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The zero-inflated promotion cure rate model 
applied to financial data on time to default
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Abstract: In this paper, we extend the promotion cure rate model by incorporating 
an excess of zeros in the modeling. Despite relating covariates to the cure frac-
tion, the current approach does not enable us to relate covariates to the fraction 
of zeros. The presence of excess of zeros in credit risk survival data stems from a 
group of loans that became defaulted shortly after the granting process. Through 
our proposal, all survival data available of customers is modeled with a multinomial 
logistic link for the three classes of banking customers: (i) individual with an event at 
the starting time (zero time), (ii) non-susceptible for the event, or (iii) susceptible for 
the event. The model parameter estimation is reached by the maximum likelihood 
estimation procedure and Monte Carlo simulations are carried out to assess its finite 
sample performance.
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1. Motivation
The cure rate model has overcome the disadvantage of the standard survival model used for loan 
credit risk analysis, where there are individuals who are not susceptible to the occurrence of the 
event of interest (Othus, Barlogie, LeBlanc, & Crowley, 2012; Tong, Mues, & Thomas, 2012). This prob-
lem was addressed in Berkson and Gage (1952), where the authors proposed a simple model that 
adds the cure fraction (p > 0) into the survival analysis, obtaining the following expressions for the 
survival and density functions:

where S0 is the baseline survival function of the subjects susceptible to failure, f0 is its density prob-
ability function, and p is the proportion of subjects immune to failure (cured). This model is called the 
cure rate model, or long-term survival model. S is an improper survival function, unlike S0, as it satis-
fies: lim

t→∞
S(t) = p > 0.

The advantage of the cure rate model is that it can associate covariates in both parts of the model, 
i.e. it allows covariates to have different influences on cured patients, linking them with p, and on 
patients who are not cured, linking them with parameters of the proper survival function S0.

From now on, to accommodate the presence of zero excess, which is impossible in the cure rate 
model, we proposed a zero-inflated cure rate model, whose survival function is given by:

where S0 is the survival function related to the (1 − p0 − p1) proportion of subject susceptible to 
failure, p0 is the proportion of zero-inflated survival times, and p1 is the proportion of subjects im-
mune to failure (cured or long-term survivors). Thus, it is now possible to link together the influence 
of the covariates in the three parts of the model, i.e. to the proportion of zero-inflated survival times, 
along with the usual sub-populations of susceptible and non-susceptible to the event of interest.

In credit risk setting, a substantial proportion of account observations is right censored because 
they would not experience default during the lifetime of the loan. This data structure has been ad-
dressed in the academic literature through mixture cure models, as in Tong et al. (2012).

As we will see in the application section, the event of interest concerned here is the time until the 
occurrence of default on bank loan portfolios. The presence of an excess of zeros in credit risk sur-
vival data stems from a group of loans that became defaulted shortly after the granting process. We 
called these kinds of clients straight-to-default clients or STD clients for short. They are the sort of 
borrowers who do not pay any installment shortly after the loan approval.

The fact that differentiates our proposed zero-inflated cure version from the standard cure ap-
proach is highlighted in the second of the following satisfied properties:

Note that, if p0 = 0, i.e. without the excess of zeros, we have the cure rate model of Berkson and 
Gage (1952) (Figure 1).

(1)S(t) = p + (1 − p)S0(t), t ≥ 0,

(2)f (t) = (1 − p)f0(t), t ≥ 0,

(3)S(t) = p1 + (1 − p0 − p1)S0(t), t ≥ 0,

(4)lim
t→∞

S(t) = p1 > 0.

(5)S(0) = 1 − p0 < 1.
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1.1. Organization
The remainder of this paper is organized as follows. In Section 2, we present a brief review of the 
literature and preliminary concepts related to the standard promotion time model already used to 
deal with credit risk modeling. In Section 3, we formulate our proposed model and present the ap-
proach for parameter estimation. A study based on Monte Carlo simulations with a variety of param-
eters is presented in Section 3.2. An application to a real data-set of a Brazilian bank loan portfolio is 
presented in Section 4. Some general remarks are presented in Section 5.

