
Aase, Knut K.

Article

Recursive utility using the stochastic maximum principle

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Aase, Knut K. (2016) : Recursive utility using the stochastic maximum principle,
Quantitative Economics, ISSN 1759-7331, The Econometric Society, New Haven, CT, Vol. 7, Iss. 3, pp.
859-887,
https://doi.org/10.3982/QE473

This Version is available at:
https://hdl.handle.net/10419/195528

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/3.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE473%0A
https://hdl.handle.net/10419/195528
https://creativecommons.org/licenses/by-nc/3.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Quantitative Economics 7 (2016), 859–887 1759-7331/20160859

Recursive utility using the stochastic maximum principle

Knut K. Aase
Department of Business and Management Science, Norwegian School of Economics

Motivated by the problems of the conventional model in rationalizing market
data, we derive the equilibrium interest rate and risk premiums using recursive
utility in a continuous-time model. We use the stochastic maximum principle to
analyze the model. This method uses forward/backward stochastic differential
equations, and works when the economy is not Markovian, which can be the case
with recursive utility. With existence granted, the wealth portfolio is characterized
in equilibrium in terms of utility and aggregate consumption. The equilibrium real
interest rate is derived, and the resulting model is shown to be consistent with rea-
sonable values of the parameters of the utility function when calibrated to market
data, under various assumptions.

Keywords. The equity premium puzzle, recursive utility, the stochastic maxi-
mum principle.

JEL classification. D9, D51, D53, D90, E21, G10, G12.

1. Introduction

Rational expectations, a cornerstone of modern economics and finance, has been under
attack for quite some time. Questions like the following were sometimes asked: Are asset
prices too volatile relative to the information arriving in the market? Is the mean risk
premium on equities over the riskless rate too large? Is the real interest rate too low? Is
the market’s risk aversion too high?

Mehra and Prescott (1985) raised some of these questions in their well known paper,
using a variation of Lucas’s (1978) pure exchange economy with a Kydland and Prescott
(1982) “calibration” exercise. They chose the parameters of the endowment process to
match the sample mean, variance, and annual growth rate of per capita consumption
in the years 1889–1978. The puzzle is that they were unable to find a plausible param-
eter pair of the utility discount rate and the relative risk aversion to match the sample
mean of the annual real rate of interest and of the equity premium over the 90-year pe-
riod.
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The puzzle has been verified by many others, for example, Hansen and Singleton
(1983), Ferson (1983), and Grossman, Melino, and Shiller (1987). Many theories have
been suggested during the years to explain the puzzle.1 See, for example, Kocherlakota
(1996).

We reconsider recursive utility in continuous time along the lines of Duffie and Ep-
stein (1992a, 1992b). In their papers two ordinally equivalent versions of recursive utility
were established, and one version was analyzed by the use of dynamic programming.
The version they left out is analyzed in the present paper. Our method is the stochastic
maximum principle, which gives explicit results for both risk premiums and the short
rate. This method does not require the underlying processes to be Markov. This may be
important in applications. For example, in Bollerslev, Engle, and Wooldridge (1988) it
is indicated that the conditional variance of the market return fluctuates across time.
When the conditional variance is random, the state price deflator is not a Markov pro-
cess, but still our approach is valid. With random conditional moments, dynamic pro-
gramming may not be appropriate, which follows from the nature of the Bellman equa-
tion.

When evaluating utility of consumption, the recursive utility maximizer is not my-
opic, but rather takes into account more than just the present. As a consequence, when
calculating the conditional probabilities of the future state prices of the economy, not
only the present, but also the past values of the basic economic variables matter, that is,
the Markov property can fail.2 The conditional distribution of future consumption may
depend on history in complicated ways. The stochastic maximum principle allows us to
derive the optimality conditions without explicitly specifying the dependence.

We base our treatment on the basic framework developed by Duffie and Epstein
(1992a, 1992b) and Duffie and Skiadas (1994), which elaborate the foundational work
by Kreps and Porteus (1978) and Epstein and Zin (1989) on recursive utility in dynamic
models. The data set we use to calibrate the model is the same as that used by Mehra
and Prescott (1985) in their seminal paper on this subject.

Generally not all income is investment income. We assume that one can view ex-
ogenous income streams as dividends of some shadow asset, in which case our model is
valid if the market portfolio is expanded to include new assets. In reality the latter are not
traded, so the return to the wealth portfolio is not readily observable or estimable from
available data. We indicate how the model may be adjusted to account for this under
various assumptions, when the market portfolio is not a proxy for the wealth portfo-
lio. Here we also present an example using Norwegian data from the period 1971–2014,
in which case we do have the summary statistics related to the wealth portfolio. The
present model calibrates very well to these data.

1Constantinides (1990) introduced habit persistence in the preferences of the agents. Also Campbell and
Cochrane (1999) used habit formation. Rietz (1988) introduced financial catastrophes, Barro (2006) devel-
oped this further, Weil (1992) introduced nondiversifiable background risk, and Heaton and Lucas (1997)
introduced transaction costs. There is a rather long list of other approaches aimed to solve the puzzles,
among them are borrowing constraints (Constantinides, Donaldson, and Mehra (2001)), taxes (McGrattan
and Prescott (2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann, and
Ross (1995)), and heavy tails and parameter uncertainty (Weitzman (2007)).

2Our model does not violate history independence in the sense of Section 6 of Kreps and Porteus (1978).
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Besides giving new insights about these interconnected puzzles, the recursive model
is likely to lead to many other results that are difficult, or impossible, to obtain using,
for example, the conventional, time additive and separable expected utility model. One
example included in the paper is related to empirical regularities for government bills.3

Some of the extant literature contributes to more realistic, but also more complex
models, often based on approximations. An example is Bansal and Yaron (2004), who
explored “long run consumption risk.” For a relative risk aversion of 10 and elasticity of
intertemporal substitution (EIS) of 1�5, they are able to replicate the stylized facts quite
well. They use the Campbell and Shiller (1988) approximation for the log interest rate.
Their work is based on the Epstein and Zin’s (1989) discrete-time approach, in which
they employ a richer economic environment. Not surprisingly, this paper comes a long
way in explaining several asset pricing anomalies. In contrast, our expression for the
equilibrium short rate is exact, and so is the expression for the risk premiums. Using our
approach with a less elaborate model, we are able to explain many of the same features,
for more plausible values of the preference parameters.

In particular, also our model predicts lower asset prices as a result of a rise in con-
sumption volatility. Furthermore, when the EIS is larger than 1, agents demand a large
equity premium because they fear that a reduction in economic growth prospects or
a rise in economic uncertainty will lower asset prices. As noticed by Bansal and Yaron
(2004), this can justify many of the observed features of asset market data from a quan-
titative point of view.

So as to address the particular puzzle at hand, it is a clear advantage to deviate as
little as possible from the basic framework in which it was discovered. This way one
obtains a laboratory effect, where it is possible to learn what really makes the difference.
Otherwise it is easy to get lost in an ever increasing and complex model framework. From
our approach it follows that the solution is simply the new preferences. We do not even
need unspecified “factors” in the model of the financial market (as Duffie and Epstein
(1992a) use).

It has been a goal in the modern theory of asset pricing to internalize probability dis-
tributions of financial assets. To a large extent this has been achieved in our approach.
Consider the logic of Lucas-style models. Aggregate consumption is a given diffusion
process. The solution of a system of forward/backward stochastic differential equations
(FBSDE) provides the main characteristics in the probability distributions of future util-
ity. With existence of a solution to the FBSDE granted, market clearing finally determines
the characteristics in the wealth portfolio from the corresponding characteristics of the
utility and aggregate consumption processes.

3There is by now a longstanding literature that has been utilizing recursive preferences. We mention
Avramov and Hore (2008), Avramov, Cederburg, and Hore (2010), Eraker and Shaliastovich (2009), Hansen,
Heaton, Lee, and Roussanov (2007), Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009),
Wachter (2013), Campbell (1996), Bansal and Yaron (2004), Kocherlakota (1990b), and Ai (2010) to name
some important contributions. Related work is also in Browning, Hansen, and Heckman (1999); on con-
sumption, see Attanasio (1999); on climate risk, see Cai, Judd, and Lontzek (2013, 2015) and Pindyck and
Wang (2013). Bansal and Yaron (2004) study a richer economic environment than we employ.
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The paper is organized as follows: Section 2 starts with a brief introduction to re-
cursive utility in continuous time. In Section 3 we derive the first order conditions, Sec-
tion 4 details the financial market, and in Section 5 we analyze our chosen version of
recursive utility. In Section 6 we summarize the main results and present some calibra-
tions. Section 7 explores various alternatives when the market portfolio is not a proxy
for the wealth portfolio, Section 8 presents the calibration to Norwegian data, Section 9
points out some extensions, and Section 10 concludes. Replication files are available
in a supplementary file on the journal website, http://qeconomics.org/supp/473/code_
and_data.

2. Recursive stochastic differentiable utility

In this section we recall the essentials of recursive, stochastic, differentiable utility along
the lines of Duffie and Epstein (1992a, 1992b) and Duffie and Skiadas (1994).

We are given a probability space (Ω, F , Ft , t ∈ [0�T ], P) satisfying the “usual” con-
ditions, and a standard model for the stock market with Brownian motion driven un-
certainty, N risky securities, and one riskless asset (Section 5 provides more details).
Consumption processes are chosen from the space L of square-integrable progressively
measurable processes with values in R+.

