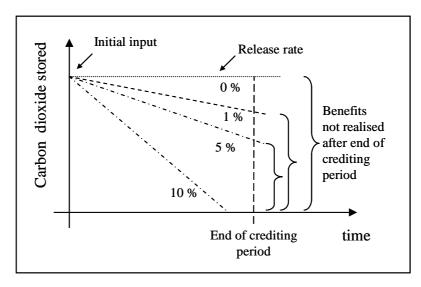


Figure 2: Effects of a limitation of a crediting period

In the case that also CSS CDM projects using temporary credits (case 5 and 6) should be subject to a limited crediting period, the value of temporary storage would be significantly smaller than for the other CCS cases. In the case of short crediting periods (e.g. 20-60 years), the economic viability of such CDM projects is going to decrease significantly as compared to those generating permanent credits.

6 CONCLUSION

Carbon dioxide capture and storage (CCS) does not avoid the formation, but the emission of CO_2 to the atmosphere. According to Art. 1.8 of the UNFCCC, CCS has to be considered an emission reduction. When integrating CCS into the climate regime, one has to take into account that there might be releases of the stored CO_2 back to the atmosphere and that CO_2 might be transported across country borders.

Based on the fact that CCS is an emission reduction, we conclude that all CCS projects with capture in a non-Annex I country fall under the CDM, while the projects capturing CO₂ in an Annex I country could be considered Annex I mitigation (either domestic mitigation or JI), independently of where the CO₂ is stored.

When CO₂ is stored in an Annex I country that has ratified the Kyoto Protocol and complies with inventory quality standards, possible non-permanence of storage is accounted for as emissions from the reservoir. CO₂ releases will enter the national emission inventory of the Annex I country in which the reservoir is located. As non-Annex I countries do not have emission targets, possible seepage from the reservoir

located in non-Annex I countries will, however, not be subtracted from the emission budget of whatever country. Thus, it could water down the overall emission target of the climate regime. Therefore, special liability rules will have to be implemented for those cases in which CO_2 is stored in non-Annex I countries. In the case in which an Annex I country is exporting CO_2 to a non-Annex I country, a possible solution may be to have the Annex I country report emissions from the reservoir and include them in its own national emissions inventory. In the case of capture and storage taking place in a non-Annex I country, liability for the stored CO_2 could be created by expiring credits, similar to those issued for forestry projects in the CDM.

If release rates from the storage reservoirs are as small as widely suggested (> 0.01), the cost incurred to compensate future releases can be expected to be almost negligible. It has to be noted however, that the economic viability of CDM projects that generate temporary credits and are subject to relatively short crediting periods, can decrease significantly as compared to those generating permanent credits.

The present paper focused on two of the most important issues: accounting for releases from the reservoir and cross-border cases. Nevertheless, there are further issues which must be dealt with before CCS can be accounted for appropriately as a climate mitigation option. Accounting might become much more complicated than discussed, if different CO₂ exporting (capture) countries use the same storage reservoir, and if release rates are a function of the quantity stored. Transboundary reservoirs, too, may be difficult to deal with due to the territory principle underlying the Kyoto Protocol. Finally CO₂ stored in non-Annex I countries may become a contentious issue when emission targets for these Parties are negotiated in the future.

Regarding the numerous complexities of integrating CCS into the international climate regime, it has to be kept in mind that only accurate and complete accounting which guarantees the long-term liability for future releases, will allow CCS to become a credible mitigation option.

REFERENCES

Anderson, Soren; Newell, Richard (2003)

Prospects for Carbon Capture and Storage Technologies, Resources For the Future, Discussion Paper 02-68

Audus, H. (2000)

Leading Options for the Capture of CO2 at Power Stations, In: Williams, D.; Durie, B.; McMullan, P.; Paulson, C. and Smith, A. (Eds), GHGT-5: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, 13-16 August 2000, Cairns, Australia

Condorelli, P.; Smelser, S.C., McCleary, G.J. (1991)

Engineering and Economic Evaluation of CO2 Removal from Fossil-fired Power Plants, Volume 2: Coal Gasification Combined Cycle Power plants. EPRI Report IE-7365

David, J.; Herzog, H.(2001)

The cost of carbon capture. In: Williams, D.; Durie, B.; McMullan, P.; Paulson, C. and Smith, A. (Eds), GHGT-5: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, 13-16 August 2000, Cairns, Australia

DTI (2004)

Monitoring, reporting and verification guidelines for Co2 capture and storage under the EU ETS. DTI Ad hoc group on CO2 capture and storage, October 2004

Dutschke, M.; Schlamadinger, B.; Wong, J.L.P.; Rumberg, M. (2004)

Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation. Hamburg Institute of International Economics, HWWA Discussion Paper 290.

Freund, Paul; Davison, John (2002)

General overview of costs. Proceedings of the IPCC Workshop on Carbon Dioxide Capture and Storage, Regina Canada, 18-21 November 2002, published by ECN

Gale, John; Davison, John (2004)

Transmission of CO2 – Safety and economic considerations. Energy 29 (2004) 1319–1328

Grimston, M. C., Karakoussis, V.; Fouquet, R.; Vorst, R. van der; Person, P.; Leach, M. (2001)

The European and the global potential of carbon dioxide sequestration tackling climate change, in: Climate Policy, 1, pp. 155-171

- Gupta, N.J.; Smith, B.; Sass, S.; Chattopadhyay, S.; Byrer, C.W. (2002)

 Engineering and economic assessment of CO2 sequestration in saline reservoirs.

