

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Baumöhl, Eduard; Shahzad, Syed Jawad Hussain

Working Paper Quantile coherency networks of international stock markets

Suggested Citation: Baumöhl, Eduard; Shahzad, Syed Jawad Hussain (2019) : Quantile coherency networks of international stock markets, ZBW – Leibniz Information Centre for Economics, Kiel, Hamburg

This Version is available at: https://hdl.handle.net/10419/194568

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Quantile coherency networks of international stock markets

Eduard Baumöhl^a – Syed Jawad Hussain Shahzad^{b*}

Abstract

This paper uses the novel quantile coherency approach to examine the tail dependence network of 49 international stock markets in the frequency domain. We find that geographical proximity and state of market development are important factors in stock markets networks. Both the short- and long-run connectedness significantly increased after the global financial crisis and spillover is higher during bearish market states, highlighting the possibility of contagion effect mainly among developed markets. Frontier and emerging markets are relatively less connected. These findings have implications for international equity market diversification and risk management.

Keywords: quantile coherency, networks, stock markets, extreme negative returns, financial crisis

JEL Classification: C32, C40, G01, G15

^a Institute of Economics and Management, University of Economics in Bratislava, Slovakia; Institute of Financial Complex Systems, Masaryk University, Czech Republic; Librade LTD, United Kingdom. E-mail: eduard.baumohl@euba.sk

^b Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Finance and Banking, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Montpellier Business School, Montpellier France. E-mail: syed.jawad.hussain.shahzad@tdtu.edu.vn *corresponding author

Acknowledgement

This work is supported by the Slovak Grant Agency (VEGA projects 1/0406/17 and 1/0257/18).

1. Introduction

The post global financial crisis (GFC) period is marked by an adverse investment environment often characterized by high volatility due to shock propagation, mainly originating from advanced economies. In this way, the GFC renewed interest in studying how financial stability can be achieved via better understanding of financial interconnectedness. It is now widely believed that the international stock markets move in tandem, which requires focus and quantifying the tail risk for various investment time horizons. The fundamental reason for this focus on international stock market correlation relies on identifying opportunities to effectively diversify idiosyncratic risk, along with understanding the nature and originators of the crisis, so that policy-makers and researchers might design and implement macro-prudential policy measures worldwide.

The literature on financial connectedness can be classified into network- and non-network-based analysis (see Kara et al., 2015). Network-based approaches, while analyzing and presenting network graphs, use pairwise relationships between financial agents, e.g. institutions, markets or countries. Meanwhile, non-network-based studies use econometric techniques, e.g. principal component analysis, regression analysis or default models to estimate connectedness.¹ Previous studies have mainly focused on the interdependence (Boubaker and Jouini, 2014) and/or contagion between a specific set of countries. For example, Boubaker et al. (2016) find contagion effects from the US equity market to selected developed and emerging stock markets using traditional methods such as cointegration, Granger causality, impulse response functions and variance decompositions. It is not a trivial task however to specify and estimate financial connectedness using conventional models because the network of linkages among international stock markets is complex. Specifically, leptokurtic and skewed distributions² of stock market returns show that the underlying dependence structure varies across the distribution, making traditional approaches restrictive and less precise. Shahzad et al. (2018) argues that the traditional approaches may not accurately measure the interdependence in the bearish and bullish market states, because the normality assumption in the joint distribution is not met. It is also important to note that connectedness between international stocks markets may vary across frequencies due to the heterogeneity of multiple agents interacting in these markets. The participants in financial

¹ To understand the developments in financial network studies over last two decades, Marti et al. (2017) provide an excellent and exhaustive review.

 $^{^{2}}$ Fat tail and negatively skewed financial return series result from factors such as asymmetric transaction costs, information frictions, differences in investors' risk profiles, investment heterogeneity and behavioral biases. As a result, dependence modeling should incorporate the asymmetries in marginal and joint distributions.

markets operate at diverse time horizons³; therefore, financial shocks might propagate through markets producing heterogeneous frequency responses. Consequently, it seems reasonable to assume the existence of linkages with various degrees of persistence and, hence, different frequency sources of connectedness among international stock markets. Accordingly, we present and examine the short- and long-run tail dependence network of 49 international stock markets to provide a comprehensive picture of the interconnectedness of world equity markets.