The stochastic differential utility U :L → R is defined by two primitive functions,
f : [0�T ] ×R×R→R andA :R → R, where R is the real line.

The function f (t� ct� Vt) corresponds to a felicity index at time t, and A corresponds
to a measure of absolute risk aversion (of the Arrow–Pratt type) for the agent. In addition
to current consumption ct , the function f depends on utility Vt , and it may also depend
on time t as well as the state of the world ω ∈Ω.

The utility process V for a given consumption process c, satisfying U(c) = V0 and
VT = 0, is given by the representation

Vt =Et
{∫ T

t

(
f (t� cs� Vs)− 1

2
A(Vs)Z

′
sZs

)
ds

}
� t ∈ [0�T ]� (1)

where Et(·) denotes conditional expectation given Ft and Zt is an R
d-valued square-

integrable progressively measurable volatility process, to be determined in our analysis.
The prime means transpose. The term Z′

tZt dt = d[V �V ]t , where [V �V ]t is the quadratic
variation of V . Here d is the dimension of the Brownian motion Bt . The term Vt is the
remaining utility for c at time t, conditional on current information Ft , and A(Vt) is
penalizing for risk.

Recall the timeless situation with a mean zero risk X having variance σ2, where the
certainty equivalent m is defined by Eu(w + X) := u(w −m) for a constant wealth w.
Then the Arrow–Pratt approximation to m, valid for “small” risks, is given by m ≈
− 1

2A(w)σ
2, whereA(·) is the absolute risk aversion associated with u. We would expect

this analogy to work well in a continuous-time model with Brownian driven uncertainty.
If, for each consumption process ct , there is a well defined utility process V , the

stochastic differential utility U is defined by U(c)= V0, the initial utility. The pair (f�A)
generating V is called an aggregator.

http://qeconomics.org/supp/473/code_and_data
http://qeconomics.org/supp/473/code_and_data
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Since VT = 0 and
∫
Zt dBt is assumed to be a martingale, (1) has the stochastic dif-

ferential equation representation

dVt =
(

−f (t� ct� Vt)+ 1
2
A(Vt)Z

′
tZt

)
dt +Z′

t dBt� (2)

If terminal utility different from zero is of interest, as in, for example, applications to
life insurance, then VT may be different from zero. UtilityU is monotonic and risk averse
ifA(·)≥ 0 and f is jointly concave and increasing in consumption. The function Amay
also depend on time t.

The preference ordering represented by recursive utility is assumed to satisfy dy-
namic consistency, in the sense of Johnsen and Donaldson (1985), independence of past
consumption, and state independence of time preference (see Skiadas (2009)).

Unlike expected utility (EU) theory in a timeless situation, that is, when consumption
only takes place at the end, in a temporal setting where the agent consumes in every
period, derived preferences do not satisfy the substitution axiom (e.g., Mossin (1969),
Kreps (1988)). Thus additive EU theory in a dynamic, temporal context has no axiomatic
underpinning, unlike recursive utility (see Kreps and Porteus (1978, 1979), Chew and
Epstein (1991)). It is notable that one of the four central axioms in the latter reference,
recursivity, is essentially identical to the notion of consistency in the sense of Johnsen
and Donaldson (1985).

In this paper we consider the following specification, know as the Kreps–Porteus util-
ity representation,4 which corresponds to the aggregator of the form, for v > 0,

f1(c� v)= δ

1 − ρ
c1−ρ − v1−ρ

v−ρ and A1(v)= γ

v
� (3)

If, for example,A1(v)= 0 for all v, this means that the recursive utility agent is risk neu-
tral. This is the main version that we analyze.

The parameters are assumed to satisfy ρ ≥ 0, ρ �= 1, δ ≥ 0, γ ≥ 0, and γ �= 1 (when
ρ= 1 or γ = 1 logarithms apply). The elasticity of intertemporal substitution in con-
sumption is denoted by ψ = 1/ρ. We refer to the parameter ρ as the time preference
parameter. The version (3) yields the desired disentangling of γ from ρ.

An ordinally equivalent specification can be derived as follows. When the aggregator
(f1�A1) is given corresponding to the utility functionU1, there exists a strictly increasing
and smooth function ϕ(·) such that the ordinally equivalent U2 = ϕ ◦U1 has the aggre-
gator (f2�A2), where

f2(c� v)= (
(1 − γ)v)−γ/(1−γ)

f1
(
c�

(
(1 − γ)v)1/(1−γ))

� A2 = 0�

The function ϕ is given by

U2 = 1
1 − γU

1−γ
1 (4)

4If the certainty equivalent is obtained by expected utility, preferences fall into the Kreps and Porteus
(1978) family. This is the continuous-time limit of the constant elasticity of substitution (CES) specification
examined in discrete time by Epstein and Zin (1989).
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for the Kreps–Porteus specification. It has the CES form

f2(c� v)= δ

1 − ρ
c1−ρ − (

(1 − γ)v)(1−ρ)/(1−γ)
(
(1 − γ)v)(1−ρ)/(1−γ)−1 � A2(v)= 0� (5)

The reduction to a normalized aggregator (f2�0) does not mean that intertemporal util-
ity is risk neutral or that the representation has lost the ability to separate risk aversion
from substitution (see Duffie and Epstein (1992a)). The corresponding utility U2 retains
the essential features, namely that of (partly) disentangling intertemporal elasticity of
substitution from risk aversion. This is the (standard) version analyzed previously by
Duffie and Epstein (1992a) using dynamic programming.

The normalized version is used to prove existence and uniqueness of the solution to
the backward stochastic differential equation (BSDE) (2); see Duffie and Epstein (1992b)
and Duffie and Lions (1992).

Extending the analysis to more general stochastic processes, this is readily accom-
plished using the unnormalized aggregator (3), but has no counterpart in the represen-
tation (5). With jumps there will be at least one new term, corresponding to A associ-
ated with risk aversion in connection with jump sizes, that cannot be integrated in the
manner of (5), without loosing the advantages of the extension: Recursive utility can be
represented as

Vt = Et

{∫ T

t

(
f (s� cs� Vs)− 1

2
A(Vs)Z

′
sZs

− 1
2

∫
Z
A0(Vs� ζ)K

′(s� ζ)K(s� ζ)ν(dζ)
)
ds

}
� t ∈ [0�T ]�

where ν(·) is a Levy measure andK(t� ·) is a square-integrable progressively measurable
process related the jump part of the process, also to be determined by the associated
BSDE (in addition to Z and V ). The term A0(Vt� ·) penalizes for jump size risk, and is in
general different from A (for details, see Aase (2015)). The model in this generality can
be handled by the stochastic maximum principle.

However, for the model of this paper with diffusion driven uncertainty only, (3) and
(5) have the same asset pricing implications. As long as the underlying stochastic pro-
cesses are Markovian, dynamic programming can be used. The stochastic maximum
principle is more general.

A note on notation: The instantaneous correlation coefficient between, for example,
returns and the consumption growth rate is given by

κRc(t)= σRc(t)∥∥σR(t)∥∥ · ∥∥σc(t)∥∥ =

d∑
i=1

σR�i(t)σc�i(t)

√√√√ d∑
i=1

σR�i(t)2

√√√√ d∑
i=1

σc�i(t)2

when d > 1, and similarly for other correlations given in this paper. Here −1 ≤ κRc(t)≤ 1
for all t. With this convention we can equally well write σ ′

R(t)σc(t) for σRc(t), and the
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former does not imply that the instantaneous correlation coefficient between returns
and the consumption growth rate is equal to 1.

2.1 Homogeneity

The following result will be utilized below. For a given consumption process ct we let
(V (c)t �Z(c)t ) be the solution of the BSDE:

⎧⎨
⎩
dV (c)t =

(
−f (t� ct� V (c)t

) + 1
2
A

(
V (c)t

)
Z′(c)
t Z(c)t

)
dt +Z′(c)

t dBt�

V (c)T = 0�
(6)

Theorem 1. Assume that, for all λ > 0, the following equalities hold:

(i) We have λf(t� c� v)= f (t�λc�λv); ∀t� c� v�ω.

(ii) We haveA(λv)= 1
λA(v); ∀v.

Then

V (λc)t = λV (c)t and Z(λc)t = λZ(c)t � t ∈ [0�T ]� (7)

Proof. By uniqueness of the solution of the BSDEs of the type (6), all we need to do is
to verify that the tuple (λV (c)t � λZ

(c)
t ) is a solution of the BSDE (6) with ct replaced by λct ,

that is, that
⎧⎪⎪⎨
⎪⎪⎩
d
(
λV (c)t

) =
(

−f (t�λct�λV (c)t

) + 1
2
A

(
λV (c)t

)
λZ

′(c)
t λZ

(c)
t

)
dt

+ λZ′(c)
t dBt� 0 ≤ t ≤ T�

λV
(c)
T = 0�

(8)

By (i) and (ii) and the quadratic variation interpretation of Z′Z, the BSDE (8) can be
written

⎧⎪⎪⎨
⎪⎪⎩
λdV (c)t =

(
−λf (t� ct� V (c)t

) + 1
2

1
λ
A

(
V (c)t

)
λ2Z′(c)

t Z(c)t

)
dt

+ λZ′(c)
t dBt� 0 ≤ t ≤ T�

λV (c)T = 0�

(9)

But this is exactly the equation (6) multiplied by the constant λ. Hence (9) holds and the
proof is complete. �

Remarks. (i) Note that the system need not be Markovian in general, since we allow

f (t� c� v�ω); (t�ω) ∈ [0�T ] ×Ω
to be an adapted process, for each fixed c, v.

