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An empirical model of non-equilibrium behavior in games

Brendan Kline
Department of Economics, University of Texas at Austin

This paper studies the identification and estimation of the decision rules that in-
dividuals use to determine their actions in games, based on a structural econo-
metric model of non-equilibrium behavior in games. The model is based pri-
marily on various notions of limited strategic reasoning, allowing multiple modes
of strategic reasoning and heterogeneity in strategic reasoning across individu-
als and within individuals. The paper proposes the model and provides sufficient
conditions for point identification of the model. Then the model is estimated on
data from an experiment involving two-player guessing games. The application
illustrates the empirical relevance of the main features of the model.

Keywords. Games, heterogeneity, identification, non-equilibrium, strategic rea-
soning.

JEL classification. C1, C57, C72.

1. Introduction

In game theory, different solution concepts and decision rules make different predic-
tions about how players determine their actions given their utility functions. The Nash
equilibrium solution concept (e.g., Nash (1950)) is the most common prediction about
how players behave, but theory also provides other solution concepts and decision rules
that make different predictions about how players behave. Indeed, there is considerable
empirical evidence of behavior that does not conform to the predictions of Nash equi-
librium (e.g., Camerer (2003)).

Because of the central role of game theory in economics and other disciplines, it
is important to conduct empirical investigations that evaluate these solution concepts
and decision rules. The credibility of predictions based on game theory models depends
on the credibility of the solution concept or decision rule that generates the predictions
because, by definition, different solution concepts and decision rules can generate dif-
ferent predictions even for the same specification of the utility functions. Further, the lit-
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erature1 on estimation of the utility functions in game theory models involves assump-
tions on the solution concept. If the assumptions on the solution concept are false, then
the resulting model is misspecified, raising concerns about the credibility of the empir-
ical results.

With that broad motivation, this paper is concerned with a particular structural
econometric model of non-equilibrium behavior in games. Rather than estimate the
utility functions under the assumption that the econometrician knows the solution con-
cept, as in the prior literature on the econometrics of games, this paper is concerned
with estimating the solution concept(s) or decision rule(s) under the assumption that
the econometrician knows the utility functions, as in the payoffs presented to subjects
in an experiment. Similar empirical questions have been a major focus in the literature
on experimental economics. The focus in this paper is on understanding the identifica-
tion of the model. Often the models and empirical strategies used in experimental eco-
nomics are point identified by relatively short arguments such that the identification
problem is not the main focus of the papers. The model proposed in this paper leads to
a more challenging identification problem. This paper proposes the model, establishes
sufficient conditions for point identification of the model, and estimates the model on
real data. Following the economic theory and experimental economics literatures, the
model is based on two main classes of alternatives to Nash equilibrium relating to lim-
ited strategic reasoning.

Unanchored strategic reasoning is a model of limited strategic reasoning that can be
viewed as an empirical implementation of ideas from the economic theory literature re-
lating to rationalizability (e.g., Bernheim (1984) and Pearce (1984)) and iterated deletion
of dominated strategies.2 The model includes different numbers of steps of unanchored
strategic reasoning, interpreted as different levels of sophistication of strategic reason-
ing. In most games, a set of actions are consistent with any given number of steps of
unanchored strategic reasoning and a given action can be consistent with multiple dif-
ferent numbers of steps of unanchored strategic reasoning. Therefore, it is not possible
to infer the number of steps of unanchored strategic reasoning that an individual uses by
inspecting whether the action taken by that individual is equal to that predicted by a par-
ticular number of steps of unanchored strategic reasoning. For example, the observation
that an individual uses a particular action could be consistent with that individual using

1Papers in that literature (among papers that study complete information), typically based on Nash equi-
librium, include Tamer (2003), Aradillas-Lopez and Tamer (2008), Bajari, Hong, and Ryan (2010), Kline and
Tamer (2012), Aradillas-Lopez and Rosen (2013), Dunker, Hoderlein, and Kaido (2013), Kline (2015, 2016),
and Fox and Lazzati (2017). See de Paula (2013) for a review. Important identification results in experimental
economics include Haile, Hortaçsu, and Kosenok (2008) (quantal response equilibrium model), and Gillen
(2010) and An (2017) (level-kmodel in auctions).

2From the economic theory literature, rationalizability is equivalent to common knowledge of rationality
and independence of actions across players (e.g., Tan and da Costa Werlang (1988)). In two-player games,
rationalizability is also equivalent to infinitely many steps of iterated deletion of dominated strategies. See,
for example, Tan and da Costa Werlang (1988) or Fudenberg and Tirole (1991). In any given game, rational-
izability might be equivalent to a certain finite number of steps of iterated deletion of dominated strategies
if additional strategies are no longer deleted in further iterations. But, in general, rationalizability requires
infinitely many (or, at least, unbounded) steps of iterated deletion.
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either zero or one step of unanchored strategic reasoning. This results in one part of the
identification problem studied in this paper. The identification result establishes how it
is possible to identify/estimate the number of steps of unanchored strategic reasoning
that individuals use. Moreover, evidence of unanchored strategic reasoning is found in
the empirical application.

The experimental economics literature also has models of limited strategic reason-
ing. Anchored strategic reasoning is a model of limited strategic reasoning otherwise
known as the level-kmodel of thinking that is commonly used in the experimental game
theory literature.3 In the level-k model of thinking, individuals who use zero steps of
reasoning are “anchored” to a particular distribution of actions, usually the uniform dis-
tribution over the action space. Hence, this paper uses the term anchored strategic rea-
soning to refer to this decision rule. Then, somewhat similarly to unanchored strategic
reasoning, individuals who use more than zero steps of anchored strategic reasoning
best respond to the strategy used by an individual of the immediately lower number of
steps of anchored strategic reasoning.

Rather than suppose that a single decision rule is responsible for generating all ac-
tions of all individuals, the model allows both across-individual and within-individual
heterogeneity in the decision rule(s). Consequently, the goal of the model is to estimate
how often individuals use each of the decision rules. In particular, the goal of the model
is to estimate how often individuals use each number of steps of unanchored and/or
anchored strategic reasoning.

Across-individual heterogeneity allows that different individuals use different deci-
sion rules, an important stylized fact from the experimental game theory literature. Sim-
ilarly, within-individual heterogeneity allows that even a given individual uses multiple
different decision rules, a contribution of the model in this paper. Prior empirical work
in the related experimental game theory literature has been based on the assumption
that each individual uses just one decision rule. In particular, the prior literature based
on the level-kmodel of thinking generally characterizes individuals as a “level-1” thinker
or a “level-2” thinker, and so on. The model in this paper allows that a given individual
is characterized by the use of multiple decision rules, rather than just one decision rule,
just as the overall population of individuals is characterized by the use of multiple deci-
sion rules, rather than just one decision rule. As discussed in Section 2.4, among other
interpretations, within-individual heterogeneity can be given an interpretation similar
to random utility models in single-agent decision problems, in the sense that the behav-
ior of individuals in games may be described as arising from randomly selecting from a
set of decision rules. Across-individual heterogeneity and within-individual heterogene-
ity have similar observable implications, since both involve the use of multiple decision
rules. Therefore, heterogeneity in the decision rules results in another part of the iden-
tification problem studied in this paper. For example, suppose that there are decision
rules A and B in the model. Based on data from individuals playing any given game,

3See, for example, Camerer (2003) or Crawford, Costa-Gomes, and Iriberri (2012) for a discussion of
the related experimental literature, which includes, in particular (not exhaustive), Stahl and Wilson (1994,
1995), Nagel (1995), Ho, Camerer, and Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001), Camerer,
Ho, and Chong (2004), Costa-Gomes and Crawford (2006), and Crawford and Iriberri (2007a, 2007b).
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there can be observational equivalence between two distinct specifications of hetero-
geneity: (a) one type of individual always usingA and another type of individual always
using B, as in across-individual heterogeneity, and (b) each individual using bothA and
B, as in within-individual heterogeneity. As detailed by the arguments in Section 3.2,
both specifications are such that some actions used in the data are consistent with de-
cision ruleA and other actions used in the data are consistent with decision rule B. The
identification result establishes how to identify/estimate the heterogeneity in the use
of multiple decision rules. The empirical application shows evidence of both across-
individual and within-individual heterogeneity.

The paper establishes sufficient conditions for point identification of the unknown
parameters. In the absence of such sufficient conditions, the paper shows by exam-
ple that it can easily happen that the unknown parameters are not point identified.
Many of the main sufficient conditions concern the structure of the games that ex-
perimental subjects are observed to play. Consequently, the identification results can
guide experimental design. The range of experimental designs that have been used
within experimental game theory are discussed, for example, in Camerer (2003) and
Crawford, Costa-Gomes, and Iriberri (2012). One of the main sufficient conditions is
that the econometrician observes each subject play multiple games. The identification
result characterizes how many games the subjects must play as a function of the degree
of across-individual heterogeneity.

Then the model is estimated using data that come from the two-person guessing
game experiment in Costa-Gomes and Crawford (2006) to establish the empirical rele-
vance of the results in the context of a well known and representative experimental de-
sign. The results suggest that both across-individual and within-individual heterogene-
ity, and unanchored strategic reasoning are important. For example, the most common
type of subject in the experiment is estimated to comprise approximately 44% of the
population: it uses zero steps of unanchored strategic reasoning with probability ap-
proximately 49% and one step of unanchored strategic reasoning with probability ap-
proximately 31%. It also uses anchored strategic reasoning and Nash equilibrium with
cumulative probability approximately 21%. The identification results establish how it is
possible to recover these parameters from the data. In contrast, related models in exper-
imental game theory do not include unanchored strategic reasoning and are restricted
to types of subjects who exclusively use one decision rule. Such models would, therefore,
not capture all of the characteristics of the subjects.

In addition to the differences due to focusing on identification of the model in gen-
eral rather than empirical results from a particular experiment, the model in this paper
differs from prior models in experimental game theory. Those differences are the rea-
son for the more challenging identification problem in this paper. In particular, allow-
ing unanchored strategic reasoning and within-individual heterogeneity substantially
complicates the identification problem, and the application shows that those features
of the model are empirically relevant. As discussed further in Section 3, these two fea-
tures of the model independently complicate the identification problem. Identifying the
model that allows unanchored strategic reasoning is complicated even when restricting



Quantitative Economics 9 (2018) Non-equilibrium behavior in games 145

to a model without within-individual heterogeneity, and identifying the model that al-
lows within-individual heterogeneity is complicated even when restricting to a model
without unanchored strategic reasoning. Therefore, the identification result is a rele-
vant contribution even if some but not all of those features are present in a particular
application.

The rest of the paper is organized as follows. Section 2 sets up the model. Sec-
tion 3 sets up the identification problem, and Section 4 establishes sufficient condi-
tions for point identification. Section 5 reports the empirical application. Section 6 con-
cludes. The Appendices, available in a supplementary file on the journal website, http://
qeconomics.org/supp/647/supplement.pdf, collect supplemental results, including
derivation of the model likelihood (Appendix A), point identification of all model pa-
rameters except for the magnitude of computational mistakes (Appendix B), discussion
of identification of the selection rule on unanchored strategic reasoning (Appendix C),
the proofs of the point identification results and supplemental lemmas (Appendix D),
verification that the identification assumptions hold in the empirical application (Ap-
pendix E), and additional empirical results (Appendices F and G). Replication files are
available in a supplementary file on the journal website, http://qeconomics.org/supp/
647/code_and_data.zip.

2. Model

2.1 Notation for the games

The goal of the model is to study strategic behavior in complete information games with
continuous action spaces.4 The setup for game g is as follows.

(i) There are Mg players, indexed by j = 1�2� � � � �Mg. Note that “the player indexed
by j” or just “player j” corresponds to the indexing of players in the game, and is not the
same as subject j in the data set. Therefore, player j might alternatively be called, for
example, the row player in the game.

(ii) The action of player j is aj . The action space for player j in game g is the interval
of real numbers [αLg(j)�αUg(j)] and, consequently, there is a continuous action space.

(iii) The utility function of player j in game g is ujg(a1� � � � � aMg).

(iv) All of these facts are common knowledge among the players, so the game is com-
plete information. Also, all of these facts are known by the econometrician.

As formalized in Section 2.7, the econometrician has data on the behavior of subjects
in these games. There is an important distinction between player and subject. The term
subject refers to an actual individual (e.g., an “experimental subject”) in the real world.
The term player refers to the more generic game theory concept. For example, a player
could refer to the “row player” in a particular game. Consequently, when the experiment

4It is possible to specify a similar model for games with discrete action spaces and to identify such a
model using an adaptation of the identification strategy for the model with continuous action spaces.
Games with continuous action spaces provide more scope for different decision rules to make different
predictions about the action an individual takes, which is necessary for identification.

http://qeconomics.org/supp/647/supplement.pdf
http://qeconomics.org/supp/647/supplement.pdf
http://qeconomics.org/supp/647/code_and_data.zip
http://qeconomics.org/supp/647/code_and_data.zip
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has subjects play the games, subjects are assigned the roles of particular players in the
games.

