
Tempel, Michael

Article

Generative art for all

Journal of Innovation and Entrepreneurship

Provided in Cooperation with:
Springer Nature

Suggested Citation: Tempel, Michael (2017) : Generative art for all, Journal of Innovation and
Entrepreneurship, ISSN 2192-5372, Springer, Heidelberg, Vol. 6, Iss. 12, pp. 1-10,
https://doi.org/10.1186/s13731-017-0072-1

This Version is available at:
https://hdl.handle.net/10419/194857

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1186/s13731-017-0072-1%0A
https://hdl.handle.net/10419/194857
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SHORT REPORT Open Access

Generative art for all
Michael Tempel

Correspondence:
michaelt@media.mit.edu;
http://www.logofoundation.org
Logo Foundation, 250 West 85th
Street Suite 4D, 10024 New York,
NY, USA

Abstract

Background: Generative art is created by a system that operates autonomously, or
semi-autonomously, rather than directly by the artist. The artist creates the system and
establishes parameters that affect the outcome, but the outcome itself emerges from
the system rather than from the artist. Generative art systems are frequently computer
programs, although biological, social, or other systems may also be used as well.

Findings: Computer programming environments are often technically demanding, but
there are also those that are more accessible and offer novices ways to engage with
concepts and practices of generative art. We report on our experience with two such
environments, TurtleArt and Scratch, that we have used in workshops with preservice
and in-service teachers over the past several years.

Conclusions: TurtleArt and Scratch are two programming environments that are
accessible to novices and provide a way to explore and create works of generative art.

Keywords: Generative art, Algorithmic art, Computer programming, Coding, Scratch,
TurtleArt, Logo

Generative art refers to art that is created by a system that operates autonomously

(Galanter 2003; McCormack et al. 2014). The artist may create the system, and/or set

some parameters that affect the outcome, but the result is created, at least in part, by the

system rather than directly by the artist. Generative art systems are frequently computer

programs, although biological, social, or other systems may also be used to generate art.

Art that is created by using a computer is not necessarily generative. If one is using a

paint or drawing application to create an image, the computer is a tool—much like a

pencil or paint brush—that is controlled directly by the artist. The application is not

acting autonomously.

A related concept is algorithmic art, which may be considered as one type of generative

art. It generally refers to art that is created via an algorithm, implemented as a computer

program, determining the outcome. But artwork involving symmetry and pattern may be

implicitly algorithmic regardless of how it is created.1 The artist is following a step by step

sequence of rules, even if the algorithm is not spelled out explicitly. In this sense,

algorithmic art has existed for thousands of years. For example, consider how you would

create a floor tile pattern from individual white, black, and brown hexagonal tiles (Fig. 1).

You might follow this algorithm:

1. Place a black tile in the middle of the floor.
2. Surround the black tile with white tiles.
3. Surround the white tiles with brown tiles.
4. Etc.

Journal of Innovation and
Entrepreneurship

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12
DOI 10.1186/s13731-017-0072-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13731-017-0072-1&domain=pdf
http://orcid.org/0000-0001-5375-9350
mailto:michaelt@media.mit.edu
MichaelTempelmichaelt@media.mit.eduhttp://www.logofoundation.orgLogo Foundation250 West 85th Street Suite 4D10024New YorkNYUSA
http://creativecommons.org/licenses/by/4.0/

In practice, you probably would not think the steps through explicitly, but would simply

look at a picture of the desired result and proceed to lay out the tiles to duplicate the pic-

ture. You would implicitly be following an algorithm, either the one above or any one of a

number of other possible algorithms that would generate the same pattern.

In reality, such a floor is generally not assembled out of individual tiles. Instead, the

tiles come in sheets that are about one foot square. The tiles, with the pattern in place,

are attached to a flexible mesh. These sheets are then put together to form the floor.

The sheets are manufactured by a machine that is programmed to produce the pattern.

In this case, the algorithm must be made explicit so as to be able to instruct the

machine.

