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Abstract: Stochastic correlation models have become increasingly important in financial markets.
In order to be able to price vanilla options in stochastic volatility and correlation models, in this
work, we study the extension of the Heston model by imposing stochastic correlations driven by a
stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by
incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms
can efficiently provide highly accurate results for the extended Heston by including stochastic
correlations. By investigating the effect of stochastic correlations on the implied volatility, we find
that the performance of the Heston model can be proved by including stochastic correlations.

Keywords: Heston model; stochastic correlation process; Ornstein-Uhlenbeck process; quadratic-
exponential scheme

1. Introduction

The Heston Model Heston (1993) is one of the most widely used stochastic volatility models. It is an
extension of the Black–Scholes (Black and Scholes 1973) model by taking into account stochastic volatility
given by the Cox–Ingersoll–Ross (CIR) process. The attractiveness of the Heston model is its analytical
tractability and the consideration of the correlation between the underlying asset price process and
volatility process. Subsequently, a couple of papers on the numerically stable and efficient computation
of European-style option prices were published, e.g., (Andersen 2008; Carr and Madan 1999; Kahl and
Jäckel 2005; Lee 2004; Lewis 2001; Lipton 2002).

It has been pointed out, in many works (see, e.g., (Christoffersen et al. 2009; Grzelak and Oosterlee 2011))
that the Heston model is unable to provide enough skew in the implied volatility as market required, especially
for a short maturity. Therefore, one tries to extend the Heston model. For example, one way is to extend
the Heston by introducing a more realistic stochastic volatility process, which is the double Heston model
(Christoffersen et al. 2009) or by introducing a stochastic interest rate, which is the Hybrid–Heston–Hull–White
model (HHW) (Grzelak and Oosterlee 2011); another way is to adapt the Heston model by allowing
time-dependent parameters (see Elices 2009; Mikhailov and Nögel 2003). Actually, the major factor that
affects the implied volatility skew is the correlation. However, in the pure Heston model (Heston 1993), and
also in most of the extended Heston models, only a constant correlation coefficient is used. It has been shown
in Teng et al. (2014b, 2016b) that the calibration to market data can be already improved by allowing a local
time-dependent correlation model. Therefore, in this work, we extend the Heston model by imposing a
stochastic correlation model cf. Emmerich (2006); Teng et al. (2014a, 2016a) and discuss its simulation methods.
Furthermore, using Monte Carlo simulation, we study how the implied volatility is affected by introducing
stochastic correlations.

In the next section, we impose a stochastic correlation model to the Heston model and discuss
in Section 3 a discretization for each path of the variance, correlation and the log price process
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including numerical analysis. Section 4 is devoted to firstly comparing different numerical algorithms,
and secondly to recognizing the effect of imposing stochastic correlation on implied volatility. Finally,
Section 5 concludes this work.

2. Stochastic Correlation in the Heston Model

We study the Heston model and its extension by incorporating a stochastic correlation process.
Heston’s stochastic volatility model under the risk-neutral measure reads

dSt = rStdt +
√

νtStdWS
t , (1)

dνt = κν(µν − νt)dt + σν
√

νtdWν
t , (2)

where St denotes the spot price of the asset and νt is the instantaneous variance, where µν is the
long-term variance, κν is the speed at which it reverts to µν and σν is the volatility of the variance
process. We note that the process (2) is strictly positive if the parameters obey the Feller condition
2κνµν > σν. The Brownian motions (BMs) WS and Wν are correlated with a constant ρSν by

dWS
t dWν

t = ρSνdt (3)

and under risk-neutral measure. By applying Itô’s Lemma with xt = log(St) (log-transform), we obtain
from (1) the log price process as

dxt = (r− 1
2

νt)dt +
√

νtdWx
t , (4)

where Wx
t is the same BM to WS

t in (1). We suppose an appropriate stochastic correlation process of
the form

dρt = ã(t, ρt)dt + b̃(t, ρt)dW̃ρ
t , (5)

where ã(t, ρt) and b̃(t, ρt) are given functions depending on the chosen correlation process, W̃ρ
t is a

standard BM with respect to the physical measure. By including the market price of correlation risk,
the correlation process (5) can be rewritten as