2.2 Decision rules

The model is concerned with recovering information about the solution concepts and
decision rules that subjects use, based on observing the behavior of those subjects. By
solution concept, this paper means a possibly set-valued mapping between the specifi-
cation of a game and the set of strategies for all of the players. By decision rule, this paper
means a possibly set-valued mapping between the specification of a game and the set
of strategies for an individual player. Each solution concept and decision rule can be
viewed as making a set-valued prediction about behavior.5 In particular, following the
literature on experimental game theory, this paper focuses on non-equilibrium solu-
tion concepts and decision rules. Even equilibrium solution concepts like Nash equi-
librium can be viewed as making non-equilibrium predictions, in the sense of mak-
ing predictions for each individual player. Consequently, a player can be said to use
its part of a solution concept (e.g., Nash equilibrium) or can be said to use a certain
decision rule, without consideration of the actual behavior of the other players in the
game.

Sections 2.2.1–2.2.3 describe the decision rules included in the model. These deci-
sion rules are demonstrated by example in the empirical application in Section 5. An
extended model that admits the possibility that subjects use an enlarged class of candi-
date decision rules could be identified by extending the identification strategy. However,
it is not realistic to expect identification of a model that does not involve some sort of ex
ante restriction on the class of candidate decision rules. An unrestricted model of non-
equilibrium behavior is fundamentally unidentified. With no restrictions on the class of
candidate decision rules, there are infinitely many decision rules that coincide with any
observed behavior of any particular subject in the data but differ in their predictions
about other games. Such decision rules are trivial to characterize: simply specify that
they are mappings from the space of games to the space of strategies that specifically
coincide with the games and corresponding actions observed in the data for that partic-
ular subject, but differ on different games not observed in the data. Since decision rules
are mappings from the space of games to the space of strategies, estimating the decision
rule without ex ante known restrictions on the space of decision rules would require
the econometrician to observe the subjects’ behavior in all games, which is effectively
impossible.6

5Similar definitions have been used in the game theory literature; see, for example, Myerson (1991, pp.
88 and 107), Osborne and Rubinstein (1994, p. 2), or Aumann (2000, p. 57).

6The restrictions on the class of candidate decision rules provided by economic theory play a some-
what similar role in the identification strategy as do function space assumptions (e.g., finite-dimensional
parametrization, continuity, etc.) in regression function estimation, in the sense that they make it possible
to identify/estimate a high-dimensional object (i.e., either a decision rule, or function) based on somehow
(indirectly) “observing” that object at a strict subset of its domain (i.e., a decision rule at a subset of games,
or a function at a subset of its domain).
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2.2.1 Nash equilibrium The Nash equilibrium solution concept predicts that players
use strategies that are mutually best responses. According to Nash equilibrium, player j
in game g uses a strategy σjg, with the property that σjg is a distribution supported on
the set of solutions to

max
aj∈[αLg(j)�αUg(j)]

Eσ−j�g
(
ujg(a1� � � � � aMg)

)
�

where [αLg(j)�αUg(j)] is the action space for player j in game g, and the expectation
notation indicates that a−j are distributed according to the Nash equilibrium strategies
of the other players in game g (i.e., according to σ−j�g). The model is based on the as-
sumption that there is a unique pure strategy Nash equilibrium that predicts that player
j in game g takes action cjg(NE), as is the typical case for games studied in the related
experimental game theory literature.7 The notation for Nash is NE.

2.2.2 Unanchored strategic reasoning Unanchored strategic reasoning is a class of de-
cision rules that are iteratively defined steps of increasingly sophisticated strategic rea-
soning related to iterated deletion of dominated strategies, particularly in two-player
games,8 and rationalizability (e.g., Bernheim (1984) and Pearce (1984)). One contribu-
tion of this paper is to study the empirical relevance of unanchored strategic reason-
ing by providing a model in which it is possible to identify/estimate how many steps of
unanchored strategic reasoning individuals carry out. The notation for s steps of unan-
chored strategic reasoning is sunanch.

The following text formally describes unanchored strategic reasoning. Let Djg be the
family of all strategies (i.e., distributions) supported on [αLg(j)�αUg(j)]. Then define

Σ̃0
jg = {σj ∈ Djg}�

Similarly, define

Σ0
jg = [

αLg(j)�αUg(j)
]

to be the set of actions that are consistent with the use of zero steps of unanchored
strategic reasoning by player j in game g. Of course, by construction, Σ0

jg is the entire

7The model could be extended to games with multiple Nash equilibria as long as all games under study
have the same number of Nash equilibria, and those equilibria can be distinguished according to some cri-
terion. For example, suppose the games under study have two Nash equilibria that can be distinguished in
some observable way. Potentially, for example, one Nash equilibrium could be focal while the other equi-
librium is nonfocal, or one Nash equilibrium could satisfy a certain equilibrium refinement, while the other
equilibrium does not satisfy that equilibrium refinement, or, more simply, one Nash equilibrium could re-
sult in a larger choice of action, whereas the other equilibrium results in a smaller choice of action. Other
distinguishing properties are also possible. Then those two Nash equilibria could both be included in the
model in the same way that different numbers of steps of anchored strategic reasoning are included in the
model, and the identification strategy could be used to identify that model. The same considerations would
apply if a certain number of steps of anchored strategic reasoning predicted two actions.

8See, for example, Tan and da Costa Werlang (1988) or Fudenberg and Tirole (1991). Level-k rationality
has been assumed to generate the data in Aradillas-Lopez and Tamer (2008), Kline and Tamer (2012), and
Kline (2015) to identify the utility function.
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action space. Then, for s ≥ 0, define

Σ̃s+1
jg =

{
σj ∈ Djg : ∃σ−j ∈

∏
j′ �=j

co
(
Σ̃sj′g

)
s.t. σj is supported on

the set of solutions to max
aj∈[αLg(j)�αUg(j)]

Eσ−j
(
ujg(a1� � � � � aMg)

)}
�

These are the strategies σj for which there are strategies σ−j of the other players that can

be used by other players who use strategies in
∏
j′ �=j co(Σ̃sj′g),

9 such that σj is the best
response to the other players using those strategies. Similarly, define

Σs+1
jg =

{
aj ∈ [

αLg(j)�αUg(j)
] : ∃σ−j ∈

∏
j′ �=j

co
(
Σ̃sj′g

)
s.t.

aj ∈ arg max
aj∈[αLg(j)�αUg(j)]

Eσ−j
(
ujg(a1� � � � � aMg)

)}

to be the set of actions that are consistent with the use of s + 1 steps of unanchored
strategic reasoning by player j in game g.

Note the intuitive appeal of s steps of unanchored strategic reasoning in terms of
iterated deletion of dominated strategies, especially in the case of two-player games.
Intuitively, strategies in Σ̃1

jg are best responses to some strategies of the opponents and,

therefore, survive one round of deletion of dominated strategies; Σ̃2
jg are best responses

to some strategies of the opponents that survive one round of deletion of dominated
strategies and, therefore, survive two rounds of deletion of dominated strategies, and so
forth. See Tan and da Costa Werlang (1988) or Fudenberg and Tirole (1991) for further
details.

After finding the set Σsjg, player j in game g that uses s steps of unanchored strate-
gic reasoning must use some selection rule to select an action to actually play from the
set Σsjg. By definition, a selection rule is a distribution supported on Σsjg. The consis-
tency with the application of iterated deletion of dominated strategies does not place any
further restrictions on the selection rule. However, the definition of using unanchored
strategic reasoning entails the use of a specific selection rule. Let ψjg(·) be a known
strictly positive and continuous function on the action space [αLg(j)�αUg(j)]. Then sup-
pose that player j in game g that uses s steps of unanchored strategic reasoning takes an
action a ∈ Σsjg with “density”

ζsjg(a)= ψjg(a)

Ψjg
(
Σsjg

) �
where Ψjg(Σ

s
jg) = ∫

Σsjg
ψjg(a)dμ(a;Σsjg) and μ(·;Σsjg) is the appropriate dominating

measure for a distribution on Σsjg.10

9Due to use of the convex hull operator co, this allows mixtures of strategies, in cases of nonconvexity.
10Therefore, this implicitly requires that such a distribution exists. Consequently, it is implicitly assumed

that Σsjg is either Lebesgue measurable with nonzero and finite measure or is a finite set. In particular, if
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An important special case isψjg(·)≡ 1, so that the selection rule ζsjg(·) is the uniform
distribution on Σsjg. By construction, all actions in Σsjg are equally consistent with using
s steps of unanchored strategic reasoning. Equivalently, there is equal justification for
using each of the actions in Σsjg based on using s steps of unanchored strategic reason-
ing. Consequently, assuming that actions are played with probability proportionate to
the justification for playing that action, similar to the principle of indifference, the se-
lection rule associated with s steps of unanchored strategic reasoning would indeed be
the uniform distribution over Σsjg.11 The uniform distribution appears consistent with
the data in the empirical application, as discussed in Section 5.2. More generally, the se-
lection rule can be biased toward or against the use of an action a proportionate to the
quantity ψjg(a). For example, this accommodates situations where the econometrician
knows that certain actions are focal. Specifically, ψjg(·) can be a unimodal density, so
ψjg(·) is large around the mode (i.e., the focal action) and small away from the mode
(i.e., the nonfocal actions).

This selection rule is such that a player who uses s steps of unanchored strategic
reasoning does not always use an action consistent with refinements of s steps of unan-
chored strategic reasoning, since the density is strictly positive on all of Σsjg. Therefore,
the selection rule guarantees that the use of s steps of unanchored strategic reasoning
has a distinct definition from the use of refinements of s steps of unanchored strategic
reasoning. Otherwise, if the use of two decision rules cannot be distinguished even by
definition, then the use of those two decision rules could never be distinguished using
data, resulting in a failure by definition of point identification.

For example, the Nash equilibrium action is also consistent with s steps of unan-
chored strategic reasoning, that is, cjg(NE) ∈ Σsjg. If there were no restrictions on the
selection rule, then the selection rule could be that a player who uses s steps of unan-
chored strategic reasoning always uses the Nash equilibrium action. If so, then it would
be impossible by definition to distinguish between the use of the Nash equilibrium and
the use of s steps of unanchored strategic reasoning. Similarly, any action consistent
with s′ steps of unanchored strategic reasoning is also consistent with 0 ≤ s ≤ s′ steps of
unanchored strategic reasoning, that is, Σs

′
jg ⊆ Σsjg for 0 ≤ s ≤ s′. Therefore, an action can

be consistent with many different numbers of steps of unanchored strategic reasoning,
making it difficult to infer the number of steps of unanchored strategic reasoning used
to generate that action. If there were no restrictions on the selection rule, then the se-
lection rule could be that a player who uses s steps of unanchored strategic reasoning
always uses an action consistent with s+1 steps (or some other greater number of steps)

Σsjg is Lebesgue measurable with nonzero and finite measure, as in the empirical application where Σsjg
are intervals, then μ(·;Σsjg) is Lebesgue measure and ζsjg(·) is an ordinary density; if Σsjg is a finite set, then
μ(·;Σsjg) is counting measure and ζsjg(·) is a “density” with respect to counting measure, otherwise known
as a probability mass function. It is implicitly assumed that indeed these integrals exist and are finite under
the condition that ψjg(·) is integrable with respect to the appropriate dominating measure(s).

11One statement of the principle of indifference from Carnap (1953, p. 193) is “[i]f no reasons are known
which would favor one of several possible events, then the events are to be taken as equally probable.”
Similarly, the interpretation of the uniform selection rule is that if no reasons are known that would favor
any of the actions within Σsjg , then those actions are to be taken with equal probability.
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of unanchored strategic reasoning. If so, then it would be impossible by definition to dis-
tinguish between the use of s and s+ 1 steps of unanchored strategic reasoning.

Moreover, this selection rule is such that the “relative bias” between taking actions
a(1) and a(2) consistent with s steps of unanchored strategic reasoning is the same for

all s, since that relative bias
ζsjg(a

(1))

ζsjg(a
(2))

= ψjg(a
(1))

ψjg(a(2))
does not depend on s as long as a(1) and

a(2) are indeed consistent with s steps of unanchored strategic reasoning. This makes
it possible to distinguish between the use of a certain number s steps of unanchored
strategic reasoning and the use of a different number s′ steps of unanchored strategic
reasoning with a selection rule that is biased toward taking actions consistent with s
steps of unanchored strategic reasoning.12

Further, it is possible to treat the selection rule on unanchored strategic reasoning
as another parameter in the model. Under suitable restrictions on the class of admissi-
ble selection rules, which are equivalent to restrictions on the class of admissible ψjg(·)
functions, Appendix C discusses identification of the selection rule. Hence, there are
two possible interrelated approaches to the selection rule: (a) the econometrician can
define using unanchored strategic reasoning to involve the uniform selection rule or
some other known selection rule and directly apply the identification result, or (b) the
econometrician can expand the model to allow that using unanchored strategic reason-
ing involves the use of some unknown selection rule within a suitably restricted class of
selection rules, identify the selection rule per Appendix C, and then apply the identifi-
cation result with that identified (known from the data) selection rule. By either varying
the “known” selection rule or expanding the model and treating the selection rule as an-
other parameter, this implies the ability to conduct sensitivity analysis with respect to
the selection rule part of the definition of using unanchored strategic reasoning.