Even in algorithmic art, there is room for uncertainty and surprises. A musical score

is an algorithm that specifies how a piece should be played. Yet different performances

of the same piece vary in ways that are noticeable to listeners. This is in part due to

performers not following the score exactly, but there are also aspects of performance

that are not captured in the written score and come from the artist.

An algorithm may determine a result very precisely, but there may still be surprises.

The image in Fig. 2, drawn by a program written in TurtleArt, which we will elaborate

on below, includes only straight lines. There are no curves. Figure 3 shows the code

that produced the image.

Generative art often has an element of uncertainty. This may be due to the inclusion

of randomness in the algorithm used to produce the result, but can also be the result

of the unpredictable nature of some parameter such as the number of people viewing

the artwork, or the price of crude oil. Generative art systems may be very complex. For

example, Electric Sheep (http://www.electricsheep.org/) is running on thousands of

computers generating animations, or “sheep,” that morph and reproduce based on algo-

rithms, but also affected by the popularity of individual sheep among members the

worldwide community of users.

Fig. 1 Hexagonal floor tile pattern. This pattern may be created from individual tiles by following an
implicit or explicit algorithm

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 2 of 14

http://www.electricsheep.org/

A challenge for educators is to make a generative art experience available to young stu-

dents and to people with limited technical expertise. Can we construct accessible creative

environments that bring the learner/artist in touch with the concepts around generative

art? Such an introduction should lay the groundwork for people to move to mainstream

systems more comfortably if they choose to do so. We will look at two such environments,

TurtleArt2 and Scratch3, that we have used in workshops over the past several years.4

Long live the turtle
TurtleArt is a contemporary version of the Logo programming language with a Logo-

speaking Turtle as its starring character. Logo development began a half century ago,

Fig. 2 Spiral drawn with TurtleArt. The image appears to have curves, but is drawn using only straight lines

Fig. 3 TurtleArt code to draw an apparent spiral. Lines are drawn only by the forward block. The length of
each line is determined by the value of the variable box1, which is incremented by one step in each
iteration of the repeat loop. The right block rotates the turtle 91° clockwise, while not changing the
turtle’s position

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 3 of 14

and there have been more than 300 versions implemented to date (What is Logo?

2014; Boytchev 2016). Most of these include Turtle Geometry, which was conceived of

as a form of geometry that was more accessible to young learners than the traditional

school geometries of Euclid and Descartes (Papert, Seymour 1981).

The Turtle was originally a robotic creature that traveled around on the floor in re-

sponse to commands from a computer to move forward and back, and to turn to the

right or left. It had a pen, positioned vertically in its center, which when down, allowed

the Turtle to draw as it moved. By the early 1970s, the turtle had migrated to the com-

puter screen. Looking at a screen turtle is like having a view from above of a robot floor

turtle (Figs. 4 and 5).

The goal for most Logo users has been to learn programming and mathematics, usu-

ally with visual results. But there has also been a long tradition of Logo programming

where creating a visual effect is the goal and programming is the means.

With TurtleArt, the aim is to create visual art, specifically drawings that may be

viewed on the computer screen or printed, framed, and hung on the wall. Programming

and Turtle Geometry are the means by which those drawing are created.

TurtleArt is entirely algorithmic. The only way to generate an image on the screen is

by writing and executing a program. This is in contrast to paint and draw applications

in which images are created and manipulated directly using a mouse or touchpad.

There are also environments, Scratch (https://scratch.mit.edu/) and MicroWorlds

(www.microworlds.com), for example, which incorporate both approaches.

TurtleArt uses Blocks Programming (Tempel 2013) in which programs are created

by snapping together graphical pieces on the screen, like putting together a jigsaw puz-

zle. The function of each block and the overall structure of the program are expressed

Fig. 4 Seymour Papert with a robotic turtle, c.1972

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 4 of 14

https://scratch.mit.edu/
http://www.microworlds.com/

by the shapes and colors of the blocks, and how they fit together. These visual clues

help make a program more understandable.