This mapping of tail interdependencies reveals some important factors that determine stock market connectedness, with geographical proximity the most influential (Coelho et al., 2007). Notably, several similarity factors can be apprehended by geographic proximity, such as economic factors (e.g. development, allocation of natural resources, trade and investment partners), cultural factors (e.g. common language, religion), and political factors. Special attention is given to the development level of the stock markets by considering the classification assigned to each. This network analysis identifies markets that play pivotal roles in contagion and those primarily driven by idiosyncratic factors. Since the analysis of stock market dependence is carried out for before and after the GFC period, this study shows how international stock markets' tail interdependencies were affected by the crisis. Furthermore, based on networks, the quantitative evidence indicates an increase in interconnectedness that followed the GFC.

In line with the above discussion, we pose the following three questions to be answered through quantile dependence network analysis:

- 1. Are geographic proximity and development status of stock markets important factors for international stock market connectedness?
- 2. Has overall risk propagation among international stock markets increased since the global financial crisis?
- 3. Are short- and long-term tail dependence dynamics different?

To answer these questions, we build a tail dependence network of international stock markets by estimating the frequency dependence structure in extreme quantiles of the joint distribution through quantile coherency, a novel approach recently proposed by Baruník and Kley (2019). Our contribution thus lies in focusing on dependence among extreme tail returns in the frequency domain, but more importantly, we highlight the benefits of a network approach, which is still not broadly utilized in

³ The diversity in the time horizons arises because economic agents differ in terms of beliefs, preferences, investment objectives and institutional constraints. Furthermore, they also have distinct levels of information assimilation and risk tolerance.

finance literature. To the best of our knowledge, this methodology has only so far been applied by Baumöhl (2019).

In our analysis, we find that (a) European developed markets are the most connected markets; (b) emerging and frontier markets are (apart from a few exceptions) still not strongly connected, even after the GFC; (c) geographical proximity matters, especially in propagating negative shocks; and (d) stock market connectedness increased after the GFC, from both short- and long-term perspectives and for extreme positive and extreme negative returns. In general, our results are in line with extant literature on stock market networks (e.g., Coelho et al., 2007; Baumöhl et al., 2018; Wang et al., 2018). However, we also contribute to the growing body of literature focusing on lower tail dependence (e.g., Poon et al., 2003; Rodriguez, 2007; Bollerslev et al., 2013; Wen et al., 2019), which is of particular interest not only to investors, but also to policy makers, for identifying and managing systemic risk and financial crises.

The remainder of the paper is structured as follows. Section 2 explains the data and methodology. Section 3 discusses the results and Section 4 provides the concluding remarks.

2. Data and methodology

Our dataset comprises the daily data of 49 international stock market indices from January 1, 2001 to December 18, 2018, a total of 4,687 daily observations for each country. Since we only focus on the network topology of stock markets, without considering the perspective of an international investor, our data are expressed in local currency terms.⁴ The selected international stock markets represent all regions of the world classified as per the World Bank lending groups. We classify the regions into four major groups, namely Europe (27 countries), Asia (12 countries), Americas (6 countries) and Middle East & Africa (4 countries). The FTSE annual country classification⁵ represents the development status of stock markets and the sample has 21 developed, 9 advance emerging, 8 secondary emerging and 11 frontier stock markets. As the focus is to examine changes in tail dependence dynamics since the global financial crisis, the sample is divided into pre- and post-GFC sub-samples, with the sample period from January 1, 2001 to August 29, 2008 considered pre-GFC and November 3, 2008 to December 2018 post-GFC. We intentionally exclude September-October 2008 data to avoid the exceptionally high volatility at the peak of the GFC.

⁴ It is highly likely that the international investor may hedge currency risk should the aim be to have only stock market exposure.

⁵ https://www.ftse.com/products/downloads/FTSE-Country-Classification-Update-2018.pdf.

The returns are calculated as natural logarithmic differences between two consecutive trading days. To manage differences in countries' holidays, days when the returns of more than 20% of the sample (10 countries) are equal to zero are excluded. This adjustment reduces the sample size to 4,522 days. Similarly, distortions from differences in countries' time zones (non-synchronous bias) are managed by the standard procedure of computing two-day rolling-average returns (see Forbes and Rigobon, 2002). Table A.1 in the appendix lists the regions, categories, countries, corresponding ISO code, Bloomberg ticker and individual descriptive statistics of 49 stock market indices for the sub-periods before and after the GFC. The differences in mean and standard deviations between the two periods (see Figure A.1) and across individual stock indices (Table A.1) are significant. The mean and standard deviations are, not surprisingly, higher after the GFC.