Remark 2.1 (Epistemic Interpretation). The results of Tan and da Costa Werlang (1988)
can be used to provide an epistemic interpretation of the set of strategies Σ̃sjg. For

s = 1, using a strategy in Σ̃sjg is equivalent to being rational (at least), and for s ≥ 2, us-

ing a strategy in Σ̃sjg is equivalent to being rational and also knowing everyone (knows

12Using the formal notation introduced subsequently in the paper, this is an implication of the more
general fact that arbitrary mixtures of densities are not point identified. For example, suppose that there is
only one strategic behavior type (i.e., R = 1), and suppose that the econometrician assumes that strate-
gic behavior type uses either 0 or 1 steps of unanchored strategic reasoning (i.e., U = {0unanch�1unanch}
and A = M = ∅). Then a specification of the model would entail, for that one type, the specification of
Λ1(0unanch) andΛ1(1unanch), and also, for each game, a distributionHg0 that is supported on the actions as-
sociated with 0 steps of unanchored strategic reasoning in game g, and a distributionH1g that is supported
on the actions associated with 1 step of unanchored strategic reasoning in game g. Without any restrictions
on the selection rule, H0g and H1g could be any distributions with the appropriate support. The specifi-
cation (Λ1(0unanch)�Λ1(1unanch)�H0g�H1g) implies the observed distribution of actions in game g that is
given by the mixture Λ1(0unanch)H0g +Λ1(1unanch)H1g . Now consider the strategic behavior type that uses
0 steps of unanchored strategic reasoning with probability 1, and uses theΛ1(0unanch)H0g+Λ1(1unanch)H1g
distribution on Σ0

1g . By construction, that results in the same observed distribution of actions. Intuitively,

this can happen if individuals who use 0 steps of unanchored strategic reasoning are biased toward us-
ing the actions that are also consistent with using 1 step of unanchored strategic reasoning. Consequently,
these two specifications of the model are observationally equivalent.
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everyone)s−2 is rational (at least), in addition to some other conditions including those
related to players acting independently of each other. Further, rationalizability, defined
as using a strategy in the set

⋂∞
s=1 Σ̃

s
jg, is roughly equivalent to common knowledge of ra-

tionality in addition to some other conditions, including those related to players acting
independently of each other.

For example, in a two-player game, player 1 who uses a strategy in Σ̃2
1g can be in-

terpreted “as if” to use the following strategic reasoning: I think my opponent will use
strategy σ2. I think my opponent will use σ2 because σ2 would be a best response from
the perspective of my opponent if I were to use strategy σ1. And given that I think my
opponent will use σ2, I should use the strategy σ ′

1 as a best response to σ2.

Remark 2.2 (Consistency With Iterated Deletion of Dominated Strategies). The exper-
imental game theory literature has sometimes checked whether observed actions are
consistent with certain solution concepts or decision rules—in particular the steps of
iterated deletion of dominated strategies—as a stand-alone exercise separate from, for
example, estimating a structural level-kmodel. See, for example, the discussion in foot-
note 20 in the context of Costa-Gomes and Crawford (2006). In contrast, in this paper,
unanchored strategic reasoning is included as a decision rule in a model alongside other
decision rules, making it possible to answer the question of how often (and/or whether)
subjects use a given number of steps of unanchored strategic reasoning. Note the funda-
mental distinction between consistency with and actually using a given number of steps
of unanchored strategic reasoning. An action can be consistent with a given number of
steps of unanchored strategic reasoning even though the player taking that action did
not use that number of steps of unanchored strategic reasoning. For example, a player
might use two steps of unanchored strategic reasoning, but nevertheless take an action
that is also consistent with both zero and one steps of unanchored strategic reasoning.
The fact that an action is consistent with a given number of steps of unanchored strate-
gic reasoning is not necessarily evidence that the player taking that action actually used
that number of steps of unanchored strategic reasoning.

2.2.3 Anchored strategic reasoning It is possible to add to the above iterated definitions
the condition that, for all players j and games g, Σ̃0

jg consists of only one strategy: the
uniform distribution over the action space. This results in anchored strategic reasoning,
because the steps of strategic reasoning become anchored to the uniform distribution
being used by players who use zero steps of strategic reasoning. In the experimental
game theory literature, with citations provided in the Introduction, this is known as the
level-k model, but the terms “anchored” and “unanchored” are used in this paper to
emphasize the relationship between the two classes of decision rules. The notation for s
steps of anchored strategic reasoning is sanch.

Zero steps of unanchored strategic reasoning are observationally equivalent to zero
steps of anchored strategic reasoning, at least under the condition of a uniform selection
rule on unanchored strategic reasoning, but anchoring does revise the implications of
using more than zero steps of strategic reasoning by working through the iterated def-
inition of steps of strategic reasoning described in Section 2.2.2. For example, a player
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who uses one step of anchored strategic reasoning would use a strategy that is a best
response to the other players using the strategy that is the uniform distribution over the
action space, and a player who uses two steps of anchored strategic reasoning would use
a strategy that is the best response to the other players using a strategy consistent with
one step of anchored strategic reasoning.

The results are derived based on the assumption that there is a unique action consis-
tent with anchored strategic reasoning (for each s ≥ 1), as is typically the case for games
studied in the related experimental game theory literature: player j in game gwho uses s
steps of anchored strategic reasoning takes action cjg(sanch). There is typically a range of
actions consistent with s steps of unanchored strategic reasoning. Hence, it is possible
to distinguish an individual who uses unanchored strategic reasoning from an individ-
ual who uses anchored strategic reasoning, because the latter will always take the action
associated with anchored strategic reasoning, whereas the former will not.

2.2.4 Assumptions on strategic reasoning Assumption 2.1 states that the set of steps of
strategic reasoning that subjects might use is known by the econometrician to be a finite
set. This is consistent with prior experimental results, which indicate individuals use a
very small number of steps of reasoning. The consequence of Assumption 2.1 is that
subjects are restricted to using a finite set of decision rules, rather than an infinite set
of decision rules. It would be extremely difficult to distinguish between infinitely many
decision rules, especially with finite data.

Assumption 2.1 (Steps of Strategic Reasoning). The numbers of steps of unanchored
strategic reasoning that subjects might use is the known finite set U . The numbers of steps
of anchored strategic reasoning that subjects might use is the known finite set A.

2.3 Computational mistakes

Roughly following the literature on experimental game theory, computational mistakes
arise when a subject “intends” to use a certain decision rule, but fails to correctly take
the associated action. The decision rules subject to computational mistakes are the de-
cision rules that are associated with a unique action, collected in the set M: the steps of
anchored strategic reasoning and Nash equilibrium.13 The econometrician can assume
ex ante that subjects do not make computational mistakes, in which case the sufficient
conditions for point identification are weaker.

Let ξ(·) be a known bounded and continuous density defined on support [−1�1] that
is bounded away from zero in the sense that ξ(x) ≥ κ > 0 for all x ∈ [−1�1] for some κ.
Conversely, ξ(·) is zero off the support [−1�1], by definition of support. The continuity at
the endpoints −1 and 1 is implicitly understood to be right and left continuity. Suppose
that subject i “intends” to use a particular decision rule in M that predicts the action c,
and that subject i is playing the role of player j in game g. There is δi probability that the

13Computational mistakes arise only with decision rules that are associated with a unique action (which
is where computational mistakes have been allowed in the prior literature), avoiding the ambiguity about
what it would mean to incorrectly compute the action associated with a decision rule that is consistent with
a range of actions, as in unanchored strategic reasoning.



Quantitative Economics 9 (2018) Non-equilibrium behavior in games 153

subject makes a computational mistake. If there is a computational mistake, then the
subject actually takes an action according to the ξ(·) density, translated to an interval of
radius ρi(αUg(j) − αLg(j)) that is centered at the “intended” action c, intersected with
the action space [αLg(j)�αUg(j)],

[αLg(j)�αUg(j)] ∩ [
c− ρi

(
αUg(j)− αLg(j)

)
� c + ρi

(
αUg(j)− αLg(j)

)]
= [

max
{
αLg(j)� c − ρiΩjg

}
�min

{
αUg(j)� c + ρiΩjg

}]
�

with Ωjg ≡ αUg(j) − αLg(j). The intersection with [αLg(j)�αUg(j)] guarantees that the
action is within the action space. Consequently, the subject takes an action a according
to the density

ωjg�c�ρi(a)=

2 × ξ

⎛
⎜⎜⎝
a− min

{
αUg(j)� c + ρiΩjg

} + max
{
αLg(j)� c − ρiΩjg

}
2

min
{
αUg(j)� c + ρiΩjg

} − max
{
αLg(j)� c − ρiΩjg

}
2

⎞
⎟⎟⎠

min
{
αUg(j)� c + ρiΩjg

} − max
{
αLg(j)� c − ρiΩjg

} �

The parameter ρi characterizes the magnitude of computational mistakes: larger ρi
implies the possibility of larger computational mistakes. The range of computational
mistakes is ρi multiplied by the width of the action spaceΩjg ≡ αUg(j)−αLg(j) to reflect
the fact that games with larger action spaces are more subject to relatively larger com-
putational mistakes. The model of computational mistakes is formalized in Assump-
tion 2.2. Similar identification strategies could be used for similar models of computa-
tional mistakes.

Assumption 2.2 (Computational Mistakes). Either of the following scenarios holds:

(i) The econometrician allows the possibility of computational mistakes. The proba-
bility that subject i makes a computational mistake is 0 ≤ δi < 1. The magnitude of the
computational mistakes made by subject i is ρi > 0. If subject i makes a computational
mistake in game g as player j and intended to use a decision rule that would result in
taking action c, then subject i takes an action according to the ξ(·) density, translated to
[αLg(j)�αUg(j)] ∩ [c − ρi(αUg(j)− αLg(j))� c + ρi(αUg(j)− αLg(j))]. The econometrician
knows ρ such that ρi < ρ for all subjects i.

(ii) The econometrician does not allow the possibility of computational mistakes and,
therefore, knows that δi ≡ 0 and ρi ≡ 0 for all subjects i. For the purposes of future as-
sumptions, the econometrician sets ρ= 0.

If the econometrician allows the possibility of computational mistakes, then it is as-
sumed that ρi > 0 for all subjects i. If ρi = 0 were allowed, then there would be a compli-
cation relating to the fact that subjects who do not make computational mistakes (δi = 0)
are observationally equivalent to subjects who do make computational mistakes with
zero magnitude (δi > 0 but ρi = 0).
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2.4 Strategic behavior rules and within-individual heterogeneity

Each subject i has a strategic behavior rule

θi =
(
λi(·)�δi�ρi

)

that characterizes how it behaves in games. These are ex ante unknown by the econo-
metrician. The components of the strategic behavior rule are as follows:

(i) The distribution λi(·) over decision rules characterizes the probabilities that sub-
ject i uses each decision rule. The argument of λi(·) is a decision rule. For example,
λi(NE) is the probability that subject i uses the Nash equilibrium (NE) solution concept
when it plays a game. The decision rules are described in Section 2.2.

(ii) The parameters δi and ρi are the probability and magnitude of computational
mistakes made by subject i. As described in Section 2.3, a subject might “intend” to use a
particular decision rule, but fail to compute the associated action correctly and actually
take an action that is only approximately equal to the action predicted by the intended
decision rule. A special case of the model rules out computational mistakes.

The distribution over decision rules allows the existence of within-individual hetero-
geneity: a given subject might use multiple decision rules. However, the model does not
impose the existence of within-individual heterogeneity, thereby nesting related models
in which subjects each use only one decision rule as special cases. Indeed, the empirical
application finds evidence of within-individual heterogeneity without ex ante imposing
the existence of within-individual heterogeneity. If the econometrician restricts the pa-
rameter space for λi(·) to be degenerate distributions that place probability 1 on just one
decision rule, then the econometrician assumes away within-individual heterogeneity.