2. Literature review
In this section, we shall briefly describe the promotion cure rate model studied in Yakovlev and 
Tsodikov (1996) and Chen, Ibrahim, and Sinha (1999), further extended by Rodrigues, Cancho, de 
Castro, and Louzada-Neto (2009) among other authors, and thereafter we follow the same nota-
tions. This model also incorporates the presence of immune individuals to the event of interest, but 
still has the disadvantage of not accommodating zero time excess in its framework.

This survival model with a cure fraction, according to Chen et al. (1999), is based on a biological 
interpretation of the causes that trigger (promote) a cancer disease relapse. As described by the 
authors, the process that leads to a formation of a detectable cancer mass is triggered by a set of N 
competitive underlying causes, biologically represented by the number of carcinogenic cells that the 
individual has left active after the initial treatment. In their paper, it is assumed that N follows a 
Poisson distribution with mean �.

Regarding the time until the relapse of the cancer under treatment, Chen et al. (1999) let Zi be the 
random time for the ith carcinogenic cells to produce a detectable cancer mass, i.e. the incubation 
time for the ith (out of N) carcinogenic cell. The random variables Zi, i = 1, 2, …, are assumed to be 
iid, with a common distribution function F(t) = 1 − S(t), and are independent of N.

In order to include these individuals who are not susceptible to the event of cancer relapse, i.e. the 
individuals with the initial number of cancer cells, N, equal to 0 and, theoretically, with infinity sur-
vival time, it is assumed that P(Z0 = ∞) = 1.

Finally, the time to the relapse of cancer is defined by the random variable T = min{Zi , 0 ≤ i ≤ N}, 
and therefore, the survival function of T, for the entire population, is given by:

Figure 1. Survival function of 
the zero-inflated cure rate 
model as presented in Louzada, 
Oliveira, and Moreira (2015).
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The density function corresponding to (6) is given by fp(t) = −
d

dt
Sp(t) = �f (t) exp(−�F(t)).

We notice that, Sp and fp are not, properly, survival function and density function, respectively. In 
fact, note that, P(Z0 = ∞) = 1, leads to the cure proportion 
limt→∞

Sp(t) ≡ Sp(∞) ≡ P(N = 0) = exp(−𝜃) > 0, which comes from the population of individuals 
who are not susceptible to the occurrence of cancer relapse (cured). Moreover, the cure fraction is 
very flexible, i.e. it has the property to accommodate a wide variety of cases, since as � → ∞, the 
proportion of cured tends to 0, as � → 0, the proportion of cured tends to 1.

In the situation where we consider the model formulation taking into account only susceptible 
individuals, that is, when it is present in all individuals a number of initial cancer cells greater than 
zero, N ≥ 1, we have a slightly modified expression for the survival function (Chen et al., 1999, p. 
910):

According to this formulation, we figure out now that S∗p(t) is a proper survival function, since the 
following conditions are satisfied: S∗p(0) = 1 and S∗p(∞) = 0. Still following the model presentation 
as proposed by Chen et al. (1999), we come to the probability density function of individuals who are 
susceptible to recurrence of the considered event:

Finally, we come to the mathematical relation between the cure rate model, as presented by Berkson 
and Gage (1952), see expression (1), and the biological based model studied by Chen et al. (1999), 
among others, in the expression (6):

where S∗p and f ∗p  are the proper survival function and the proper density function as given in (7) and 
(8), respectively. Thus, we see that the Chen et al. (1999) model can be rewritten as a cure rate 
model, with cure rate equal to p = exp(−�).

Although the promotion model is formulated within a biological context, it has also been applied 
in other areas, such as credit risk analysis of bank loan portfolios. In these new developments, the 
number N is related to the number of risks that compete with the occurrence of a particular financial 
event of interest, i.e. default or non-performing of loans. Therefore, the formulation admits generali-
zations in various ways, see for example, Cancho, Suzuki, Barriga, and Louzada (2016). In Barriga, 
Cancho, and Louzada (2015), the authors studied the time until the event of default on a Brazilian 
personal loan portfolio, where the authors let N follow a geometric distribution, and F(t) be a cumu-
lative density function of the inverse Weibull distribution.