dρt = (ã(t, ρt)− λ(St, νt, ρt, t))dt + b̃(t, ρt)dWρ
t , (6)

which is under risk-neutral measure, where λ(St, νt, ρt, t) represents the price of the correlation risk and
could be assumed to be λρt, with a constant λ. In what follows, we set ã(t, ρt)− λ(St, νt, ρt, t) = a(t, ρt)

and b(t, ρt) = b̃(t, ρt). With the aim of imposing a stochastic correlation between the log price process
dxt and the stochastic variance dνt, we extend the Heston model as

dνt = κν(µν − νt)dt + σν
√

νtdWν
t , (7)

dρt = a(t, ρt)dt + b(t, ρt)dWρ
t , (8)

dxt = (r− 1
2

νt)dt +
√

νtdWx
t , (9)

with
dWxdWν = ρtdt, dWxdWρ = ρxρdt, dWνdWρ = ρνρdt, (10)

where ρt is given by (8), and ρxρ and ρνρ are assumed to be two constant correlations.

3. Path Simulation

We now discuss how to simulate the paths for (7)–(9) to compute the price of European options in
the extended Heston model applying Monte Carlo simulation. We need to generate random paths
of the triplet (νt, ρt, xt) for all t ∈ {ti}N

i=1 := T . To be more precise, for an arbitrary time increment ∆,
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we need to generate a random sample of (νt+∆, ρt+∆, xt+∆) for given (νt, ρt, xt). Repeated application
of the resulting one period scheme will generate a full path (νt, ρt, xt)t∈T .

3.1. Discretization for the Variance Process νt

To discretize the variance process νt, we employ the quadratic-exponential (QE) scheme by
Andersen (2008). The idea of the QE scheme is the approximation to the non-central chi-square
distribution. Let ν̂t denote a discrete-time approximation to νt, for sufficiently large realized values
of ν̂t, Andersen (2008) suggested to approximate the non-central chi-square random variable by the
power function

ν̂t+∆ = α(β + Zν)2, (11)

where Zν is a standard Gaussian random variable, α and β are certain constants that can be determined
by moment-matching using the parameters in (7) and given in the following Proposition 1; the detailed
calculations can be found in Andersen (2008).

Proposition 1. The mean and the variance of the variance process (7) read

m = E[νt+∆|νt] = µν + (νt − µν)e−κν(T−t), (12)

s2 =
νtσ

2
ν e−κν(T−t)

κν

(
1− e−κν(T−t)

)
+

µνσ2
ν

2κν

(
1− e−κν(T−t)

)2
. (13)

If we set ψ := s2

m2 and choose

β2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 (14)

and
α =

m
1 + β2 , (15)

then (11) has a mean equal to m and a variance equal to s2. Note that ψ ≤ 2.

However, the approximation (11) will not work well for small values of ν̂t, cf. Andersen (2008).
For small values of ν̂t, Andersen (2008) suggested to use an approximated density for ν̂t+∆ of the form:

P(ν̂t+∆ ∈ [x, x + dx]) ≈ (pδ(0) + q(1− p)e−qx)dx, x ≥ 0, (16)

where δ is a Dirac delta function, and p ∈ [0, 1] and q > 0 are constants to be determined by
moment-matching. We integrate (16) and obtain

Ψ(x) = P(ν̂t+∆ < x) = p + (1− p)(1− e−qx), x ≥ 0 (17)

and, by inverting, we obtain

Ψ−1(u) = Ψ−1(u; p, q) =

{
0, 0 ≤ u ≤ p,

q−1 ln( 1−p
1−u ), p < u ≤ 1.

(18)

Thus, the sampling scheme for small values of ν̂t reads

ν̂t+∆ = Ψ−1(Uν; p, q), (19)

where Uν is a uniform random variable.
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Proposition 2. Let m, s2 and ψ be defined as in Proposition 1. For ψ ≥ 1, there exist two parameters p and q
such that (19) has a mean equal to m and a variance equal to s2, which read

p =
ψ− 1
ψ + 1

∈ [0, 1) (20)

and
q =

1− p
m

=
2

m(ψ + 1)
> 0. (21)

We only need to select an arbitrary level ψc ∈ [1, 2] and choose either (11) or (19) according to
ψ ≤ ψc or ψ > ψc to do the sampling for the variance process (7).