The distribution over decision rules is an exogenous and fixed characteristic of a
subject. Therefore, the model does not allow the possibility that subjects endogenously
adjust their probabilities of using the decision rules due to learning or related dynamic
considerations. Although there is an important literature on learning in games (e.g., as
discussed in Camerer (2003, Chapter 6)), the model in this paper follows a significant
part of the experimental game theory literature that abstracts from learning. Experi-
ments, including the experiment analyzed in the empirical application in Section 5, may
be designed specifically to reduce or even eliminate the possibility of learning and re-
lated dynamic considerations. The experiment can limit the feedback presented to the
subjects about their play of the games until the completion of the entire experiment.
Further, the experiment can begin with an initial learning period that is not analyzed by
the econometrician, so that the data that are analyzed by the econometrician are subse-
quent to the subjects learning how to play the game. Similarly, the model does not allow
the possibility that the games played in the experiment have different difficulties that
would lead to the use of different decision rules.

Therefore, if an experiment involves learning and/or different difficulties of the
games, then the model is misspecified relative to that experimental data. Because these
features of the experiment would result in individuals using multiple decision rules over
the course of the experimental study, estimates of the model based on such data could
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be expected to “account for” those features of the experimental data by estimating that
individuals have within-individual heterogeneity, since within-individual heterogeneity
does result in individuals using multiple decision rules. Hence, within-individual het-
erogeneity could “fit” the data coming from an experiment involving learning and/or
different difficulties of the games, in the usual sense that estimating a misspecified
model results in a “best fit” of the data relative to the misspecified model. Therefore,
the interpretation of estimates from the model that indicate the existence of within-
individual heterogeneity depend on the credibility of the assumption that learning
and/or different difficulties of the games are not features of the experiment. These fea-
tures of the experiment would also be problematic for models that abstract from within-
individual heterogeneity, because those models assume that each individual always uses
the same decision rule. Another reason that individuals might not always conform to the
predictions of one decision rule is that they make computational mistakes, as accommo-
dated in the model and discussed in Section 2.3.

In single-agent decision problem experiments, there is evidence that individuals do
not always make the same choices when repeatedly faced with the same decision prob-
lem (e.g., Rieskamp, Busemeyer, and Mellers (2006) and Rieskamp (2008)). One explana-
tion for such observed behavior is random utility,14 because as Machina (1985, p. 575)
notes, “if when confronted with a choice over two objects the individual chooses each
alternative a positive proportion of the time, it seems natural to suppose that this is
because he or she ‘prefers’ each one to the other those same proportions of the time.”
Bardsley, Cubitt, Loomes, Moffatt, Starmer, and Sugden (2010, Section 7.2.3) summarize
random utility models to have the structure “(i) that the individual’s preferences can be
represented by some set of functions, all of which are consistent with that theory; and
(ii) that for any particular decision task, the individual acts as if she picks one of those
functions at random from the set and applies it to the task in question; then (iii) ‘puts
back’ that function into the set before picking again at random when tackling another
decision (even if it is the identical task encountered another time).” McFadden (1981,
p. 205) summarizes one common interpretation of random utility models as “[t]hen the
individual is a classical utility maximizer given his state of mind, but his state of mind
varies randomly from one choice situation to the next.”

Similar to how random utility models allow that the behavior of individuals in single-
agent decision problems may be described as arising from randomly selecting from a set
of utility functions, within-individual heterogeneity allows that the behavior of individ-
uals in games may be described as arising from randomly selecting from a set of decision
rules. Further, it could be that the behavior of individuals in games may be described as
arising from randomly selecting from a set of beliefs about the type of their opponent
and using the induced decision rule that best responds to that belief. So, the “state of
mind” is the belief about the type of their opponent. For example, in the level-k model
of thinking (i.e., anchored strategic reasoning in this paper, detailed in Section 2.2), an

14Many models in econometrics known as random utility tend to be interpreted to emphasize a distri-
bution of utility across the population. In contrast, these “random utility” models emphasize a distribution
of utility for a given agent. The difference essentially concerns whether the “randomness” is a fixed charac-
teristic of individual agents across decision problems.
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individual who believes the opponent is level 0 with probability p and level-1 with prob-
ability 1 −p will use the level-1 strategy with probability p and the level-2 strategy with
probability 1 −p. This differs from the standard approach to responding to uncertainty
about the type of the opponent, which would not generate within-individual hetero-
geneity, because it would entail individuals using the strategy that is the best response to
the entire distribution of beliefs about the type of the opponent. By resolving uncertainty
about the opponent before taking an action, individuals can exhibit within-individual
heterogeneity.

Therefore, different decision rules may be interpreted as involving different beliefs
about the strategy of the opponent, and beliefs about the strategy of the opponent af-
fect the (expected) utility each individual associates with each of its actions. Hence, ran-
domly selecting from a set of decision rules is related to randomly selecting from a set of
utility functions, where the utility functions in the set of utility functions differ because
of the different beliefs held about the strategy of the opponent. Consequently, randomly
selecting from a set of decision rules provides a justification for why individuals might
appear as if to randomly select from a set of utility functions, as in the standard formu-
lation of random utility models.

More generally, especially in the empirical experimental game theory literature con-
cerning the level-k model of thinking (i.e., anchored strategic reasoning in this paper),
issues related to but distinct from within-individual heterogeneity have been investi-
gated as a sort of robustness check on the stability of the estimates. The details vary
across papers, but two main questions are common. See Stahl and Wilson (1995) or
Georganas, Healy, and Weber (2015) for some examples. One question concerns check-
ing whether the aggregate distribution of behavior (i.e., the fraction of level-1 behav-
ior, the fraction of level-2 behavior, etc.), which is the same as the aggregate distribu-
tion of types (i.e., the fraction of level-1 thinkers, the fraction of level-2 thinkers, etc.)
in models that assume that each individual exclusively uses one decision rule, appears
to be the same across multiple sets of games. The example in Section 3.2 shows that
the fraction of individuals exhibiting any given number of steps of reasoning can be the
same across games, even though particular individuals do exhibit within-individual het-
erogeneity. Therefore, questions concerning the aggregate distribution of behavior are
distinct from questions concerning within-individual heterogeneity, and indeed within-
individual heterogeneity can be obscured when investigating only the aggregate distri-
bution of behavior, because within-individual heterogeneity is a characteristic of an in-
dividual, not aggregate behavior across individuals. Another question concerns check-
ing whether a particular individual is estimated to be the same type across multiple
sets of games (or, more or less equivalently, whether individuals appear to statistically
conform out of sample to their estimated type). This question is more similar to, but
still distinct from, questions concerning within-individual heterogeneity. An individ-
ual who most often uses a particular decision rule is likely to always be estimated to
be the type who uses that decision rule, across different sets of games, since that pro-
vides the best fit among the types restricted to using one decision rule, regardless of
underlying within-individual heterogeneity. More generally, models that are restricted
to estimating each individual to be a type that exclusively uses one decision rule (e.g.,
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level 1 or level 2) are misspecified in the presence of within-individual heterogene-
ity. In contrast, the model in this paper explicitly allows within-individual heterogene-
ity.

Although the above discussion describes possible explanations for within-individual
heterogeneity, further research would be needed to understand and distinguish between
the possible sources of within-individual heterogeneity. Within-individual heterogene-
ity is a characteristic of observed behavior, with potentially many “as if” explanations.
Consequently, the model provides a framework for studying the observable implications
of within-individual heterogeneity, but does not provide an explanation for why individ-
uals do or do not exhibit within-individual heterogeneity. Similarly, related papers pro-
vide frameworks for studying the observable implications of an economic theory (e.g.,
Nash equilibrium, level-k thinking, etc.), without attempting to explain why individuals
do or do not conform to the predictions of that theory.

2.5 Strategic behavior types

The model is based on the condition that there are at most R strategic behavior rules
used in the population. Hence, by definition, there are at mostR strategic behavior types,
indexed by r = 1�2� � � � �R, and denoted by Θr = (Λr�Δr�Pr), where the quantities com-
prising Θr in uppercase letters correspond to the quantities comprising θi in lowercase
letters. Therefore, for strategic behavior type r,Λr is the distribution over decision rules,
Δr is the probability of a computational mistake, and Pr is the magnitude of a computa-
tional mistake.

The population fraction of subjects who are type r is π(r). It is allowed that π(r)= 0
for some r, so that fewer thanR strategic behavior types exist. When subject i is born, it is
assigned to use strategic behavior type Θτ(i), where τ(i) ∈ {1�2� � � � �R}, according to the
distribution π(·) over {1�2� � � � �R}. Therefore, by construction, θi =Θτ(i). The condition
that the population uses at most R strategic behavior rules guarantees that the model is
parsimonious and is required for the identification strategy.

Although R is known by the econometrician, {Θr�π(r)}Rr=1 are unknown by the
econometrician. Consequently, the econometrician knows that there are at most R
strategic behavior rules used in the population, but the econometrician does not know
those strategic behavior rules or the population fractions of subjects that use each strate-
gic behavior rule. Indeed, the identification result shows sufficient conditions for point
identification (and therefore estimation) of the unknown {Θr�π(r)}Rr=1.

2.6 Behavioral implications of the model

The behavioral implications of the model can be described in the following procedural
way.

I. Each subject is born and permanently assigned its strategic behavior rule θi =
(λi(·)�δi�ρi) by nature per Section 2.5.

II. Each time subject i encounters a game to play, the following events occur:
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(a) Subject i chooses the decision rule it intends to use in that game. The probability
that subject i chooses decision rule k is λi(k). The subject might choose, for example, to
use the Nash equilibrium or to use one step of unanchored strategic reasoning. The set
of decision rules is described in Section 2.2.

(b) If the intended decision rule is not subject to computational mistakes, as de-
scribed in Section 2.3, then the subject takes an action according to that decision rule.
Otherwise, the subject attempts to compute the action associated with the intended de-
cision rule. The subject either correctly or incorrectly computes the action:

(i) The probability of correct computation is 1 − δi. In this case, the subject actually
takes the action associated with the intended decision rule.

(ii) The probability of incorrect computation is δi. In this case, the subject actually
takes an action that is only approximately equal to the action associated with the in-
tended decision rule. The details of computational mistakes are described in Section 2.3.

For example, if λi(k) = 0�2 and δi = 0�05, then subject i uses decision rule k with
probability 0�2. Supposing that k is subject to computational mistakes, with probability
0�95, it correctly computes the decision rule and actually does take the associated action,
but, with probability 0�05, it makes a small computational mistake and takes an action
that is only approximately equal to the action associated with decision rule k.

2.7 Data and sketch of identification problem

The data observed by the econometrician are the actions taken by each ofN subjects in
games of the sort described in Section 2.1. The subjects are indexed by i = 1�2� � � � �N .
Each subject plays each ofG games, indexed by g= 1�2� � � � �G. It is assumed essentially
without loss of generality, by redefining the player roles appropriately, that the subjects
in the data set are always player 1 in the games.15 The observed action of subject i in
game g is yig. See the empirical application in Section 5 for one of many instances of
such a data set from the experimental game theory literature. As discussed in Section 2.4,
because of the non-equilibrium nature of the analysis, the actions of the opponents of
a subject are not relevant, since the analysis focuses on identifying/estimating the solu-
tion concept(s) or decision rule(s) that generate the behavior of individual subjects. In

15In many experiments, including the experiment in the empirical application, for each actual game in
the experiment, each subject plays in all player roles in that game. Then it is possible to redefine the games
to satisfy the condition that the subjects in the data set are always player 1 in the games. For example, if
there is a game with a row player and a column player, then the data from the subjects’ behavior in the
row player role of the game can be “game 1” data and the data from the subjects’ behavior in the column
player role of the game can be “game 2” data. Even if the experimental design does not intentionally assign
all subjects to play in all player roles, as long as the assignment to player roles is suitably randomized and
exogenous to the model, there can be some representative subset of subjects who do happen to always play
as player 1 in all games, and the identification results can be viewed as showing sufficient conditions for
achieving identification of the model parameters based on that subset of the subjects who play as player 1
in all games. Of course, the other data not from that subset of subjects would also have identifying content
and would be used in estimation.
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principle, it would be enough for an experiment to present each subject with each of the
games, without presenting the games to the opponents.

The population distribution of the observed data is P({yg}Gg=1), the distribution of
actions in the G games across the population of subjects. The identification problem
is to establish sufficient conditions under which it is possible to uniquely recover the
unknown parameters {Θr�π(r)}Rr=1 from P({yg}Gg=1).

The identification problem corresponds to N → ∞ while G is fixed, corresponding
to data from a population of subjects observed to play G games. An alternative iden-
tification problem corresponds to N → ∞ and G→ ∞, corresponding to data from a
population of subjects observed to play a population of games. Identification in that
setup would require making assumptions about the population distribution of games,
including games that are not among the finitely many games in the experiment. It seems
difficult to interpret assumptions on games that are not in the experiment. In contrast,
the identification results in the fixedG setup require only that the econometrician verify
that the games in the experiment satisfy certain conditions. Therefore, identification re-
sults in theG→ ∞ setup could be less persuasive than identification results in the fixed
G setup.