Another advantage of this style of programming, which is especially important for be-

ginners, is that in contrast to conventional text-based languages, it is impossible to

make syntax errors. Over the past few years, Blocks Programming has become widely

used, driven largely by the popularity of Scratch.

The TurtleArt snippet of code in Fig. 6 draws a square of 100 pixels on a side.

The size of the turtle’s pen may be specified. The square is drawn with the pen set to

its default size of 4 pixels. The line in Fig. 7 is drawn with the pen set to a width of

50 pixels.

One can also set the pen’s color, with 0 being red, 90 purple, and the rest of the rain-

bow in between. Shade may be set as well, with a number ranging from 0 to 100. Lower

numbers are very dark, and higher numbers are pastel shades. The default value is 50.

Fig. 5 An image drawn by a screen turtle

Fig. 6 TurtleArt image of a square and the code that drew it

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 5 of 14

By manipulating these three parameters—pen size, color, and shade—a wide variety

of visual effects can be achieved. A TurtleArt program may be entirely deterministic.

The image that is created is the same every time the program is run. But there may be

an element of randomness in the program so that the image is generated somewhat dif-

ferently each time. The example in Fig. 8 is called Titanic Rain5.

The droplets are all in the same size and shape, but vary in color. Figure 9 shows the

code that draws a single droplet.

The pen size is set to 70, which is fairly wide. The shade is set to 30, which is a bit

on the dark side. Then, the turtle takes 70 steps forward. With each step, the pen size

is narrowed by one pixel and the shade is lightened. The result is that the droplet starts

out fat and dark, but lightens and tapers to a point as the turtle move up the canvass.

So far, there is no randomness in the algorithm. It is introduced in the code that cre-

ates the full image (Fig. 10).

First, the screen is filled with black. Then, 60 droplets are drawn. The color of each is

set randomly in a range of blue through purple to red. The position of each droplet is

set to a random XY coordinate.6 Running the program multiple times will produce

Fig. 7 The turtle’s pen is 50 pixels wide

Fig. 8 Titanic Rain

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 6 of 14

similar, but different images. There will be variation in the placement of the droplets,

and some results will tend more to the red, while others further toward blue or purple.

In this next example, called Patio (Fig. 11), we see a regular pattern of five rows of six

squares.

There is no randomness in this arrangement on the XY grid. There is some random-

ness in the elements, with slight variations in color and shade. And some squares are

lined up with the edges of the canvass, but most are rotated a bit clockwise or

counterclockwise.

These examples bring us back to the earlier discussion about different styles of geom-

etry. The turtle is egocentric. It moves and turns relative to where it is and which way

it is pointing. It does not know or care about the larger context. The floor turtle can be

Fig. 9 The code that draws one droplet in Titanic Rain

Fig. 10 Code to draw Titanic Rain

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 7 of 14

put in rooms of different sizes. It would not know where the walls are unless it bumps

into one. But when the turtle lives on a computer screen, we can specify a position

using X and Y coordinates. TurtleArt includes Cartesian Geometry as well as Turtle

geometry.

In both Titanic Rain and Patio, the elements of the composition—droplets or square-

s—are created using Turtle geometry. This allows the element to be drawn at different

locations using the same code. The placement of the elements on the canvas is done

using Cartesian Geometry.

Generative art with Scratch
Scratch is a programming environment and online community that is geared to young

people ages nine to 15. It grows out of the same Logo tradition as TurtleArt and in-

cludes a similar drawing capability. But it is well suited to and more frequently used for

creating animated stories, games, and multimedia productions. Scratch uses a blocks

programming grammar that is similar to TurtleArt.

Instead of the single turtle in TurtleArt, Scratch has many “sprites”—objects that can

assume a variety of shapes, known as “costumes,” and move around the stage. Sprites

can also draw, just like the TurtleArt turtle.

The Scratch Project Squares (Fig. 12) is similar to Patio in TurtleArt. But instead of

having the turtle draw the squares, each square is a sprite.