3.2. Discretization for the Correlation Process ρt

We know that several stochastic processes could be used for modelling stochastic correlation,
e.g., the bounded Jacobi process (Ma 2009; Emmerich 2006), the sort of stochastic correlation
process produced by transformation (Teng et al. 2014a, 2016a). Moreover, for nice analytical
tractability, we might choose some other mean-reverting processes that exhibit simpler structure,
e.g., the Ornstein–Uhlenbeck (OU) process (Uhlenbeck and Ornstein 1930).

dρt = κρ(µρ − ρt) dt + σρ dWρ
t (22)

with the exact solution

ρt+∆ = ρte−κρ∆ + µρ(1− e−κρ∆) + σρ

√
1− e−2κρ∆

2κρ
Zρ, (23)

where Zρ is a standard Gaussian random variable. Thus, the functions a(t, ρt) and b(t, ρt) defined in (5)
are known as κρ(µρ − ρt) and σρ, respectively. However, the major drawback of using the OU process
for stochastic correlation is that the process is not bounded. This is to say the generated correlations
can be out of the correlation interval [−1, 1], especially with a small value of κρ and a large value of σρ.
Moreover, it has been indicated by Teng et al. in (Teng et al. 2016b) that P(ρt < 1) = 1 is valid if and
only if √

κρ(1− µρ)

σρ
→ ∞, (24)

and the condition for P(ρt > −1) = 1 is

√
κρ(−1− µρ)

σρ
→ −∞. (25)

This does not necessarily means that σρ tends to zero. If one limits the mean value µρ to be in
(−1, 1), from (24) and (25), one can conclude that the OU process is bounded in the interval with the
condition

√
κρ

σρ
→ ∞. In practice, such a positive constant C could be selected such that the condition

√
κρ

σρ
≥ C is already sufficient to ensure that the generated correlations stay in (−1, 1), if the initial

correlation ρ0 and the long-term mean µρ are not close to −1 or 1.
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3.3. Discretization for the Log Price Process xt

In this section, we discuss how to discretize the log price process (9). As indicated by
Andersen (2008), a straight discretization of (9) may lead to the problem of “leaking correlation”:
suppose that we use directly a Euler scheme for simulating (9):

x̂t+∆ = x̂t + (r− 1
2

ν̂t)∆ +
√

ν̂tZx
√

∆. (26)

We know that the true correlation between x̂t+∆ and ν̂t+∆ is always close to ρt given by (8).
However, ν̂t+∆ and Zν in (11) have a strong nonlinear relationship, which will imply that the effective
correlation between x̂t+∆ and ν̂t+∆ will be closer to zero than ρt for the cases where the probability
P(β+ Zv < 0) is nonzero. To tackle this problem of “leaking correlation”, we reformulate the stochastic
differential equation (SDE) system (7)–(9) as follows: first, we see that the SDE system (7)–(9) has a
family of correlation matrices

Ct =

 1 ρνρ ρt

ρρν 1 ρρx

ρt ρxρ 1

 , t ≥ 0. (27)

To simplify notation, we set ρ1 := ρνρ(ρρν) and ρ2 := ρxρ(ρρx). One can thus perform a
Cholesky-decomposition Ct = LtL>t , where Lt is a family of lower triangular matrices given by

Lt =


1 0 0

ρ1

√
1− ρ2

1 0

ρt
ρ2−ρ1ρt√

1−ρ2
1

√
1− ρ2

t −
(

ρ2−ρ1ρt√
1−ρ2

1

)2

 , t ≥ 0, (28)

which can be used to reformulate the SDE system (7)–(9) with respect to the independent BMs W̃ν
t , W̃ρ

t
and W̃x

t as:

dνt = κν(µν − νt)dt + σν
√

νtdW̃ν
t , (29)

dρt = a(t, ρt)dt + ρ1b(t, ρt)dW̃ν
t +

√
1− ρ2

1b(t, ρt)dW̃ρ
t , (30)

dxt = (r− 1
2

νt)dt + ρt
√

νtdW̃ν
t +

ρ2 − ρ1ρt√
1− ρ2

1

√
νtdW̃ρ

t

+

√√√√√1− ρ2
t −

ρ2 − ρ1ρt√
1− ρ2

1

2
√

νtdW̃x
t .