Furthermore, in the area of credit risk modeling, in Oliveira and Louzada (2014b), the authors ap-
plied the model given by (6) to analyze the process underlying the time until full recovery of non-
performing loans in a portfolio of personal loans of a Brazilian commercial bank.

(6)

Sp(t) = P(T > t|N ≥ 0)

= P(N = 0) + P(Z1 > t, … , ZN > t, N ≥ 1)

= exp(−𝜃) +

∞∑
k=1

S(t)k
𝜃k

k!
exp(−𝜃)

= exp(−𝜃 + 𝜃S(t)) = exp(−𝜃F(t)).

(7)S∗p(t) = P(T > t|N ≥ 1) =
exp(−𝜃F(t)) − exp(−𝜃)

1 − exp(−𝜃)
.

(8)f ∗p (t) = −
d

dt
S∗(t) =

(
exp(−�F(t))

1 − exp(−�)

)
�f (t).

(9)Sp(t) = exp(−�) + (1 − exp(−�))S∗p(t), t ≥ 0,

(10)fp(t) = (1 − exp(−�))f ∗p (t), t ≥ 0,
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In Oliveira and Louzada (2014a), the authors compare the parameters � obtained from two fol-
low-up studies of a set of non-performing loans. The first follow-up is related to the time until the 
default occurrence, while the second one is related to the time until the full recovery of the related 
loan. The authors found a significant relationship between default and recovery processes. The pa-
per suggests that in times of higher risk of default, it is also likely to have a decrease in the recovery 
rates of non-performing loans.

3. Model specification
To accommodate zero excess in a survival analysis of loan portfolios, we propose a modification in 
the survival function of the cure rate model, which has led to the improper survival function given in 
(3), also labeled as the zero-inflated cure rate model. In this scenario, information from credit risk in 
loan applications is exploited through the joint modeling of the zero survival times, along with the 
survival times of the remaining group of borrowers.

The purpose of this paper is to propose a way of incorporating the fraction of zeros into the biolog-
ical-based promotion cure model. This approach leads the credit risk manager to a complete over-
view of the risk factors involved in lending, that is, dealing with the likelihood to default on a loan 
since the loan approval, the non-performing loan control and ensure customer loyalty among long-
term survival customers. To exemplify the application of the proposed approach, we analyze a port-
folio of loans made available by a large Brazilian commercial bank.

In what follows, we consider the promotion cure rate model as defined in expression (9). Hence, 
we propose a new (improper) survival function as follows:

where S∗p is given by (7), and the parameters p0 and p1 are defined as follows: p0 = exp(−�) and 
p1 = exp(−�), with 𝜅 > 0 and 𝜃 > 0.

To ensure that p0, p1, and (1 − p0 − p1) ∈ (0, 1), following Pereira, Botter, and Sandoval (2013) 
and Hosmer and Lemeshow (2000, p. 261), we propose to link two covariate vectors, x1i and x2i into 
the parameters related to zero inflation and cure rate, respectively, as follows: p0i = e

−�i, where 

𝜅i = − log

(
ex

⊤
1i
𝛽
1

1+ex
⊤
1i
𝛽
1+ex

⊤
2i
𝛽
2

)
, and p1i = e

−�i, where 𝜃i = − log

(
ex

⊤
2i
𝛽
2

1+ex
⊤
1i
𝛽
1+ex

⊤
2i
𝛽
2

)
, where �1 is a vector of 

regression coefficients to be estimated, that relates the influence of the covariates into the excess 
of zeros, while �2 is a vector of regression coefficients that relates the influence of the covariates into 
the cure fraction.

