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Measuring segregation on small units:
A partial identification analysis

Xavier D’Haultfœuille
Laboratoire de Microeconometrie, CREST

Roland Rathelot
Department of Economics, University of Warwick

We consider the issue of measuring segregation in a population of small units,
considering establishments in our application. Each establishment may have a
different probability of hiring an individual from the minority group. We define
segregation indices as inequality indices on these unobserved, random probabili-
ties. Because these probabilities are measured with error by proportions, standard
estimators are inconsistent. We model this problem as a nonparametric binomial
mixture. Under this testable assumption and conditions satisfied by standard seg-
regation indices, such indices are partially identified and sharp bounds can be
easily obtained by an optimization over a low dimensional space. We also develop
bootstrap confidence intervals and a test of the binomial mixture model. Finally,
we apply our method to measure the segregation of foreigners in small French
firms.
Keywords. Segregation, small units, partial identification.

JEL classification. C13, C14, J71.

1. Introduction

Suppose that we seek to measure the extent to which a minority group, such as foreign-
ers, is concentrated in some firms only, because, for instance, some firms are reluctant to
hire them.1 Measuring the magnitude of segregation is a crucial step to understand the
underlying phenomena and design adequate policies.2 A natural way to do this would
be to compute the proportion of minority workers Xi/Ki, with Xi the number of work-
ers from the minority group and Ki the size of firm i, and then compute an inequality
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1Hereafter, we illustrate our ideas with the example of firms, in line with our application, but of course
they also apply to different units, in particular geographic areas and classrooms.

2Throughout the paper, we follow the literature and use the term “segregation” as a positive term to
describe the relative concentration of groups across units. By themselves, he indices we propose do not
allow us to conclude which segregating mechanism is at work.
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index on the sample (Xi/Ki)i=1�����n. However, even if firms all hire each of their work-
ers from the minority group with the same probability, there will be some variation on
Xi/Ki across firms just because Ki is finite. Hence, this approach will overestimate the
actual level of segregation, an issue known as the small-unit bias.

Several works propose solutions to deal with this issue. The most common way is
to provide corrected versions of the indices, in an attempt to extract the signal from
the noise. Winship (1977) has been the first to propose a corrected Duncan index. The
idea was developed by Carrington and Troske (1997), who propose an adjustment that
can be applied to other indices. Allen, Burgess, Davidson, and Windmeijer (2015) pro-
posed a correction based on bootstrap. These papers have received substantial atten-
tion, as the literature on the measurement of segregation, whether at the residential (see,
e.g., Cutler and Glaeser (1997), Cutler, Glaeser, and Vigdor (1999, 2008), Echenique and
Fryer (2007), Bayer and McMillan (2012)), school (see, e.g., Card and Rothstein (2007),
Fredriksson, Öckert, and Oosterbeek (2013)), or workplace level (see, e.g., Carrington
and Troske (1998), Hellerstein and Neumark (2008)), is large. Having only a small num-
ber of observations per unit is particularly frequent for workplace and school segrega-
tion as a large share of firms have less than 10 employees and classrooms are between
20 and 40 pupils.3 Residential segregation may also be affected when only surveys (and
not censuses) are available. In their paper about ideological segregation of the Internet,
Gentzkow and Shapiro (2011) have also to deal with small-unit bias.

In this paper, we propose a different approach: we consider that segregation should
be measured directly through an inequality index on the distribution Fp of pi, the prob-
ability that firm i has to hire someone from the minority group.4 In line with the litera-
ture (see in particular Winship (1977), Carrington and Troske (1997), Rathelot (2012)), we
impose an independence condition between hiring or, more generally, on the allocation
process. In other words, conditional on Ki and pi, Xi is supposed to follow a binomial
distribution B(Ki�pi). This binomial assumption, which we show is testable, allows us
to identify the first moments of Fp. Because most of the existing segregation indices de-
pend on the whole distribution of this probability, not only on its first moments, these
indices are only partially identified in general. Bounds can be obtained by minimizing or
maximizing these indices over distributions whose first moments match those identified
in the data. This problem is a difficult one, as the space of corresponding distributions
is of infinite dimension in general.

Another contribution of this paper is to prove that under a linearity condition satis-
fied by, among others, the Atkinson, Duncan, and Theil indices, the bounds on segrega-
tion indices for units of size K can be obtained by optimizing over discrete distributions
with only K + 1 points of support at most. We also show, using the theory of Chebyshev
systems (see, e.g., Krein and Nudel’man (1977)) that under another assumption satis-
fied, for instance, by the Theil index, bounds can be obtained without optimization by

3See also Söderström and Uusitalo (2010), Brunello and Rocco (2013), Leckie and Goldstein (2014) for
recent papers about school segregation with attempts to correct for small-unit bias.

4In Section 2, we elaborate on when one should focus on Fp rather than on the distribution of the realized
share (Xi/Ki)i=1�����n.
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simply finding roots of appropriate polynomials. We also show how bounds on subpop-
ulations can be combined to handle random unit sizes or to control for covariates at the
unit (e.g., firms’ sectors) or at the position (e.g., skilled versus unskilled positions in the
firm) level.

Our results are also related to a few papers on partial identification. Stoye (2010)
also considers the partial identification of spread parameters such as the Gini, Theil, or
Atkinson indices. Our paper complements his by considering a different type of mea-
surement problem on the variable of interest p. While Stoye (2010) considers missing or
interval-valued data, we consider a setting where only restrictions on the first moments
of p are available. Our identification result is also linked to a result of Chernozhukov,
Fernandez-Val, Hahn, and Newey (2013) in the context of nonlinear panel data models.
In such models, bounds on marginal effects can be obtained by maximizing some func-
tionals over the distribution of the fixed effect. Similarly to us, they show that one can
actually restrict to discrete distributions with a low number of support points.

We also develop estimation and inference on the segregation index using a two-step
procedure. In the first step, we consider a maximum likelihood estimator for the distri-
bution of Xi conditional on Ki. Once the unobserved pi is integrated out, Xi does not
follow a binomial distribution in general, but a multinomial one, with some inequality
constraints on the corresponding probabilities stemming from the underlying binomial
model. The estimator takes a simple closed form when the constraints are slack. When
they are not slack, we show that the estimator can be obtained through an optimization
under linear equality and inequality constraints. In the second step, the bounds are esti-
mated by optimizing over finite-dimensional distributions whose first moments match
the first-step estimator. When the constraint on the vector of moments is binding, the
lower and upper bounds coincide and no optimization is needed in this case. We show
that the estimated bounds are consistent under minimal conditions and derive their
asymptotic distribution under additional restrictions. This distribution is normal when
the true vector of moments lies in the interior of the moment space, but is not when
this vector is at the boundary of the moment space. We propose a bootstrap confidence
interval that works in both cases. Finally, we develop a bootstrap likelihood ratio test of
the binomial mixture model.

Monte Carlo simulations indicate that our method works well for finite samples, and
is not computationally too demanding. They also show that even for modest unit sizes
(K = 9, typically), the constraint on the vector of moment is binding most of the times
for sample sizes as large as 10,000, leading in most cases to an estimated identification
interval reduced to a single point. For typical unit and sample sizes, the length of the
confidence intervals mostly stems from sampling variation, not from partial identifica-
tion.

Finally, we apply our framework to measure the segregation of immigrants in small
French firms. Our method proves to work well in this context. First, we do not reject the
binomial mixture model for any plant sizes. Second, for plant sizes larger than 3, the
identification region is already informative. Third, contrary to what is suggested by the
naive Carrington and Troske (1997) or Allen et al. (2015) estimators, we cannot reject at
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standard levels that there is no relationship between plant size and the level of segrega-
tion, at least for very small firms. Finally, we show that the level of segregation we obtain
is not explained by the fact that foreigners hold more unskilled positions. This result is
consistent with those of Hellerstein and Neumark (2008) and Åslund and Skans (2010)
for American and Swedish firms, respectively.

The paper is organized as follows. Section 2 presents the binomial mixture model
and studies partial identification of parameters of interest in this model. Section 3
presents the estimation procedure for the bounds, as well as the inference results. The
behavior of the bounds and their estimators is studied through simulations in Section 4.
The application to workplace segregation is developed in Section 5. Section 6 concludes.
Appendix A gathers all the proofs. In additional appendixes, available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/501/supplement.pdf, we
extend our framework to handle random unit sizes and control for covariates, develop
the bootstrap likelihood ratio test of the binomial mixture model, and provide additional
discussion on inference. Replication files are available in a supplementary file on the
journal website, http://qeconomics.org/supp/501/code_and_data.zip.

2. Identification

2.1 The setting and the object of interest

The population is assumed to be split into two groups: a group of interest, called the mi-
nority group hereafter, and the rest of the population. Individuals are distributed across
units, which may represent geographic areas, classrooms, or, as in our application, firms.
We assume that there exists a random variable pi taking values in [0�1] that represents
the probability for any individual belonging to unit i to be a member of the population of
interest. The probabilities pi are independent and identically distributed (i.i.d.) across
units, with cumulative distribution function (cdf) Fp. Because we have in mind units of
small to moderate size, our asymptotic analysis here is in the number of units.5

The object of interest of this paper is a segregation index of the minority group, θ0,
which is a real functional of Fp. Hereafter, we denote this index by g(Fp�m01), with
m01 = E(p). This notation may seem redundant, because m01 depends on Fp, but the
reason will become clearer below. Popular indices include the Duncan D, the Theil T ,
the Atkinson Ab parameterized by b ∈ (0�1), and the co-worker index CW , which sat-
isfy, respectively,

D= 1
2
E

[∣∣∣∣ p

E(p)
− 1 −p

E(1 −p)

∣∣∣∣] =

∫
|u−m01|dFp(u)

2m01(1 −m01)
�

T = 1 − E
(
p ln(p)

)
E(p) ln

(
E(p)

) = 1 −

∫
u ln(u)dFp(u)

m01 ln(m01)
� (2.1)

5This contrasts with the framework of Allen et al. (2015), where the size of the units tends to infinity while
the number of units is fixed.

http://qeconomics.org/supp/501/supplement.pdf
http://qeconomics.org/supp/501/code_and_data.zip
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Ab = 1 −m
− b

1−b

01 (1 −m01)
−1

(∫
(1 − u)1−bub dFp(u)

) 1
1−b

�

CW =
∫
(u−m01)

2 dFp(u)/
(
m01 −m2

01
)
�

These definitions correspond to the limit in probability of the standard formulas given,
for instance, by Massey and Denton (1988). Though our main results will not include it,
let us also mention the Gini index, G = (1 − m01 − ∫

F2
p(u)du)/m01. The probability p

is not directly observed. Instead, we observe the size of the unit, K, and the number X
of minority individuals in that unit.6 Why is it interesting to learn about Fp rather than
about the distribution of the realized share X/K or the number of minority individuals
across units? While the realized shares may be more interesting for studying the conse-
quences of segregation, as we discuss in the conclusion, we see at least two reasons for
this choice.