 In: Williams, D.; Durie, B.; McMullan, P.; Paulson, C. and Smith, A. (Eds),

 GHGT-5: Proceedings of the Fifth International Conference on Greenhouse Gas

 Control Technologies, 13-16 August 2000, Cairns, Australia
- Göttlicher, G.; Pruschek, R. (1999)

 Analysis of development potential for pwoer stations with CO2

removal/concentrations. In: Eliason, B.; Riemer, P.; Wokaun, A. (eds), Greenhouse Gas Control Technologies, Elsevier Science, pp. 83-88

- Ha-Duong, Minh; Keith, David W. (2002)

 Climate Strategy with CO2 capture from the air, September 11, 2002
- Ha-Duong, Minh; Keith, David W. (2003)

 Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs.

 Clean Techn Environ Policy 5 (2003) 181–189
- Heafeli, S.; Bosi, M.; Philibert, C. (2004)

 Carbon Dioxide Capture and Storage Issues Accounting and Baselines under the United Nations Framework Convention on Climate Change (UNFCCC). IEA Information Paper, Paris May 2004
- Hendriks, C.; Wildenborg, A.F.B.; Blok, K.; Floris, F.; Van Wees, J.D. (2001)
 Costs of Carbon Dioxide Removal by Underground Storage. In: Williams, D.;
 Durie, B.; McMullan, P.; Paulson, C. and Smith, A. (Eds), GHGT-5:
 Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, 13-16 August 2000, Cairns, Australia
- Hendriks, Chris; Graus, Wina; van Bergen, Frank (2004)
 Global carbon dioxide storage potential and costs, EEP-02001, Ecofys, Utrecht
- Herzog, H. (1999)

 The economics of CO2 capture. In: Eliason, B.; Riemer, P.; Wokaun, A. (eds),
 Greenhouse Gas Control Technologies, Elsevier Science, pp. 101-106
- Herzog, H.; Caldeira, K.; Reilly, J. (2003)

 An issue of permanence: Assessing the effectiveness of temporary carbon storage. Climatic Change (2003) 59, 293-310

IEA (2001)

Putting Carbon Back in the Ground, IEA Greenhouse Gas R&D Programme, Cheltenham, UK

Jimenez, J. A.; Chatlaturnyk, R. J. (2003)

Are disused hydrocarbon reservoirs safe for geological storage of CO₂ ? in: Kaya Y, Gale J, (eds) GHGT-6: Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 30 September–4 October 2002 [electronic version, no page number]

Kallbekken, Steffen; Torvanger, Asbjorn (2004)

Can geological carbon storage be competitive? CICERO Working Paper 2004:05, May 2004

Lackner, Klaus S.; Grimes, Patrick, Ziock, Hans-Joachim (no year)

Carbon Dioxide Extraction from the Air? Los Alamos National Laboratory, Los Alamos.

Michaelowa, Axel (2005)

Carbon capture and geological storage research – a capture by fossil fuel interests? Forthcoming in:IISD, Governing Climate: Struggles for Global Framework Beyond Kyoto

OECD/IEA (2003)

CO2 Capture and Storage in Geological Formations. International Energy Agency (IEA), Paris

OECD/IEA (2004)

Prospects for CO2 capture and storage, Energy Technology Analysis, OECD/IEA, Paris

Pearce, J.; Chadwick, A.; Bentham, M.; Holloway, S.; Kirby, G. (2004)
A technology status review of monitoring technologies for CO2 storage. Report No. ?, COAL R??, DTI/Pub, URN 05/???. February 2005

Reimer, P.; Audus, H.; Smith, A.(1999)

Carbon Dioxide Capture from Power Stations. IEA GHG R&D Programme

Reeves, S. R.; Schoeling, L. (2001)

Geological Sequestration of CO2 in Coal Seems: Reservoir Mechanisms, Field Performance and Economics. In: Williams, D.; Durie, B.; McMullan, P.; Paulson, C. and Smith, A. (Eds), GHGT-5: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, 13-16 August 2000, Cairns, Australia

Rubin, E.S.; Rao, A. (2003)

Uncertainties in CO2 capture and sequestration costs, in: Kaya Y, Gale J, (eds) GHGT-6: Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 30 September–4 October 2002 [electronic version, no page number]

Simbeck, D. (1999)

A portfolio selection approach for power plant CO2 capture, separation and R&D options. In: Eliason, B.; Riemer, P.; Wokaun, A. (eds), Greenhouse Gas Control Technologies, Elsevier Science, pp. 119-124

Smith, L.; Gupta, N.; Sass, B.; Bubenik, T. (2001)

Carbon Dioxide Sequestration in Deep Saline Formations - Engineering and Economic Assessment. Battelle, Columbus, Ohio

Smelser, S.C. (1991)

An Engineering and Economic Evaluation of CO2 Removal from Fossil Fuel-fired Power Plants, Vol.1: Pulverised Coal-fired Power Plants. EPRI Report IE-7365

Thambimuthu, K.; Davison, J.; Gupta, M. (2002)

Proceedings of the IPCC Workshop on Carbon Dioxide Capture and Storage, Regina Canada, 18-21 November 2002, published by ECN, pp. 31-52

UNFCCC (2003)

Estimation, reporting and accounting of harvested wood products. Technical paper. FCCC/TP/2003/7

VGB (2004)

CO₂ Capture and Storage – A VGB Report on the State of the Art. VGB Power Tech e.V. Retrievable at: http://www.vgb.org

Wildenborg, A.F.B.; Van der Meer, L.G.H. (2002)

The use of oil, gas and coal fields as CO2 sinks. Proceedings of the IPCC Workshop on Carbon Dioxide Capture and Storage, Regina Canada, 18-21 November 2002, published by ECN

Yoshigahara, Chisato; Itaoka, Kenshi; Akai, Makoto (2004)

Draft accounting rules for carbon capture and storage technology. Paper presented at GHGT-7 Seventh International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5-9 September 2004