To complete the configuration of the model, i.e. to determine the parametric form of S∗p, we let f(t) 
and F(t) be, respectively, the density probability function and the cumulative probability function of 
the Weibull distribution. This could be done in a more general way, but for didactic reasons we prefer 
to choose a particular distribution to present our methodology. The Weibull distribution is a continu-
ous probability distribution, commonly applied in survival analysis and reliability. It has two param-
eters, 𝛼1 > 0 and 𝛼2 > 0, respectively, the shape and scale parameters. Therefore, we link the 
Weibull parameters as follows: 𝛼1i = e

x⊤3i𝛽3 and 𝛼2i = e
x⊤4i𝛽4. These are the most convenient links be-

cause g1(⋅) and g2(⋅) are link functions strictly monotonic and twice differentiable that map ℝ+ into 
ℝ. Finally, we present the following framework for the zero-inflated promotion cure rate model:

(11)Sp(t) = p1 + (1 − p0 − p1)S
∗

p(t), t ≥ 0,
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3.1. Likelihood function
Regarding the contribution of each customer for the likelihood function, we must note that there are 
different sub-groups of customers: (i) individual with event at the starting time (zero time), (ii) non-
susceptible for the event, or (iii) susceptible for the event. The expression (13) presents the likelihood 
contribution of each time to default ti:

Let the data take the form  =
{
ti , �i , xi = {x1i , x2i , x3i , x4i}

}
, where �i = 1 if ti is an observable 

time to default, �i = 0 if it is right censored, for i = 1, 2, … , n, and xi is vector of covariates associ-
ated with a customer i. As we shall see in the application section, the covariate vectors can be the 
same, i.e. x1 = x3 = x2 = x4. Let (�1, �2) denote the parameter vector of the Weibull distribution 
and, finally, let (�

�
, �

�
) be the regression parameters associated, respectively, with the proportion of 

inflation of zeros and the proportion of long-term survivors (cure rate).

The likelihood function of the proposed new zero-adjusted cure rate survival model, with a param-
eter vector, � = (�1, �2, �� , ��), to be estimated via the MLE approach is based on a sample of n 
observations,  =

{
ti , �i , x

}
. Finally, we write the likelihood function, under non-informative cen-

soring, as:

The maximum likelihood estimates 𝜗̂ = (𝛼1, 𝛼2, 𝛽𝜅 , 𝛽𝜃) can be obtained by solving the non-linear 
system of equations U(�) = �l(�)

��
= 0. We use the free statistical software R to solve them numeri-

cally using iterative techniques, such as the Newton–Raphson algorithm. The computational code is 
available from the authors upon request.

Following Migon, Gamerman, and Louzada (2014) and Ospina and Ferrari (2012), a large sample 
inference for the parameters is based on the matrix of second derivatives of the log likelihood using 
the observed information matrix, �(�) = {−�2�(�)∕����T}−1, evaluated at 𝜗 = 𝜗̂. The approximate 
(1 − �) 100% confidence intervals for the parameters �1, �2, �� and �

�
 are given by 

�̂1 ± �
�∕2

√
Var(�̂1), �̂2 ± �

�∕2

√
Var(�̂2), �̂� ± �

�∕2

√
Var(�̂

�
) and �̂

�
± �

�∕2

√
Var(�̂

�
), where �

�∕2 

is the upper �∕2 percentile of the standard normal distribution.

In the application section, we compare the proposed model configured with different covariates. 
A comparison of the models was made using the selection criterion known as the Akaike information 
criterion (AIC), proposed by Akaike (1974). The criterion is defined by AIC = −2 log(L) + 2k, where 
k is the number of estimated parameters, n the sample size and L is the maximised value of the likeli-
hood function. The model with the smallest value is chosen as the preferred for describing a given 
data-set among all models considered.

(12)

Sp(t) = exp(−�) + (1 − exp(−�) − exp(−�))S∗p(t),

S∗p(t) =
exp(−�F(t)) − exp(−�)

1 − exp(−�)
,

f ∗p (t) =

(
exp(−�F(t))

1 − exp(−�)

)
�f (t),

F(t) = 1 − e−(
t

�
)
�

and

f (t) =
�

�

(
t

�

)�−1

e(−
t

�
)
�

.

(13)

⎧⎪⎨⎪⎩

p0i , if ti = 0,

(1 − p0i − p1i)f
∗

p (ti), if ti is fully observed

p1i + (1 − p0i − p1i)S
∗

p(ti), if ti is right censored.