First, let us consider the case where the available data are not exhaustive: suppose
that only a subset of individuals in a school, a neighborhood, or a firm are sampled. In
this case, FX/K , the distribution of the realized minority shares, is not observed. If one
is interested in this distribution, we show that our analysis can be applied, up to a few
changes detailed in Section 2.2. When the size of the underlying unit is very large (but
the sample size remains small), our results can be applied as such.

Second, since the beginning of the segregation literature, computing segregation in-
dices is often used to understand the features of the underlying allocation process of
individuals across units. If the question is to investigate whether the allocation process,
as a whole, is influenced by the ethnicity variable, the interesting distribution is less the
realized one (which, by construction, incorporates the noise coming from the sampling
process) than the one of the underlying probabilities. In one of the earliest paper of this
literature, Jahn, Schmid, and Schrag (1947) characterizes in this way the absence of seg-
regation: “[. . . ] if there is no segregation then members of a minority racial group [. . . ]
will be distributed randomly throughout the various census tracts of a city.”

To fix ideas, consider the following model. In a first step, a job seeker has to choose
to which firm i to apply. In a second step, firm i decides which job seekers they hire.
To make their decision, job seekers will consider the nature of the job and the wage of-
fered, as well as the distance between the job and his residence. Firms will try to assess
candidates’ productivity based on observable information; they can also be prejudiced.
The probability pi of firm i will then depend on both the probability to apply of mi-
nority and majority job seekers, and, conditional on the application, on the probability
for the firm to hire the majority or minority applicant. If at both stages ethnicity is not
relevant, that is, if minority and majority apply to similar jobs and employers make sim-
ilar hiring decisions when they face minority and majority candidates, we expect pi to
reflect the proportion of job seekers in the population, so that pi = m01 for all i and
D = T = Ab = CW = 0. However, given the small number of workers in firms, the actual

6To ease the exposition, we omit subscripts i in this section.
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proportion of minority workers may only be a poor approximation of pi, and the segre-
gation indices based on the distribution of X/K instead of p would all be positive, even
though ethnicity would play no role in the underlying process.7

From this example, it is obvious that computing segregation based on the distribu-
tion of p does not exhaust the set of interesting questions relating to the underlying pro-
cess. One of the most important caveats is that the segregation measured with respect
to ethnicity may well be driven by any characteristics correlated with ethnicity. For in-
stance, if minority and majority workers differ in their skill level, ethnic segregation may
just be due to the fact that firms vary in the level of skill that they require. This issue is not
specific to the small-unit case and also applies when units are large. In the Supplement,
we propose a solution by including covariates at the unit level (e.g., firms’ sector) or at
the position level (e.g., skilled vs unskilled positions). Another limit is that applications
and hiring decisions may depend on the current, realized share of the minority in the
firm. If so, realized shares may be of more interest than the unobserved probabilities.
But such a case would also violate the binomial mixture model we consider below. To
assess whether this issue is important in a given context, it is therefore important to run
the test of the binomial mixture model that we develop in Section C.1 of the Supplement.

2.2 The main identification result

We suppose here that the size of units K is constant; the case of random size is consid-
ered in Section B.1 of the Supplement. We posit that individuals are selected into units
independently from each other in terms of their membership in the group of interest.
In this case, X follows, conditional on p, a binomial distribution B(K�p). Because p is
random and unobserved, this model is called a binomial mixture (see, e.g., Lord (1969),
Wood (1999)). Note that the independence condition may not hold. The presence of an
immigrant in a firm may, for instance, increase the probability that another immigrant is
employed in this firm. However, in the absence of detailed data on the selection process
into units, this seems to us to be the most transparent assumption. It is also assumed by
Carrington and Troske (1997) or Rathelot (2012). It is also asymptotically equivalent to
the allocation mechanism considered by Allen et al. (2015) when the number of individ-
uals and the number of units tend to infinity at the same rate.8 Finally, as we shall see
below, this assumption is testable.

Because the distribution of X is defined by K probabilities, namely P0 = (P01� � � � �

P0K)
′, with P0j = Pr(X = j), we expect it to convey information on K parameters of Fp.

7Similar reasoning would apply to education. School and classroom segregation results from the geo-
graphic distribution of ethnic groups, individual choices, and the principals’ decisions in accepting pupils
and gathering them into classrooms.

8Allen et al. (2015) suppose that individuals from group e ∈ {0�1} (with e = 1 for the minority group, say)
are allocated independently and with probability πe

i to unit i. However, if the number of individuals n tends
to infinity together with the number of units, such that πe

i n → ρei , then the number of individuals of group
e in unit i, Xe

i , follows a Poisson distribution with parameter ρei . Because X1
i and X0

i are independent, we
finally get X1

i |X1
i +X0

i = K ∼ B(K�ρ1
i /(ρ

0
i + ρ1

i )), as here.
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Letting m0i = E(pi), we have, after some algebra,

P0j =E
[
Pr(X = j|p)] =

K∑
i=1

(
K

i

)(
i

j

)
(−1)i−jm0i�

Hence, letting m0 = (m01� � � � �m0K)
′ and letting Q be the K×K matrix of typical element(K

j

)(j
i

)
(−1)j−i, we get

P0 = Qm0� (2.2)

Moreover, Q is invertible as an upper triangular matrix with nonzero diagonal elements.
Thus, there is a one-to-one mapping between P0 and m0. This has two implications.
First, m0 is identified from the distribution of X . As a result, any parameter θ0 depending
only on m0 is point identified. This is, for instance, the case of the co-worker index CW .
Because CW = (m02 −m2

01)/(m01 −m2
01), the co-worker index is point identified as soon

as K ≥ 2.
The second implication of (2.2) is that two different distributions of p with the same

first K moments lead to the same distribution of X and are thus observationally equiv-
alent. In other words, we do not learn anything about p beyond its first K moments. As
a result, θ0 is not identified in general, and its sharp lower and upper bounds θ0 and θ0
satisfy

θ0 = inf
F∈Dm0

g(F�m01)� θ0 = sup
F∈Dm0

g(F�m01)� (2.3)

where Dm0 is the subset of D, the set of cumulative distribution functions on [0�1], for
which the vector of first K moments equals m0.

Equation (2.3) provides the sharp bounds on θ0 but is not useful in practice because
it amounts to optimizing over an infinite-dimensional set. We now show that under re-
strictions satisfied by most segregation indices, the problem can be much simplified. We
use for that purpose related results on the so-called Chebyshev–Markov moment prob-
lem (see, e.g., Krein and Nudel’man (1977), for historical notes on this problem).

As a vector of raw moments m0 cannot lie anywhere in [0�1]K . It should satisfy some
restrictions; for instance, the variance has to be positive, implying m02 ≥m2

01. Formally,

m0 ∈ M =
{(∫

xdF� � � � �

∫
xK dF

)′
�F ∈ D

}
�

We provide a complete characterization of the moment space M below, but first con-
sider the case where m0 belongs to its boundary ∂M. When m0 ∈ ∂M, there is actually a
unique distribution F∗ corresponding to m0. Moreover, F∗ is discrete with at most L+ 1
support points, where L is the integer part of (K + 1)/2 (for a proof of both points, see,
e.g., Theorem IV.4.1 in Krein and Nudel’man (1977)). Then no optimization is required
to solve (2.3), and θ0 = θ0.

Now, when m0 ∈ ◦
M, the interior of M, we can also simplify the computation of the

bounds, at the price of imposing the following assumption.
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Assumption 2.1. We have g(F�m01) = ν(
∫
h(x�m01)dF(x)�m01), where h and ν are

continuous and ν(·�m01) is monotonic.

An important feature of the assumption is that F 	→ ∫
h(x�m01)dF(x) is linear. As-

sumption 2.1 does not hold for the Gini index but is satisfied by the Duncan, the Theil,
and the Atkinson indices.9

Assumption 2.1 also holds when one cares about the realized shares, but only a sam-
ple of each unit is observed. Specifically, let X̃ denote the total number of minority
people in a random unit of size L, and suppose that the parameter of interest satis-
fies θ0 = ν(

∫
h(x�m01)dFX̃/L(x)�m01). Assume that in each unit, only K < L individ-

uals are sampled, among whom X belong to the minority. Then, using the fact that
X̃ −X|p�X ∼ B(p�L−K), we obtain, after some algebra,

θ0 = ν

(∫
h̃(p�m01)dFp(p)�m01

)
�

with

h̃(p�m01) =
K∑
j=0

L−K∑
k=0

(
K

j

)(
L−K

k

)
h
(
(j + k)/K�m01

)
pj+k(1 −p)L−(j+k)�

Hence, Assumption 2.1 also holds in this context. Note that when L → ∞, the law of
large numbers and continuity of h imply that h̃(p�m01)→ h(p�m01).

Under this condition, by a theorem of Caratheodory, the bounds on
∫
h(x�

m01)dF(x), and thus on θ0, are attained on distributions with no more than K + 1
support points (see, for instance, Theorem I.3.6 of Krein and Nudel’man (1977)).10 This
makes the optimization computationally possible. Specifically, let D	 denote the subset
of D with at most 	 points of support and let D	

m0
= D	 ∩Dm0 . Then define

θ0�	 = inf
F∈D	

m0

g(F�m01)� θ0�	 = sup
F∈D	

m0

g(F�m01)� (2.4)

Because the optimization set is smaller than in (2.3), θ0�	 and θ0�	 are only inner bounds
in general, namely θ0�	 ≥ θ0 and θ0�	 ≤ θ0. Caratheodory’s result ensures, however, that
under Assumption 2.1, these inner bounds coincide with the sharp bounds for 	=K+1.
In concrete terms, this means that for finding the sharp lower and upper bounds on the
segregation index, we can make as if there was a finite number of types of firms with the
same underlying probability.