(ii) Similarly, we can allowA to depend on t as well.5

5Although not standard in economics.
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Corollary 1. Define U(c)= V (c)0 . Then U(λc)= λU(c) for all λ > 0.

Notice that the aggregator in (3) satisfies the assumptions of the theorem.

3. The first order conditions

In the following discussion we solve the consumer’s optimization problem. The con-
sumer is characterized by a utility function U and an endowment process e. For any of
the versions i= 1�2 formulated in the previous section, the representative agent’s prob-
lem is to solve

sup
c∈L

U(c)

subject to

E

{∫ T

0
ctπt dt

}
≤E

{∫ T

0
etπt dt

}
�

where πt is the state price deflator. It represents the Arrow–Debreu state prices in units
of probability, and plays a major role in this paper. Here Vt = V (c)t and (Vt�Zt) is the
solution of the backward stochastic differential equation (BSDE)

{
dVt = −f̃ (t� ct� Vt�Zt)dt +Zt dBt�
VT = 0�

(10)

Notice that (10) covers both versions (3) and (5), where

f̃ (t� ct� Vt�Zt)= fi(ct� Vt)− 1
2
Ai(Vt)Z

′
tZt� i= 1�2�

Existence and uniqueness of solutions of the BSDE are treated in the general literature
on this subject. For a reference see Theorem 2.5 in Øksendal and Sulem (2013) or Hu and
Peng (1995). For equation (10), existence and uniqueness follow from Duffie and Lions
(1992).

For α> 0 we define the Lagrangian

L(c;α)=U(c)− αE
(∫ T

0
πt(ct − et)dt

)
�

It is important here that the quantity Zt is part of the solution of the BSDE. Later we
show how market clearing will finally determine the corresponding quantity in the mar-
ket portfolio as a function of Z and the volatility σc of the growth rate of aggregate con-
sumption. This internalizes prices in equilibrium.

To find the first order condition for the representative consumer’s problem, we
use Kuhn–Tucker and either directional (Frechet) derivatives in function space or the
stochastic maximum principle. Neither of these principles requires any Markovian
structure of the economy. The problem is well posed since U is increasing and concave
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and the constraint is convex. In maximizing the Lagrangian of the problem, we can cal-
culate the directional derivative �U(c;h), alternatively denoted by (�U(c))(h), where
�U(c) is the gradient of U at c. Since U is continuously differentiable, this gradient is
a linear and continuous functional, and thus, by the Riesz representation theorem, it is
given by an inner product. This we return to in Section 5.3.

Because of the generality of the problem, let us here utilize the stochastic maximum
principle (see Pontryagin (1959), Bismut (1978), Kushner (1972), Bensoussan (1983),
Øksendal and Sulem (2013), Hu and Peng (1995), or Peng (1990)): We then have a for-
ward/backward stochastic differential equation (FBSDE) system consisting of the sim-
ple forward stochastic differential equation (FSDE) dX(t) = 0, X(0) = 0, and the BSDE
(10).6 The Hamiltonian for this problem is

H(t� c� v� z� y)= yt f̃ (t� ct� vt� zt)− απt(ct − et)� (11)

where yt is the adjoint variable. Sufficient conditions for an optimal solution to the
stochastic maximum principle can be found in the literature; see, for example, Theo-
rem 3.1 in Øksendal and Sulem (2013). Hu and Peng (1995) also study existence and
uniqueness of the solution to coupled FBSDE. A unique solution exists in the present
case provided there is a unique solution to the BSDE (10); again Duffie and Lions (1992)
is the appropriate reference.

The adjoint equation is
⎧⎨
⎩dYt = Yt

(
∂f̃

∂v
(t� ct� Vt�Zt)dt + ∂f̃

∂z
(t� ct� Vt�Zt)dBt

)
�

Y0 = 1�
(12)

If c∗ is optimal we therefore have

Yt = exp
(∫ t

0

{
∂f̃

∂v

(
s� c∗s � Vs�Zs

) − 1
2

(
∂f̃

∂z

(
s� c∗s � Vs�Zs

))2}
ds

(13)

+
∫ t

0

∂f̃

∂z

(
s� c∗s � Vs�Zs

)
dB(s)

)
a.s.

Maximizing the Hamiltonian with respect to c gives the first order equation

y
∂f̃

∂c

(
t� c∗� v� z

) − απ = 0

or

απt = Y(t)∂f̃
∂c

(
t� c∗t � V (t)�Zt

)
a.s. for all t ∈ [0�T ]� (14)

Notice that the state price deflator πt at time t depends, through the adjoint variable Yt ,
on the entire optimal paths (cs , Vs, Zs) for 0 ≤ s ≤ t. (The economy may be allowed to be
non-Markovian since f̃ (·)may also be allowed to depend on the state of nature.)

6The processX is part of the general formulation, which is not needed here and must be set equal to 0.
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When γ = ρ, then Yt = e−δt for the aggregator of the conventional model, which can
be expressed as f (c� v)= u(c)− δv, A= 0. Thus the state price deflator is a Markov pro-
cess, the utility is additive, and dynamic programming can be used.

For the representative agent equilibrium the optimal consumption process is the
given aggregate consumption c in society, and for this consumption process the utility
Vt at time t is optimal.

We now have the first order conditions for both versions of recursive utility outlined
in Section 3. We analyze the nonordinal version, denoted Model 1, with the aggregator
given by (3).

4. The financial market

Having established the general recursive utility of interest, in this section we specify our
model for the financial market. The model is much like the one used by Duffie and Ep-
stein (1992a), except that we do not assume any unspecified factors in our model.

Let ν(t) ∈ R
N denote the vector of expected rates of return of the N given risky se-

curities in excess of the riskless instantaneous return rt , and let σ(t) denote the matrix
of diffusion coefficients of the risky asset prices, normalized by the asset prices, so that
σ(t)σ(t)′ is the instantaneous covariance matrix for asset returns. Both ν(t) and σ(t) are
progressively measurable, ergodic processes. For simplicity we assume that N = d, the
dimension of the Brownian motion B.

The representative consumer’s problem is, for each initial level w of wealth, to solve

sup
(c�ϕ)

U(c) (15)

subject to the intertemporal budget constraint

dWt =
(
Wt

(
ϕ′
tν(t)+ rt

) − ct
)
dt +Wtϕ′

tσ(t)dBt� (16)

Here ϕ′
t = (ϕ(1)t �ϕ

(2)
t � � � � �ϕ

(N)
t ) are the fractions of total wealthWt held in the risky secu-

rities.
Market clearing requires that ϕ′

tσ(t) = (δMt )
′σ(t) = σM(t) in equilibrium, where

σM(t) is the volatility of the return on the market portfolio, and δMt are the fractions of
the different securities, j = 1� � � � �N held in the value-weighted market portfolio. That is,
the representative agent must hold the market portfolio in equilibrium, by construction.

The model is a pure exchange economy where the aggregate endowment process et
in society is exogenously given, and the single agent optimally consumes ct = et in every
period, that is, the agent optimally consumes the endowment process et at every date t.
The main issue is then the determination of prices, including risk premiums and the
interest rate, consistent with this behavior.

In the above discourse we have interpreted the market portfolio as a proxy for the
wealth portfolio, a common assumption in settings like this. This may, however, be in-
accurate. We return to this in Section 7.
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5. The analysis of the nonordinal model

We now turn our attention to pricing restrictions relative to the given optimal consump-
tion plan. The first order conditions are

απt = Yt ∂f1

∂c
(ct� Vt) a.s. for all t ∈ [0�T ]� (17)

where f1 is given in (3). The volatility Zt and the utility process Vt satisfy the dynamics

dVt =
(

− δ

1 − ρ
c

1−ρ
t − V 1−ρ

t

V
−ρ
t

+ 1
2
γ

Vt
Z′(t)Zt

)
dt +Z′

t dBt� (18)

where V (T)= 0. This is the backward equation.
Aggregate consumption has the dynamics

dct

ct
= μc(t)dt + σc(t)′ dBt� (19)

where μc(t) and σc(t) are measurable, Ft adapted stochastic processes, satisfying ap-
propriate integrability properties. We assume these processes to be ergodic or station-
ary, so that we may “replace” (estimate) time averages by state averages. In the Lucas
(1978) model prices are determined in equilibrium such that the agent optimally con-
sumes the endowment process e, which is exogenous to the analysis. This means that
the process in (19) is eventually exogenous after market clearing in the “fruit economy.”

The function f̃ of Section 4 is given by

f̃ (t� c� v� z)= f1(c� v)− 1
2
A(v)z′z�

and sinceA(v)= γ/v, from (12) the adjoint variable Y has dynamics

dYt = Yt
({

∂

∂v
f1(ct� Vt)+ 1

2
γ

V 2
t

Z′(t)Zt
}
dt −A(Vt)Z′

t dBt

)
� (20)

where Y(0)= 1. We now use the notation f for f1 for simplicity. We also use the notation
Zt/Vt = σV (t), valid for V �= 0. By Theorem 1 the term σV (t) is homogeneous of order
zero in c.