(14)L(𝜗;) ∝
∏
ti=0

{
p0i

}∏
ti>0

{[
(1 − p0i − p1i)f

∗

p (ti)
]𝛿i[

p1i + (1 − p0i − p1i)S
∗

p(ti)
]1−𝛿i}
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3.2. Simulation algorithm
Suppose that the time of occurrence of an event of interest has the improper cumulative distribution 
function F(t) given by F(t) = p0 + (1 − p0 − p1)F0(t), t ≥ 0. We aim to simulate random samples of 
size n posing as loan survival times, where each sample comprises a proportion p0 of zero-inflated 
times, a non-default fraction of p1 and with a proportion (1 − p0 − p1), of failure times drawn from 
a Weibull distribution with �1 and �1 parameters.

For the purpose of simulation, we let x be a random variable that represents a customer charac-
teristic. Hence, the link configuration of the eight parameters (�10, �11, �20, �21, �30, �31, �40, �41) to be 
estimated is given by the following expressions:

Considering the parameters established in the regression model defined above, we set three differ-
ent scenarios of parameters for the simulation studies performed here. Playing the role of covariate, 
we assume x as a binary covariate with values drawn from a Bernoulli distribution with parameter 
0.5.

For scenario 1, �10 assumes −3 and �11 assumes 1. �20 assumes −2 and �21 assumes 0.75. Given 
that the assumed values of x are 0 and 1, we have that p0 assumes, respectively, 4.20 and 9.51%, 
while p1 assumes 11.41 and 20.15%. Compared to the other scenarios 2 and 3, scenario 1 has the 
characteristic of having a low rate of STD and non-default. Regarding the Weibull parameters, �30 
assumes 0.5, �31 assumes 0.5, �40 assumes 1.5 and �41 assumes 2. This implies that the Weibull pa-
rameter �1 can assume 1.64 or 2.71 values, while �2 assumes 4.48 or 33.11.

For scenario 2, �10 assumes −2 and �11 assumes 1.5. �20 assumes −1.25 and �21 assumes 1. Given 
that the assumed values of x are 0 and 1, we have that p0 assumes, respectively, 9.51 and 25.42%, 
while p1 assumes 20.15 and 32.64%. Compared to the other scenarios 1 and 3, scenario 2 has the 
characteristic of having a moderate rate of STD and non-default. Regarding the Weibull parameters, 
�30 assumes −0.5, �31 assumes 1.5, �40 assumes −0.75 and �41 assumes 3. This implies that the 
Weibull parameter �1 can assume 0.60 or 2.71 values, while �2 assumes 0.47 or 9.48.

For scenario 3, �10 assumes −1 and �11 assumes 1. �20 assumes -1 and �21 assumes 1. Given that 
the assumed values of x are 0 and 1, we have that p0 assumes, respectively, 21.20 and 33.33%, while 
p1 assumes 20.20 and 33.33%. Compared to the other scenarios 1 and 2, scenario 3 has the charac-
teristic of having a high rate of STD and non-default. Regarding the Weibull parameters, �30 assumes 
−0.75, �31 assumes 1, �40 assumes 1.25 and �41 assumes 1. This implies that the Weibull parameter 
�1 can assume 0.42 or 1.28 values, while �2 assumes 3.49 or 9.48.

The following step-by-step algorithm is based on the afore-mentioned link functions associated 
with an x covariate drawn from a Bernoulli distribution with parameter 0.5, representing a customer 
feature.

(1) � Set �10 and �11 related to the value of the desired proportion of zero-inflated times, p0, along 
with �20 and �21 related to the value of the desired non-default fraction, p1; finally, set the 
Weibull parameters �30 and �31 related to �1, �40 and �41 related to �2;

(2) � Draw xi from x ∼ Bernoulli (0.5) and calculate p0i, p1i, �1i and �2i;

(3) � Generate ui from a uniform distribution U(0, 1);

(15)

�i = − log

(
e�10+xi�11

1 + e�10+xi�11 + e�20+xi�21

)
,

�1i = − log

(
e�20+xi�21

1 + e�10+xi�11 + e�20+xi�21

)
,

�1i = e
�30+xi�31 ,

�2i = e
�40+xi�41 .
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(4) � If ui ≤ p0i, set si = 0;

(5) � If ui > 1 − p1i, set si = ∞;

(6) � If p0i < ui ≤ 1 − p1i, generate vi from a uniform distribution U(p0i , 1 − p1i) and take si as the 
root of F(si) − vi = 0;

(7) � Generate wi from a uniform U(0, max(si)), considering only finites si;

(8) � Calculate ti = min(si , wi), if ti < wi, set �i = 1, otherwise, set �i = 0.