(31)

Since our main aim is to impose a stochastic correlation between the asset process (31) and the
stochastic variance process (29), to simplify the model, we assume ρ1 = 0, and the latter SDE system
thus becomes

dνt = κν(µν − νt) dt + σν
√

νt dW̃ν
t , (32)

dρt = a(t, ρt) dt + b(t, ρt) dW̃ρ
t , (33)

dxt = (r− 1
2

νt) dt + ρt
√

νtdW̃ν
t + ρ2

√
νtdW̃ρ

t +
√

1− ρ2
t − ρ2

2
√

νt dW̃x
t . (34)

In the following, we will discuss two different ways to discretize (34).
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3.3.1. The Euler and Milstein Scheme (EM Scheme)

The most simple way of discretizing (34) is to use the Euler or Milstein scheme. The discretization
of (34) by applying the Euler scheme (Euler [1768] 1913; Maruyama 1955) reads

x̂t+∆ = x̂t + (r− 1
2

ν̂t)∆ + ρ2
√

∆Zρ̃
√

ν̂t

+ ρ̂t
√

∆Zν̃
√

ν̂t +
√

1− ρ2
2 − ρ̃2

t

√
∆Zx̃√ν̂t,

(35)

where Zρ̃, Zν̃ and Zx̃ are independent standard Gaussian random variables. The discretization of (34)
by applying the Milstein scheme Milstein (1974) will be the same to (35), since all the derivatives
included in the coefficients of the double integral terms (with respect to BMs) by the Milstein scheme
are equal to zero. Moreover, we remark that Ŝt = exp(x̂t) with the discretized process x̂t in (35) is
a martingale, and any types of stochastic correlation processes can be straightforwardly employed
within this scheme.

3.3.2. The Hybrid Scheme (HB Scheme)

In this section, we introduce a new way to discretize (34) where several different approximation
techniques will be used. We thus call it the hybrid scheme. We take the OU process as an example due
to its analytical tractability and start with the integral form of (34)

xt+∆ = xt + r∆− 1
2

∫ t+∆

t
νudu +

∫ t+∆

t
ρu
√

νudW̃ν
u

+ ρ2

∫ t+∆

t

√
νudW̃ρ

u +
∫ t+∆

t

√
1− ρ2

u − ρ2
2
√

νu dW̃x
u ,

(36)

where ρt follows an OU process. For the integral
∫ t+∆

t ρu
√

νudW̃ν
u , where the integrand is not

independent from the corresponding BM, we consider Itô’s product in the following

dρtνt = ρtκν(µν − νt) dt + νtκρ(µρ − ρt) dt + νtσρ dW̃ρ
t + ρtσν

√
νt dW̃ν

t , (37)

where it has been assumed that νt and ρt are independent from each other corresponding to ρ1 = 0.
This product implies that

∫ t+∆

t
ρu
√

νudW̃ν
u =

ρt+∆νt+∆

σν
− ρtνt

σν
−

σρ

σν

∫ t+∆

t
νu dW̃ρ

u

−
∫ t+∆

t

κνµνρu + κρµρνu − (κν + κρ)ρuνu

σν
du.

(38)

Now, we insert (38) into (36)

xt+∆ = xt + r∆− 1
2

∫ t+∆

t
νudu +

ρt+∆νt+∆

σν
− ρtνt

σν

−
∫ t+∆

t

κνµνρu + κρµρνu − (κν + κρ)ρuνu

σν
du

+
∫ t+∆

t
ρ2
√

νudW̃ρ
u −

∫ t+∆

t

σρ

σν
νudW̃ρ

u +
∫ t+∆

t

√
1− ρ2

u − ρ2
2
√

νu dW̃x
u .

(39)

For the integrals over the time in (39), we simply use the approximation

∆ (γ1νt + γ2νt+∆) , (40)
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and

∆
(

γ1
κνµνρt + κρµρνt − (κν + κρ)ρtνt

σν

+γ2
κνµνρt+∆ + κρµρνt+∆ − (κν + κρ)ρt+∆νt+∆

σν

)
,

(41)

where γ1 and γ2 are given constants, e.g., we choose γ1 = γ2 = 1
2 for a central discretization.