The discussion focuses on the experimental design involving N subjects, each of
whom plays each of G games once. Another experimental design involves just one sub-
ject who repeatedly plays one game. Assuming away the learning and other dynamic
considerations discussed in Section 2.4, the model of one subject playing one game re-
peatedly, viewing each play of the game as an observation indexed by i = 1�2� � � � �N ,
is mathematically equivalent to many subjects of the same strategic behavior type (i.e.,
R= 1) playing one game once each, viewing each subject’s play of the game as an obser-
vation indexed by i = 1�2� � � � �N . In both cases, there is a single strategic behavior type
that generates the data, whether the data happen to be generated by one subject repeat-
edly playing the game (necessarily described by one strategic behavior type) or many
subjects playing the game (all described by the same strategic behavior type). Therefore,
the identification problem arising from this alternative experimental design is covered
by the identification results in this paper, taking N to be the number of times the sub-
ject plays the game,G= 1 to reflect that the subject plays one game, and R= 1 to reflect
that the subject is necessarily of one strategic behavior type. In particular, as discussed
in Section 3.3, the identification problem remains challenging even in this special case
of the model.

As with estimation of any model, the empirical results are necessarily relative to the
environment that generates the data. Data sets from different environments might re-
sult in different estimates of the model parameters, because of differences in the envi-
ronments. For example, estimation of the model on different populations of individuals
might reveal that different populations are composed of different types, or composed of
the same types in different proportions. Similarly, estimation of the model on different
sets of games (e.g., different difficulties of the games) might reveal that different sets of
games result in the use of different decision rules or the same decision rules with differ-
ent probabilities.
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3. Setup of the identification problem

The identification problem in this model concerns the question of whether it is possible
to recover the parameters of the model (i.e., {Θr�π(r)}Rr=1) from the population distribu-
tion of the data. The model will fail to be point identified if it happens that more than
one specification of the parameters generates the same distribution of the data, because
then the “true” specification of the parameters cannot be distinguished from a “false”
specification of the parameters. Therefore, point identification is a prerequisite for esti-
mating the parameters of the model.16 The parameters of the model are not point iden-
tified without nontrivial sufficient conditions, as Section 3.2 provides a counterexample
to point identification in the absence of the sufficient conditions for point identification
and Section 3.3 provides a discussion of further threats to point identification.

3.1 Definition of point identification

So as to define point identification, it is necessary to define observational equivalence
of strategic behavior types. If there are two strategic behavior types that are not ob-
servationally equivalent, then at least, in principle, in at least some games, those two
strategic behavior types could generate different observed behavior, and, therefore, be
distinguished from each other. Conversely, if there are two strategic behavior types that
are observationally equivalent, then there are no games in which those two strategic be-
havior types would generate different observed behavior. Therefore, it is impossible to
distinguish between observationally equivalent strategic behavior types.

It follows that any point identification result can at most be expected to achieve
point identification up to observational equivalence of strategic behavior types. But, by
definition, point identification up to observational equivalence is enough to answer any
interesting question about behavior, because point identification up to observational
equivalence exhausts the relevant information needed to understand the behavior gen-
erated by the strategic behavior types.

Definition 1 (Observational Equivalence of Strategic Behavior Types). The quantities
Θ1 = (Λ1�Δ1�P1) andΘ2 = (Λ2�Δ2�P2) are observationally equivalent if

(i) it holds that Λ1 =Λ2,

(ii) it holds that Δ11[∑k∈MΛ1(k) > 0] = Δ21[∑k∈MΛ2(k) > 0],
(iii) it holds that P11[Δ1 > 0]1[∑k∈MΛ1(k) > 0] = P21[Δ2 > 0]1[∑k∈MΛ2(k) > 0].

By the above definition, two strategic behavior types are observationally equivalent
if they use the decision rules with the same probability (i.e., Condition (i)), make com-
putational mistakes with the same probability provided that the types actually use de-
cision rules subject to computational mistakes (i.e., Condition (ii)), and make computa-
tional mistakes with the same magnitude provided that the types actually use decision

16If the model were not point identified, inference following Chernozhukov, Hong, and Tamer (2007),
Beresteanu and Molinari (2008), Rosen (2008), Andrews and Soares (2010), Bugni (2010), Canay (2010),
Romano and Shaikh (2010), Kline (2011), or Kline and Tamer (2016), among others, would be necessary.
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rules subject to computational mistakes and make computational mistakes with pos-
itive probability (i.e., Condition (iii)). It is not possible to require that observationally
equivalent types have the same probability of making computational mistakes if those
types never use decision rules subject to computational mistakes, because in that case
the probability of making a computational mistake has no observable implications in
any game.17 Similarly, it is not possible to require that observationally equivalent types
have the same magnitude of computational mistakes if those types never use decision
rules subject to computational mistakes or never make computational mistakes, be-
cause in that case the magnitude of computational mistakes has no observable impli-
cations in any game.

Then the following statement is the definition of point identification.

Definition 2 (Point Identification of Model Parameters). The model parameters are

point identified if, for any specifications {Θ0r �π0(r)}R̃0
r=1 and {Θ1r �π1(r)}R̃1

r=1 of the model
parameters that satisfy the assumptions and also are such that

(i) both specifications {Θ0r �π0(r)}R̃0
r=1 and {Θ1r �π1(r)}R̃1

r=1 generate the observable
data,

(ii) it holds that π0(·) > 0 and π1(·) > 0,

(iii) the strategic behavior rulesΘ0r andΘ0r′ are not observationally equivalent for all
r �= r′, andΘ1r andΘ1r′ are not observationally equivalent for all r �= r ′,
then R̃0 = R̃ = R̃1 and there is a permutation φ of {1�2� � � � � R̃} such that for each r =
1�2� � � � � R̃, it holds that π0(r)= π1(φ(r)) andΘ0r is observationally equivalent toΘ1φ(r).

This is the standard definition of point identification, adjusted for two issues. First,
point identification can only be up to observationally equivalent strategic behavior
types, as discussed above. This concerns parameters relating to computational mistakes,
which are assumed known by the econometrician when the model is specified to have
no computational mistakes, and otherwise might be viewed as “nuisance parameters.”
And second, point identification can only be up to permutations of the labeling of the
strategic behavior types, because the labeling has no observable implication. As in any
model with types, it is not possible to identify which strategic behavior type is truly type
r since being type r rather than type r ′ has no observable implication.

The condition that π(·) > 0 is required because it is not possible to point identify the
strategic behavior types that are used with zero probability. Types that are used by zero
percent of the population have no observable implication. So, in a specification that has
R̃ strategic behavior types, it is assumed that indeed all R̃ types are used with positive
probability. This can be taken as the definition of a specification using R̃ strategic behav-
ior types, ruling out using a type with zero probability. Moreover, the condition that the

17If observationally equivalent types were required to have the same probability of making computa-
tional mistakes even if the types never use decision rules subject to computational mistakes, then two
strategic behavior types that generate the same behavior (i.e., two types that use the decision rules with the
same probabilities, never use decision rules subject to computational mistakes, and have different proba-
bilities of making a computational mistake) would be defined as not observationally equivalent.
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strategic behavior types in a specification are not observationally equivalent is required
because it is always possible to “split” a strategic behavior type into two identical copies
of that type and generate the same observable data, as long as the sum of the probabili-
ties of the use of those two types equals the probability of the use of the original type. By
requiring that the types are not observationally equivalent, this uninteresting source of
non-identification is ruled out.

3.2 Counterexample to point identification

It is possible to give a counterexample to point identification in the absence of the suffi-
cient conditions established in this paper. This counterexample illustrates the difficulty
in distinguishing between across-individual heterogeneity and within-individual het-
erogeneity.

The counterexample involves two specifications of the parameters. In the first spec-
ification, R = 1, and (Λ1(NE)�Λ1(1anch)) = ( 1

2 �
1
2) and Δ1 = 0. In the second specifica-

tion, R = 2, with π(r) = 1
2 and (Λr(NE)�Λr(1anch)) = (1[r = 1]�1[r = 2]), and Δr = 0 for

1 ≤ r ≤ 2. There are a total of three types across these two specifications, and no pairs of
types are observationally equivalent according to Definition 1.

In the first specification, all subjects use the same strategic behavior rule, and that
rule uses the Nash equilibrium and one step of anchored strategic reasoning with equal
probability. In the second specification, there are two equally probable strategic behav-
ior rules, and each rule uses just one of the decision rules.

These two specifications generate the same data in any one game: an equally
weighted mixture of point masses at the actions associated with Nash equilibrium and
one step of anchored strategic reasoning. Consequently, these two specifications can-
not be distinguished on the basis of observing subjects play just one game, and, there-
fore, the parameters of the model are not point identified if the econometrician observes
subjects play just one game. This shows that within-individual heterogeneity cannot be
detected in data from just one game. The specification involving within-individual het-
erogeneity results in the same aggregate distribution of observable data in every game
as does the specification not involving within-individual heterogeneity. This is because
within-individual heterogeneity is a property of individuals, and, therefore, individu-
als must be observed to play multiple games so as to identify within-individual hetero-
geneity. This counterexample is unrelated to the additional complications introduced
by computational mistakes or unanchored strategic reasoning, which are discussed in
Section 3.3.

Similar counterexamples can be shown in the context of data on more than one
game, but less than the number of games established as sufficient for point identifi-
cation. These counterexamples become notationally cumbersome when the number of
games is large but not large enough for point identification, but it is possible to provide
another relatively simple counterexample when there are two games. By some abuse of
notation, consider the parameterized specification thatR= 2, with parametersπ(r) and
(Λr(NE)�Λr(1anch)) = (Λr�1 − Λr), and Δr = 0 for 1 ≤ r ≤ 2. Note that π(2) = 1 − π(1).
The free parameters are π(1), Λ1, and Λ2. The data when G= 2 can be summarized by
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the following four observed probabilities concerning the distribution of subjects’ behav-
ior acrossG= 2 games:

(i) The probability that a subject uses Nash in both games: P(NE�NE) = Λ2
1π(1) +

Λ2
2(1 −π(1)).

(ii) The probability that a subject uses Nash and then one step of anchored strategic
reasoning: P(NE�1anch)=Λ1(1 −Λ1)π(1)+Λ2(1 −Λ2)(1 −π(1)).

(iii) Equally, due to the assumption that behavior is independent across games, so
the order of games does not matter, the probability that a subject uses one step of an-
chored strategic reasoning and then Nash: P(1anch�NE)=Λ1(1−Λ1)π(1)+Λ2(1−Λ2)×
(1 −π(1)).

(iv) The probability that a subject uses one step of anchored strategic reasoning in
both games: P(1anch�1anch)= (1 −Λ1)

2π(1)+ (1 −Λ2)
2(1 −π(1)).

Consequently, if there are two distinct specifications ofπ(1),Λ1, andΛ2 that give rise
to the same numerical values for these four probabilities (i.e., P(NE�NE), P(NE�1anch),
P(1anch�NE), and P(1anch�1anch)), then the model is not point identified. It is a fairly
straightforward computational exercise to establish. For just one example, the specifi-
cation (π(1) = 0�16, Λ1 = 0�65, and Λ2 = 0�4) generates the same values for these four
probabilities as does (π(1)= 0�3, Λ1 = 0�3, and Λ2 = 0�5).

3.3 Further threats to point identification

Section 3.2 is an example of one threat to point identification. There are many other
threats.

First, because of computational mistakes, even if a subject does not use the action
associated with a particular decision rule, that subject nevertheless may have intended
to use that decision rule. For example, a subject might have intended to use Nash equi-
librium, but only use an action approximately equal to the Nash equilibrium action, due
to a computational mistake. Therefore, it is not enough to check whether a subject uses
the associated action so as to check whether that subject used that decision rule.

Second, when multiple decision rules predict the same action in a given game, then
based on observing a subject take that action, it is impossible to uniquely determine
the decision rule. In particular, any action that is predicted by s′ steps of unanchored
strategic reasoning is also predicted by s steps of unanchored strategic reasoning for
0 ≤ s ≤ s′, as discussed in Section 2.2.2.

Third, the observed actions are not necessarily identically distributed across games.
For example, it could be that in one game, a particular range of actions is consistent with
both zero and one steps of unanchored strategic reasoning, but in another game, that
same range of actions is consistent with only zero steps of unanchored strategic reason-
ing. Consequently, the probability of observing actions in that range would be different
across the two games, even holding fixed the probabilities that subjects use the various
decision rules. Therefore, observed actions across games are not necessarily identically
distributed, despite the fact that the use of decision rules is identically distributed across
games per λi(·).
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4. Sufficient conditions for point identification of all model parameters

This section provides the main sufficient conditions for point identification of all un-
known model parameters, in the sense of Definition 2. Because the main sufficient con-
ditions for point identification concern the properties of the games that subjects are
observed to play, the identification result can be interpreted as a result on experimental
design. An econometrician with the goal of identifying the decision rules should conduct
an experiment that has subjects play games that satisfy the conditions of the identifica-
tion result. Mechanically, estimation is straightforward under the sufficient conditions
for point identification, and it proceeds by maximizing the likelihood derived in Ap-
pendix A.