The quantile cross-spectral analysis proposed by Baruník and Kley (2019) provides a measure of general dependence emerging from quantiles of the joint distribution in the frequency domain. It is of interest to examine the dependence network among international stock markets by placing more focus on the periods of large negative values (the lowest percentiles of the joint distribution) than the periods of large positive values (upper percentile). Furthermore, it is important to discern the dependence structure in the short- and long-term. The quantile coherency measure allows for this.

Baruník and Kley (2019) define a measure of dynamic dependence between two stationary processes X_{t,j_1} and X_{t,j_2} , the so-called quantile coherency kernel, as follows:

$$\Re^{j_1, j_2}(\omega; \tau_1, \tau_2) := \frac{f^{j_1, j_2}(\omega; \tau_1, \tau_2)}{\left(f^{j_1, j_1}(\omega; \tau_1, \tau_2) f^{j_2, j_2}(\omega; \tau_1, \tau_2)\right)^{1/2}}$$
(1)

where for every $j \in \{1, ..., d\}$ and $\tau \in [0,1]$, f^{j_1, j_2} is the quantile cross-spectral density and f^{j_1, j_1} and f^{j_2, j_2} are the quantile spectral densities of processes X_{t, j_1} and X_{t, j_2} , respectively. These are estimated from the Fourier transform of the matrix of quantile cross-covariance kernels $\Gamma_k(\tau_1, \tau_2) := \left(\gamma_k^{j_1, j_2}(\tau_1, \tau_2)\right)_{j_1, j_2, ..., d}$, where: $\gamma_k^{j_1, j_2}(\tau_1, \tau_2) = Cov(I\{X_{t+k, j_1} \le q_{j_1}(\tau_1)\}, I\{X_{t, j_2} \le q_{j_2}(\tau_2)\})$ (2)

for
$$j \in \{1, ..., d\}$$
, $k \in \mathbb{Z}$, $\tau_1, \tau_2 \in [0,1]$, and $I\{A\}$ is the indicator function of event *A*. As argued
by Baruník and Kley (2019), by letting *k* vary we can obtain important information about the serial
dependence, and by choosing $j_1 \neq j_2$ we can obtain important information about the cross-section

dependence. In the frequency domain, this yields the so-called matrix of quantile cross-spectral density kernels:

$$\mathbf{f}(\omega; \tau_1, \tau_2) := \left(f^{j_1, j_2}(\omega; \tau_1, \tau_2) \right)_{j_1, j_2, \dots, d}$$
(3)

where

$$f^{j_1, j_2}(\omega; \tau_1, \tau_2) \coloneqq (2\pi)^{-1} \sum_{k = -\infty}^{\infty} \gamma_k^{j_1, j_2}(\tau_1, \tau_2) e^{-ik\omega}$$
(4)

Quantile coherency is estimated via the smoothed quantile cross-periodograms. For more detail see Baruník and Kley (2019). In this paper, we extract quantile coherency matrices for two percentiles, corresponding to extreme negative returns (5th percentile) and extreme positive returns (95th percentile). We consider two frequencies: short-term (5 days) and long-term (250 days). The entire analysis is performed in R.

3. Results

We start our analysis by examining the coherency between joint distributions of stock market returns at lower percentile (5%), that is, the relationship among the extreme negative returns. This relationship is of particular interest to investors and policy makers, as it determines how contagion spreads among international markets.

Figure 1 captures four networks of extreme negative return coherency, i.e. for the two periods examined (pre-GFC and post-GFC) and two frequencies (short-term and long-term). In Table A.2 we present two centrality measures for these networks, i.e. degree and closeness centrality.

Figure 1. Quantile coherency network – Bearish market conditions (5th percentile)

Notes: The quantile coherency measure is used as the input for the adjacency matrix and the network is built using an extended version of the force-directed layout suggested by Fruchterman and Reingold (1991), minimizing the Euclidian distance between the nodes (stock markets). Red nodes represent Europe (27 countries), green Asia (12 countries), light blue Americas (6 countries) and dark blue Middle East & Africa (4 countries). The shape of the node indicates the development category: circle = developed; diamond = advance emerging; triangle = secondary emerging; square = frontier.