We then seek the connection between (Vt�σV (t)) and the rest of the economy. Notice
that Y is not a bounded variation process. From the first order conditions (FOC) in (14)
we obtain, by Ito’s lemma, the dynamics of the state price deflator

dπt = fc(ct� Vt)dYt +Yt dfc(ct� Vt)+ dYt dfc(ct� Vt)� (21)

where we have setα= 1 without loss of generality. By the adjoint and the backward equa-
tions this is

dπt = Ytfc(ct� Vt)

({
fv(ct� Vt)+ 1

2
γσ ′

V (t)σV (t)

}
dt − γσV (t)′ dBt

)

+Yt ∂fc
∂c
(ct� Vt)dct +Yt ∂fc

∂v
(ct� Vt)dVt + dYt dfc(ct� Vt) (22)
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+Yt
(

1
2
∂2fc

∂c2 (ct� Vt)(dct)
2 + ∂2fc

∂c ∂v
(ct� Vt)(dct)(dVt)

+ 1
2
∂2fc

∂v2 (ct� Vt)(dVt)
2
)
�

Here

fc(c� v) := ∂f (c� v)

∂c
= δc−ρvρ� fv(c� v) := ∂f (c� v)

∂v
= − δ

1 − ρ
(
1 − ρc1−ρvρ−1)�

∂fc(c� v)

∂c
= −δρc−(1+ρ)vρ� ∂fc(c� v)

∂v
= δρvρ−1c−ρ�

∂2fc

∂c2 (c� v)= δρ(ρ+ 1)vρc−(ρ+2)�
∂2fc

∂c ∂v
(c� v)= −δρ2vρ−1c−(ρ+1)�

and

∂2fc

∂v2 (c� v)= δρ(ρ− 1)vρ−2c−ρ�

5.1 The risk premiums

Denoting the dynamics of the state price deflator by

dπt = μπ(t)dt + σπ(t)′ dBt� (23)

from (22) and the above expressions we obtain the drift and the diffusion terms of πt as

μπ(t) = πt

(
−δ− ρμc(t)+ 1

2
ρ(ρ+ 1)σ ′

c(t)σc(t)

(24)

+ ρ(γ− ρ)σ ′
c(t)σV (t)+ 1

2
(γ− ρ)(1 − ρ)σ ′

V (t)σV (t)

)

and

σπ(t)= −πt
(
ρσc(t)+ (γ− ρ)σV (t)

)
� (25)

respectively.
Notice that μπ(t) and σπ(t) depend on πt , and the latter variable depends on con-

sumption and utility from time zero to time t, since πt depends on the adjoint variable
Yt , which is given by the expression

Yt = exp
(∫ t

0

(
∂f

∂v
(s� cs)+ 1

2
γ(1 − γ)
V 2
s

Z′(s)Zs
)
ds−

∫ t

0

γ

Vs
Zs dBs

)
� (26)

As can be seen, πt depends on past consumption and utility from time 0 to the
present time t. Unless the terms μc(t), σc(t), and σV (t) are all deterministic, the state
price process πt is not a Markov process. If the parameters are deterministic in the con-
ventional model, this implies that σM(t) = σc(t), which is not supported by data (see
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Table 1. Key U.S. data for the time period 1889–1978; discrete-time compounding.

Expectation Standard Dev. Covariances

Consumption growth 1�83% 3�59% cov(M�c)= 0�002226
Return S&P 500 6�98% 16�54% cov(M�b)= 0�001401
Government bills 0�80% 5�67% cov(c�b)= −0�000158
Equity premium 6�18% 16�67%

Table 1). Hence these quantities must then be stochastic. If we allow this in the recur-
sive model, our method still works, while dynamic programming is then ruled out: the
stochastic maximum principle allows us to derive some optimality conditions without
explicitly specifying the dependence.

Interpreting πt as the price of the consumption good at time t, by the first order
condition it is a decreasing function of consumption c since fcc < 0.

The risk premium of any risky security with return process R is given by

μR(t)− rt = − 1
πt
σπ(t)

′σR(t); (27)

see, for example, Duffie (2001, Chapter 10, equation (37)). It follows immediately from
(25) and (27) that the formula for the risk premium of any risky security R is

μR(t)− rt = ρσc(t)′σR(t)+ (γ− ρ)σV (t)′σR(t)� (28)

This is our basic result for risk premiums.
It remains to connect σV (t) to observables in the economy, which we do below. Be-

fore that we turn to the interest rate.

5.2 The equilibrium interest rate

The equilibrium short-term, real interest rate rt is given by the formula

rt = −μπ(t)
πt

� (29)

The real interest rate at time t can be thought of as the expected exponential rate of
decline of the representative agent’s marginal utility, which is πt in equilibrium (e.g.,
Duffie (2001)).

To find an expression for rt in terms of the primitives of the model, we use (24). We
then obtain

rt = δ+ ρμc(t)− 1
2
ρ(ρ+ 1)σc(t)′σc(t)

(30)

− ρ(γ− ρ)σcV (t)− 1
2
(γ− ρ)(1 − ρ)σV (t)′σV (t)�

This is our basic result for the equilibrium short rate.
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The potential for these two relationships to solve the puzzles should be apparent.
We return to a discussion later.

We proceed to link the volatility term σV (t) to observable quantities in the market
that can be estimated from market data.

5.3 The determination of the volatility of the market portfolio

So as to determine σM(t) from the primitives σV (t) and σc(t), first notice that the wealth
at any time t is given by

Wt = 1
πt
Et

(∫ T

t
πscs ds

)
� (31)

where c is optimal. This expression follows since W can be interpreted as an asset that
pays aggregate consumption as a dividend. From Theorem 1 it follows that the nonor-
dinal utility function U is homogenous of degree 1. Let c denote the stochastic process
{ct�0 ≤ t ≤ T }. By the definition of directional derivatives we have that

�U(c; c) = lim
α↓0

U(c + αc)−U(c)
α

= lim
α↓0

U
(
c(1 + α)) −U(c)

α

= lim
α↓0

(1 + α)U(c)−U(c)
α

= lim
α↓0

αU(c)

α
=U(c)�

where the third equality uses that U is homogeneous of degree 1. By the Riesz represen-
tation theorem it follows from the linearity and continuity of the directional derivative
that, by the first order condition,

�U(c; c)=E
(∫ T

0
πtct dt

)
=W0π0� (32)

whereW0 is the wealth of the representative agent at time 0, and the last equality follows
from (31) for t = 0. Thus U(c)= π0W0.

Let Vt = V (c)t denote future utility at the optimal consumption for our representation.
Since also Vt is homogeneous of degree 1 and continuously differentiable, by Riesz’s rep-
resentation theorem and the dominated convergence theorem, the same type of basic
relationship holds here for the associated directional derivatives at any time t, that is,

�Vt(c; c)=Et
(∫ T

t
π(t)s cs ds

)
= Vt(c)�

where the Riesz representation π(t)s for s ≥ t is the state price deflator at time s ≥ t, as
of time t. As for the discrete time model, it follows by results in Skiadas (2009) that with
Assumption A2, implying that this quantity is independent of past consumption, the
consumption history in the adjoint variableYt is “removed” from the state price deflator
πt , so that π(t)s = πs/Yt for all t ≤ s ≤ T . By this it follows that

Vt = 1
Yt
πtWt� (33)
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This connects the dynamics of V to the rest of the economy. By the product rule,

dVt = d
(
Y−1
t

)
(πtWt)+Y−1

t d(πtWt)+ dY−1
t d(πtWt)� (34)

where

d(πtWt)=Wt dπt +πt dWt + dπt dWt� (35)

Itô’s lemma gives

d

(
1
Yt

)
=

(
−

(
1
Yt

){
fv(ct� Vt)+ 1

2
γσ ′

V (t)σV (t)

}
+ γ2

Yt
σ ′
V (t)σV (t)

)
dt

(36)

+ 1
Yt
γσV (t)

′ dBt�

From equations (34)–(36) it follows by the market clearing condition ϕ′
t · σ(t) = σM(t)

that

VtσV (t)= 1
Yt

(
πtWtγσV +πtWtσM(t)−πtWt

(
ρσc(t)+ (γ− ρ)σV (t)

))
� (37)

From the expression (33) for Vt we obtain the equation

σV (t)= γσV (t)+ σM(t)− (
ρσc(t)+ (γ− ρ)σV (t)

)

from which it follows that

σM(t)= (1 − ρ)σV (t)+ ρσc(t)� (38)

This is the internalization of the market (or wealth) portfolio. The volatility of the market
portfolio is a linear sum of the volatility of utility and the volatility of the growth rate of
aggregate consumption, both parts of the primitives of the economic model. The quanti-
ties V and σV (t) both exist as a solution to the BSDE (10). The pair (U�e) is given. In the
Lucas model prices are determined in equilibrium such that the agent optimally con-
sumes the endowment process e; hence the optimal consumption also becomes part of
the primitives of the model.

This relationship can now be used to express σV (t) in terms of the other two volatil-
ities as

σV (t)= 1
1 − ρ

(
σM(t)− ρσc(t)

)
� (39)

Alternatively, and somewhat easier, we can use the relation VtYt = πtWt and the product
rule directly to find these results.