The sufficient conditions for point identification must be at least as strong as any
necessary condition for point identification. It is a necessary condition for point identi-
fication that each pair of decision rules in the model makes distinct predictions relative
to the games in the experiment. Otherwise, if two decision rules in the model make the
same predictions in all of the games in the experiment, then obviously those two deci-
sion rules are observationally equivalent relative to the games in the experiment. Also,
per the counterexample in Section 3.2, a necessary condition for point identification is
that each subject is observed to play multiple games.

To distinguish between the use of different numbers of steps of unanchored strategic
reasoning, it is necessary that the different numbers of steps of unanchored strategic
reasoning make distinct predictions in at least some of the games in the experiment.
Section 2.2.2 discussed the fact that, in every game, some actions are consistent with
multiple different numbers of steps of unanchored strategic reasoning. Nevertheless, it
is possible to distinguish between the use of different numbers of steps of unanchored
strategic reasoning, because some actions are inconsistent with certain numbers of steps
of unanchored strategic reasoning.

Define the set Ujg(s�ε) to be a (possibly empty) set of actions for player j in game
g that are consistent with s steps of unanchored strategic reasoning, are not consistent
with s′ ∈ U with s′ > s steps of unanchored strategic reasoning, and collectively will be
taken with zero probability by subjects who use any decision rule k ∈ M and possibly
make a computational mistake of magnitude at most ε. The set Ujg(s�ε) can be written
as

Ujg(s�ε)=
⎧⎨
⎩
U1
jg(s� ε) if Σsjg is not a finite set,

U0
jg(s) if Σsjg is a finite set,

where

U1
jg(s� ε)= Σsjg ∩

⋂
k∈M

[
cjg(k)− ε(αUg(j)− αLg(j)

)
� cjg(k)+ ε(αUg(j)− αLg(j)

)]C

∩
⋂

s′>s�s′∈U

(
Σs

′
jg

)C
�

U0
jg(s)= Σsjg ∩

⋂
k∈M

{
cjg(k)

}C ∩
⋂

s′>s�s′∈U

(
Σs

′
jg

)C
�
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Figure 1. Stylized graphical depiction of Assumption 4.1. This figure complements the discus-
sion of Assumption 4.1, showing a stylized depiction of the arrangement of various quantities in
the action space. In this depiction, subjects might use zero or one steps of unanchored strate-
gic reasoning, or one step of anchored strategic reasoning, or Nash equilibrium. Recall that zero
steps of anchored strategic reasoning is the same as zero steps of unanchored strategic reason-
ing, at least under the uniform selection rule on unanchored strategic reasoning.

Let Rjg(s� s
′� ε) be the probability of Ujg(s�ε) under the distribution with

density ζs
′
jg(·) with respect to the appropriate dominating measure on Σs

′
jg from

Section 2.2.2.18 By construction,Rjg(s� s′� ε)= 0 if s′ > s and s′ ∈ U . LetUjg(s)=Ujg(s�ρ),
where ρ comes from Assumption 2.2. Also, letΩjg = αUg(j)− αLg(j).

The addition of Assumption 4.1 is sufficient for point identification. A stylized depic-
tion of the assumption is provided in Figure 1, which shows the arrangement of various
quantities in the action space in the case that Σs1g = [cL1g(s)� cU1g(s)]. Recall from Sec-
tion 2.7 that, without loss of generality, the subjects in the data set are always player 1
in the games. Assumption 4.1 is discussed in more detail in the context of the empirical
application in Section 5.

Assumption 4.1 (Conditions on the Games). The data set includes at least 2R−1 games,
such that each game g of those 2R− 1 games satisfies all of the following conditions:

(i) It holds thatΩ1g > 0.

(ii) For each k ∈ M and k′ ∈ M such that k �= k′, |c1g(k)− c1g(k
′)|> 2ρΩ1g.

(iii) For each k ∈ M and s ∈ U such that Σs1g is a finite set, c1g(k) /∈ Σs1g.

(iv) For each k ∈ M, ρΩ1g <max{αUg(1)− c1g(k)� c1g(k)− αLg(1)}.

(v) For each s ∈ U , R1g(s� s�ρ) > 0.

Note that Assumption 4.1 requires the data set to include at least 2R− 1 games that
simultaneously satisfy each of the conditions, which is stronger than the condition that,

18For example, under the uniform selection rule, if s′ ≤ s and Σs
′
jg = [cLjg(s′)� cUjg(s′)] is a nondegenerate

interval, then Rjg(s� s′� ε) is the ratio of the Lebesgue measure of Ujg(s�ε) to cUjg(s′)− cLjg(s′).
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for each of the conditions, the data set includes at least 2R − 1 games that satisfy that
condition.

Condition (i) requires that the game has nondegenerate action space. If the game
had a degenerate action space, then all solution concepts and decision rules would make
the same prediction and, therefore, would be observationally equivalent.

Condition (ii) requires that the game be such that the actions predicted by decision
rules subject to computational mistakes are far enough apart from each other, relative
to the largest possible computational mistakes, so that a subject who uses decision rule
k ∈ M will take a different action than a subject who uses decision rule k′ ∈ M for k′ �= k,
even if the subjects make computational mistakes. Note that if the econometrician spec-
ifies the model to have no computational mistakes (i.e., ρ= 0), this requires simply that
c1g(k) �= c1g(k

′). Despite this condition, note that it is not necessarily possible to de-
termine the intended decision rule of a subject even if a subject is observed to take
an action close to an action predicted by a particular decision rule k∗ ∈ M, because
it is still possible that the subject used some number of steps of unanchored strate-
gic reasoning that resulted in taking an action close to the action predicted by decision
rule k∗. Moreover, it is not possible to determine the probability that a subject intends
to use a decision rule k∗ ∈ M by checking how often the subject takes the action ex-
actly predicted by decision rule k∗, because with unknown probability the subject will
make a computational mistake. In Figure 1, this condition is reflected by the fact that
[c1g(NE)− ρΩ1g� c1g(NE)+ ρΩ1g] is disjoint from [c1g(1anch)− ρΩ1g� c1g(1anch)+ ρΩ1g].

Condition (iii) requires that the game be such that if it happens that s steps of unan-
chored strategic reasoning predict a finite set of actions, then the actions predicted by
decision rules subject to computational mistakes are not equal to one of the finitely
many actions predicted by s steps of unanchored strategic reasoning. In particular, this
is used to distinguish between anchored and unanchored strategic reasoning, because
it implies that the actions predicted by decision rules subject to computational mistakes
will not arise with positive probability due to the use of unanchored strategic reasoning.
In Figure 1, this condition is not relevant as it is assumed that Σs1g is a nondegenerate
interval.

Condition (iv) requires that the game be such that the actions predicted by de-
cision rules subject to computational mistakes are sufficiently far from at least one
of the boundaries of the action space. As a consequence, there will be some actions
between the largest (or, respectively, smallest) action that arises due to computational
mistakes and the upper bound (or, respectively, lower bound) of the action space. Oth-
erwise, it would not be possible to determine the true magnitude of computational mis-
takes. It allows that the action predicted by a decision rule subject to computational
mistakes equals one of the boundaries of the action space. In Figure 1, this condition
is reflected by the fact that [c1g(NE) − ρΩ1g� c1g(NE) + ρΩ1g] and [c1g(1anch) − ρΩ1g�

c1g(1anch)+ ρΩ1g] are strictly contained in the action space.
Condition (v) requires the game to be such that for each number of steps of unan-

chored strategic reasoning s ∈ U , there is a set of actions that can only arise from s or
fewer steps of unanchored strategic reasoning. This helps to identify the probability of
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using s+ 1 steps of unanchored strategic reasoning, by the difference between the prob-
abilities of using s or fewer and using s + 1 or fewer steps of unanchored strategic rea-
soning. In Figure 1, this condition is illustrated by U1g(0), which can arise from the use
of zero but not one step of unanchored strategic reasoning, and also not the use of other
decision rules.

Assumption 4.1 requires that the econometrician observe each of the subjects play
at least 2R− 1 games satisfying these conditions. This is necessary to avoid the threat to
point identification that was described in Section 3.2.

The econometrician must also observe subjects play at least one game that satisfies
some of the above conditions, and a condition described in the following assumption.

Assumption 4.2 (Conditions on at Least One Game). The econometrician observes in
the data set at least one game g satisfying Conditions (i), (ii), and (iv) in Assumption 4.1,
and the extra condition that, for each k ∈ M and s ∈ U ∪ {0unanch}, one of the following
conditions holds:

(i) [c1g(k)− ρΩ1g� c1g(k)+ ρΩ1g] is a subset of Σs1g,

(ii) [c1g(k)− ρΩ1g� c1g(k)+ ρΩ1g] is disjoint from Σs1g,

(iii) [c1g(k)� c1g(k)+ ρΩ1g] is a subset of Σs1g and c1g(k)= αLg(1),
(iv) [c1g(k)− ρΩ1g� c1g(k)] is a subset of Σs1g and c1g(k)= αUg(1).

Conditions (i)–(iv) requires that the range of possible computational mistakes from
any decision rule k ∈ M cannot overlap the boundary of the range of predictions
from any number of steps of unanchored strategic reasoning. This assumption is used
to identify the magnitude of computational mistakes by inspecting whether actions
slightly closer to the actions predicted by decision rules subject to computational mis-
takes are more likely than those slightly further away. This assumption guarantees that
over the relevant range of possible computational mistakes, the use of unanchored
strategic reasoning cannot either mimic or, alternatively, mask computational mistakes.
Parts (i) and (ii) of Assumption 4.2 can be viewed, roughly, as meaning that Assump-
tion 4.2 is satisfied whenever the actions associated with the strategies in M are suitably
distinct from the boundaries of the sets of actions associated with unanchored strategic
reasoning. Parts (iii) and (iv) of Assumption 4.2 allows that an action associated with a
strategy in M is on the boundary of the action space. Recall from above that ρ= 0 when-
ever computational mistakes are ruled out. In that case, note that logically either (i) or
(ii) must be true, since the singleton c1g(k) must either be a subset or disjoint from any
given set. In Figure 1, this is reflected by the fact that c1g(NE) and c1g(1anch) are distinct
from the boundaries of the sets of actions associated with unanchored strategic reason-
ing, hence [c1g(NE)− ρΩ1g� c1g(NE)+ ρΩ1g] and [c1g(1anch)− ρΩ1g� c1g(1anch)+ ρΩ1g]
are contained in both Σ0

1g and Σ1
1g. As with the other assumptions, this assumption is

further discussed in the context of the empirical application in Appendix E.
The following theorem establishes that the model is point identified under the above

assumptions. The lengthy proof of this theorem is collected in Appendix D. A stylized
sketch of the proof is provided in Section 4.1.
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Theorem 4.1. Under Assumptions 2.1, 2.2, 4.1, and 4.2, the parameters of the model are
point identified in the sense of Definition 2.

This theorem does not imply that only the games that satisfy the conditions in As-
sumptions 4.1 or 4.2 are informative about model parameters or that only such games
should be used in estimation. All games should be used in estimation for the purposes
of maximizing the efficiency of the estimator relative to the available data. Theorem B.1
in Appendix B establishes sufficient conditions for point identification of all unknown
parameters except for those related to the magnitude of computational mistakes, under
weaker conditions than used by Theorem 4.1.

The assumptions do not impose the existence of within-individual heterogeneity, or
the existence of across-individual heterogeneity, or the use of any specific decision rule
from those described in Section 2.2. In other words, the assumptions do not impose that
any individual use the Nash equilibrium or that any individual use unanchored strategic
reasoning, and so forth. Therefore, the identification result automatically applies to spe-
cial cases of the model involving some but not all of those features. As a consequence,
estimation of the model does not impose the existence of those features. Rather, esti-
mates of the model can be used to test for the existence of those features. In particular,
the identification result can be used to identify a model involving all such features ex-
cept within-individual heterogeneity if the econometrician knows that each subject can
be characterized by the use of just one decision rule. Sections 3.2 and 3.3 show that these
features of the model are independent complications of the identification problem.

4.1 Sketch of proof

The formal proof is lengthy and technical, but it is possible to provide a sketch of the
proof. The discussion of Assumptions 4.1 and 4.2 already describes the sources of iden-
tification, and this sketch describes how they are formalized in the proof. This sketch
states without justification the main claims that are nontrivial to prove, and proving
those claims comprises a significant portion of the proof.

It can be shown that a vector of probabilities of events related to the observed ac-
tions (e.g., the probability of an observed action within a certain range) in game g due
to a subject who uses strategic behavior rule θ, Pg�θ, can be written as a matrix Qg that
depends on the structure of game g times a vector that is a known function η∗(·) (de-
fined in Appendix D) of strategic behavior rule θ. So Pg�θ =Qgη

∗(θ). Pg�θ is not observ-
able, since the population uses more than one strategic behavior rule. Critically, Qg is
nonsingular under the identification assumptions, although that is not obvious and re-
quires a lengthy proof. That implies that if it were possible to observe Pg�θ, then it would
be possible to recover η∗(θ). Let G be a subset of games of {1�2� � � � �G}. Let G(p) be the
pth smallest element of G and let Gp = {G(1)� � � � �G(p)}.