Theorem 2.1 summarizes our discussion on the two cases.

Theorem 2.1. – If m0 ∈ ∂M, then θ0 = θ0 = g(F∗�m01), where F∗ is the cdf of a discrete
distribution with at most L+ 1 support points, where L is the integer part of (K + 1)/2.

9It suffices to choose ν(u�v) = u/[2v(1 − v)] and h(x�m01) = |x − m01| for the Duncan, ν(u�v) = 1 −
u/[v ln(v)] and h(x�m01) = x ln(x) for the Theil, and ν(u�v) = 1 − v−b/(1−b(1 − v)−1u1/(1−b) and h(x�m01) =
xb(1 − x)1−b for the Atkinson indices.

10Linearity of F 	→ ∫
h(x�m01)dF(x), together with convexity of Dm0 and continuity of ν(·�m01), also

implies that the identification region is the interval [θ0� θ0].
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– If m0 ∈ ◦
M and Assumption 2.1 holds, then θ0�K+1 = θ0 and θ0�K+1 = θ0.

Note that DK+1
m0

can be seen as a subset of [0�1]2K+1, as any F ∈ DK+1
m0

is defined
by its support points and associated probabilities. As a result, θ0�K+1 and θ0�K+1 can be
obtained as an optimization over a subset of [0�1]2K+1. It is noteworthy that the result
would also apply to the lower bound of concave functionals of F . Because g(·�m01) is
concave in the case of the Gini index, θ0�K+1 = θ0 for the Gini. However, the upper bound
cannot be obtained similarly.

The second result of Theorem 2.1 can be easily generalized to moment problems of
the kind

inf
F∈D

∫
q(x)dF(x) s.t.

∫
r(x)dF(x) = 0� (2.5)

where q(x) ∈ R while r(x) belongs to R
K . Here as well, the infimum is attained by dis-

tributions with at most K + 1 support points, which makes the optimization feasible
in practice. An example where bounds of an identification region satisfy problem (2.5)
is average marginal effects in binary choice panel data (see Lemma 7 of Chernozhukov
et al. (2013), for such a result). In that case, F represents the distribution of fixed effects
and the constraints correspond to the fact that the probabilities of all possible sequences
of choices should match those of the data.

2.3 Additional results in special cases

In the interior case, computing the bounds still requires a nonlinear optimization under
constraints that are also nonlinear in the support points. Interestingly, the Chebyshev–
Markov problem has been further simplified under additional assumptions, using the
theory of Chebyshev systems (see, e.g., Krein and Nudel’man (1977)). More precisely, we
consider the following condition.

Assumption 2.2. The function g satisfies Assumption 2.1. Moreover, h does not depend
on m01, is CK+1 on (0�1), and satisfies either h(K+1)(x) > 0 for all x ∈ (0�1) or h(K+1)(x) <

0 for all x ∈ (0�1).

Assumption 2.2 is satisfied for the Theil index. In this case, h(x) = x lnx; h is C∞ on
(0�1) and satisfies h(K+1)(x) = (−1)K+1(K − 1)!/xK for K ≥ 1. Thus h(K+1) has constant
sign for all K ≥ 1. In the case of the Atkinson index, h(x) = xb(1 − x)1−b, we checked
numerically that for all b ∈ (0�1) and K odd between 3 and 49, hK+1(x) < 0 for all x ∈
(0�1), so that Assumption 2.2 is also satisfied for the Atkinson index for all odd K ≤ 50.

Under Assumption 2.2, no numerical optimization is needed to compute the bounds
θ0 and θ0. The idea behind this is that special discrete distributions that rational-
ize the bounds, called principal representations, will also rationalize the bounds with
h(x) = xK+1.11 Then one can show that in the latter case, the problem reduces to finding

11Interestingly, principal representations have found numerous other applications in statistics; see Dette
and Studden (1997) for a survey or Dette and Schorning (2013) for a recent application to optimal design of
experiments.
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the roots of a polynomial, a task for which very efficient algorithms are available. Using
principal representations to compute the bounds is therefore much simpler and faster
than solving (2.4), a point that we confirm below in our simulations (see in particular
Table 3).

Let us now detail how the principal representations can be obtained. We do not pro-
vide proofs of our claims hereafter but refer to the monograph of Krein and Nudel’man
(1977) for more details. The principal representations are determined solely by the vec-
tor x = (x1� � � � � xL+1) of their support points, with 0 ≤ x1 < · · · < xL+1 ≤ 1.12 Then the
associated vector of probabilities y = (y1� � � � � yL+1) is uniquely defined by the L+ 1 mo-
ment constraints V (x)y ′ = (1�E(p)� � � � �E(pL))′, where V (x) is the Vandermonde ma-
trix associated with vector x:13

V (x) =
⎛⎜⎝x0

1 � � � x0
L+1

���

xL1 � � � xLL+1

⎞⎟⎠ �

The vector y is uniquely defined by V (x)y ′ = (1�m′
0)

′ because Vandermonde matrices
are nonsingular (see, e.g., Horn and Johnson (1990)).

Now let us define the support points of the principal representations. For that pur-
pose, let Am0 , Bm0 , and Cm0 denote the square matrices of size L, L, and L − 1, respec-
tively, with typical (i� j) terms equal to m0i+j−2, m0i+j−1, and m0i+j − m0i+j−1, respec-
tively, with the convention that m00 = 1. If K is even, first define a = (a0� � � � � aL−1)

′ and
a = (a0� � � � � aL−1)

′ by

a = −B−1
m0

(m0L+1� � � � �m0K)
′�

a = (Bm0 −Am0)
−1(m0L −m0L+1� � � � �m0K−1 −m0K)

′�
(2.6)

That Bm0 and Bm0 − Am0 are nonsingular is ensured by m0 ∈ ◦
M and K even (see Re-

mark III 2.1 of Krein and Nudel’man (1977)). Then consider the polynomials Pm0
and

Pm0 defined by

Pm0
(x) =

L−1∑
j=0

ajx
j + xL� Pm0(x) =

L−1∑
j=0

ajx
j + xL�

The subscript m0 underlines the dependency of these polynomials on m0, through (2.6).
The support points of the lower principal representation Fm0

are then 0 and the roots

of Pm0
. Similarly, the support points of the upper principal representation Fm0 are 1 and

the roots of Pm0 . The construction is the same in the odd case. The variables a and a =
(a0� � � � � aL−2)

′ then satisfy

a= −A−1
m0

(m0L� � � � �m0K)
′� a= C−1

m0
(m0L −m0L+1� � � � �m0K−1 −m0K)

′�

12We consider here the case where the principal representations have L + 1 support points. They may
have less support points, in which case we should modify the dimension of x accordingly.

13In the following discussion, Vandermonde matrices of different sizes will be used, depending on the
size of x. In the absence of ambiguity, we keep the notation V (x).
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The polynomials Pm0
and Pm0 are defined similarly, and the support points of Fm0

(resp.

Fm0 ) are the roots of Pm0
(resp. 0, 1 and the roots of Pm0 ).

In the case of the Atkinson index, Assumption 2.2 does not hold for K even. In this
case, however, we can still rely on Chebyshev systems by remarking that h(x) = xK+1 sat-
isfies Assumption 2.2. In other words, the lower and upper bounds on m0K+1, denoted,
respectively, by m0K+1 and m0K+1, can be obtained by the previous construction. Then
one possibility would be to compute the bounds on Ab given (m01� � � � �m0K+1), for all
possible values of m0K+1 in [m0K+1�m0K+1]. But the bounds on Ab are even simpler to
determine by properties of Chebyshev systems. Specifically, Theorem VI.2.2 of Krein and
Nudel’man (1977) ensures that the bounds on Ab are attained on either m0K+1 or m0K+1.

We summarize our discussion in the following theorem.

Theorem 2.2. Suppose that Assumption 2.2 holds. Then

{θ0� θ0} = {
g(Fm0

�m01)�g(Fm0�m01)
}
�

Moreover, if Assumption 2.2 holds for K + 1 instead of K, then

θ0 = min
{
g(Fm0

�m01)�g(Fm0
�m01)�g(Fm0�m01)�g(Fm0�m01)

}
�

θ0 = max
{
g(Fm0

�m01)�g(Fm0
�m01)�g(Fm0�m01)�g(Fm0�m01)

}
�

where m0 = (m01� � � � �m0K�m0K+1) and m0 = (m01� � � � �m0K�m0K+1).

2.4 Links with other approaches

Previous approaches in the literature have focused on the estimation of parameters that
are identified, but different from θ0 in general. The first and perhaps most natural pos-
sibility is to ignore the randomness due to the small size of the unit, and make as if
X = Kp. This amounts to estimating the parameter θN = g(FX/K�m01). However, the
following proposition shows that if g(·�m01) is monotonic with respect to the second-
order dominance, as is the case for all the inequality indices we consider, this parameter
is always greater than θ0. In other words, ignoring the randomness leads to overestimat-
ing the true level of segregation.

Proposition 2.3. Suppose that g(·�m01) is decreasing with respect to the second-order
dominance. Then θN ≥ θ0. Moreover, the inequality is strict if g(·�m01) is strictly decreas-
ing14 and the support of p is not reduced to {0�1}.

Several works have recognized this small-unit bias. The most commonly used cor-
rection method is the one introduced by Carrington and Troske (1997), based on ear-
lier works by Winship (1977) and Cortese, Falk, and Cohen (1978). The idea is to de-
fine an index that corresponds to a distance from randomness. Specifically, let θnsN =

14Here we say that g(·�m01) is strictly decreasing with respect to the second-order dominance if, when-
ever

∫
w(x)dF(x) >

∫
w(x)dG(x) for all strictly concave w, we have g(F�m01) > g(G�m01).
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g(FXns/K�m01), with Xns ∼ B(E(p)�K), denote the naive parameter that would be ob-
tained if all units had the same probability, that is, if there was no segregation. Suppose
also, without loss of generality if g is bounded, that g ranges from 0 to 1. The corrected
index θCT of Carrington and Troske (1997) is defined by

θCT = θN − θnsN
1 − θnsN

�

The index θCT is therefore an affine correction that coincides with θ0 in the two polar
cases where there is no segregation, because θCT = θN = θ0 = 0 in this case, or if seg-
regation is maximal, because then θCT = θ0 = 1. But in general θCT is not equal to θ0;
neither does it lie inside the interval [θ0� θ0], as we will illustrate in Section 4.1.