(9) � Repeat as necessary from step 2 until you get the desired amount of sample (ti , �i).Note that 
the censoring distribution chosen is a uniform distribution with limited range in order to keep the 
censoring rates reasonable (see Rocha, Nadarajah, Tomazella, Louzada, and Eudes 2015, p. 12).

3.3. Results of Monte Carlo simulations
The followings Figures 2–4, describe the simulation results for the three simulated scenarios of pa-
rameters, where the sample size varies as n = 100, 250, 500, 750, and 1,000.

The parameter values are selected in order to assess the ML estimation performance under differ-
ent shape and scale parameters (�30, �31, �40 and �41, related to the Weibull time-to-default distribu-
tion), and also under a composition of different proportions of zero-inflated data (�10 and �11) and 
non-defaulters rates (�20 and �21 related to censored data). It can be seen from the figures that:

Figure 2. Bias, square root 
of mean squared error and 
coverage probability (CP) of the 
maximum likelihood estimation 
(�̂
10

, �̂
11

, �̂
20

, �̂
21
) of zero-inflated 

promotion cure rate regression 
model for simulated data 
under the three scenarios of 
parameters, obtained from 
Monte Carlo simulations 
with 1,000 replications and 
increasing sample size (n). 

Notes: 1 indicates scenario 
1 with characteristic of 
having a low rate of STD and 
non-default. 2 indicates the 
scenario 2 with characteristic 
of having a moderate rate 
of STD and non-default. 3 
indicates scenario 3 with a 
characteristic of having a high 
rate of STD and non-default.
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(1) � in general, the maximum likelihood estimation on average, MLEA, is close to the parameters 
set in the simulated parameter scenarios, see Figure 4. However, in scenarios 1 and 2, the 
parameters �̂11 and �̂21 need a larger sample size (from at least n = 500 for �21) to achieve 
convergence.

(2) � in general, according to Figures 2 and 3, biases and root-mean-square errors decrease as the 
sample size increases; we also observe that, in general, the coverage probability, i.e. the pro-
portion of the time that the interval contains the true value of interest, is close to 95%, as 
expected;

(3) � in the scenarios with the greatest presence of non-default and zeros, i.e. scenario 2 (Moderate) 
and 3 (High), the MLEA, and the measures of RMSE, Bias and CP of the estimated regression 
parameters related to p0 = exp(−�) and p1 = exp(−�), performs better compared to sce-
nario 1 (Low), due, of course, to greater presence of zeros and censored data;

(4) � on the other hand, in the scenario with the fewer presence of zeros and non-default and, i.e. 
scenario 1 (Low), the MLEA, and the measures of RMSE, Bias and CP of the estimated regres-
sion parameters related to �1 and �2, performs better compared to other scenarios, due to the 
greater presence of observed time-to-default data;

Figure 3. Bias, square root 
of mean squared error and 
coverage probability (CP) of the 
maximum likelihood estimation 
(�̂
30

, �̂
31

, �̂
40

, �̂
41
) of zero-inflated 

promotion cure rate regression 
model for simulated data 
under the three scenarios of 
parameters, obtained from 
Monte Carlo simulations 
with 1,000 replications and 
increasing sample size (n). 

Notes: 1 indicates the scenario 
1 with characteristic of 
having a low rate of STD and 
non-default. 2 indicates the 
scenario 2 with characteristic 
of having a moderate rate 
of STD and non-default. 3 
indicates scenario 3 with 
characteristic of having a high 
rate of STD and non-default.
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4. Application: Brazilian bank loan portfolio

4.1. Real data-set
This section presents a data-set made available by a major Brazilian bank. It is important to note 
that the presented data-sets, amounts, rates and levels of the available covariates do not necessar-
ily represent the actual condition of the financial institution’s portfolio. That is, despite being a real 
database, the bank may have sampled the data in order to change the current status of its loan 
portfolio.