Then, by the algebra of the Kronecker product, the joint distribution of those events
across games in the first p games out of G is PG�θ�p ≡ ⊗

g∈Gp Pg�θ = ⊗
g∈Gp(Qgη

∗(θ)) =
(
⊗
g∈Gp Qg)(

⊗p η∗(θ)) = Q
(p)
G η∗(θ)(p). Again by the algebra of the Kronecker product,

Q
(p)
G ≡ ⊗

g∈Gp Qg is nonsingular since each Qg is nonsingular. Let PG�θ = (1�PG�θ�1� � � � �



Quantitative Economics 9 (2018) Non-equilibrium behavior in games 169

PG�θ�|G|). Let η∗(θ)(0) = 1 and let η∗(θ)(p) = η∗(θ)⊗· · ·⊗η∗(θ) be the p-times Kronecker
product. Let η∗(θ) = (1�η∗(θ)(1)� � � � �η∗(θ)(|G|)). Let QG be the block diagonal matrix
with blocks along the diagonal equal to Q(0)G � � � � �Q

(|G|)
G , which is nonsingular because

each term is nonsingular, and let PG�θ =QGη∗(θ).
Suppose that the true parameters of the data generating process are rules Θ0�1� � � � �

Θ0�R, which are used by π0(1)� � � � �π0(R) percent of the population. Let Υ ∗
0 be a ma-

trix that stacks (η∗(Θ0�r)) for r = 1�2� � � � �R as its columns. So then the observable joint
distribution of those events across games is PG =QGΥ ∗

0 π0. Suppose that another speci-
fication of the parameters with rules Θ1�1� � � � �Θ1�R, which are used by π1(1)� � � � �π1(R)

percent of the population, is observationally equivalent, so that there is an Υ ∗
1 derived

from those parameters so that PG =QGΥ ∗
1 π1. Then it would hold that 0 =QGΥ

∗
π, where

Υ
∗

collects the unique columns of Υ ∗
0 and Υ ∗

1 . Correspondingly, π collects the difference
between π0 and π1. The value of π0 (or π1) for a strategic behavior rule that does not ap-
pear in specification 0 (or 1) is by convention zero, reflecting the fact that that strategic
behavior rule is used by zero percent of the population under specification 0 (or 1).

Therefore, π is in the null space of QGΥ
∗

. It can be shown as a nontrivial claim un-
der the conditions of the identification results that Υ

∗
has full column rank. This step

critically uses the fact that the econometrician observes at least 2R− 1 games satisfying
the conditions of Assumption 4.1. Since QG is nonsingular, it follows that QGΥ

∗
has full

column rank, so it must be that π = 0, so that the columns of Υ ∗
0 and Υ ∗

1 are the same
up to permutations of the order of the columns. That implies, up to permutations of the
labels, that η∗(·) applied to the strategic behavior rules in specification 0 is the same
as η∗(·) applied to the strategic behavior rules in specification 1. It can be shown that
η∗(·) is “injective” up to the issues relating to possible lack of observable implications
of parameters relating to computational mistakes accounted for in Definition 1. So the
parameters are point identified in the sense of Definition 2.

5. Empirical application

The empirical application shows that the features of the model are empirically relevant
in the context of a well known and representative experimental design, motivating the
main contributions of the paper: proposing and establishing identification of the model.
Specifically, the empirical application establishes evidence for within-individual hetero-
geneity and unanchored strategic reasoning.

5.1 Data

The data for the empirical application comes from the two-player guessing game exper-
iment conducted in Costa-Gomes and Crawford (2006). The following text briefly de-
scribes the data. The data concern N = 88 subjects, each of whom plays G= 16 games.
An important feature of the experimental design is that the subjects face new opponents
in each game and do not learn the actions of their opponents until after the conclu-
sion of the experiment. This eliminates basically any role for learning or specializing
their play against their perception of their current opponent. This is consistent with the
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broader view that non-equilibrium models are best studied in a setting without learn-
ing.19 The empirical analysis of these data is quite different in Costa-Gomes and Craw-
ford (2006), because of the difference in models. In Costa-Gomes and Crawford (2006),
as representative of the literature, each subject is assumed to have no within-individual
heterogeneity, and the model does not include unanchored strategic reasoning, which
means that the main result of estimating the model is essentially assigning each subject
to its level out of the level-k model.20 The analysis in this current paper does not use
the novel information search data that are also studied in Costa-Gomes and Crawford
(2006), simply because the data set without the information search data is more repre-
sentative of the literature, since most studies do not (yet) use such data. Because of these
fundamental differences, the analysis in this current paper is not in any sense an attempt
to “replicate” the results of Costa-Gomes and Crawford (2006), though Section 5.4 does
show how the results are related. Rather, the analysis is intended to show the empirical
relevance of the theoretical results of this paper (proposing and point identifying the
model) in the context of a well known and representative experimental design.21

All of the games are two-player guessing games, which are related to the beauty con-
tests studied by Nagel (1995), Ho, Camerer, and Weigelt (1998), and Bosch-Domenech,
Montalvo, Nagel, and Satorra (2002), among others, simply in the sense that all involve
the need to guess what the opponents will guess. In a two-player guessing game, two
players simultaneously make a guess. The utility function for a player j in game g is a
decreasing function of the difference between its own guess (aj), and that player’s target
(pjg) times the guess of the other player (a−j). In game g, the action space for player j is
[αLg(j)�αUg(j)]. The utility function for player j in game g is

ujg(a1� a2)= max
{
0�200 − |aj −pjga−j|

} + max
{

0�100 − |aj −pjga−j|
10

}
�

For example, if a player’s target is 2
3 , then that player’s utility is maximized, holding

fixed the other player’s guess, by guessing two-thirds of the other player’s guess. As dis-

19Another important feature of the experimental design is that the experiment involves only 8 different
two-player games in the traditional sense of the definition of a game. However, each subject plays each
game once in each of the player roles (i.e., row player and column player), so that each subject plays 16
times. Each such game times player role pair is denoted a separate game. Essentially the same convention
is maintained in Costa-Gomes and Crawford (2006).

20The model in Costa-Gomes and Crawford (2006) also allows Nash equilibrium, and certain “domi-
nance” or “sophisticated” strategies (which are rare). Note that the dominance type is distinct from unan-
chored strategic reasoning despite the fact that unanchored strategic reasoning relates to iterated domi-
nance. Specifically, the definition is such that all of the dominance or sophisticated types make a unique
prediction, more similar to the unique predictions made by anchored strategic reasoning and Nash equi-
librium, but fundamentally unlike unanchored strategic reasoning. See Costa-Gomes and Crawford (2006,
Table 5) for the specific unique actions predicted by the dominance and sophisticated strategies. Costa-
Gomes and Crawford (2006) also check for consistency with iterated deletion of dominated strategies, in
the sense discussed in Section 2.2.2. The model in Costa-Gomes and Crawford (2006) also allows computa-
tional mistakes, somewhat similarly to the treatment of computation mistakes in the model in this current
paper.

21Using prior experimental data also avoids the time and financial cost of running an experiment that
would, in any case, attempt to be representative of other experiments. So since the point is not to innovate
the experimental design, it seems to make most sense to use prior experimental data.
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Table 1. Experimental design.

Game Specification Predictions of Decision Rules

Player 1 Player 2 Targets Anchored Reasoning Unanchored Reasoning

g αL(1) αU(1) αL(2) αU(2) p1 p2 c1(1anch) c1(2anch) Δ1
1 c1(NE)

1 100 500 100 900 0�70 0�50 350 105 [100�500] 100
2 100 900 100 500 0�50 0�70 150 175 [100�250] 100
3 100 900 300 500 0�50 0�70 200 175 [150�250] 150
4 300 500 100 900 0�70 0�50 350 300 [300�500] 300
5 300 500 300 900 1�50 1�30 500 500 [450�500] 500
6 300 900 300 500 1�30 1�50 520 650 [390�650] 650
7 300 900 300 900 1�30 1�30 780 900 [390�900] 900
8 300 900 300 900 1�30 1�30 780 900 [390�900] 900
9 100 900 100 500 0�50 1�50 150 250 [100�250] 100

10 100 500 100 900 1�50 0�50 500 225 [150�500] 150
11 300 900 100 900 0�70 1�30 350 546 [300�630] 300
12 100 900 300 900 1�30 0�70 780 455 [390�900] 390
13 300 500 100 900 0�70 1�50 350 420 [300�500] 500
14 100 900 300 500 1�50 0�70 600 525 [450�750] 750
15 100 500 100 500 0�70 1�50 210 315 [100�350] 350
16 100 500 100 500 1�50 0�70 450 315 [150�500] 500

Note: Some numbers are rounded to the nearest integer in this table to avoid clutter. However, in the econometric analysis,
the unrounded numbers are used. The numerical values for these strategies are derived using the method described in the text.

played in Table 1, the 16 games differ along two dimensions: the action spaces and the
targets. The experimental design and arrangement of the data set are such that when a
subject is observed to play some game g, that subject is player 1 in the game.

The strategies corresponding to the various decision rules described in Section 2
for player 1 are in the last columns of the table. Strategies for player 2 are not explicitly
shown, but the experimental design described in footnote 19 implies that the strategies
of player 2 in even (odd) numbered games are the strategies of player 1 in the previous
(next) game in the table. In these games, the Nash equilibrium is indistinguishable from
rationalizability, since they imply the same guess (i.e., same pure strategy).

As detailed in Costa-Gomes and Crawford (2006), the derivation of the guesses pre-
dicted by anchored strategic reasoning (the level-k model) in these games is straight-
forward. For example, one step of anchored strategic reasoning amounts to using the
best response to the opponent using the uniform distribution over its action space. In
these games, that best response is a unique action, and can be derived using the proper-
ties of the utility function by noting that the best response given the opponent uses the
uniform distribution is the same as the best response given the opponent uses the ac-
tion at the midpoint of its action space.22 And two steps of anchored strategic reasoning
amounts to using the best response to an opponent using the action consistent with one
step of anchored strategic reasoning, and so on. Similarly, the derivation of the ranges of

22So, for example, c1(1anch) = 350 in game g = 1 because the midpoint of player 2’s action space is 500
and the target for player 1 is 0�7, so the best response of player 1 is to take action 0�7 × 500 = 350.
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guesses predicted by unanchored strategic reasoning is also straightforward. Let

χjg(a)=

⎧⎪⎪⎨
⎪⎪⎩
αLg(j) if a < αLg(j)�

a if αLg(j)≤ a≤ αUg(j)�
αUg(j) if a > αUg(j)�

The result is that Σsjg = [cLjg(s)� cUjg(s)] is an interval. The biggest guess that player
j in game g who uses one step of unanchored strategic reasoning can justify making is
cUjg(1) = χjg(pjgαUg(−j)). That is because the biggest justifiable guess is the biggest
possible guess of the opponent times the target. If that would be outside the action
space, then the boundary of the action space is the biggest justifiable guess. Similarly,
the smallest guess that player j in game g who uses one step of unanchored strategic
reasoning can justify making is cLjg(1) = χjg(pjgαLg(−j)). More generally, the biggest
(respectively, smallest) guess that player j in game g who uses s steps of unanchored
strategic reasoning can make is cUjg(s) = χjg(pjgcU�−j�g(s − 1)) (respectively, cLjg(s) =
χjg(pjgcL�−j�g(s− 1))).

5.2 Nonparametric estimates

It is useful to plot the empirical cumulative distribution functions of the observed ac-
tions in each of the games. Figure 2 shows this for game 1. The figures for other games
are displayed in Appendix F to save space.23

The actions predicted by 1, 2, and 3 steps of anchored strategic reasoning, and the
Nash equilibrium are displayed at the bottom of the figure, along the horizontal axis.
The intervals of actions predicted by 1, 2, and 3 steps of unanchored strategic reasoning
are displayed via red endpoints at the top of the figure. The interval of actions predicted
by 0 steps of unanchored strategic reasoning is necessarily the entire action space.

Figure 2, and the other estimates in Appendix F, shows clear evidence of mass points
corresponding to a small number of actions, and otherwise a roughly continuous dis-
tribution of actions. In this game, it appears that there are mass points corresponding
to using one and two steps of anchored strategic reasoning and the Nash equilibrium,
and otherwise a uniform distribution over the action space. The uniform distribution
of actions is exactly consistent with the model with a uniform selection rule on unan-
chored strategic reasoning, as discussed in Section 2.2.2. Thus, in the empirical appli-
cation, the selection rule on unanchored strategic reason is defined to be the uniform
selection rule.24 In this game, 0 and 1 steps of unanchored strategic reasoning make the
same predictions about actions, but in other games displayed in Appendix F, the predic-
tions are different.