From a short-term perspective, the sum of degree centrality is 906 in the pre-GFC period and 988 in the post-GFC period. Note that the maximal number of all possible links in our analysis is 1,176 $(N^*(N-1)/2)$ and the maximal sum of degree centrality is 2,352; in such cases a network would be

complete. We can see that in times of market turmoil, the negative returns have a strong tendency to spread through the stock markets around the world. Some exceptions are a few secondary emerging (China, Pakistan) and frontier markets (Latvia, Malta, Romania, Jordan, Oman, Tunisia, Sri Lanka), which before the GFC had less than 4 connections to other stock markets. Notably, we can see the clustering of colours and shapes, which represent geographical proximity and development level, and it is clearly evident that these factors play a major role in extreme connectedness among international stock markets.

On average, the number of links in the network (degree centrality) is 18.49 in the pre-GFC and 20.16 in the post-GFC period. This result suggests a slight increase in stock market connectivity. However, when we look at individual markets, there are some notable differences. The most significant changes are reported for Iceland, which drops from 18 links to 2 after the GFC. On the other hand, the connectivity of Romania increases from 3 to 31 links after the GFC.

The most influential markets (based on closeness centrality) are those from developed European countries (closeness over 4). One may argue that this result might be, although partially, driven by the over-representation of European markets in our sample. However, when we look at other markets, most of them exhibit very similar closeness centrality (over 3). All these results indicate that networks based on extreme negative returns are highly connected.

What we see from a long-term perspective is two disconnected vertices (isolated markets – Sri Lanka and Oman) and a few markets with very few connections before the crisis. Overall, the network is highly connected, with the sum of 1,560 degree centrality before and 1,832 after the GFC. It is apparent that after the crisis, the network connectivity significantly increases; the average degree centrality being 37.39 and the average closeness 0.6.

To obtain a broader perspective, we also present results for extreme positive return coherency (Figure 2 and Table A.3). From the network visualization it is clear that positive returns are not as propagated as negative. Short-term connectivity before the crisis is rather low (9.8 links on average) and is also not that strong after the crisis (13.88 links on average). From a long-term perspective, after the crisis there is a significant increase in degree centrality (from 9.02 links to 20.94 links on average), but still much less than in the case of coherency among extreme negative returns. The average closeness centrality is also lower, even in the long-term. These results clearly show that extreme negative shocks propagate among international stock markets to a greater extent than their positive counterparts.

Figure 2. Quantile coherency network – Bullish market conditions (percentile 0.95)

Notes: The quantile coherency measure is used as the input for the adjacency matrix and the network is built using an extended version of the force-directed layout suggested by Fruchterman and Reingold (1991), minimizing the Euclidian distance between the nodes (stock markets). Red nodes represent Europe (27 countries), green Asia (12 countries) light blue Americas (6 countries) and dark blue Middle East & Africa (4 countries). The shape of the node indicates the development category: circle = developed; diamond = advance emerging; triangle = secondary emerging; square = frontier.

To sum up, Figure 3 highlights the differences among the strength (as a node centrality measure) of the markets before and after the GFC, extracted from quantile coherency networks of extreme negative returns. From another perspective, it is apparent that (a) European developed markets are the most connected and their influence increased after the GFC; (b) overall stock market connectedness

increased after the GFC, from both short- and long-term perspectives; and (c) emerging and frontier markets are (apart from a few exceptions) still not strongly connected, even after the GFC.

a) Short-term

Figure 3. Scatter plot of node centrality (strength) of stock markets before and after the GFC (5th percentile)

4. Concluding remarks

In this paper, we apply a recently proposed connectedness measure, which allows us to analyze the interrelationships among 49 stock markets from around the world. We bring a new perspective by analyzing stock market co-movements at various percentiles and frequencies. Through the novelty of the method used and by setting the entire analysis into the network framework, we shed additional light on overall stock market connectedness. Our most profound result is that extreme negative shocks propagate among international stock markets to a larger extent than their positive counterparts. We also find that development stage of stock markets plays vital role because we find that developed markets are more connected both before and after global financial crisis. This higher dependence can be seen as a challenge to pricing efficiency of these markets. On the other hand, lack of interdependence of frontier and emerging stock markets with developed stock markets highlight the potential of former markets for diversification and risk management purposes. Our analysis is based of bivariate measures of coherence and, hence, we don't control for the global common factors, we leave this interesting extension for future works.