Allen et al. (2015) propose a bootstrap correction of the segregation index. Their
method aims to obtain a good approximation of the discrepancy between θN =
g(FX/K�m01) and θ0 by bootstrap, and then to correct for this discrepancy. In our
framework, this would amount to approximating this discrepancy by θ∗

N − θN , where
θ∗
N = g(FX∗/K�m01) and X∗|X ∼ B(K�X/K).15 The corrected index is then

θABW = 2θN − θ∗
N

(= θN + θN − θ∗
N

)
�

The idea behind this parameter is that if X/K was distributed as p, we would have
θN − θ0 = θ∗

N − θN and θABW = θ0. More generally, one can show that the bias of θABW

decreases more quickly than the bias of θN as K → ∞.
If focusing on θ0 rather than θABW or θCT raises some identification issues, an im-

portant advantage of our approach is that it sticks to indices whose axiomatic properties
are well understood (see, e.g., James and Taeuber (1985), Chakravarty and Silber (1994),
Hutchens (2001)). One particularly desirable property is size invariance, which is satis-
fied by all indices we consider James and Taeuber (1985). While θABW or θCT correct for
part of the small-unit bias, the resulting index will in general depend on the unit size
and violate the size invariance principle.

Rathelot (2012) follows a closer approach to ours by considering the same parameter
θ0. But contrary to our approach, he imposes the distribution of p to be a mixture of beta
distributions. Combined with the binomial assumption on X , the model becomes fully
parametric and can be estimated by maximum likelihood. The segregation indices can
be easily deduced as a function of the parameters of the beta mixture. Note that such a
model is overidentified in general. For instance, a mixture of two beta distributions has
five parameters, so that most vectors of first K moments will not be compatible with this
model when K ≥ 6. In such cases, the segregation index obtained may not lie inside the
interval [θ0� θ0]. Importantly, this corrected index will only converge to θ0 as K → ∞ if
one lets the number of components of the mixture tend to infinity with K.

15In their framework, θ∗
N is not exactly defined this way, because the two allocation models differ. The

two are however expected to be close when the sample size is large, for the reasons detailed in footnote 6.
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3. Estimation and inference

3.1 Estimation of the bounds

In this section, we suppose we have in hand an i.i.d. sample (X1� � � � �Xn) of n units.
Unit sizes are still constant equal to K. Following the identification part, we estimate the
identified set by estimating its sharp bounds. We first estimate P0 and thus m0 =Q−1P0.
We then use Theorems 2.1 or 2.2 to yield the estimates of the bounds.

First, we estimate P0 by constrained maximum likelihood, where the constraints
come from the binomial mixture model. By what precedes, the model is equivalent to
P0 ∈ P = {Qm : m ∈ M}. We then let

P̂ = arg max
P∈P

K∑
k=1

Nk ln(Pk)+N0 ln

(
1 −

K∑
k=1

Pk

)
� (3.1)

where Nk = ∑n
i=1 1{Xi = k}. This optimization may look complicated because M, and

thus P , is defined in a complicated way. We can use, however, a simpler characterization
of M to simplify the optimization greatly, as Lemma 3.1 below shows. Hereafter, we let
SL+1 = {(x1� � � � � xL+1) : 0 ≤ x1 < · · · < xL+1 ≤ 1} and TL+1 = {(y1� � � � � yL+1) ∈ [0�1]L+1 :∑L+1

k=1 yk = 1}.

Lemma 3.1. The maximum likelihood estimator P̂ = (P̂1� � � � � P̂K)
′ satisfies

P̂k =
(
K

k

)L+1∑
j=1

ŷj x̂
k
j (1 − x̂j)

K−k� k ∈ {1� � � � �K}�

where x̂= (x̂1� � � � � x̂L+1) and ŷ = (̂y1� � � � � ŷL+1) are given by

(x̂� ŷ) = arg max
(x�y)∈SL+1×TL+1

K∑
k=0

Nk ln

(
L+1∑
j=1

yjx
k
j (1 − xj)

K−k

)
�

Following (2.2), we then estimate m0 by m̂ = Q−1P̂ . Note that by construction,
m̂ ∈M.

Now let us turn to the segregation index. We rely on Theorems 2.1 and 2.2 to es-
timate its bounds. We first check whether m̂ ∈ ∂M or not, because if this is the case,
the bounds are equal and no optimization is required. A simple way to test this is to
consider whether the unconstrained maximum likelihood estimator P̃ = (P̃1� � � � � P̃K),
which satisfies P̃k = Nk/n, does or does not belong to P . We propose a simple proce-
dure for testing P̃ /∈ P in Section D.1 of the Supplement. Our Monte Carlo simulations
show that m̂ ∈ ∂M occurs with probability close to 1 when K ≥ 10, even with sample
sizes as large as 10,000 (for similar evidence, see Wood (1999)). In this case, we simply
estimate the bounds by

θ̂ = θ̂ = g(F̂� m̂1)� (3.2)

where F̂ is the cdf corresponding to (x̂� ŷ).
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If P̃ ∈ P , m̂ ∈ ◦
M with probability approaching 1.16 Then Dm̂ is not reduced to a sin-

gle distribution, and if Assumption 2.2 is not satisfied, optimization is required to ob-
tain the estimated bounds. We then use estimators of θ0�K+1 and θ0�K+1. Given a vector
of moments m = (m1� � � � �mK), any F ∈ DK+1

m is defined by its support points x ∈ SK+1
and the associated probabilities y ∈ TK+1. Moreover, the moment constraints are written
V (x)y = (1�m′)′. Thus, the vector of probabilities y satisfies y ′ = V (x)−1(1�m′)′, and the
constraints are equivalent to V (x)−1(1�m′)′ ≥ 0, where the inequalities are understood
componentwise. Because F ∈ DK+1

m depends on x and m only, we may rewrite g(F�m1)

as a function of x and m only. We denote this function by q(x�m). The bounds on the
true parameter θ0 = θ(m) when the vector of moments is m0 =m satisfy

θ(m) = min
x∈SK+1:V (x)−1(1�m′)′≥0

q(x�m)� (3.3)

θ(m) = max
x∈SK+1:V (x)−1(1�m′)′≥0

q(x�m)� (3.4)

Our estimators of θ0 and θ0 are, respectively, θ̂ = θ(m̂) and θ̂ = θ(m̂).
Finally, when Assumption 2.2 holds, we simply estimate the principal representa-

tions Fm0
and Fm0 by Fm̂ and Fm̂, and let

θ̂ = min
{
g(Fm̂� m̂1)�g(Fm̂� m̂1)

}
� θ̂ = max

{
g(Fm̂� m̂1)�g(Fm̂� m̂1)

}
� (3.5)

3.2 Inference on the segregation index and its identified set

We first show that the estimators of the bounds are root-n consistent and characterize
their asymptotic distribution. We consider hereafter both the cases where m0 ∈ ◦

M and
m0 ∈ ∂M, since the corresponding asymptotic distributions differ. We obtain the result
under the following two conditions.

Assumption 3.1. The distribution of p is not a Bernoulli distribution.

Assumption 3.2. The functions θ and θ are directionally differentiable at m0 in the fol-
lowing sense: θ′(m�h) = limt↓0(θ(m+ tht)−θ(m))/t exists for all ht ∈ R

K such that ht → h

and m+ tht ∈ M for t small enough. Moreover, θ′(m� ·) is continuous.

The first assumption excludes total segregation, where we would either have units
with only people from the minority group or only people from the majority. We rule
out such situations for inference, because estimators are then degenerated, namely they
coincide with the true values. Assumption 3.2 is more substantial, but can be proved to
hold in two cases of interest (see Section D.2 of the Supplement).

Before giving the asymptotic distribution of the estimated bounds, we introduce ad-
ditional notation. For any vector P , let us define Σ(P) = [diag(P) − PP ′], diag(P) be-
ing the diagonal matrix with diagonal vector equal to P . We let CP0 = {λ(P − P0)�P ∈

16The only exception is when P̃ ∈ ∂P , the boundary of P . This occurs, however, with probability tending
to 0 as n→ ∞.
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P�λ > 0} and let πCP0
be the projection onto the closure of CP0 with respect to the norm

‖x‖ = x′(diag(P0)
−1 +M1/P00)x, where M1 is the K ×K matrix of 1s.

Theorem 3.1. Suppose that Assumption 2.1 holds. Then (̂θ� θ̂)
P−→ (θ�θ). If Assumptions

3.1 and 3.2 also hold, then

√
n(̂θ− θ0� θ̂− θ0)

′ d−→ (
θ′(m0�Q

−1πCP0
(Z)

)
� θ

′(
m0�Q

−1πCP0
(Z)

))′
�

where Z ∼ N (0�Σ(P0)).

Importantly, our results apply whether or not m0 lies in the interior of M. If m0 ∈ ◦
M

and θ and θ are differentiable rather than simply directionally differentiable, the esti-
mated bounds are asymptotically normal, because πCP0

(Z) = Z . But if m0 ∈ ∂M, the

asymptotic distribution of the estimated bounds is a function of the projection of a nor-
mal variable onto a convex cone.

Because the estimated bounds are not asymptotically normal when m0 ∈ ∂M, the
confidence interval proposed by Imbens and Manski (2004) for partially identified pa-
rameters does not apply here. Moreover, standard bootstrap typically fails here because
of the lack of continuity in m0 of the asymptotic distribution (see Andrews (2000), for
a similar counterexample). To build valid confidence intervals, we therefore propose a

modified bootstrap procedure. We project m̂ onto ∂M whenever m̂ ∈ ◦
M but is close to

the boundary. Let dn = √
n(̂θ − θ̂)/kn and In = 1{dn ≤ 1}, with kn → ∞,

√
n/kn → ∞.

Observe that when m0 ∈ ∂M, θ = θ so that dn
P−→ 0 and In

P−→ 1. When m0 ∈ ◦
M, on the

other hand, θ < θ in general because there is an infinity of distributions rationalizing m0.

Thus dn
P−→ ∞ and In

P−→ 0. Then we define

m̂b = π∂M(m̂)In + m̂(1 − In)�

where π∂M denotes the projection onto ∂M.17 The bootstrap distribution of X that we
consider hereafter is given by the vector of probabilities P̂b =Qm̂b.