Inserting the expression (39) into (28) and (30) we obtain the risk premiums

μR(t)− rt = ρ(1 − γ)
1 − ρ σc(t)

′σR(t)+ γ− ρ
1 − ρσM(t)

′σR(t) (40)
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and the short rate

rt = δ+ ρμc(t)− 1
2
ρ(1 − γρ)

1 − ρ σc(t)
′σc(t)+ 1

2
ρ− γ
1 − ρσM(t)

′σM(t)� (41)

respectively.
The expression for the risk premium was derived by Duffie and Epstein (1992a)

based on dynamic programming, assuming the volatilities involved to be constants. The
expression for the real interest rate is new to this paper. The version treated by Duffie and
Epstein (1992a) is the ordinally equivalent one based on (5).

The first covariance rate on the right-hand side of (40) is rather small, as in the con-
ventional model, and can be ignored (for now). The second one is more significant. For
this model to explain a large risk premium, consider, for example, γ > ρ and ρ < 1. The
risk premium can be as large as one pleases by letting ρ be close enough to 1, for an oth-
erwise reasonable value of γ. If γ < ρ and ρ > 1, again the last term is positive and can be
arbitrarily large by letting ρ be close enough to 1, but notice that this combination may
lead to a value of γ that is too low to be plausible.

Turning to the interest rate, for the model to explain a small short rate, consider the
last term. When γ > ρ and ρ < 1, this term is negative and the variance of the wealth
portfolio is larger than the corresponding variance rate of the consumption growth rate.
The same argument again shows that this rate may be made as small as we please by
letting ρ be close enough to 1. Not surprisingly, this gives us a reasonable fit, where also
the parameter δ≥ 0.

Also note that the effects from the last two terms in the short rate need not compen-
sate for a very large term γμc(t) in the conventional model, since this term is now ρμc(t)

with a reasonable value for ρ.
Weil (1989), on the other hand, had at his disposal only the following: The risk pre-

mium

−covt
(
Mt+1�R

R
t+1

)
Et(Mt+1)

=Et
(
RRt+1

) −Rft+1� (42)

where the reciprocal ofEt(Mt+1) is the gross rate of returnRft+1 on the riskless asset over
the period (t� t+1). HereRRt+1 is the gross return on a risky asset, while Mt+1 = πt+1

πt
is the

stochastic discount factor (discrete time). Weil did not have the advantage to examine
expressions like (40) and (41), and thus missed the interesting solution in his calibra-
tions.

6. Summary of the model

Taking the existence of equilibrium as given, the main results in this section are summa-
rized by the following theorem.

Theorem 2. For the nonordinal model with aggregator f1(c� v), A1(v) specified in Sec-
tions 2–5, in equilibrium the risk premium of any risky asset is given by (40) and the real
interest rate is given by (41).
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Using the same method for the version (f2(c� v)�A2(v)), we obtain identical asset
pricing implications, that is, again (40) and (41) result. This is because monotonic trans-
formations of utility functions do not affect the calculation of the marginal rate of substi-
tution. The verification of this serves as a test of our methodology, that is, the stochastic
maximum principle works well for both versions.

Duffie and Epstein (1992a) derive the same risk premium using dynamic program-
ming, but do not present an expression for equilibrium real interest rate.

The resulting risk premiums are linear combinations of the consumption-based
capital asset pricing model (CCAPM) (Breeden (1979)) and the market-based CAPM at
each time t. The original derivation of the CAPM as an equilibrium model was given by
Mossin (1966). His derivation was in a timeless setting, where the interest rate plays no
role.

When the time preference ρ = 0 in Theorem 2, only the market-based CAPM re-
mains. Accordingly, this model can be considered a dynamic version of the market-
based CAPM, with the associated interest rate given by (41). In the present setting with
recursive utility we denote this model by CAPM++. Below we also calibrate this version
to the data summarized in Table 1. The last two terms in the short rate have, together
with the expression for the equity premium, the potential to explain the low, observed
values of the real rate, as we have seen. Also, when γ > ρ the agent prefers early resolu-
tion of uncertainty to late (see Figure 1).

The risk premium decreases as σc(t) increases when γ > ρ and ρ < 1. The conven-
tional model can only predict an increase in the risk premium when this volatility in-
creases. When σM(t) increases in this situation, the interest rate decreases and the risk
premium increases. The same happens if γ < ρ and ρ > 1. The conventional model has
no counterparts for this.
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Figure 1. Calibration points in the (γ�ρ) space.
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6.1 Calibrations

In Table 1 we present the key summary statistics of the data in Mehra and Prescott (1985)
of the real annual return data related to the S&P 500, denoted by M , as well as for the
annualized consumption data, denoted c, and the government bills, denoted b.7

Here we have, for example, estimated the covariance between aggregate consump-
tion and the stock index directly from the data set to be 0�00223. This gives the estimate
0�3770 for the correlation coefficient.8

Since our development is in continuous time, we have carried out standard adjust-
ments for continuous-time compounding, from discrete-time compounding. The re-
sults of these operations are presented in Table 2. This gives, for example, the estimate
κ̂Mc = 0�4033 for the instantaneous correlation coefficient κ(t). The overall changes are
in principle small, and do not influence our comparisons to any significant degree, but
are still important.

First we interpret the risky asset R as the value-weighted market portfolio M corre-
sponding to the S&P 500 index. The conventional, additive EU model we obtain from
(40) and (41) when γ = ρ. We then have two equations in two unknowns that provide es-
timates for the preference parameters by the “method of moments.”9 The result for the
EU model is γ = 26�3 and δ= −0�015, that is, a relative risk aversion of about 26 and an
impatience rate of −1�5%. This is the equity premium puzzle.

If we insist on a nonnegative impatience rate, as we probably should (but see
Kocherlakota (1990a)), this means that the real interest rate explained by the model is
larger than 3�3% (when δ= 0�01, say) for the period considered, but it is estimated, as is
seen from Table 2, to be less than 1 percent. The EIS parameter is calibrated toψ= 0�037,
which is considered to be too low for the representative individual.

There is of course some sampling error, so that these estimates are not exact, but
clearly indicate that something is wrong with this model.

Calibrations of the model (40) and (41) are presented in Table 3 for plausible ranges
of the parameters. We have considered government bills as risk-free.10

Table 2. Key U.S. data for the time period 1889–1978; continuous-time compounding.

Expectation Standard Dev. Covariances

Consumption growth 1�81% 3�55% σ̂Mc = 0�002268
Return S&P 500 6�78% 15�84% σ̂Mb = 0�001477
Government bills 0�80% 5�74% σ̂cb = −0�000149
Equity premium 5�98% 15�95%

7There are of course newer data by now, but these retain the same basic features. If our model can explain
the data in Table 1, it can explain any of the newer sets as well.

8The full data set was provided by Professor Rajnish Mehra.
9Implicitly this relies on an assumption about ergodicity/stationarity of the various μt and σt processes

that enables us to replace “state averages” by “time averages,” the latter being given in Table 2.
10Calibrations sometimes give two different solutions; one is close to the result from the conventional

model, which is the one that Weil (1989) detected.
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Table 3. Calibrations consistent with Table 2.

γ ρ EIS δ

Expected utility model 26�37 26�37 0�037 −0�014

δ= 0�010 fixed 0�005 1�61 0�62 0�010
δ= 0�015 fixed 0�460 1�34 0�74 0�015
δ= 0�020 fixed 0�900 1�06 0�94 0�020
δ= 0�023 fixed 1�15 0�90 1�11 0�023
δ= 0�030 fixed 1�74 0�48 2�08 0�030
δ= 0�035 fixed 2�14 0�18 5�56 0�035

ρ= 0�90 fixed 1�15 0�90 1�11 0�023
ρ= 0�80 fixed 1�30 0�80 1�25 0�025
ρ= 0�50 fixed 1�72 0�50 2�00 0�030
ρ= 0�40 fixed 1�86 0�40 2�50 0�031

CAPM++ 2�38 0�00 +∞ 0�038

γ = 0�50 fixed 0�50 1�31 0�79 0�015
γ = 1�05 fixed 1�05 0�97 1�03 0�040
γ = 1�50 fixed 1�50 0�66 1�51 0�027
γ = 2�00 fixed 2�00 0�30 3�33 0�033
γ = 2�30 fixed 2�30 0�07 14�30 0�036

As noticed, ρ can be constrained to be 0, in which case the model reduces to what
we have called the CAPM++:

μR(t)− rt = γσM�R(t)� rt = δ− γ

2
σM(t)

′σM(t)�

The risk premium is that of the ordinary CAPM type, while the interest rate is new. This
version of the model corresponds to “neutrality” of consumption transfers. Also, from
the expression for the interest rate we notice that the short rate decreases in the presence
of increasing market uncertainty. Solving these two nonlinear equations consistent with
the data of Table 2, we obtain

γ = 2�38 and δ= 0�038�

In the conventional model this simply gives risk neutrality, that is, γ = ρ = 0, so this
model gives a risk premium of 0 and a short rate of r = δ.

The original equilibrium model developed by Mossin (1966) was in a one period
(a timeless) setting with consumption only on the terminal time point, in which case
wealth equals consumption. Since there was no consumption at time 0, no intertempo-
ral aspects of consumption transfers arose in the classical model. This naturally corre-
sponds to u(c)= c for the felicity index regarding consumption transfers, meaning ρ= 0
andψ= 1/ρ= +∞, and corresponding to perfect substitutability of consumption across
time.