Each sprite’s costume was created in the Paint Editor that is part of Scratch. The

sprites each have their own code (Fig. 13), which positions them on the stage and then

sets the color and rotation randomly within constraints.7

In addition to creating uncertainty through randomness, Scratch programs may be al-

tered by inputs from the outside world via the keyboard, mouse or touchpad, the com-

puter’s microphone, or video camera.

An example is Jiggle, a project that generates an ever-changing display of moving

rectangles.8 Each one is a clone of the original sprite, with a new one created every

0.25 s. They are in layers, with the most recent in front. Randomness is used to deter-

mine which of three rectangle shapes each clone assumes, how big it is, which way it

Fig. 11 Patio. Squares are placed at specific coordinates on the screen. There is some randomness in the
color and orientation of the squares

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 8 of 14

aims before starting to move, and how long it remains active before disappearing. But

the color is determined not by randomness, but by the position of the mouse pointer.

If the mouse is left untouched for a while, the pattern settles into a uniform color

(Fig. 14).

When the mouse is moved, new rectangles appear in a different color (Fig. 15).

If the mouse is moved continuously, there will be rectangles of many colors (Fig. 16).

Motion Sensitive Squares9 is a remix of the Squares project described above. What

the video camera sees is displayed as a layer behind the array of sprites. When a sprite

detects motion in the video image, it points in the direction of that motion.

The display generated by Drift10 is also affected by motion that the video camera de-

tects (Fig. 17).

The four rectangles are still when there is no motion in front of the camera, but each

one is set in motion for a while when it detects a movement at its position. In this pro-

ject, the video layer is set to a transparency of 100%, meaning that it is not visible, but

motion is detected nonetheless. For a viewer, it is not immediately clear what is causing

the rectangles to move.

With the use of additional hardware and using modified versions of Scratch one is

not limited to works of art that are displayed on the computer screen. One may build

structures and control them with Scratch programs. A full discussion of these

Fig. 12 Squares. The Scratch project Squares is visually similar to the TurtleArt project Patio, but is
implemented differently

Fig. 13 Scratch Code from the Squares project. The same code is in each of the 42 sprites that make up
the array of squares. The first block positions the sprite on the screen—the specific X and Y values are
unique to each sprite. Constrained randomness is introduced into the color and orientation of each square

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 9 of 14

possibilities is beyond the scope of this article, but we will mention one example. Light-

Play (https://tinkering.exploratorium.edu/light-play) is an environment for exploring

light, shadow, and motion. Scratch programs control light intensity and color while

motors rotate objects to create moving patterns of light and shadow.

Comparing TurtleArt and Scratch
We have seen how both TurtleArt and Scratch can be used to explore generative art. In

both environments the artist builds a system—a computer program—that generates the

work of art. How are these two environments different?

TurtleArt is narrowly focused on creating drawings—two-dimensional static images

that may be viewed on the screen or printed. The domain for Scratch is much broader,

including animated displays.

TurtleArt is purely algorithmic. Everything that appears on the screen is generated by

code. Scratch includes both algorithmic and non-algorithmic components. Graphic ele-

ments may be drawn using the built-in paint editor, or imported.

Fig. 14 The Scratch project Jiggle. After letting the program run for a while without moving the mouse,
the ruslting image is all one color

Fig. 15 Moving the mouse while Jiggle is running. The program detects the motion of the mouse and sets
a new color based on the X coordinate of the mouse pointer’s position on the screen

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 10 of 14

https://tinkering.exploratorium.edu/light-play

Scratch is a more complex environment than TurtleArt; so many more kinds of pro-

jects are possible.

TurtleArt and Scratch in the context of Logo development
Both TurtleArt and Scratch are inspired by, or descended from the decade-long devel-

opment of the Logo programming language. We have seen how TurtleArt is a pro-

gramming environment designed for artistic expression, specifically to create drawings,

and for exploring generative art. It is also a vehicle for exploring and learning mathem-

atics and programming. A guiding principle in Logo development has been to create

programming environments that have a “low threshold and high ceiling.” A beginner

should be able to enter easily without obstacles or a big step up. But the language

should also allow for sophisticated programming.