References

- Baruník, J., Kley, T. (2019). Quantile Coherency: A General Measure for Dependence between Cyclical Economic Variables. The Econometrics Journal (in press).
- Baumöhl, E. (2019). Are cryptocurrencies connected to forex? A quantile cross-spectral approach. Finance Research Letters (in press).
- Baumöhl, E., Kočenda, E., Lyócsa, Š., Výrost, T. (2018). Networks of volatility spillovers among stock markets. Physica A: Statistical Mechanics and its Applications, 490, 1555-1574.
- Bollerslev, T., Todorov, V., Li, S. Z. (2013). Jump tails, extreme dependencies, and the distribution of stock returns. Journal of Econometrics, 172(2), 307-324.
- Boubaker, S., Jouini, J. (2014). Linkages between emerging and developed equity markets: Empirical evidence in the PMG framework. The North American Journal of Economics and Finance, 29, 322-335.
- Boubaker, S., Jouini, J., Lahiani, A. (2016). Financial contagion between the US and selected developed and emerging countries: The case of the subprime crisis. The Quarterly Review of Economics and Finance, 61, 14-28.

- Coelho, R., Gilmore, C. G., Lucey, B., Richmond, P., Hutzler, S. (2007). The evolution of interdependence in world equity markets—Evidence from minimum spanning trees. Physica A: Statistical Mechanics and its Applications, 376, 455–466.
- Forbes, K. J., Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The Journal of Finance, 57(5), 2223-2261.
- Kara, G., Tian, M., Yellen, M. (2015). Taxonomy of Studies on Interconnectedness. FEDS Notes. Washington: Board of Governors of the Federal Reserve System, July 31, 2015. https://doi.org/10.17016/2380-7172.1569.
- Marti, G., Nielsen, F., Bińkowski, M., Donnat, P. (2017). A review of two decades of correlations, hierarchies, networks and clustering in financial markets. arXiv preprint arXiv:1703.00485.
- Poon, S. H., Rockinger, M., Tawn, J. (2003). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. The Review of Financial Studies, 17(2), 581-610.
- Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14(3), 401-423.
- Shahzad, S. J. H., Hernandez, J. A., Rehman, M. U., Al-Yahyaee, K. H., Zakaria, M. (2018). A global network topology of stock markets: Transmitters and receivers of spillover effects. Physica A: Statistical Mechanics and its Applications, 492, 2136-2153.
- Wang, G. J., Xie, C., Stanley, H. E. (2018). Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks. Computational Economics, 51(3), 607-635.
- Wen, F., Yang, X., Zhou, W. X. (2019). Tail dependence networks of global stock markets. International Journal of Finance & Economics, 24(1), 558-567.