When the instantaneous correlation coefficient κMc(t) of returns and the aggregate
consumption growth rate is small, our model handles this situation much better than
the conventional one. The extreme case when κMc(t)= 0 is, for example, consistent with
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the solution presented above for ρ= 0, which gives reasonable parameter values for the
other parameters.

The main results in Bansal and Yaron (2004), mentioned in the Introduction, are
based on a risk aversion of 10 and an EIS of 1�5. To illustrate what a risk aversion of 10
might mean, consider a random variableX that takes the values 0 or 100 with probabil-
ity 1/2 each. The equation E{u(100 +X)} := u(100 + eu) defines its certainty equivalent

eu at initial fortune 100 for the utility function u. If u is of power type u(x) = x(1−γ)
1−γ , the

certainty equivalent eu is 50 when γ = 0, is 33�3 when γ = 2, is 7�98 when γ = 10, and is
2�81 when γ = 26. Thus a risk aversion of 10 seems rather high.

Most of the plausible calibration points presented in Table 3 correspond to γ > 1> ρ,
and accordingly EIS > 1, for the data summarized in Table 2. Accordingly, these are lo-
cated in the early resolution part of the (ρ�γ) plane where γ > ρ. A value of EIS greater
than 1 is consistent with the findings of Hansen and Singleton (1982) and many other
authors (see below).

The present version is also consistent with calibrations in the region 0 < γ < ρ < 1,
corresponding to late resolution. As an example, if ρ= 1�1, this is consistent with δ= 0�02
and γ = 0�90. The square root utility function is used in many examples in various text-
books (for the conventional model). For γ = 0�5 the model calibrates to δ = 0�015 and
ρ = 1�31, that is, late resolution but otherwise for reasonable values of the parameters
(calibration point Calibr 2 in Figure 1). A value of γ < 1 seems less plausible, however.

6.2 Some new features of the model

It is reassuring that the risk premium of any risky asset depends on other investment
opportunities in the financial market, and not just on this asset’s covariance rate with
consumption.

It is also satisfying that the return rate on government bonds depends on more than
just the growth rate and the variance rate of aggregate consumption, but also on char-
acteristics of other investment opportunities in the financial market.

Faced with increasing consumption uncertainty, the “prudent” consumer will save
and the interest rate accordingly falls in equilibrium (this is a fruit-tree economy). This is
precautionary savings in the standard model. For recursive utility this property is more
naturally linked to the last term in (41). When the wealth uncertainty increases, the in-
terest rate falls provided γ > ρ and ρ < 1, or γ < ρ and ρ > 1. Furthermore, the equity
premium increases in the same parameter ranges. As typical examples of the former,
the calibration point Calibr 1 in Figure 1 satisfies this requirement, as does the point
CAPM++, while Calibr 2 satisfies the second.

This kind of discussion has no place in the conventional model, since when ρ = γ

there is no direct connection to the securities market (or to the wealth portfolio) in the
expression for the risk premium (40). Similarly, the interest rate has no connection to the
wealth portfolio in the conventional model, unlike for the recursive model.

The discrete-time recursive model of Epstein and Zin (1989, 1991) is the one that has
mostly been used in applications. In evaluating the equity premium and the risk-free
rate, some approximations must be carried out. In Aase (2013) the discrete-time model
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is solved using non-Markovian methods, and the pricing kernel turns out to be the same
as the one obtained by Epstein and Zin (1989), and calibrated by Weil (1989). Unlike Weil,
who used the same underlying two-state Markov model as fitted by Mehra and Prescott

(1985), and who numerically computed (42) and the gross short rate Rft+1, we work with
testable and explicit expressions for risk premiums and the short rate. In discrete time
our results are comparable to the ones of this paper (as the case should be).

6.3 Government bills

In the above discussion we have interpreted government bills as risk-free. With this in
mind, there is another problem with the conventional, additive EU model. From Table 2
we see that there is a negative correlation between government bills and the consump-
tion growth rate. Similarly there is a positive correlation between the return on S&P 500
and government bills.

If we interpret government bills as risk-free, the former correlation should be 0 for
the CCAPM model to be consistent. Since this correlation is not 0, then γ must be 0,
which is inconsistent with the above discussion (and the model).

The government bills used by Mehra and Prescott (1985) have a duration of 1 month,
and the data are yearly, in which case government bills are not the same as sovereign
bonds with a duration of 1 year. The 1 month bills in a yearly context will then contain
price risk 11 months each year, and hence the estimate of the real, risk-free rate is, per-
haps, strictly lower than 0�80%. Whatever the positive value of the risk premium is, the
resulting value of γ is negative. With bills included, the conventional, EU model does
not seem to have enough “degrees of freedom” to match the data, since in this situation
the model contains three basic relationships and only two “free parameters.”

The recursive model does much better in this regard, and yields more plausible re-
sults as it has enough degrees of freedom for this problem.

Exactly what risk premium bills command we can here only stipulate. For a risk pre-
mium of 0�0040 for the bills, we have a third equation, namely

μb(t)− rt = ρ(1 − γ)
1 − ρ σc�b(t)+ γ− ρ

1 − ρσM�b� (43)

to solve together with equations (40) and (41). With the covariance estimates provided in
Table 2, we have three equations in three unknowns, giving the values δ= 0�027, γ = 1�76,
and ρ= 0�53. This risk premium of the bills indicates that the estimate of the real rate is
only 0�0040, which may be a bit low, but these results are far better than the conventional,
additive EU model can provide.11

This may have several important consequences. To mention just one, recall the con-
troversy around the Stern report, in which an estimate of 1�4 percent for the real rate is
suggested. Stern (2007) set the impatience rate δ= 0�001, and received critique for this as
well. Based on the above analysis, the real rate could have been set close to 0 for climate
related projects, and still have good model and empirical support.

11While Bansal and Yaron (2004) are off by a factor of 10 in explaining the volatility of the short rate (their
Table IV), our model gives an exact fit to the data of Table 2.
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7. The market portfolio is not a proxy for the wealth portfolio

In the paper we have focused on comparing two models, assuming the market portfolio
can be used as a proxy for the wealth portfolio. Suppose we can view exogenous income
streams as dividends of some shadow asset, in which case our model is valid if the mar-
ket portfolio is expanded to include the new asset. However, if the latter is not traded,
then the return to the wealth portfolio is not readily observable or estimable from avail-
able data. Still we should be able to get a pretty good impression of how the two models
compare, which we now attempt.

In the conventional model with constant coefficients the growth rate of the wealth
portfolio has the same volatility as the growth rate of aggregate consumption. Taking
this quantity as the lower bound for this volatility, we indicate how the models compare
when the market portfolio cannot be taken as a proxy for the wealth portfolio. We first
set σW (t)= 0�05, and κW�R = 0�70. Then the model can be written

μM(t)− rt = ρ(1 − γ)
1 − ρ σc(t)

′σM(t)+ γ− ρ
1 − ρσW (t)

′σM(t) (44)

and

rt = δ+ ρμc(t)− 1
2
ρ(1 − ργ)

1 − ρ σc(t)
′σc(t)+ 1

2
ρ− γ
1 − ρσW (t)

′σW (t)� (45)

Here M stands for the market portfolio and W stands for the wealth portfolio, so that
(44) is the equity premium.

The calibrations are given in Table 4. The results are in favor of low values of the im-
patience rate δ. Typical values of γ fall between 2�7 and 4�5. The CAPM++ results when
ρ = 0, and is here consistent with a (too) high value of γ = 10�8, but with a reasonable
impatience rate of 1�7 percent.

Table 4. Calibrations of the model when σW (t)= 0�05 and κW�R = 0�70.

Parameters γ ρ EIS δ

Recursive model

δ= 10−6 2�73 0�91 1�10 10−6

δ= 0�001 3�30 0�88 1�36 0�001
δ= 0�010 7�86 0�49 2�04 0�010
δ= 0�015 9�92 0�18 5�55 0�015

ρ= 0�00 CAPM++ 10�80 0�00 +∞ 0�017

ρ= 0�90 3�01 0�90 1�11 0�000
ρ= 0�85 3�85 0�85 1�18 0�002
ρ= 0�80 4�60 0�80 1�25 0�003
ρ= 0�70 5�89 0�70 1�43 0�006

γ = 2�80 2�80 0�91 1�10 0�000
γ = 3�50 3�50 0�87 1�14 0�001
γ = 4�00 4�00 0�84 1�19 0�002
γ = 4�50 4�50 0�81 1�23 0�003
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Table 5. Calibrations of the model when σW (t)= 0�10 and κW�R = 0�80.

Parameters γ ρ EIS δ

Recursive model

δ= 0�015 0�93 1�01 0�99 0�015
δ= 0�020 2�11 0�74 1�35 0�020
δ= 0�025 3�26 0�44 2�27 0�025
δ= 0�030 4�37 0�11 9�09 0�030

ρ= 0�000 4�72 0�00 +∞ 0�032
ρ= 0�200 4�08 0�20 5�00 0�029
ρ= 0�300 3�75 0�30 3�33 0�027
ρ= 0�500 3�04 0�50 2�00 0�024

ρ= 0�800 1�87 0�80 1�25 0�019
ρ= 0�900 1�44 0�90 1�11 0�017
ρ= 0�950 1�22 0�95 1�05 0�016

γ = 1�01 1�01 0�99 1�01 0�015
γ = 2�00 2�00 0�77 1�30 0�020
γ = 2�50 2�50 0�64 1�56 0�022

γ = 3�00 3�00 0�51 1�96 0�024
γ = 3�50 3�50 0�37 2�70 0�026
γ = 4�00 4�00 0�23 4�35 0�028
γ = 4�50 4�50 0�07 14�29 0�030

This value of 0�05 for the volatility of the wealth portfolio may be somewhat low.
A more reasonable value is likely to be somewhere in between σc(t) and σM(t), so we
suggest σW (t)= 0�10. We stipulate the correlation coefficient κW�M = 0�80. Calibrations
under these assumptions are given in Table 5. As can be seen from the table, there is now
a wide range of plausible solutions.