We now define the bootstrap confidence intervals. We have to take into account the
fact that the lower and upper bounds collapse when m0 ∈ ∂M, whereas they are in gen-

eral distinct when m0 ∈ ◦
M. For any statistic T , let T ∗ denote the corresponding boot-

strap statistic. For example, if T = √
n(̂θ − θ), we let T ∗ = √

n(̂θ
∗ − θ̂), where θ̂

∗
is the

bootstrap estimator of θ. We let cα(T ∗) denote the αth quantile of the distribution of T ∗
conditional on m̂b. We first define a confidence interval for the interior case by

CIinterior
1−α =

[̂
θ− c1−α

(
T ∗)

√
n

� θ̂− cα
(
T ∗)

√
n

]
�

17Because ∂M is not convex, this projection may not be well defined. This is not an issue here. In this
case, π∂M(m̂) denotes any element in the set arg minm∈∂M ‖m̂−m‖.
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where T is defined as T . The reason why we use cα(T
∗) and c1−α(T

∗) instead of cα/2(T
∗)

and c1−α/2(T
∗) is that when m0 ∈ ◦

M, θ0 < θ0 in general and only one of the two bounds
matters in the asymptotic coverage.

This is not the case however when m0 ∈ ∂M. Because θ0 = θ0 = θ0, the asymptotic
coverage of CIinterior

1−α is in general smaller than 1 −α. We consider instead the symmetric
confidence interval

CIboundary
1−α =

[
θ̂− c1−α

(
T ∗
s

)
√
n

� θ̂+ c1−α

(
T ∗
s

)
√
n

]
�

where θ̂ = (̂θ+ θ̂)/2 and Ts = √
n|θ̂− (θ0 + θ0)/2|. When m0 ∈ ∂M, θ̂ is a consistent esti-

mator of θ0 = (θ0 + θ0)/2 and we show in the proof of Theorem 3.2 below that the boot-

strap statistic T ∗
s has the same distribution as Ts . Thus, CIboundary

1−α has an asymptotic
coverage rate of 1 − α.

Finally, to obtain a confidence interval with a correct asymptotic coverage in all sit-
uations, we let

CI1
1−α = InCIboundary

1−α + (1 − In)CIinterior
1−α �

The idea is that we will eventually pick CIboundary
1−α when the true parameter is at the

boundary, because In
P−→ 1 in this case, and pick CIinterior

1−α otherwise. The validity of this
confidence interval, established in Theorem 3.2 below, relies on the following condition.

Assumption 3.3. The functions θ(·) and θ(·) are differentiable at m0 (and we let θ′(m0)

and θ
′
(m0) denote their gradient). Moreover, one of the following statements is true:

– m0 ∈ ◦
M, θ0 < θ0 and θ

′
(m0) �= 0, θ′(m0) �= 0.

– m0 ∈ ∂M, with Cm0 a half space and the cdf of the asymptotic distribution of Ts is
continuous at its 1 − α quantile.

Assumption 3.3 is rather mild. Lemma D.2 shows that the bounds are differentiable

almost everywhere in several cases. When m0 ∈ ◦
M, the set of distributions Dm0 is infinite,

so that θ0 < θ0 holds in general. The important restriction, when m0 ∈ ∂M, is that M is
smooth at m0, so that Cm0 is a half space. This holds everywhere except at (0�0) and (1�1)
when K = 2, because in this case ∂M = {(m01�m01)�m01 ∈ [0�1]} ∪ {(m01�m

2
01)�m01 ∈

[0�1]}. We conjecture that it also holds almost everywhere when K ≥ 3, though the anal-
ysis of the geometry of ∂M is beyond the scope of this paper.

Theorem 3.2. Suppose that Assumptions 2.1, 3.1, 3.2, and 3.3 hold. Then, with proba-
bility 1,

inf
θ0∈[θ0�θ0]

lim
n→∞ Pr

(
θ0 ∈ CI1

1−α

) = 1 − α�
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Theorem 3.2 shows that bootstrap confidence intervals are asymptotically valid in
general. The conditions for obtaining this result are the differentiability of the bounds
and the fact when m0 ∈ ∂M, Cm0 is a half space. Theoretically speaking, it is possible
to drop these conditions and still make valid inference by using subsampling as, for in-
stance, Chernozhukov, Hong, and Tamer (2007) or Romano and Shaikh (2010). However,
Monte Carlo simulations (not reported here) seem to indicate that, in our context, sub-
sampling does not provide reliable results unless the sample size n is very large.

The confidence interval CI1
1−α is asymptotically valid whether m0 lies in the interior

or at the boundary of M. It is unclear, on the other hand, whether it is uniformly valid.
The confidence interval considered by Imbens and Manski (2004) in a related setting is
uniformly valid, but this is because they assume a uniform convergence in distribution
of the estimated bounds. Such a uniform convergence does not hold here, as asymptotic
normality fails to hold at the boundary. That inference on a partially identified param-
eter may not be uniform is underlined by Andrews and Han (2009), in a related con-
text where the endpoints of the identification interval are estimated. We consider in the
Supplement (see Section D.3) another confidence interval that satisfies the uniformity
requirement but is generally conservative.

4. Simulations

4.1 Identified bounds and other approaches

Figure 1 presents a comparison, for the Theil and Duncan index, between the sharp
bounds, the naive approach, and the corrections proposed by Carrington and Troske
(1997), Allen et al. (2015), and Rathelot (2012). We consider −1(p) ∼ N (μ�σ2), with
μ � −3�12 and σ2 � 1�56 chosen so as to be close to the first two estimated moments of
p in our application in Section 5. The sharp bounds are obtained by solving (2.4), the
naive parameter, and the Carrington and Troske parameter by using their theoretical ex-
pressions, the Allen et al. corrected index by simulations on a very large sample (n= 106),
and the corrected index of Rathelot (2012) by maximizing the theoretical log-likelihood
of the model.

First, the length of the identification region shrinks quickly between K = 2 and K = 6
for both indices, and less so thereafter. As expected, the naive approach is well above the
upper bound of the identification region. For both indices, the corrected indices pro-
posed by Allen et al. (2015) or Carrington and Troske (1997) always lie outside of the
identification interval: the former is always above and the latter always below (except for
the Theil index with K = 2). The correction proposed by Carrington and Troske (1997)
performs better with the Theil than with the Duncan index. The parametric method of
Rathelot (2012) lies within the bound for all K ≤ 10 with this DGP, but this need not be
the case in general. Table 1 presents a comparison of the different approaches when the
unit size is random and uniform on {2� � � � �10}. As discussed in Section B.2 of the Sup-
plement, we can consider an “unweighted” index, focused on the unit (Equation (B.1)),
or a “weighted” index, focused on the worker (Equation (B.2)). With our DGP for which
K ⊥⊥ p, the two indices coincide, but they lead to different identification sets because the
identification interval shrinks with K and larger values of K are weighted more with the
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Figure 1. Comparison between the sharp bounds, the naive approach, and previous correc-
tions for the Theil and Duncan indices. Note: We have −1(p) ∼ N (−3�12�1�56). With this data
generating process (DGP), the Theil index is T � 0�562 and the Duncan index is D� 0�775.

individual-weighted index. Consistent with the results obtained with a fixed unit size,
the naive index as well as the corrected indices by Carrington and Troske or Allen et al.
do not lie in the identification set. Conversely, the corrected index by Rathelot does, in
this case.

4.2 Monte Carlo simulations

We now assess the performance of the estimators and confidence intervals considered
in this paper so as to solve small-unit biases. We first study whether the constraint that
P0 belongs to P is binding in practice when estimating P0. The data generating process is

Table 1. Comparison between the sharp bounds,
the naive approach and previous corrections, with a
random unit size.

Method Theil Index Duncan Index

Sharp bounds
Unweighted [0�48�0�60] [0�69�0�83]
Weighted [0�51�0�59] [0�72�0�81]

Naive 0�74 0�92
Carrington–Troske 0�45 0�55
Allen et al. 0�68 0�89
Rathelot 0�57 0�78

Note: We have −1(p) ∼ N (−3�12�1�56). With this DGP, the Theil
index is T � 0�562 and the Duncan index is D � 0�775.
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Figure 2. Probability that P̂ is constrained (Pr(P̃ /∈ P)). Note: Each dot corresponds to 1000
simulations with the DGP −1(p) ∼ N (−3�12�1�56).

defined as previously (−1(p) ∼ N (−3�12�1�56)), and we estimate Pr(P̃ /∈ P) for different
sample and unit sizes. Figure 2 presents the results for n ∈ {50;200;1000;10,000} and K ∈
{2� � � � �12}.

For any n, the probability grows quite quickly to 1 with K. This reflects the afore-
mentioned fact that the set P shrinks very quickly with K. For instance, with 200 units,
the estimated probability (with 1000 simulations) is 1 as soon as K is 7. Obviously, the
probability is systematically lower when n is larger because the estimation precision
increases, but for K ≥ 10, this probability remains very close to 1 for samples as large
as 10,000. This implies that for K ≥ 10, we should expect to generally get a point esti-
mate for the estimated identification region of θ0, even though the true identification
region is not reduced to a singleton. Hence, the length of the true identification interval
for such values of K and n is far below the length due to estimation. Our ignorance on
the true parameter mostly stems from finite sampling rather than partial identification
issues.

Table 2 displays the properties of the estimated bounds and the confidence intervals
CI1

0�95 for different sample sizes. We consider here both the Theil and Duncan indices,
and the data generating process is defined as before by −1(p) ∼ N (−3�12�1�56). For
this distribution, T � 0�562 and D � 0�775. The function CR(θ0) denotes the coverage
rate of the true parameter by the confidence interval. We consider designs with fixed K

in {3�6�9�12} as well as a random design where K is drawn in this same set with equal
probability. Finally, to build confidence intervals, we use, following the law of iterated

logarithm, kn = (2 ln ln(n)/[nV̂ ∗(̂θ − θ̂)])1/21{̂θ > θ̂}, where V̂ ∗(̂θ − θ̂) denotes the boot-

strap estimator of V (̂θ− θ̂).
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Table 2. Performance of [̂θ� θ̂] and properties of CI1
0�95.