In all the Itô integrals in (39), the integrand is independent with the corresponding BM. Thus,
they can be approximated by

∫ t+∆

t

(
ρ2
√

νu −
σρ

σν
νu

)
dW̃ρ

u ≈
√

∆

√
γ1

(
ρ2
√

νt −
σρ

σν
νt

)2
+ γ2

(
ρ2
√

νt+∆ −
σρ

σν
νt+∆

)2
Zρ̃, (42)

and ∫ t+∆

t

√
1− ρ2

u − ρ2
2
√

νu dW̃x
u ≈
√

∆
√

γ1νt
(
1− ρ2

t − ρ2
2
)
+ γ2νt+∆

(
1− ρ2

t+∆ − ρ2
2

)
Zx̃, (43)

respectively, where Zρ̃ and Zx̃ are independent standard Gaussian random variables. With all the
approximations mentioned above, we rearrange (39) as

x̂t+∆ = x̂t + r∆ + K1νt + K2ν̂t+∆ + K3ρ̂tν̂t + K4ρ̂t+∆ν̂t+∆ + K5ρ̂t + K6ρ̂t+∆

+

√
K1

νν̂t + K2
νν̂

3
2
t + K3

νν̂2
t + K4

νν̂t+∆ + K5
νν̂

3
2
t+∆ + K6

νν̂2
t+∆Zρ̃

+
√

K1
ρν̂t + K2

ρν̂tρ̂2
t + K3

ρν̂t+∆ + K4
ρν̂t+∆ρ̂2

t+∆Zx̃,

(44)

where

K1 := −∆γ1

(
κρµρ

σν
+

1
2

)
, K2 := −∆γ2

(
κρµρ

σν
+

1
2

)
,

K3 :=
1
σν

(
∆γ1(κν + κρ)− 1

)
, K4 :=

1
σν

(
∆γ2(κν + κρ) + 1

)
,

K5 := −∆γ1κνµν

σν
, K6 := −∆γ2κνµν

σν
,

K1
ν : = ∆γ1ρ2

2, K2
ν := −

2∆γ1ρ2σρ

σν
, K3

ν :=
∆γ1σ2

ρ

σ2
ν

,

K4
ν : = ∆γ2ρ2

2, K5
ν := −

2∆γ2ρ2σρ

σν
, K6

ν :=
∆γ2σ2

ρ

σ2
ν

,

K1
ρ : = ∆γ1

(
1− ρ2

2

)
, K2

ρ := −∆γ1,

K3
ρ : = ∆γ2

(
1− ρ2

2

)
, K4

ρ := −∆γ2.

A analysis of the convergence properties for (44) is difficult and complicated, since it may not
have any high-order moments. We will consider the analysis of weak consistency.
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Proposition 3. Assume that γ1 + γ2 in (44) approach 1 for ∆→ 0. Conditional on Ŝt, ν̂t and ρ̂t, we have for
the HB scheme

lim
∆→0

E
[

x̂t+∆ − x̂t

∆

]
= r− 1

2
ν̂t, lim

∆→0
Var

[
x̂t+∆ − x̂t√

∆

]
= ν̂t + 2

(
σ2

ρ

σ2
ν

ν̂2
t − ρ2

σρ

σν
ν̂

3
2
t

)
, (45)

lim
∆→0

E
[

ν̂t+∆ − ν̂t

∆

]
= κν(µν − ν̂t), lim

∆→0
Var

[
ν̂t+∆ − ν̂t√

∆

]
= σνν̂t, (46)

lim
∆→0

E
[

ρ̂t+∆ − ρ̂t

∆

]
= κρ(µρ − ρ̂t), lim

∆→0
Var

[
ρ̂t+∆ − ρ̂t√

∆

]
= σ2

ρ , (47)

lim
∆→0

Cov
[

x̂t+∆ − x̂t√
∆

,
ν̂t+∆ − ν̂t√

∆

]
= ρ̂tσνν̂t, lim

∆→0
Cov

[
x̂t+∆ − x̂t√

∆
,

ρ̂t+∆ − ρ̂t√
∆

]
= ρ2σρ

√
ν̂t. (48)