Appendix

					Before the GFC (January 2001 – August 2008)			After the GFC (November 2008 – December 2018)				
Region ^a	Category ^b	Country	ISO code	Bloomberg Ticker	Mean	Std. Dev.	Skewness	Kurtosis	Mean	Std. Dev.	Skewness	Kurtosis
	D	Belgium	BEL	BEL20	-0.01	0.87	0.11	10.11	0.01	0.89	-0.75	8.60
	F	Bulgaria	BGR	SOFIX	0.12	1.23	0.46	21.35	-0.01	0.84	-1.42	22.06
	D	Denmark	DNK	KFX	0.01	0.81	-0.53	5.15	0.03	0.95	-0.47	9.02
	F	Estonia	EST	TALSE	0.07	0.76	-0.14	6.14	0.03	0.79	-0.01	15.02
	D	Finland	FIN	HEX	-0.02	1.30	-0.40	7.00	0.01	0.97	-0.22	6.06
	D	France	FRA	CAC	-0.02	0.98	-0.04	6.60	0.01	1.01	-0.28	7.46
	D	Germany	DEU	DAX	-0.01	1.08	-0.32	6.40	0.02	1.00	-0.31	7.28
	AE	Greece	GRC	ASE	-0.01	0.91	-0.20	5.26	-0.06	1.58	-0.43	6.12
	AE	Hungary	HUN	BUX	0.05	0.95	-0.20	4.10	0.03	1.12	-0.24	14.32
	F	Iceland	ISL	ICEXI	0.06	0.70	-0.52	6.49	-0.04	1.73	-24.95	760.80
	D	Ireland	IRL	ISEQ	-0.02	0.90	-0.42	6.68	0.02	1.02	-0.90	12.17
	D	Italy	ITA	FTSEMIB	-0.03	0.86	-0.26	6.73	-0.01	1.20	-0.42	6.51
be	F	Latvia	LVA	RIGSE	0.06	1.12	-2.22	42.67	0.03	0.87	0.04	13.84
ILO	F	Lithuania	LTU	VILSE	0.08	0.68	-0.13	5.57	0.02	0.77	-0.84	35.33
E	D	Luxembourg	LUX	LUXXX	0.01	0.82	-0.77	11.40	0.00	0.97	-0.65	8.88
	F	Malta	MLT	MALTEX	0.00	0.64	0.26	10.08	0.01	0.43	0.38	9.90
	D	Netherlands	NLD	AMX	-0.03	1.05	-0.11	8.25	0.02	0.94	-0.57	8.59
	D	Norway	NOR	OBX	0.05	0.88	-0.73	5.19	0.03	0.98	-0.65	10.80
	D	Poland	POL	WIG	0.02	1.07	-0.03	3.98	0.00	1.01	-0.30	7.10
	D	Portugal	PRT	BVLX	-0.01	0.68	-0.51	6.03	-0.02	0.98	-0.44	6.99
	F	Romania	ROU	BET	0.13	1.15	0.31	6.95	0.03	1.02	-0.93	16.85
	E	Russia	RUS	CF	0.11	1.32	-0.45	4.94	0.04	1.33	-0.68	21.04
	D	Spain	ESP	IBEX	0.01	0.90	-0.15	5.17	-0.01	1.12	-0.28	7.03
	D	Sweden	SWE	OMX	-0.01	1.07	-0.07	4.75	0.02	0.95	-0.15	7.87
	D	Switzerland	SWZ	SMI	-0.01	0.87	-0.25	7.79	0.01	0.81	-0.64	14.80
	AE	Turkey	TUR	XU100	0.07	1.67	-0.05	6.16	0.04	1.09	-0.50	6.86
	D	UK	UK	UKX	-0.01	0.78	-0.24	6.54	0.01	0.81	-0.29	10.42
a & e	F	Jordan	JOR	JOSMGNFF	0.08	0.77	-0.52	8.62	-0.03	0.51	-1.72	21.17
idd ist a	F	Oman	OMN	MSM30	0.08	0.59	-0.33	9.85	-0.03	0.74	-2.04	41.16
ΡĘ	AE E	South Africa	ZAF	JALSH	0.06	0.80	-0.23	4.40	0.03	0.82	0.01	18.26
	Г D	Austrolio	AUS	10515E	0.04	0.40	0.00	0.71	0.03	0.43	-0.93	7.50
Asia	E	P P of China	CHN	SH\$7300	0.02	1.15	-0.30	9.71	0.00	1.04	-0.30	8.51
	E	India	IND	NIFTY	0.00	1.15	-1.43	12.45	0.00	0.89	-0.13	14.44
	E	Indonesia	IDN	ICI	0.05	1.10	-0.83	6.93	0.04	0.09	-0.70	12.52
	D	Ianan	IPN	NKY	-0.01	0.97	-0.05	4.06	0.04	1.07	-0.70	12.32
	AF	Malaysia	MYS	FBMKLCI	-0.01	0.57	-0.10	9.88	0.02	0.47	-0.33	6.57
	D	New Zealand	NZL	NZSE50EG	0.02	0.51	-0.21	4 96	0.02	0.48	-0.75	8.41
	E	Pakistan	PAK	KSE100	0.09	1 11	-0.49	6 36	0.05	0.79	-0.58	6.87
	E	Philippines	PHL	PCOMP	0.03	0.98	0.34	8.78	0.04	0.88	-0.68	10.01
	F	Sri Lanka	LKA	CSEALL	0.09	1.03	0.08	26.56	0.03	0.62	0.34	8.24
	AE	Taiwan	TAI	TWSE	0.00	1.03	-0.25	4.85	0.02	0.79	-0.31	7.96
	AE	Thailand	THA	SET	0.04	0.95	-0.62	9.26	0.04	0.83	-0.98	14.22
mericas	AE	Brazil	BRA	IBOV	0.06	1.25	-0.44	3.85	0.02	1.15	-0.15	8.33
	D	Canada	CAN	SPTSX	0.02	0.67	-0.47	4.81	0.01	0.78	-0.73	14.53
	Е	Chile	CHL	IPSA	0.05	0.52	-0.58	6.03	0.03	0.61	-0.09	12.08
	AE	Mexico	MEX	MEXBOL	0.07	0.92	-0.19	4.81	0.02	0.84	-0.20	10.81
A	E	Peru	PER	IGBVL	0.12	0.93	-0.58	8.76	0.01	1.07	-0.37	18.05
	D	USA	USA	SPX	-0.01	0.74	-0.13	5.29	0.03	0.83	-0.70	11.93

Table A.1. Basic information and statistics on selected stock indices

Notes: Statistics are calculated from raw data (i.e., before filtering). ^a Regions are based on World Bank lending groups.