Theil Index Duncan Index

K n [θ0� θ0] [E(̂θ)
(σ(̂θ))

� E(̂θ)
(σ(̂θ))

] CR(θ0) [θ0� θ0] [E(̂θ)
(σ(̂θ))

� E(̂θ)
(σ(̂θ))

] CR(θ0)

3 100 [0�426�0�644] [0�494
(0�171)

� 0�593
(0�170)

] 0.928 [0�627�0�890] [0�701
(0�213)

� 0�818
(0�184)

] 0�960

1000 [0�434
(0�064)

� 0�639
(0�043)

] 0.998 [0�635
(0�088)

� 0�881
(0�041)

] 0�975

10,000 [0�426
(0�019)

� 0�643
(0�013)

] 1.000 [0�626
(0�027)

� 0�886
(0�030)

] 0�988

6 100 [0�516�0�588] [0�536
(0�112)

� 0�537
(0�112)

] 0.958 [0�7210�804] [0�770
(0�107)

� 0�770
(0�107)

] 0�970

1000 [0�541
(0�053)

� 0�552
(0�052)

] 0.975 [0�774
(0�056)

� 0�787
(0�046)

] 0�950

10,000 [0�524
(0�027)

� 0�579
(0�027)

] 0.930 [0�738
(0�035)

� 0�801
(0�020)

] 0�978

9 100 [0�540�0�575] [0�544
(0�092)

� 0�544
(0�092)

] 0.955 [0�733�0�798] [0�772
(0�080)

� 0�772
(0�080)

] 0�963

1000 [0�552
(0�037)

� 0�552
(0�037)

] 0.958 [0�781
(0�034)

� 0�781
(0�034)

] 0�952

10,000 [0�555
(0�023)

� 0�557
(0�023)

] 0.998 [0�779
(0�024)

� 0�782
(0�023)

] 0�985

12 100 [0�549�0�569] [0�538
(0�092)

� 0�538
(0�092)

] 0.920 [0�753�0�788] [0�769
(0�075)

� 0�769
(0�075)

] 0�960

1000 [0�557
(0�032)

� 0�557
(0�032)

] 0.955 [0�780
(0�028)

� 0�780
(0�028)

] 0�975

10,000 [0�557
(0�018)

� 0�557
(0�018)

] 0.990 [0�775
(0�024)

� 0�775
(0�024)

] 1�000

Random u.
100 [0�508�0�594] [0�547

(0�062)
� 0�563
(0�060)

] 0.942 [0�708�0�820] [0�758
(0�063)

� 0�790
(0�059)

] 0�884

1000 [0�526
(0�026)

� 0�577
(0�022)

] 0.958 [0�742
(0�028)

� 0�808
(0�023)

] 0�998

10,000 [0�519
(0�011)

� 0�583
(0�011)

] 1.000 [0�730
(0�013)

� 0�811
(0�010)

] 1�000

Random w.
100 [0�528�0�582] [0�546

(0�052)
� 0�557
(0�052)

] 0.947 [0�728�0�804] [0�768
(0�044)

� 0�781
(0�042)

] 0�938

1000 [0�542
(0�022)

� 0�565
(0�021)

] 0.894 [0�764
(0�021)

� 0�792
(0�019)

] 0�924

10,000 [0�537
(0�012)

� 0�569
(0�012)

] 0.944 [0�754
(0�013)

� 0�793
(0�012)

] 0�961

Note: For each (n�K), simulations are based on 400 draws of samples. The distribution of p is −1(p) ∼ N (−3�12�1�56),

leading to T � 0�562 and D � 0�775; CR(θ0) = Pr(θ0 ∈ CI1
0�95). “Random” corresponds to a random K, drawn with equal proba-

bility in {3�6�9�12}. “u.” and “w.” refer, respectively, to the unweighted and weighted indices defined by (B.1) and (B.2).

Overall, the estimator of the identification interval is quite precise even for small
samples. In our setting, we only observe a significant bias on θ0, which however does
not lead to a low coverage of the confidence intervals. We also see that even for n =
10,000, standard errors are far larger than the length of the identification region for K ≥ 9.
This means that for K ≥ 9, uncertainty mostly stems from estimation, not from partial
identification. The bootstrap confidence interval CI1

0�95 is also usually conservative, with
a true coverage rate lying mostly between 0�92 and 1. This is expected, since with our
DGP, θ0 /∈ {θ0� θ0}, so that the asymptotic coverage is 1. In the Supplement, we obtain
similar results for other DGPs and show that the bootstrap test for the binomial mixture
model performs well in practice.
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Table 3. Elapsed CPU time for the estimation of the bounds and confidence intervals (in 100th
of seconds).

K

3 6 9 12 20

Constrained ML, n= 100 15�8 19�9 22�7 37�3 49�9
Theil bounds, Chebyshev, n= ∞ 0�13 0�08 0�08 0�08 0�13
Theil bounds, regular, n= ∞ 12�6 10�5 37�6 78�5 6940
Duncan bounds, regular, n= ∞ 9�2 25�0 62�2 223�6 6055
CI, n = 100 (in seconds) 67�2 120�9 126�7 222�5 376�3

Note: The times reported in the table are average elapsed CPU times over 100 simulations. The DGP is the same as in

Table 2; ML denotes maximum likelihood. The first row corresponds to the time required to obtain P̂ when m̃ /∈ M. In the
second to fourth rows, we let n = ∞ in the sense that P̃ = P0 . The second row displays the CPU time needed to compute the
Theil bounds by the Chebyshev method, following Equation (3.5). The third and fourth rows display the CPU time needed
to compute the Theil and Duncan bounds following Equations (3.3) and (3.4). The last row displays the CPU time needed to
compute the confidence intervals of both the Theil and Duncan indices, with 200 bootstrap iterations.

Finally, we provide some evidence regarding the computational cost of our method.
Two cases should be distinguished. When P̃ ∈ P , which can be tested simply as ex-
plained in Section D.1 of the Supplement, the maximum likelihood estimator is trivial
to compute since P̂ = P̃ = (N1/n� � � � �NK/n)

′. However, the bounds can be costly to ob-
tain in this case. Table 3 shows that computing the bounds based on Equations (3.3)
and (3.4) is actually quick for small K, but becomes demanding for high K. On the other
hand, it is almost immediate for any K when we can rely on Equation (3.5), as is the case
with the Theil index. Conversely, when P̃ /∈ P , the bounds can be computed at almost no
cost in view of (3.2), but the computation of P̂ , based on Lemma 3.1, becomes the bottle-
neck in terms of computer processing units (CPU). As discussed above, this case prevails
when K ≥ 10 for typical sample sizes. The first row of Table 3 shows that the correspond-
ing time increases with K, which makes sense because the dimension over which we
optimize increases, but remains very manageable even with K = 20. Finally, computing
bootstrap confidence intervals is, as expected, much more expensive because we have
to go through these steps many times (200 in our simulations).

5. An application to workplace segregation by nationality

across French establishments

Understanding why and how employers make their hiring decisions and employees ap-
ply for jobs requires the ability to measure workplace segregation. Early works focused
on gender or race segregation across occupations or industries; see, for example, Fields
and Wolff (1991). Groshen (1991) is the first contribution to use the information avail-
able at the scale of establishments. Carrington and Troske (1995) use the 1983 Current
Population Survey (CPS) to compute Duncan indices for gender segregation across es-
tablishments, with a focus on small firms. Another strand of literature, which aims at
linking skill dispersion with wage distribution, requires the computation of segregation
indices. Kremer and Maskin (1996) and Kramarz, Lollivier, and Pelé (1996) analyze, in
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the U.S. and the French cases, how skill dispersion, measured by segregation indices, ac-
counts for changes in the wage structure. Iranzo, Schivardi, and Tosetti (2008) investigate
a similar issue in the case of Italy and find that most overall skill dispersion is within, not
between, firms. However, few of these works acknowledge the issue of small-unit bias
and attempt to correct the indices.18

 Carrington and Troske (1997) present new results
on black/white segregation, introducing their method to correct for small-unit bias.
Hellerstein and Neumark (2008) use the 1990 Decennial Employer–Employee Database
to measure workplace segregation by education, language, and ethnicity. They compute
adjusted indices using Carrington and Troske’s method. Åslund and Skans (2010) and
Glitz (2014) also use Carrington and Troske’s method to attempt to compute workplace
segregation in Sweden and in Germany.

In this section, we aim to compute the Theil and Duncan indices to measure the
segregation between French citizens and foreigners across French businesses. Do all es-
tablishments have the same share of foreigners or, on the contrary, do some firms spe-
cialize in hiring foreign workers while others avoid them? As a large share of workers are
employed in small establishments, not taking into account the small-unit bias would
certainly lead to upward-biased estimates of segregation levels. We use the method in-
troduced in this paper to compute either point or set estimates of the Theil and Dun-
can indices. As a matter of comparison, we also display the naive estimate and the
estimates proposed by Carrington and Troske (1997), Allen et al. (2015), and Rathelot
(2012).

We rely on the 2007 Déclarations Annuelles de Données Sociales (DADS), the French
matched employer–employee data base, which is exhaustive on the private sector (1�77
million establishments). In what follows, we restrict the sample to the 1�04 million estab-
lishments that have between 2 and 25 employees. We define the minority group as indi-
viduals born abroad and with the nationality of a country outside of Europe. In the total
population, 3�7% of workers are considered as minority workers. We distinguish two cat-
egories of jobs: the least-skilled category gathers white-collar unskilled jobs (employés)
and blue-collar jobs (ouvriers); the other occupations form the skilled category. Forty-
one percent of jobs belong to the unskilled category. While 40�7% of majority workers
work in unskilled jobs, this is the case for 57�4% of minority workers. Regressing the net
wages of each worker on his and the job’s characteristics, we check the economic rele-
vance of our categories. We find that, conditional on sex, age, and the number of days
in the year, workers in unskilled jobs earn 29% less than those in skilled jobs, minority
workers earn 8% less than majority workers, and being a minority worker in an unskilled
job is associated with an additional penalty of 1�6%.

Before presenting our results, we first check that the binomial mixture model is not
rejected in these data. For that purpose, we use the test that we consider in Section C.1
of the Supplement. For K = 2� � � � �8, P̃ = P̂ , so the test is automatically accepted. For
K ≥ 9, P̃ �= P̂ , but this may be expected even if P0 ∈ P given the results of our Monte
Carlo simulations (see Figure 2). Performing the bootstrap test detailed above for K ≥ 8,
we do not reject the binomial mixture model at the 10% level for any value of K (see
Table 4). We see this as evidence that the binomial mixture model is reasonable here.