Proof. The statements (46) and (47) are obvious. We consider Var
[

x̂t+∆−x̂t√
∆

]
in (45) and calculate

Var
[

x̂t+∆ − x̂t√
∆

]
=

K2
2 Var [ν̂t+∆] + K2

4 Var [ρ̂t+∆ν̂t+∆] + K2
6 Var [ρ̂t+∆]

∆

+
K1

νν̂t + K2
νν̂

3
2
t + K3

νν̂2
t + K4

ν E [ν̂t+∆] + K5
νE[ν̂

3
2
t+∆] + K6

ν E
[
ν̂2

t+∆
]

∆

+
K1

ρν̂t + K2
ρν̂tρ̂

2
t + K3

ρ E [ν̂t+∆] + K4
ρ E
[
ν̂t+∆ρ̂2

t+∆
]

∆

∆→0−−→
K2

4 Var [ρ̂t+∆ν̂t+∆] + (K1
ν + K4

ν + K1
ρ + K3

ρ)ν̂t + (K2
ν + K5

ν)ν̂
3
2
t + (K3

ν + K6
ν)ν̂

2
t + (K2

ρ + K4
ρ)ν̂tρ̂

2
t

∆

∆→0−−−−−→
γ1+γ2=1

ρ̂2
t ν̂t +

σ2
ρ

σ2
ν

ν̂2
t + ρ2

2ν̂t − 2ρ2
σρ

σν
ν̂

3
2
t +

σ2
ρ

σ2
ν

ν̂2
t + ν̂t − ρ̂2

t ν̂t − ρ2
2ν̂t = ν̂t + 2

(
σ2

ρ

σ2
ν

ν̂2
t − ρ2

σρ

σν
ν̂

3
2
t

)
.

The first part in (45) can be proved in the same way. Moreover, we calculate

Cov
[

x̂t+∆ − x̂t√
∆

,
ν̂t+∆ − ν̂t√

∆

]
=

K2

∆
Var [ν̂t+∆] +

K4

∆
Cov [ν̂t+∆, ρ̂t+∆ν̂t+∆] +

K6

∆
Cov [ν̂t+∆, ρ̂t+∆]

νt⊥ρt
= K2 Var

[
ν̂t+∆√

∆

]
+ K4E [ρ̂t+∆]Var

[
ν̂t+∆√

∆

]
∆→0−−→ 1

σν
ρ̂tσ

2
ν ν̂t = ρ̂tσνν̂t.

In the same way, one can prove the second part in (48).

Obviously, Proposition (3) says the HB scheme is weakly consistent Kloeden and Platen (1999) whilst

E

∣∣∣∣∣σ2
ρ

σ2
ν

ν̂2
t − ρ2

σρ

σν
ν̂

3
2
t

∣∣∣∣∣
2
 ∆→0−−→ 0, (49)

which will be satisfied with non-extreme parameter values.

3.4. HB Scheme with Martingale Correction (HBM Scheme)

We know that the price process St will be a martingale; however, the price process St = exp(xt)

in (44) is not a martingale. For this problem, on one side, we can reduce the size of ∆; on the other side,
the “martingale correction” proposed by Andersen (2008) can be employed.
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The scheme (44) is equivalent to

Ŝt+∆ = Ŝt exp (r∆ + K1ν̂t + K3ρ̂tν̂t + K5ρ̂t) exp (K2ν̂t+∆ + K4ρ̂t+∆ν̂t+∆ + K6ρ̂t+∆)

exp

(√
K1

νν̂t + K2
νν̂

3
2
t + K3

νν̂2
t + K4

νν̂t+∆ + K5
νν̂

3
2
t+∆ + K6

νν̂2
t+∆Zρ̃

)
exp

(√
K1

ρν̂t + K2
ρν̂tρ̂2

t + K3
ρν̂t+∆ + K4

ρν̂t+∆ρ̂2
t+∆Zx̃

)
.