The illustrations in this section give a fairly clear indication of how the model per-
forms when the market portfolio is not a proxy for the wealth portfolio. Many additional
examples could of course be given, and the model can be extended and moved in var-
ious directions, as indicated by the extant literature. However, the examples presented
are fairly simple, and give a reasonable illustration of how the recursive model behaves.
Compared to the conventional model the difference is dramatic.

In addressing puzzles, it is desirable to alter as few features of the original model
as possible at the time, so as to discover what made the difference. It seems like the
change from the conventional representation of additive and separable expected utility
to recursive utility is just what it takes.

8. An empirical example

In this section we present the results of the Norwegian economy. This is a relatively
small, open economy in which the central statistical agent, Statistisk Sentralbyrå, has
provided us with the data needed, which is also related to the wealth portfolio (from 1985
to 2013). Table 6 contains the data corresponding to Table 2, which was organized by
Hjetland (2015). (The acronym OBX denotes Oslo Bourse, or the Oslo Stock Exchange.)
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Table 6. Key Norwegian data for the time period 1971–2014 in terms of continuous-time com-
pounding.

Expectation Standard Dev. Covariances

Consumption growth 1�794% 1�390% cov(M�c)= 0�00078684
Return OBX 10�70% 32�025% cov(M�b)= 0�00180603
Government bills 2�141% 3�618% cov(c�b)= 1�0873E−05
Equity premium 8�559% 31�703%

Table 7. Calibrations of the recursive model to the Norwegian economy.

Parameters γ ρ EIS δ

γ = 0�50 0�50 1�004 0�997 0�013
γ = 1�50 1�50 0�996 1�004 0�013

γ = 2�00 2�00 0�992 1�008 0�013
γ = 2�50 2�50 0�989 1�011 0�013

γ = 3�00 3�00 0�985 1�015 0�014
γ = 3�50 3�50 0�981 1�019 0�014

γ = 4�00 4�00 0�977 1�023 0�014
γ = 5�00 5�00 0�969 1�032 0�014

The estimates provided by Statistisk Sentralbyrå (2014) are restricted to include capi-
tal that is measurable in units of account: (i) human capital; (ii) real capital; (iii) financial
capital (including the Sovereign Pension Fund of Norway); (iv) natural resources. For the
whole period 72–75 percent of the national wealth can be attributed to human capital.

The estimates related to the growth rate of the wealth portfolio (log terms) are as
follows: σW = 0�01849, μW = 0�0219, σW�M = 0�00142, and σW�c = 0�000127. Below only
the first and the third estimates are needed. The data on the wealth portfolio naturally
represents a challenge to collect and are associated with a fair amount of uncertainty;
the presented estimates still give a good indication of the national wealth. This gives us
the calibrations of Table 7.

As can be seen, the values of the impatience rate vary little, so we have chosen to
use the relative risk aversion parameter γ as the variable on the left-hand side of the ta-
ble. The parameter estimates are reasonable over most of the range shown. When γ = 0,
δ = 0�0128 and ρ = 1�0075. When γ = 25, δ = 0�019 and ρ = 0�77. This indicates a time
preference ρ ∈ (0�8�1�0) and an impatience rate δ ∈ (0�012�0�020). Thus relatively large
variations in γ are associated with relatively small variations in the other two parame-
ters. In conclusion, this indicates that the average Norwegian is reasonably patient, has
an EIS just above 1, and has a relative risk aversion within a reasonable range. This is in
accordance with Dagsvik, Strøm, and Jia (2006), who estimate EIS to be between 1 and
1�5 for the Norwegian population.12

12The expected utility model calibrates to δ= −0�776 and γ = ρ= 108�78 for this data set. The assumption
that the economy is closed is of course restrictive, since it imposes that consumption be equal to domestic
output. When exports and imports balance, this could still be a reasonable assumption.
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9. Extensions

The recursive models analyzed in this paper have been extended to include jump dy-
namics (Aase (2015)), which may be of particular interest in modeling stock market
movements. This approach allows for an additional parameter γ0 for risk aversion re-
lated to jump size risk, which can be different from γ. Here the stochastic maximum
principle was indispensable. A heterogeneous model in continuous time derived by the
same methods gives comparable results (Aase (2014)).

The recursive utility maximizer takes into account more than just the present when
evaluating the joint probability distribution of future states in the economy. As a result,
the typical consumer smoothes consumption more distinctly than the EU maximizer
and accordingly invests more in good times, allowing for more consumption in bad
times. This behavior goes a long way in explaining the puzzle, provided the agent prefers
early resolution of uncertainty to late.

10. Conclusions

We have addressed the well known empirical deficiencies of the conventional asset pric-
ing model in financial and macroeconomics. The continuous-time recursive model is
shown to fit data much better than the conventional EU model. Our formal approach
is to use the stochastic maximum principle and forward/backward stochastic differen-
tial equations. This method can handle state dependence, which can be important in
dealing with recursive utility.

In equilibrium the stochastic process of the wealth portfolio is determined from the
stochastic processes of utility and the growth rate of aggregate consumption. With this
in place, the model calibrates to plausible values of the parameters under reasonable
assumptions.

When the market portfolio is not a proxy for the wealth portfolio, our results are
the most interesting. For the Norwegian economy we have all the relevant data for the
period 1971–2014, and perhaps surprisingly, the recursive model fits these data really
well.

References

Aase, K. K. (2013), “Recursive utility and the equity premium puzzle: A discrete-time ap-
proach.” Working Paper 3, Department of Business, Norwegian School of Economics,
Bergen, Norway. [878]

Aase, K. K. (2014), “Heterogeneity and limited stock market participation.” Working Pa-
per 5, Department of Business, Norwegian School of Economics, Bergen, Norway. [883]

Aase, K. K. (2015), “Recursive utility and jump-diffusions.” Working Paper 6, Department
of Business, Norwegian School of Economics, Bergen, Norway. [864, 883]

Ai, H. (2010), “Information quality and long-run risk: Asset pricing implications.” Journal
of Finance, 64 (4), 1333–1367. [861]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/Ai2010&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/Ai2010&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P


884 Knut K. Aase Quantitative Economics 7 (2016)

Attanasio, O. P. (1999), “Consumption.” In Handbook of Macroeconomics, Vol. 1 (J. B. Tay-
lor and M. Woodford, eds.), 741–812, Elsevier Science B.V., Amsterdam. [861]

Avramov, D., S. Cederburg, and S. Hore (2010), “Cross-sectional asset pricing puzzles:
An equilibrium perspective.” Working paper, University of Maryland. [861]

Avramov, D. and S. Hore (2008), “Momentum, information uncertainty, and leverage—
An explanation based on recursive preferences.” Working paper, University of Maryland.
[861]

Bansal, R. and A. Yaron (2004), “Risks for the long run: A potential resolution of asset
pricing puzzles.” Journal of Finance, 109 (4), 1481–1509. [861, 878, 879]

Barro, R. J. (2006), “Rare disasters and asset markets in the twentieth century.” Quarterly
Journal of Economics, 121 (3), 867–901. [860]

Benartzi, S. and R. H. Thaler (1995), “Myopic loss aversion and the equity premium puz-
zle.” Quarterly Journal of Economics, 110 (1), 73–92. [860]

Bensoussan, A. (1983), “Lectures on stochastic control.” In Nonlinear Filtering and
Stochastic Control. Lecture Notes in Mathematics, Vol. 972, 1–62, Springer, Berlin. [867]

Bismut, J.-M. (1978), “An introductory approach to duality in optimal stochastic con-
trol.” SIAM Review, 20 (1), 62–78. [867]

Bollerslev, T., R. F. Engle, and J. Wooldridge (1988), “A capital asset pricing model with
time-varying covariances.” Journal of Political Economy, 96, 116–131. [860]

Breeden, D. (1979), “An intertemporal asset pricing model with stochastic consumption
and investment opportunities.” Journal of Financial Economics, 7, 265–296. [875]

Brown, S., W. N. Goetzmann, and S. A. Ross (1995), “Survival.” Journal of Finance, 50 (3),
853–873. [860]

Browning, M., L. P. Hansen, and J. J. Heckman (1999), “Micro data and general equilib-
rium models.” In Handbook of Macroeconomics, Vol. 1 (J. B. Taylor and M. Woodford,
eds.), 543–633, Elsevier Science B.V., Amsterdam. [861]

Cai, Y., K. L. Judd, and T. S. Lontzek (2013), “The social cost of stochastic and irreversible
climate change.” Working Paper 18704, NBER. [861]

Cai, Y., K. L. Judd, and T. S. Lontzek (2015), “The social cost of carbon with economic and
climate risks.” Working paper. Available at arXiv:1504.06909. [861]

Campbell, J. (1996), “Understanding risk and return.” Journal of Political Economy, 104,
298–345. [861]