18Kremer and Maskin (1996) and Kramarz, Lollivier, and Pelé (1996) interpret their segregation measure
as an R-squared and suggest that using adjusted R-squared might be a way to deal with small-unit issues.
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Table 4. Test of the binomial mixture model.

Unit Size p-Value of the Unit Size p-Value of the
K Bootstrap Test K Bootstrap Test

≤8 1 17 0�54
9 0�80 18 0�34

10 0�56 19 0�11
11 0�98 20 0�61
12 0�80 21 0�19
13 0�72 22 0�07
14 0�77 23 0�73
15 0�99 24 0�17
16 0�49 25 0�37

Note: For K ≤ 8, P̃ = P̂ , so that LRn = 0 and p-value = 1.

Figure 3 displays the estimates of workplace segregation for different firm sizes, us-
ing the Theil and Duncan indices across French establishments. In line with Figure 1,
we observe that the sharp bounds become very informative for K ≥ 5. The estimated
identification region reduces to a singleton for K ≥ 9, as expected since for these values,
P̃ �= P̂ . Both for the Theil and the Duncan indices, the naive estimator is well above the
upper bound of the 95% confidence interval. Carrington and Troske’s correction works
quite well for the Theil index, remaining inside the 95% confidence interval or close to
its lower bound. However, in line with Figure 1, it strongly underestimates the Duncan
index, the difference with our point estimate lying between 0�10 and 0�15 for K ≥ 9. We
observe a reversed pattern for the Allen et al. estimator. Their corrected Theil index re-
mains outside the 95% confidence intervals for all unit sizes, while their corrected Dun-
can index is close to our point estimate and mostly within the confidence interval for

Figure 3. Theil and Duncan indices, by firm size.
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Table 5. Equality tests of segregation indices
across unit sizes.

K Theil Index Duncan Index

K ≤ 25 <2�10−3 <2�10−3

K ≤ 9 0�45 0�25
10 ≤K ≤ 25 <2�10−3 0�11

Note: We use the subsampling test detailed in Section C.2 of
the Supplement, with 500 subsamples.

K ≥ 14. The method proposed by Rathelot (2012) seems to perform well here for both
indices, suggesting that the mixture of two beta distributions is a reasonable approxi-
mation for the distribution of p.

A striking difference between the naive and Allen et al. estimates, on the one hand,
and the identification region we estimate, on the other hand, is that segregation seems
to be strongly negatively correlated with K in the first case and much less so in the sec-
ond case. The negative correlation between the index and the unit size is not surprising
for the naive and the Allen et al. estimates, as the magnitude of their bias decreases with
K (proportional to 1/K for the naive estimator and 1/K3/2 or 1/K2 for the Allen et al.
estimator). But there may still exist a true negative dependence of the segregation level
on firm sizes. For instance, small firms may rely more heavily on social networks in their
hiring process, resulting in a higher segregation between firms (people from the minor-
ity tending to hire other people from the same minority, and conversely).19

To test for this correlation, we consider the null hypothesis that K 	→ θ0(K) is con-
stant over K, where θ0(K) is the true parameter corresponding to firms of size K and K
is a subset of firm sizes. Because of partial identification, developing such a test is not
trivial; see Section C.2 of the Supplement for details. We consider three subsets K here:
the whole range {2� � � � �25}, {2� � � � �9}, which corresponds to the definition of very small
firms in France, and {10� � � � �25}. The results are displayed in Table 5. For both the Dun-
can and Theil indices, we do not reject the null hypothesis that K 	→ θ0(K) is constant on
very small firms. We also accept at the 10% level the hypothesis of a constant Duncan
index on {10� � � � �25}. We perform the same tests with the alternative methods (naive,
Carrington and Troske’s correction, and Allen et al.’s correction), using the asymptotic
normality of the corresponding estimators and estimating the asymptotic variance with
bootstrap. For the three methods, three possible subsets K, and two indices, we always
reject the null hypothesis at the 1% level. Contrary to our results, these approaches do
not satisfy the size invariance axiom mentioned above, which might cause the apparent
dependence of segregation in K.

Finally, we compute the bounds on the segregation indices for the whole set of
firms. Results are displayed in Table 6. When considering the worker level and thus

19Pistaferri (1999) shows that in Italy, smaller firms more often tend to use informal hiring channels. In
a similar vein, Giuliano, Levine, and Leonard (2009) show, for the United States, that the manager’s race
affects the racial composition of new hires.
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Table 6. Comparison between the sharp bounds, the naive approach, and previous corrections
on all firms.

Theil Index Duncan Index

Method Estimate CI0�95 Estimate CI0�95

Sharp bounds
Weighted [0�428�0�514] [0�423�0�521] [0�634�0�740] [0�620�0�746]
Unweighted [0�423�0�604] [0�419�0�609] [0�596�0�819] [0�584�0�823]

Alternative methods
Naive 0�749 [0�747�0�750] 0�915 [0�914�0�915]
Carrington–Troske 0�421 [0�418�0�424] 0�502 [0�500�0�504]
Allen et al. 0�685 [0�683�0�686] 0�888 [0�888�0�889]
Rathelot 0�425 [0�421�0�428] 0�659 [0�654�0�661]

Conditional on job skill level
Unskilled [0�425�0�514] [0�422�0�524] [0�628�0�730] [0�614�0�732]
Skilled [0�423�0�543] [0�415�0�551] [0�620�0�774] [0�602�0�782]
Average (θ0·) [0�424�0�532] [0�418�0�541] [0�623�0�757] [0�607�0�763]

Note: The conditional indices correspond to the θ0w defined in Section B.2, while θ0· is a weighted average of those two.

using the weighted index, we estimate the bounds to be [0�428�0�514] on the Theil in-
dex and [0�634�0�740] on the Duncan index. The uncertainty is thus quite large, a result
mostly driven by the lack of information on very small firms, which represent a large
proportion of our sample (83% of the firms are of size less than 9). When the index is
unweighted, even more importance is given to the small firms and the identification
set is wider. Because of the very large number of observations, the confidence intervals
are not much wider than the identification sets in this case. For both the Theil and the
Duncan indices, the naive and Allen et al. estimates are above the upper bound, while
the Carrington–Troske estimates are below the lower bound. The index corrected by the
Rathelot method is just below the lower bound for the Theil index but within the bounds
for the Duncan index.

We have shown that minority workers are disproportionately represented in un-
skilled positions. Because the proportion of unskilled positions varies across firms, we
can imagine that this simple correlation would increase the segregation of the minority
across firms. The last rows of Table 6 show that this is not the case. First, segregation
seems to remain of the same magnitude once we restrict our sample to either skilled or
unskilled positions within the firm. Second, when we consider the average conditional
index, which is the weighted average of the indices on the two types of positions, we also
find that segregation remains at a very similar level. While the descriptive results men-
tioned above make us confident that the job categories we have built are economically
sensible, our results show that workplace segregation of minority does not merely reflect
the higher share of unskilled jobs among minority workers and the uneven distribution
of unskilled positions across establishments. Rather, the same level of segregation seems
to exist for both types of jobs.

Our result is in line with Hellerstein and Neumark (2008). Using a correction à la
Carrington and Troske, they find that ethnic workplace segregation in the United States
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is not accounted for by differences in education across ethnic groups. However, they find

that taking the language spoken into account explains an important part of segregation.

In the case of France, we conjecture that language will not play as important a role as

in the United States but we lack the appropriate data to test this hypothesis. Similarly,

Åslund and Skans (2010) show that controlling for human capital does not affect the

segregation index much in the case of ethnic workplace segregation in Sweden, using

again an extended version of Carrington and Troske’s correction.

6. Conclusion

In this paper, we investigate what can be learned about segregation indices when only

an imperfect measure of p, distributed according to a binomial variable B(K�p), is avail-

able. We show that in general this leads to partial identification of the segregation index.

We then develop inference on the bounds. We have not considered segregation indices

here that do not take the form imposed by Assumption 2.1, such as the Gini index. Op-

timizing over distributions with finite support, as done here, leads to bounds that are

in general strictly included in the sharp identified set. To obtain valid confidence in-

tervals, a solution would be to choose a number of points in the support that are large

compared to the sample size, so that this problem becomes negligible compared to the

sample variability.

Given their initial purposes, we believe that segregation indices should be functions

of Fp. This does mean, however, that when studying segregation, focusing on p rather

than on X (or X/K) is always preferable.20 When concern is for the consequences of seg-

regation, the distribution of interest might be that of the realized shares. In the school or

the residential context, the question is often about how some groups affect others’ deci-

sions and outcomes. For instance, in the school context, an important issue is how low-

and high-performing students affect each other in a classroom and whether more or less

segregation is desirable from an aggregate point of view. Along this line, Bhattacharya

(2009) investigates how the actual allocation has to be modified so as to maximize an

aggregate measure of welfare. Similarly, Graham, Imbens, and Ridder (2010) aim to es-

timate the impact on the average outcome of a change in the allocation of individuals,

increasing or decreasing actual segregation.

Even if one aims at understanding the causes of segregation, the distribution of X/K

may matter, depending on the theoretical model we consider. Specifically, suppose that

when choosing firms (or neighborhood), individuals value the composition of the firm

in terms of the minority (for such an analysis on urban segregation, see Kasy (2015)). If

they observe the actual composition, then X/K would matter as well. If not, because,

for example, all individuals choose simultaneously as in Kasy (2015), then Fp is more an

object of interest.