With the development of Scratch beginning in the mid-2000s, an additional design

criterion was emphasized, that of “wide walls.” People with differing interests should all

be able to express themselves by creating projects in various domains—art, music,

mathematics, science, storytelling, games, and animations (Resnick and Silverman 2005).

Fig. 16 Continuous mouse movement while Jiggle is running. The new rectangle colors changes with each
movement of the mouse producing a multi-colored pattern

Fig. 17 The Scratch project Drift. The rectangles are set in motion when the computer’s video camera
detects motion

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 11 of 14

How does TurtleArt fit into this framework? It has a very low threshold, arguably

lower than that of Scratch because of its simplicity. But as a programming language it

is limited, so the ceiling is also low. And the walls are extremely narrow, focusing on a

specific area of artistic expression. Brian Silverman, one of the developers of TurtleArt

argues that this narrowness encourages “going deep” into the domain of algorithmic

drawing. In part this is a result of the highly focused environment and lack of distrac-

tions.11 But there are also details in the design of TurtleArt that make it especially well

suited to the domain.12

We can also compare TurtleArt to the many versions of Logo that have been created

over the past 50 years, most of which include turtle geometry and can be used in ways

similar to TurtleArt. But most of these applications are more complex than TurtleArt,

offering a greater range of possibilities for projects and explorations, but with a concur-

rent lack of focus.

One can look at the low threshold and high ceiling goal in different ways. An envir-

onment can be designed to be broadly inclusive, like Scratch. But one can also imagine

a family of programming languages, with different dialects and vocabularies, but

enough similarity between them so as to make it easy for people to move from one to

the other.

One would choose an appropriate environment for the exploration or project at

hand. For TurtleArt, that domain is generative art, specifically drawing, at the intersec-

tion of art, mathematics, and computing.

For Scratch, the domain is much broader encompassing many areas with an emphasis

on animated stories, games, music, and multimedia projects. Within this range of possibil-

ities, generative art explorations and projects involving mathematics and computing are

possible. Since both TurtleArt and Scratch are members of the same broader family of

computer programming environments, users may move comfortably between the two.

Endnotes
1Art that includes mathematical specification may or may not be algorithmic. For

example, in classical Greek architecture, the proportions of the components of columns

are precisely spelled out for each order, but this does not provide a step by step proced-

ure for building the column. Weaving is an example of algorithmic art that has existed

for thousands of years and has been automated for more than two centuries, initially

with the Jacquard loom and its predecessors.
2TurtleArt is a product of the Playful Invention Company. The software, galleries

of images, and tutorials are available from www.turtleart.org.
3Scratch https://scratch.mit.edu a project of the Lifelong Kindergarten Group at the

MIT Media Lab.
4These workshops include TurtleArt: the art of programming, the programming of art

(www.logofoundation.org/turtleart) and Generating Surprise with Scratch and Turtle Art!

(www.logofoundation.org/genart). TurtleArt and Scratch are also used extensively in the

Logo Summer Institutes, www.logofoundation.org/summer. Scratch projects from one of

these workshops are in the Scratch Studio https://scratch.mit.edu/studios/2941611/.
5This example and the subsequent one, Patio, were created by Brian Silverman.

These drawings and many more may be found in the galleries on the TurtleArt

website—www.turtleart.org.

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 12 of 14

http://www.turtleart.org/
https://scratch.mit.edu
http://www.logofoundation.org/turtleart
http://www.logofoundation.org/genart
http://www.logofoundation.org/summer
https://scratch.mit.edu/studios/2941611/
http://www.turtleart.org/

6The XY coordinates [0 0] are at the center of the canvas. X values are in the range

of −350 to 350. Y values range from −260 to 260.
7The complete code for Patio may be seen at https://turtleart.org/programming/

book1/imagepage.html?13. Click the yellow block icon at the right below the image.