The analyzed portfolio was collected from customers who have taken out a personal loan over a 
60-month period, between 2010 and 2015. Table 1 shows the customer’s quantitative frequencies 
of the loan portfolio provided by the bank. comprises 5,733 time to default (in months), with an ap-
proximate 80% rate of censored data, that is, a high rate of non-default loans. Our objective is to 
assess if customer characteristics are associated with time-to-default (credit risk) patterns of each 

Figure 4. MLEA, maximum 
likelihood estimation on 
average of the parameters 
(�̂
10

, �̂
11

, �̂
20

, �̂
21

, �̂
30

, �̂
31

, �̂
40
), �̂

41
 

of zero-inflated Promotion 
Cure rate regression model 
for simulated data under the 
three scenarios of parameters, 
obtained from Monte Carlo 
simulations with 1,000 
replications and increasing 
sample size (n). 

Table 1. Frequency and percentage of the bank loan lifetime data
Number of customers Number of STD (T = 0) Number of defaulters 

(T > 0)

Number of censored 
(T = ∞)

5,733 321 (5.60%) 810 (14.13%) 4,602 (80.27%)

Notes: 1 indicates the scenario 
1 with characteristic of having 
a low rate of STD and non-
default. 2 indicates scenario 2 
with characteristic of having 
a moderate rate of STD and 
non-default. 3 indicates the 
scenario 3 with characteristic 
of having a high rate of STD and 
non-default.
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of the three types of clients: the group with time to default equal to zero, i.e. the zero-inflated ones 
who we called straight-to-default clients (STD) loans; the positive time to default due to defaulted 
loans; and finally, the class of censored observations due to the high non-default rate shown in the 
data.

The segmentation of customers of the bank was made a priori by the bank. For example, age 
group 1 means that customers have been grouped by age from a specified range (determined by the 
bank). The classification of the type of residence, type of employment and age group has not been 
fully supplied to our study due to confidentiality issues. For instance, we do not even know if age 
group 1 comprises a class of clients younger than ones from age group 4. Table 2 shows the quanti-
tative frequency according to the available covariates.

Figure 5 presents a graphical summary of the survival behavior present in the available covariates: 
age group, type of residence, and type of employment. The histogram shows only the distribution of 
the observed data, while the censored data are better observed through the KM curves. 
Notwithstanding, we can see the presence of zero-inflated data in both. We can see from the strati-
fied Kaplan–Meier survival curves that the age group identified as 4 has a lower presence of zero-
inflated time (STD borrowers) compared to the others. The group with type of residence 4 shows a 
higher presence of zero-inflated time (STD borrowers) compared to the borrowers with other types 
of residences. The type of employment 2 shows clearly a high non-default rate and it also presents 
a lower rate of zero-inflated times.

4.2. Modeling results
In this section, we present the application of the zero-inflated promotion cure rate regression model 
introduced in Section 3. In order to proceed the model fit, we considered dummy covariates for all 
levels of the available covariates. Therefore, including all the intercepts, we might have up to thirty 
two (32 = 4 × 4 × 2) regression parameters to be estimated. To reach the final model, variables 
were selected in a backward elimination way using the p-values of the Wald test and AIC.

Table 3 summarizes the estimated parameters via MLE approach for the regression parameters. 
The final model has AIC of 12,596.26 
(l{𝛽10, 𝛽11, 𝛽12, 𝛽13, 𝛽20, 𝛽21, 𝛽22, 𝛽30, 𝛽40, 𝛽41} = −6288.128, p = 10).