20We thank an anonymous referee for his detailed suggestions about this aspect.
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Appendix A: Proofs

A.1 Proof of Proposition 2.3

For any increasing and concave function u, by Jensen’s inequality,

E
[
u(X/K)

] = E
[
E

[
u(X/K)|p]]

≤ E
[
u
(
E[X/K|p])]

≤ E
[
u(p)

]
�

Hence, Fp stochastically dominates FX/K at the second order, and by monotonicity,
g(Fp�m01) ≤ θN . Moreover, this is true for any distribution Fp ∈ Dm0 since such distri-
butions rationalize the distribution of X/K. Choosing a sequence (Fn�p)n∈N in Dm0 such
that limn→∞ g(Fn�p�m01) = θ0, we thus get θ0 ≤ θN . When the support of p is not reduced
to {0�1}, X/K is not a deterministic function of p with probability equal to 1. Hence,
for any strictly concave function u, the event E[u(X/K)|p] < u(E[X/K|p]) holds with a
positive probability. Consequently, E[u(X/K)] <E[u(p)], and the result follows by strict
monotonicity of g(·�m01). �

A.2 Proof of Lemma 3.1

By Theorems III.4.1 and III.5.1 of Krein and Nudel’man (1977),

M =
{(∫

xdF� � � � �

∫
xK dF

)′
�F ∈ DL+1

}
�

In other words, for any m ∈ M, there exists a distribution with only L+ 1 support points
that rationalize this distribution. This implies that P = (P1� � � � �PK)

′ ∈ P if and only if
there exists (x� y) ∈ SL+1 × TL+1 such that

Pk = Qk

(
L+1∑
j=1

yjx
1
j � � � � �

L+1∑
j=1

yjx
K
j

)′
�

Using the definition of Q and after some algebra, we obtain

Pk =
(
K

k

)L+1∑
j=1

yjx
k
j (1 − xj)

K−k� k ∈ {1� � � � �K}�

The result follows. �

A.3 Proof of Theorem 3.1

We first establish the asymptotic distribution of P̂ before turning to the bounds. The un-
constrained maximum likelihood estimator P̃ is simply the vector of sample proportions
(N1/n� � � � �NK/n). Therefore, by the central limit theorem,

√
n(P̃ − P0)

d−→ Z�
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where Z ∼ N (0�Σ(P0)). Now, the constrained maximum likelihood estimator P̂ satisfies
P̂ = ρ(P̃), where ρ is defined as in Lemma F.1. Therefore, by this lemma,

√
n(P̂ − P0)= πCP0

(√
n(P̃ − P0)

) + oP(1)�

By continuity of the projection, we obtain

√
n(P̂ − P0)

d−→ πCP0
(Z)�

As a result,

√
n(m̂−m0)

d−→ Q−1πCP0
(Z)� (A.1)

Hence m̂ is consistent, and θ and θ are continuous by Lemma F.2. Consistency of the
estimated bounds follows by the continuous mapping theorem. The asymptotic distri-
bution of the bounds also follows from (A.1) and the extended delta method of Shapiro
(1991). �

A.4 Proof of Theorem 3.2

The proof consists of five steps.

Step 1. Asymptotic normality of P̃∗ Our bootstrap consists of drawing an i.i.d. sample
(X∗

1 � � � � �X
∗
n) with

(
Pr

(
X∗

i = 1
)
� � � � �Pr

(
X∗

i =K
))′ = P̂b�

Moreover, introducing the function I(x) = (1{x = 1}� � � � �1{x = K})′, we have P̃∗ =
1
n

∑n
i=1 I(X

∗
i ). Fix ε > 0. For n large enough, ‖I(X∗

i )‖ ≤ ε
√
n. Therefore,

1
n

n∑
i=1

E
[∥∥I(X∗

i

)∥∥2
1
{∥∥I(X∗

i

)∥∥ > ε
√
n
}] → 0�

Besides,

V
(
I
(
X∗

i

)|P̂b

) = Σ(P̂b)
P−→ Σ(P0)�

Hence, by the Lindeberg–Feller central limit theorem (see, e.g., van der Vaart (2000, The-
orem 2.27)), we have, conditional on P̂b and with probability approaching 1,

√
n
(
P̃∗ − P̂b

) d−→ N
(
0�Σ(P0)

)
� (A.2)
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Step 2. Asymptotic distribution of P̂∗ We now prove that

√
n
(
P̂∗ − P̂b

) d−→ πCP0
(Z)� (A.3)

where Z ∼ N (0�Σ(P0)).

First, suppose that P0 ∈ ◦
P . Then with probability approaching 1, P̂b ∈ ◦

P and thus also
P̃∗ ∈ P . As a result, with probability approaching 1, P̂∗ = P̃∗. Thus, (A.2) also holds when
replacing P̃∗ by P̂∗. Equation (A.3) follows by noting that CP0 = R

K , so that πCP0
(Z) = Z .

Next, suppose that P0 ∈ ∂P . Let Z∗
n = √

n(P̃∗ − P̂b). By the continuous mapping the-

orem, πCP0
(Z∗

n)
d−→ πCP0

(Z). Therefore, it suffices to prove that

√
n
(
P̂∗ − P̂b

) −πCP0

(
Z∗
n

) P−→ 0� (A.4)

For that purpose, note that by Lemma F.1,
√
n
(
P̂∗ − P̂b

) = √
n
(
P̂∗ − P0

) + √
n(P0 − P̂b)

= πCP0

(√
n
(
P̃∗ − P0

)) + √
n(P0 − P̂b)+ oP(1)�

(A.5)

By Assumption 3.3, the boundary ∂CP0 of CP0 is linear. Thus, it is the tangent space of P
at P0, and by definition,∥∥P̂b −π∂CP0

(P̂b)
∥∥ = oP

(‖P̂b − P0‖
)
�

Let π∂CP0
denotes the linear projection onto the tangent space ∂CP0 of CP0 and let un =

π∂CP0
(
√
n(P0 − P̂b)). We get∥∥√

n(P0 − P̂b)− un
∥∥ = √

n
∥∥P̂b −π∂CP0

(P̂b)
∥∥

= √
noP

(‖P̂b − P̃‖ + ‖P̃ − P0‖
)

= oP
(√

n‖P̃ − P0‖
) = oP(1)�

(A.6)

where the first equality stems from linearity of π∂CP0
, the second stems from the trian-

gular inequality, and the third stems from ‖P̂b − P̃‖ = minP∈∂P ‖P − P̃‖. Combining (A.5)
and (A.6) yields

√
n
(
P̂∗ − P̂b

) = πCP0

(√
n
(
P̃∗ − P0

)) + un + oP(1)� (A.7)

Now, note that

πCP0
(h) = h1{h ∈ CP0} +π∂CP0

(h)1{h /∈ CP0}�

In addition, for all h1 ∈ R
K and h2 ∈ ∂CP0 , h1 +h2 ∈ CP0 if and only if h1 ∈ CP0 . As a result,

for all h1 ∈R
K and h2 ∈ ∂CP0 ,

πCP0
(h1)+ h2 = πCP0

(h1 + h2)� (A.8)
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Hence,
√
n
(
P̂∗ − P̂b

) = πCP0

(√
n
(
P̃∗ − P0

) + un
) + oP(1)

= πCP0

(
Z∗
n

) + oP(1)�
(A.9)

where the first equality follows by (A.7), (A.8), and the fact that un ∈ ∂CP0 , and the second
equality follows by (A.6) and the fact that projections are continuous. Equation (A.4), and
therefore (A.3), follow.

Step 3. Asymptotic distribution of (T
∗
�T ∗) We have m̂∗ = Q−1P̂∗. Moreover, (θ�θ) is

differentiable at m0. Applying the delta method for the bootstrap (see, e.g., van der Vaart
(2000, Theorem 23.9)) then yields(

T ∗
T ∗

)
d−→

⎛⎝θ
′
(m0)Q

−1πCP0
(Z)

θ′(m0)Q
−1πCP0

(Z)

⎞⎠ � (A.10)

Step 4. Asymptotic validity of the confidence interval when m0 ∈ ◦
M When m0 ∈ ◦

M,

In
P−→ 0 and it suffices to show that

inf
θ0∈[θ0�θ0]

lim
n→∞ Pr

(
θ0 ∈ CIinterior

1−α

) = 1 − α� (A.11)

Suppose first that θ0 = θ0. Then

Pr
(
θ0 ∈ CIinterior

1−α

)
= Pr

(
T ≤ c1−α

(
T ∗)�T + √

n(θ0 − θ0) ≥ cα
(
T ∗))

= Pr
(
T ≤ c1−α

(
T ∗)) − Pr

(
T ≤ c1−α

(
T ∗)�T + √

n(θ0 − θ0) < cα
(
T ∗))� (A.12)

Let P1 and P2 denote the two probability terms in (A.12). The function θ is differentiable

at m0, with a nonzero gradient by Assumption 3.3. Besides, when m0 ∈ ◦
M, πCP0

(Z) = Z .

Thus, by Theorem 3.1, the asymptotic distribution of T is normal with strictly positive
variance. This distribution is therefore continuous at c1−α(T). By Step 3 of the proof and
Theorem 1.2.1 of Politis, Romano, and Wolf (1999) (see also their Remark 1.2.1), P1 →
1 − α with probability 1.

Additionally, with probability 1,

P2 ≤ Pr
(
T + √

n(θ0 − θ0) < cα
(
T ∗)) → 0�

since cα(T
∗)= OP(1) and

√
n(θ0 − θ0) → ∞. As a result, with probability 1,

Pr
(
θ0 ∈ CIinterior

1−α

) → 1 − α�

The same holds when θ0 = θ0. Finally, if θ0 ∈ (θ0� θ0),

Pr
(
θ0 ∈ CIinterior

1−α

) = Pr
(
T + √

n(θ0 − θ0) ≤ c1−α

(
T ∗)�T + √

n(θ0 − θ0) ≥ cα
(
T ∗))�
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Because T + √
n(θ0 − θ0) → −∞ and T + √

n(θ0 − θ0) → +∞, the probability on the
right-hand side tends to 1. Hence, (A.11) holds.

Step 5. Asymptotic validity of the confidence interval when m0 ∈ ∂M In this case, θ0 =
θ0 = θ0. Thus, we have, by Theorem 3.1,

√
n(̂θ − θ̂) = OP(1). Because kn → ∞, In

P−→ 1
and it suffices to show that with probability 1,

lim
n→∞ Pr

(
θ0 ∈ CIboundary

1−α

) = 1 − α� (A.13)

We have

Pr
(
θ0 ∈ CIboundary

1−α

) = Pr
(√

n

∣∣∣∣θ̂− θ0 + θ0

2

∣∣∣∣ ≤ c1−α

(
T ∗
s

))
= Pr

(
Ts ≤ c1−α

(
T ∗
s

))
�

where in the first equality we have used the definition of CIboundary
1−α and the fact that

θ0 = θ0 = θ0. Note that T ∗
s = |T ∗ +T ∗|/2. Thus, by Step 3 above, the continuous mapping

theorem, Assumption 3.3, and Theorem 1.2.1 of Politis, Romano, and Wolf (1999) once
more,

Pr
(
Ts ≤ c1−α

(
T ∗
s

)) → 1 − α

with probability 1. The result follows. �
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