23See Appendix D of Costa-Gomes and Crawford (2006) for a different way to display the actions.
24The defining characteristic of a uniformly distributed random variable is a cumulative distribution

function with constant slope, which seems essentially to be the case here, after accounting for the mass
points. That is, the displayed empirical cumulative distribution function is essentially that of a mixture
of point masses and a uniform distribution over the action space. Uniform distributions over the actions
consistent with various numbers of steps of unanchored strategic reasoning also appear in the other figures
in Appendix F, consistent with Section 2.2.2.
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Figure 2. Distribution of actions of subjects in game 1.

5.3 Model specification and estimation results

This subsection discusses the final details of model specification and the estimation
results. Estimation proceeds by maximizing the likelihood derived in Appendix A.
Despite the somewhat complicated likelihood, maximization of the likelihood using
Matlab fmincon optimization appears to give adequate computational performance.
Appendix E establishes that the sufficient conditions for identification hold in this appli-
cation. Section 5.3.1 discusses estimation of R based on model selection. Sections 5.3.2
and 5.4 discuss the estimation results.

The estimated model does not allow computational mistakes. As a robustness check,
the estimation results that do allow computational mistakes are almost identical, as
displayed in Appendix G. It is not surprising that the results that allow computational
mistakes are almost identical, based on the following argument involving the figures in
Section 5.2 and Appendix F. Note that computational mistakes would imply a higher
density of actions in the neighborhoods around the actions associated with the decision
rules subject to computational mistakes (i.e., the steps of anchored strategic reasoning
or Nash equilibrium), compared to the density of actions slightly further away from the
actions associated with those same decision rules. In the figures that display the em-
pirical cumulative distribution functions, that would translate to a greater slope of the
empirical cumulative distribution functions in those same neighborhoods, compared
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to the slope just outside of those neighborhoods. However, there appears to be no such
feature in the figures. Note that this argument is agnostic about the exact model of com-
putational mistakes. Although this paper has specified a particular model of computa-
tional mistakes, it seems that any reasonable model of computational mistakes would
have similar implications. The actions that do not correspond to anchored strategic rea-
soning or Nash equilibrium appear better explained by unanchored strategic reasoning,
not computational mistakes, as the estimation formalizes.

5.3.1 Model selection Economic theory does not predictR, the number of strategic be-
havior types. Therefore, R is part of the estimation problem. The selection of R is based
on comparing the likelihood of the models with different R adjusted by a measure of
model complexity, penalizing models that have more types and, therefore, more param-
eters. A generic information criterion is −2 logLR(θ̂R)+ h(R�N), where LR is the likeli-
hood function of the data for the model with R types, θ̂R is the estimate of the param-
eters of the model with R types, and h penalizes model complexity as a function of the
number of types and sample size. Models with low values of the information criterion
are preferred models.

There is not a uniquely “correct” information criterion, so this paper uses two spec-
ifications of h that are commonly used in the general statistical literature. Suppose that
S is the total number of decision rules potentially used by the subjects, per Assump-
tion 2.1. Then there are gS(R)=R(S)− 1 free parameters.25

The specification h(R�N) = gS(R) log(N) results in the Bayesian information crite-
rion (e.g., Schwarz (1978)). The specification h(R�N)= 2(gS(R))+ 2gS(R)(gS(R)+1)

N−gS(R)−1 results
in the corrected Akaike information criterion (e.g., Akaike (1974), Sugiura (1978), and
Hurvich and Tsai (1989)). See Konishi and Kitagawa (2008) for details on information cri-
teria. Since the information criteria depend on the unknown parameters only through
the likelihood, identifiability of the model parameters is irrelevant. Per Theorems 4.1
and B.1, the model will not necessarily be point identified with R too large.

The results of model selection are displayed in Table 2, which shows, for each spec-
ification of R, the values of the Bayesian and Akaike information criteria, and the Δ dif-
ference between the information criterion for that R and the information criterion for

Table 2. Model selection.

R Bayesian ΔBayesian Akaike ΔAkaike

1 12,016�81 631�75 12,007�38 662�73
2 11,686�71 301�65 11,666�72 322�07
3 11,484�37 99�31 11,455�44 110�79
4 11,404�61 19�54 11,368�71 24�06
5 11,385�06 0�00 11,344�65 0�00
6 11,386�63 1�57 11,344�79 0�13
7 11,395�20 10�14 11,355�88 11�23

25There are R− 1 free parameters in π(·) and S− 1 free parameters per type fromΛr(·). If computational
mistakes were allowed, there would be two more free parameters per type.
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the specification of R with the smallest value of the information criterion. The R with a
Δ of zero is preferred by the associated information criterion, since it corresponds to the
specification of R with the smallest information criterion. The results suggest R= 5 and
both criteria show overwhelming support for more than one type, since ΔBayesian and
ΔAkaike for the model with R= 1 are extremely large.

5.3.2 Parameter estimates The results of estimating the model are displayed in Table 3.
Each row of Table 3 corresponds to one of the estimated types. The first five columns
(not counting the r column) show the probabilities that type uses the various decision
rules described in Section 2.2. The sixth column shows the fraction of the population
of that type. Also displayed are 95% confidence intervals. The confidence intervals are
estimated according to the standard subsampling algorithm, detailed in the notes to
Table 3. Types are listed in decreasing order of the fraction of the population that is that
type.

The most common type, 44% of the population, primarily uses zero steps of unan-
chored strategic reasoning (49%), and also uses one step of unanchored strategic rea-
soning (31%).

The second most common type, 20% of the population, primarily uses one step of
anchored strategic reasoning (70%), and also uses zero steps of unanchored strategic
reasoning (15%) and one step of unanchored strategic reasoning (11%).

The third most common type, 15% of the population, primarily uses two steps of an-
chored strategic reasoning (42%), and also uses one step of anchored strategic reasoning
(19%) and one step of unanchored strategic reasoning (24%).

Table 3. Estimates.

Λ

Anchored Reasoning Unanchored Reasoning

1 2 0 1 Nash
Probability

of Type π(r)r Λr(1anch) Λr(2anch) Λr(0unanch) Λr(1unanch) Λr(NE)

1
0�10 0�04 0�49 0�31 0�07 0�44

(0�07�0�12) (0�02�0�06) (0�38�0�56) (0�22�0�41) (0�04�0�10) (0�37�0�56)

2
0�70 0�00 0�15 0�11 0�04 0�20

(0�52�0�76) (0�00�0�00) (0�10�0�28) (0�06�0�20) (0�02�0�06) (0�14�0�31)

3
0�19 0�42 0�11 0�24 0�04 0�15

(0�00�0�35) (0�36�0�77) (0�00�0�20) (0�00�0�43) (0�00�0�06) (0�09�0�26)

4
0�06 0�04 0�04 0�40 0�45 0�15

(0�03�0�09) (0�00�0�06) (0�00�0�08) (0�33�0�51) (0�39�0�58) (0�06�0�23)

5
0�08 0�90 0�00 0�02 0�00 0�06

(0�00�0�15) (0�87�1�00) (0�00�0�00) (0�00�0�03) (0�00�0�00) (0�00�0�08)

Note: The 95% confidence intervals are reported in parentheses, estimated according to the standard subsampling algo-

rithm for maximum likelihood (e.g., Politis, Romano, and Wolf (1999)) by resamplingNs = floor( 2
3 88)= 58 people from the data

set, without replacement. Conventional asymptotic approximations and bootstraps are likely invalid in this model with these
data, because many of the estimated probabilities are zero, which suggests a parameter on the boundary problem.
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The fourth most common type, 15% of the population, primarily uses the Nash equi-
librium (45%), and also uses one step of unanchored strategic reasoning (40%).

Finally, the least common type, 6% of the population, primarily uses two steps of an-
chored strategic reasoning (90%), and also uses one step of anchored strategic reasoning
(8%).

All types involve within-individual heterogeneity, since no type exclusively uses
one decision rule. However, the least common type does have relatively little within-
individual heterogeneity. This shows that allowing within-individual heterogeneity is
important. The estimated strategic behavior types generally have the sensible feature
that they emphasize the use of just one mode of strategic reasoning (anchored or unan-
chored). Rules 1 and 4 predominantly use unanchored strategic reasoning, while rules 2
and 5 predominantly use anchored strategic reasoning. Rule 3 shows a more even mix of
modes of strategic reasoning. This shows that allowing both modes of strategic reason-
ing is important, and that different subjects use different modes of strategic reasoning.
The fact that the estimates are sensible in this way was not imposed by the model or the
estimation method.

5.4 Relationship to prior estimates

There is a relationship between the estimates in Table 3 that allow within-individual
heterogeneity and the estimates in Costa-Gomes and Crawford (2006) that do not al-
low within-individual heterogeneity. Based on the standard level-k model and not al-
lowing within-individual heterogeneity, Costa-Gomes and Crawford (2006) observe that
roughly half of the subjects can be assigned their type based on type being “apparent
from guesses,” which means using the action associated with the type in at least 7 out of
the 16 games. Another contribution of the model in this paper is including unanchored
strategic reasoning, but this is not included in this discussion because Costa-Gomes and
Crawford (2006) focus on the level-k model. From the estimates in Table 3, each of the
estimated types has an expected fraction of subjects of that type who would use any
given decision rule in at least 7 out of 16 games. Weighting these expected fractions by
the proportions of the types, thereby integrating over the types, it is possible to com-
pare the fraction of subjects assigned to each decision rule from the Costa-Gomes and
Crawford (2006) estimates to the expected fraction of subjects who would use that same
decision rule in at least 7 out of 16 games, according to the estimates in Table 3.

This comparison proceeds by separately considering each decision rule. Costa-
Gomes and Crawford (2006) find that 20 subjects (22�7%) are the type to use one step
of anchored strategic reasoning. Type 2 (20% of the population) uses one step of an-
chored strategic reasoning with probability 70%. Using the binomial distribution, such
subjects will almost surely use one step of anchored strategic reasoning in at least 7 out
of 16 games, and, therefore, will appear to be the type that uses one step of anchored
strategic reasoning, explaining the concordance between the estimates of 22�7% and
20%. Other types use one step of anchored strategic reasoning so rarely that such sub-
jects are extremely unlikely to use it in 7 out of 16 games, and thus will not appear to
be that type. Costa-Gomes and Crawford (2006) also find that 12 subjects (13�6%) are
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the type to use two steps of anchored strategic reasoning. Type 5 (6% of the popula-
tion) uses two steps of anchored strategic reasoning with probability 90%. Such subjects
will almost certainly use two steps of anchored strategic reasoning in at least 7 out of
16 games. Moreover, using the binomial distribution, roughly 54% of type 3 subjects (a
type comprising 15% of the population) will use two steps of anchored strategic reason-
ing in at least 7 out of 16 games. Thus, roughly, based on these estimates there will be
6% + 54% × 15% ≈ 14�1% of subjects who will use two steps of anchored strategic rea-
soning in at least 7 out of 16 games; hence the concordance between the estimates of
13�6% and 14�1%. Finally, Costa-Gomes and Crawford (2006) find that 8 subjects (9�1%)
are the type to use Nash equilibrium. Type 4 (15% of the population) uses Nash equilib-
rium with probability 45%. Using the binomial distribution, approximately 63% of such
subjects will use Nash equilibrium in at least 7 out of 16 games; hence the concordance
between the estimates of 9�1% and 9�5% = 63%×15%. Other types use Nash equilibrium
so rarely that such subjects are extremely unlikely to use it in 7 out of 16 games.

Costa-Gomes and Crawford (2006) also estimate a model that essentially has the
consequence of assigning the subjects to the type that fits (in a maximum likelihood
sense) as a best approximation to their underlying within-individual heterogeneity.

6. Conclusion

This paper proposes a structural model of non-equilibrium behavior in games so as to
learn about the solution concepts and decision rules that individuals use to determine
their actions. The model allows both anchored and unanchored strategic reasoning,
and computational mistakes. Also, the model allows both across-individual and within-
individual heterogeneity. The paper proposes the model and provides sufficient con-
ditions for point identification. As discussed in particular in Section 3, these features
of the model interact with each other but nevertheless are independent challenges to
identification, so the identification result is a contribution even if some but not all of
those features are present in a particular application. Because the sufficient conditions
concern the structure of the games that subjects are observed to play, the identification
result can be interpreted as a result on experimental design, informing the sorts of ex-
periments that should be run to learn about the solution concepts and decision rules
that individuals use. Then the model is estimated on data from an experiment involving
two-player guessing games. The application both illustrates the empirical relevance of
the features of the model and provides empirical results of independent interest. The re-
sults indicate both across-individual heterogeneity and within-individual heterogeneity,
and both modes of strategic reasoning.
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