The selected dummy covariates given in the final model enabled us to split the portfolio between 
12 five different groups of borrowers (segmentations). In Figure 6, we present the estimated survival 
curves (the dotted lines), among with the Kaplan–Meier survival curves considering the reached 
segmentation: segmentation 1 comprises borrowers with the following set of attributes: age group 
equal to 4, type of residence equal to 2 or 3 and type of employment equal to 2; segmentation 2 

Table 2. Quantity of the available covariates
Covariate Quantity of customers
Age group 1 503

Age group 2 3,088

Age group 3 1,220

Age group 4 922

Type of residence 1 629

Type of residence 2 4,056

Type of residence 3 998

Type of residence 4 50

Type of employment 1 956

Type of employment 2 4,777
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comprises borrowers with the following set of attributes: age group not equal to 4, type of residence 
equal to 1 and type of employment equal to 2; segmentation 3 comprises borrowers with the follow-
ing set of attributes: age group not equal to 4, type of residence equal to 1 and type of employment 
equal to 1; segmentation 4 comprises borrowers with the following set of attributes: age group not 
equal to 4, type of residence equal to 2 or 3 and type of employment equal to 2; and, finally, 

Figure 5. Brazilian bank loan 
portfolio data. 

Notes: Top panel, shows a 
histogram for the observed 
time-to-default variable of 
interest (left) and Kaplan–Meier 
survival curves stratified by age 
group (right). Bottom panel, 
Kaplan–Meier survival curves 
stratified by type of residence 
(left) and Kaplan–Meier survival 
curves stratified by type of 
employment (right).

Table 3. The zero-inflated promotion cure regression model for time to default on a Brazilian 
bank loan portfolio

Notes:1 Related regression parameter to be estimated; 2 Standard error; 3 Exponentiation of the estimated parameter. 

Parameter Dummy covariate (param(1)) Estimate S.E.(2) p-value Exp.(3)

p
0

Intercept (�
10
) −0.6690 0.1213 0.0000 0.5122

Age group =4 (�
11
) −0.8187 0.2231 0.0002 0.4409

Type of residence = 4 (�
12
) 0.8653 0.4736 0.0677 2.3757

Type of employment = 2 (�
13
) −0.6473 0.1434 0.0000 0.5234

p
1

Intercept (�
20
) 0.9123 0.0957 0.0000 2.4901

Type of residence = 1 (�
21
) −0.2905 0.1028 0.0047 0.7478

Type of employment = 2 (�
22
) 0.6331 0.0970 0.0000 1.8834

�
1

Intercept (�
30
) 0.1730 0.0376 0.0000 1.1889

�
2

Intercept (�
40
) 3.1855 0.0697 0.0000 24.1817

Age group = 4 (�
41
) 0.6895 0.1435 0.0000 1.9927
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segmentation 5 comprises borrowers with the following set of attributes: age group not equal to 4, 
type of residence equal to 2 or 3 and type of employment equal to 1.

Figure 6 shows the adjusted survival curves according to the parameters obtained MLE 
approach.

5. Concluding remarks
We introduced a methodology based on zero-inflated survival data that extends the model studied 
in Yakovlev and Tsodikov (1996) and Chen et al. (1999). Considering this, an advantage of our ap-
proach is to accommodate zero-inflated times, which is not possible in the standard cure rate model. 
To illustrate the methodology presented here, we analyzed a bank loan survival data, in order to 
assess the propensity to default in loan applications. In this scenario, information from borrowers is 
exploited through the joint modeling of the zero survival time, along with the survival times of the 
remaining portfolio. The results showed the new model performed very well, nonetheless, it is im-
portant to note that the actual performance of novel models will be measured considering its daily 
use by the bank and using a wider variety of available covariates, since the model allows the use of 
as many covariates as needed, whether continuous or categorical.

Identifiability issues of the cure rate model in (1) and the promotion cure model (6) are discussed 
in Li, Taylor, and Sy (2001). According to Mateluna (2014), the authors concluded that in both cases, 
it is necessary to include covariates in the cure fractions to make them identifiable. From Peng and 
Zhang (2008), identifiability for the promotion cure model can be ensured when covariates are in-
cluded in both parameters related to the susceptible fraction and the cure fraction of individuals 
(see Mateluna, 2014, p. 28).

Although we have included one more parameter in both models mentioned above, identifiability 
issues will not be discussed in this paper. This important subject is intended to be addressed in future 
research.

Figure 6. Brazilian bank loan 
portfolio. Kaplan–Meier survival 
curves stratified through the 
covariate selection given by 
the final promotion cure rate 
regression model presented in 
the Table 3.
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