Squares may be seen on the Scratch website at https://scratch.mit.edu/projects/

116485918/. Click “see inside” to view the code.
8Jiggle may be seen at https://scratch.mit.edu/projects/117332449/.
9Motion Sensitive Squares may be seen at https://scratch.mit.edu/projects/

117776207.
10Drift may be seen at https://scratch.mit.edu/projects/117200862/.
11Conversations with the author during October 2016.
12For example, the floor tile pattern that appears earlier in this article can be drawn

with TurtleArt as a pattern of repeated hexagons. As with any infinite tile pattern, when

a border is placed around a portion of the design, some of the elements may appear

only partially. TurtleArt allows one to draw a hexagon near the edge of the canvass

with the turtle leaving the screen and returning as if the non-visible part of the shape is

drawn beyond the border. The hexagon pattern could also be drawn in Scratch, but the

turtle cannot leave the stage, so the tile pattern is disturbed at the edges. This is not a

defect in Scratch, but rather a reflection of design criteria that are better suited to ani-

mation and game projects.

Acknowledgements
None

Funding
Does not apply

Availability of data and materials
Does not apply

Author’s contributions
Michael Tempel is the sole author and is responsible for the 100% of the content.

Author’s information
Michael Tempel is the president of the Logo Foundation, a nonprofit educational organization devoted to supporting
educators, parents, and students in their engagement with creative computing.

Competing interests
The author declares that there are no competing interests.

Consent for publication
Does not apply

Ethics approval and consent to participate
Does not apply

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 September 2016 Accepted: 14 April 2017

References
Boytchev, Pavel, Logo Tree Project (2016), http://www.elica.net/download/papers/LogoTreeProject.pdf. Accesses 23 Mar

2017.
Galanter, P. (2003). What is generative art? http://www.philipgalanter.com/downloads/ga2003_paper.pdf. Accessed 23

Mar 2017.
What is Logo? (2014). http://el.media.mit.edu/logo-foundation/what_is_logo/index.html. Accesses 23 Mar 2017.

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 13 of 14

https://turtleart.org/programming/book1/imagepage.html?13
https://turtleart.org/programming/book1/imagepage.html?13
https://scratch.mit.edu/projects/116485918/
https://scratch.mit.edu/projects/116485918/
https://scratch.mit.edu/projects/117332449/
https://scratch.mit.edu/projects/117776207
https://scratch.mit.edu/projects/117776207
https://scratch.mit.edu/projects/117200862/
http://www.elica.net/download/papers/LogoTreeProject.pdf
http://www.philipgalanter.com/downloads/ga2003_paper.pdf
http://el.media.mit.edu/logo-foundation/what_is_logo/index.html

McCormack, J., Bown, O., Dorin, A., McCabe, J., Monro, G., & Whitelaw, M. (2014). Ten questions concerning generative
computer art. Leonardo, 47(2), 135–141.

Papert, Seymour. Mindstorms (1981). New York, NY: Basic Books, Chapter 3.
Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. http://web.media.mit.edu/~

mres/papers/IDC-2005.pdf. Accessed 23 Mar 2017.
Tempel, M. (2013). Blocks programming. CSTA Voice, 9(1), 3–4.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Tempel Journal of Innovation and Entrepreneurship (2017) 6:12 Page 14 of 14

http://web.media.mit.edu/~mres/papers/IDC-2005.pdf
http://web.media.mit.edu/~mres/papers/IDC-2005.pdf

	Abstract
	Background
	Findings
	Conclusions

	Long live the turtle
	Generative art with Scratch
	Comparing TurtleArt and Scratch
	TurtleArt and Scratch in the context of Logo development
	Art that includes mathematical specification may or may not be algorithmic. For example, in classical Greek architecture, the proportions of the components of columns are precisely spelled out for each order, but this does not provide a step by step p...
	Acknowledgements
	Funding
	Availability of data and materials
	Author’s contributions
	Author’s information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	References