Campbell, J. Y. and J. H. Cochrane (1999), “By force of habit: A consumption-based ex-
planation of aggregate stock market behavior.” Journal of Political Economy, 107 (2),
205–251. [860]

Campbell, J. Y. and R. J. Shiller (1988), “The dividend-price ratio and expectations of
future dividends and discount factors.” Review of Financial Studies, 1, 195–227. [861]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/BanYar2004&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/Bar2006&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/BenTha1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Ben1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/Bis1978&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/BolEngWoo1988&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/Bre1979&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/BroGoeRos1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://arxiv.org/abs/arXiv:1504.06909
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/Cam1996&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/CamCoc1999&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/CamShi1988&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/BanYar2004&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/Bar2006&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/BenTha1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Ben1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/Bis1978&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/BolEngWoo1988&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/Bre1979&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/BroGoeRos1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/Cam1996&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/CamCoc1999&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/CamCoc1999&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/CamShi1988&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P


Quantitative Economics 7 (2016) Recursive utility 885

Chew, S. and L. Epstein (1991), “Recursive utility under uncertainty.” In Equilibrium The-
ory in Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis, eds.), Studies in Eco-
nomic Theory, 352–369, Springer-Verlag, Berlin. [863]

Constantinides, G. M. (1990), “Habit formation: A resolution of the equity premium puz-
zle.” Journal of Political Economy, 98, 519–543. [860]

Constantinides, G. M., J. B. Donaldson, and R. Mehra (2001), “Junior can’t borrow:
A new perspective on the equity premium puzzle.” Quarterly Journal of Economics, 107,
269–296. [860]

Dagsvik, J. K., S. Strøm, and Z. Jia (2006), “Utility of income as a random function: Behav-
ioral characterization and empirical evidence.” Mathematical Social Sciences, 51, 23–57.
[882]

Duffie, D. (2001), Dynamic Asset Pricing Theory, third edition. Princeton University Press,
Princeton. [871]

Duffie, D. and L. Epstein (1992a), “Asset pricing with stochastic differential utility.” Re-
view of Financial Studies, 5, 411–436. [860, 861, 862, 864, 868, 874, 875]

Duffie, D. and L. Epstein (1992b), “Stochastic differential utility.” Econometrica, 60,
353–394. [860, 862, 864]

Duffie, D. and P.-L. Lions (1992), “PDE solutions of stochastic differential utility.” Journal
of Mathematical Economics, 21, 577–606. [864, 866, 867]

Duffie, D. and C. Skiadas (1994), “Continuous-time security pricing. A utility gradient
approach.” Journal of Mathematical Economics, 23, 107–131. [860, 862]

Epstein, L. and S. Zin (1989), “Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: A theoretical framework.” Econometrica, 57, 937–969.
[860, 861, 863, 878, 879]

Epstein, L. and S. Zin (1991), “Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: An empirical analysis.” Journal of Political Economy, 99,
263–286. [878]

Eraker, B. and I. Shaliastovich (2009), “An equilibrium guide to designing affine pricing
models.” Mathematical Finance, 18 (4), 519–543. [861]

Ferson, W. E. (1983), “Expectations of real interest rates and aggregate consumption:
Empirical tests.” Journal of Financial and Quantitative Analysis, 18, 477–497. [860]

Grossman, S. J., A. Melino, and R. J. Shiller (1987), “Estimating the continuous-time
consumption-based asset-pricing model.” Journal of Business & Economic Statistics, 5,
315–327. [860]

Hansen, L. P., J. C. Heaton, N. Lee, and N. Roussanov (2007), “Intertemporal substitu-
tion and risk aversion.” In Handbook of Econometrics, Vol. 6A, Chapter 61, 3967–4056,
Elsevier, Amsterdam. [861]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/Con1990&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/ConDonMeh2001&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/DagStrJia2006&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:27/DufEps1992a&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/DufEps1992b&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/DufLio1992&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/DufSki1994&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/EpsZin1989&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/EpsZin1991&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/EraSha2009&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/Fer1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/GroMelSch1987&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/Con1990&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/ConDonMeh2001&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/ConDonMeh2001&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/DagStrJia2006&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:27/DufEps1992a&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/DufEps1992b&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/DufLio1992&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/DufSki1994&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/EpsZin1989&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/EpsZin1991&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/EpsZin1991&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/EraSha2009&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/Fer1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/GroMelSch1987&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/GroMelSch1987&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P


886 Knut K. Aase Quantitative Economics 7 (2016)

Hansen, L. P., J. C. Heaton, and N. Li (2008), “Consumption strikes back? Measuring long-
run risk.” Journal of Political Economy, 116 (2), 260–302. [861]

Hansen, L. P. and J. Scheinkman (2009), “Long term risk: An operator approach.” Econo-
metrica, 77 (1), 177–234. [861]

Hansen, L. P. and K. J. Singleton (1982), “Generalized instrumental variables estimation
of nonlinear rational expectations models.” Econometrica, 50, 1269–1286. [878]

Hansen, L. P. and K. J. Singleton (1983), “Stochastic consumption, risk aversion, and the
temporal behavior of asset returns.” Journal of Political Economy, 91, 249–265. [860]

Heaton, J. and D. J. Lucas (1997), “Market frictions, saving behavior and portfolio
choice.” Macroeconomic Dynamics, 1, 76–101. [860]

Hjetland, K. J. (2015), The Equity Premium Puzzle in Norway. Master thesis, Norwegian
School of Economics. [881]

Hu, Y. and S. Peng (1995), “Solution of forward–backward stochastic differential equa-
tions.” Probability Theory and Related Fields, 103, 273–283. [866, 867]

Johnsen, T. H. and J. Donaldson (1985), “The structure of intertemporal preferences un-
der uncertainty and time consistent plans.” Econometrica, 53 (6), 1451–1458. [863]

Kocherlakota, N. R. (1990a), “On the ‘discount’ factor in growth economies.” Journal of
Monetary Economics, 25, 43–47. [876]

Kocherlakota, N. R. (1990b), “Disentangling the coefficient of relative risk aversion from
the elasticity of intertemporal substitution: An irrelevancy result.” Journal of Finance,
45, 175–190. [861]

Kocherlakota, N. R. (1996), “The equity premium: It’s still a puzzle.” Journal of Economic
Literature, 34, 42–71. [860]

Kreps, D. (1988), Notes on the Theory of Choice. Underground Classics in Economics.
Westview Press, Boulder. [863]

Kreps, D. and E. Porteus (1978), “Temporal resolution of uncertainty and dynamic choice
theory.” Econometrica, 46, 185–200. [860, 863]

Kreps, D. and E. Porteus (1979), “Dynamic choice theory and dynamic programming.”
Econometrica, 47, 91–100. [863]

Kushner, N. J. (1972), “Necessary conditions for continuous parameter stochastic opti-
mization problems.” SIAM Journal on Control and Optimization, 10, 550–565. [867]

Kydland, F. E. and E. C. Prescott (1982), “Time to build and aggregate fluctuations.”
Econometrica, 50, 1345–1370. [859]

Lucas, R. (1978), “Asset prices in an exchange economy.” Econometrica, 46, 1429–1445.
[859, 869]

McGrattan, E. R. and E. C. Prescott (2003), “Average debt and equity returns: Puzzling?”
American Economic Review, 93 (2), 392–397. [860]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/HanHeaLi2008&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/HanSch2009&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/HanSin1982&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/HanSin1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/HeaLuc1997&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/HuPen1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/JohDon1985&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/Koc1990a&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/Koc1990b&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:47/Koc1996&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/KrePor1978&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:50/KrePor1979&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/Kus1972&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/KydPre1982&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:53/Luc1978&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:54/McGPre2003&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/HanHeaLi2008&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/HanSch2009&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/HanSin1982&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/HanSin1983&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/HeaLuc1997&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/HuPen1995&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/JohDon1985&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/Koc1990a&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/Koc1990b&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/Koc1990b&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:47/Koc1996&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/KrePor1978&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:50/KrePor1979&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/Kus1972&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/KydPre1982&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:54/McGPre2003&rfe_id=urn:sici%2F1759-7323%28201611%297%3A3%3C859%3ARUUTSM%3E2.0.CO%3B2-P


Quantitative Economics 7 (2016) Recursive utility 887

Mehra, R. and E. C. Prescott (1985), “The equity premium: A puzzle.” Journal of Monetary
Economics, 22, 145–161. [859, 860, 876, 879]

Mossin, J. (1966), “Equilibrium in a capital asset market.” Econometrica, 34, 768–783.
[875, 877]

Mossin, J. (1969), “A note on uncertainty and preferences in a temporal context.” Ameri-
can Economic Review, 59 (1), 172–174. [863]

Øksendal, B. and A. Sulem (2013), “Risk minimization in financial markets modeled by
Itô–Levy processes.” Working paper, CMA, Department of Mathematics, University of
Oslo. [866, 867]

Peng, S. (1990), “A general stochastic maximum principle for optimal control problems.”
SIAM Journal on Control and Optimization, 28 (4), 966–979. [867]

Pindyck, R. S. and N. Wang (2013), “The economic and policy consequences of catastro-
phes.” American Economic Journal: Economic Policy, 5 (4), 306–339. [861]

Pontryagin, L. S. (1959), “Optimal regulation processes.” Uspehi Matematičeskih Nauk,
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