^b FTSE Russell as at September 2018. D = Developed; AE = Advanced Emerging; E = Secondary Emerging; F = Frontiermarkets (FTSE Annual Country Classification Review).

		Short	tom		I ong torm					
	pre	SHOL GEC	nos	t-GEC	pre-GEC post-GEC					
	Degree	Closeness	Degree Closenes		Degree Closeness		Degree	Closeness		
BEI	28	0.398	32	0.415	39	0.743	45	0.759		
BGR	10	0.274	4	0.191	26	0.484	21	0.425		
DNK	30	0.386	30	0.370	39	0.809	<u>21</u> <u>41</u>	0.425		
EST	15	0.293	6	0.251	41	0.740	43	0.600		
FIN	25	0.275	29	0.383	32	0.577	43	0.000		
FRA	23	0.432	35	0.303	38	0.741	40	0.737		
DEU	26	0.432	30	0.421 0.404	37	0.741	40	0.003		
GRC	11	0.300	19	0.404	41	0.741	41	0.712		
HUN	24	0.354	30	0.275	38	0.754	40	0.563		
ISI	18	0.304	2	0.170	28	0.501	17	0.303		
IBL	31	0.300	34	0.170	39	0.749	41	0.577		
	28	0.403	28	0.398	38	0.747	30	0.637		
IOR	20	0.425	20	0.388	1	0.754	11	0.057		
IVA	1	0.000	1	0.221	8	0.380	30	0.334		
	24	0.201	11	0.140	35	0.560	30 41	0.475		
	30	0.337	25	0.201	33 41	0.500	41	0.374		
	20	0.382	25	0.525	-11	0.343	15	0.705		
	2	0.215	33	0.000	30	0.545	13	0.390		
NOP	30	0.431	30	0.433	39	0.734	42	0.770		
OMN	33	0.431	30	0.571	50	0.772	43	0.710		
DOI	20	0.217	20	0.104	41	0.000	12	0.417		
FUL DDT	29	0.307	29	0.337	41 26	0.738	43	0.725		
	23	0.337	21	0.337	24	0.007	30 16	0.505		
	3 26	0.241	26	0.558	24 10	0.313	40	0.095		
KUS ZAE	20	0.354	20	0.301	19	0.450	43	0.621		
LAF	25	0.300	32 28	0.300	41	0.734	41	0.078		
ESP	20	0.427	20	0.397	20	0.750	39	0.049		
SWE	23	0.388	25	0.305	37	0.715	43	0.0/1		
SWZ TUN	24	0.404	30	0.398	38 12	0.749	40	0.009		
	1	0.100	0	0.000	15	0.415	1	0.250		
	28	0.300	21	0.275	41	0.705	41	0.307		
	29	0.438	29	0.395	40	0.817	42	0.718		
AUS	25	0.348	1/	0.280	41	0.744	43	0.717		
	4	0.238	22	0.237	2	0.330	54 40	0.490		
	0	0.249	33	0.330	37	0.087	40	0.030		
IDN	20	0.319	0	0.232	38 20	0.032	31	0.494		
JPN	22	0.345	20	0.318	39	0.715	42	0.055		
MIS	22	0.343	25	0.304	45	0.705	43	0.007		
NZL	9	0.307	1/	0.267	39	0.704	40	0.549		
	12	0.000	5	0.188	11	0.414	17	0.412		
PHL	12	0.274	5	0.205	30	0.013	44	0.008		
	2	0.199	1	0.121	0	0.000	9	0.545		
	19	0.328	12	0.266	41	0.740	45	0.723		
	11	0.310	10	0.256	38	0.700	37	0.543		
DKA CAN	24	0.337	3U 21	0.324	39 27	0.725	45	0.031		
CAN	20	0.336	31	0.366	31	0./18	42	0.6/4		
CHL	26	0.360	28	0.308	39	0.690	42	0.597		
MEX	19	0.321	26	0.299	40	0.737	42	0.629		
PER	14	0.284	22	0.297	35	0.579	42	0.546		
USA	19	0.313	30	0.385	38	0.766	44	0.759		
average	18.490	0.320	20.163	0.295	31.837	0.627	37.388	0.600		
mın	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.250		
max	33.000	0.438	35.000	0.433	43.000	0.817	46.000	0.770		

 Table A.2. Network centrality – bearish state (5th percentile)

		Short	torm		Long torm					
	pre	SHOL GEC	nos	t-GEC	pre-GEC post-GEC					
	Degree	Closeness	Degree	Closeness	Degree	Closeness	Degree	Closeness		
BFI	18	0.283	25	0.371	10	0.322	34	0.488		
BGR	1	0.142	1	0.153	1	0.150	8	0.400		
DNK	13	0.243	23	0.133	10	0.326	34	0.255		
FST	3	0.166	3	0.184	13	0.348	25	0.407		
FIN	27	0.100	25	0.104	18	0.340	31	0.410		
FRA	22	0.310	25	0.307	10	0.387	21	0.465		
DEU	23	0.330	23	0.368	14	0.370	21	0.438		
GRC	10	0.323	0	0.300	12	0.302	11	0.415		
	10	0.222	22	0.234	6	0.323	20	0.313		
ISI	12	0.240	23	0.207	1	0.297	20	0.455		
	15	0.112	2 10	0.100	11	0.191	30	0.231		
	15	0.231	19	0.318	22	23 0.415		0.445		
	21	0.311	23	0.348	25	0.415	20	0.415		
JUK	1	0.120	0	0.000	1	0.172	11	0.314		
	1	0.098	2	0.182	4	0.264	10	0.317		
	2	0.128	10	0.235	2	0.212	19	0.362		
LUX	18	0.267	23	0.311	22	0.398	24	0.407		
MLT	4	0.190	1	0.175	1	0.213	8	0.320		
NLD	26	0.334	26	0.373	14	0.342	27	0.476		
NOR	16	0.260	21	0.329	7	0.267	29	0.432		
OMN	3	0.166	0	0.000	2	0.242	4	0.290		
POL	12	0.242	19	0.284	12	0.363	27	0.407		
PRT	7	0.231	27	0.327	15	0.355	21	0.401		
ROU	5	0.193	14	0.236	1	0.194	27	0.411		
RUS	5	0.202	14	0.276	7	0.278	24	0.393		
ZAF	4	0.200	31	0.364	11	0.313	15	0.350		
ESP	22	0.320	22	0.340	17	0.385	21	0.406		
SWE	22	0.319	27	0.384	18	0.406	24	0.423		
SWZ	17	0.303	25	0.338	12	0.336	32	0.476		
TUN	2	0.158	1	0.148	0	0.000	8	0.289		
TUR	10	0.225	2	0.129	13	0.346	30	0.436		
UK	22	0.313	29	0.379	13	0.349	37	0.537		
AUS	17	0.242	13	0.248	14	0.360	30	0.409		
CHN	1	0.112	0	0.000	0	0.000	2	0.285		
IND	7	0.201	3	0.188	7	0.290	18	0.370		
IDN	1	0.156	7	0.242	1	0.217	18	0.375		
JPN	6	0.226	18	0.278	11	0.319	24	0.405		
MYS	3	0.191	5	0.213	4	0.248	31	0.431		
NZL	3	0.193	4	0.203	3	0.257	19	0.363		
PAK	4	0.195	1	0.096	0	0.000	13	0.360		
PHL	0	0.000	4	0.191	9	0.303	21	0.383		
LKA	1	0.163	0	0.000	2	0.224	21	0.366		
TAI	5	0.183	11	0.245	21	0.400	25	0.418		
THA	3	0.157	11	0.256	6	0.293	26	0.425		
BRA	16	0.263	14	0.262	20	0.407	4	0.275		
CAN	11	0.243	19	0.313	8	0.303	23	0.404		
CHI	15	0.250	16	0.270	5	0.266	9	0.295		
MEX	9	0.236	15	0.277	10	0.315	19	0.370		
PER	5	0.215	12	0.278	5	0.272	22	0.397		
USA	12	0.279	28	0.352	10	0.330	34	0.446		
average	0 706	0.210	13 878	0.352	0 020	0.287	20 020	0.300		
min	0.000	0.219	0.000	0.230	9.020	0.207	20.939	0.390		
max	26.000	0.336	31.000	0.384	23.000	0.415	37,000	0.537		

 Table A.3. Network centrality – bullish state (95th percentile)