(50)

Assuming that ρt+∆ is known, by iterated conditional expectations, we calculate that

E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
= E

[
E
[
Ŝt+∆|Ŝt, ρ̂t+∆, ν̂t+∆

]
|Ŝt, ρ̂t+∆

]
= Ŝt exp

(
r∆ + (K1 +

K1
ν

2
+

K1
ρ

2
)ν̂t +

K2
ν

2
ν̂

3
2
t +

K3
ν

2
ν̂2

t + K5ρ̂t + K6ρ̂t+∆ + K3ρ̂tν̂t

+ K2
ρν̂tρ̂

2
t

)
E

[
exp

(
K2 + K4ρ̂t+∆ +

K4
ν

2
+

K3
ρ

2
+ K4

ρρ̂2
t+∆

)
ν̂t+∆ + exp

(
K5

νν̂
3
2
t+∆ + K6

νν̂2
t+∆

)
|Ŝt, ρ̂t+∆

]
.

Clearly, it is not easy to compute the part underlined in the latter equation. However, since
both exponents of ν̂t in that part are greater than one, we might thus ignore this part to obtain an
approximated martingale correction. Therefore, we reformulate the latter equation as

E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
≈ Ŝt exp (N) E

[
exp (A) ν̂t+∆|Ŝt, ρ̂t+∆

]︸ ︷︷ ︸
:=M

, (51)

where

N : = r∆ + (K1 +
K1

ν

2
+

K1
ρ

2
)ν̂t +

K2
ν

2
ν̂

3
2
t +

K3
ν

2
ν̂2

t + K5ρ̂t + K6ρ̂t+∆ + K3ρ̂tν̂t + K2
ρν̂tρ̂

2
t , (52)

A : = K2 + K4ρ̂t+∆ +
K4

ν

2
+

K3
ρ

2
+ K4

ρρ̂2
t+∆. (53)

We assume that M in (51) is finite, and then E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
is also finite. In order to force

E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
will be a martingale, we require

exp(K0 + N)M = 1, (54)

which implies K0 = − ln M− N. Finally, we obtain the HBM scheme as

x̂t+∆ = x̂t + r∆ + K0 + K1νt + K2ν̂t+∆ + K3ρ̂tν̂t + K4ρ̂t+∆ν̂t+∆ + K5ρ̂t + K6ρ̂t+∆

+

√
K1

νν̂t + K2
νν̂

3
2
t + K3

νν̂2
t + K4

νν̂t+∆ + K5
νν̂

3
2
t+∆ + K6

νν̂2
t+∆Zρ̃

+
√

K1
ρν̂t + K2

ρν̂tρ̂2
t + K3

ρν̂t+∆ + K4
ρν̂t+∆ρ̂2

t+∆Zx̃.

(55)

Obviously, the challenge of using the HBM scheme is to compute K0, which is actually a random
variable conditional on Ŝt and ρ̂t+∆. Because νt and ρt are independent, hence, we can directly adopt
the recent approach by Andersen (2008, Proposition 9) to compute K0

K0 =

 −
Aβ2α

1−2Aα + 1
2 ln(1− 2Aα)− N, ψ ≤ ψc,

− ln
(

q(1−p)
q−A

)
− N, ψ > ψc,

(56)

where α, β, ψ, ψc, p, q are defined in Propositions 1 and 2, and N and A are defined in (52) and (53).
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4. Numerical Results

As mentioned before, we analyze the numerical results by pricing European call options.
We denote the exact option price C and the numerically approximated price with Ĉ that can be
computed using the expectation

Ĉ = E
[
(ŜT − K)+

]
= E

[
(ex̂T − K)+

]
(57)

and approximated by a Monte Carlo method

Ĉ ≈ 1
M

M

∑
i=1

(
ex̂i

T − K
)+

. (58)

Thus, we define the error of a discretization scheme as

ε = |C− Ĉ|, (59)

which will be dependent on ∆. For all of the numerical experiments, we assume S = 100, r = 0 and
three different levels of the strike K = [70, 100, 140].

4.1. A Comparison of the Numerical Methods EM, HB and HBM

In this section, we test the discretization schemes EM, HB and HBM described in Section 3.2 for
the log price process xt. It is well known that the OU process is a mean-reverting process, i.e., whilst
we initialize the stochastic correlation process so that it can rapidly reach its mean value µρ, the option
price computed in the extended Heston model should be the same as the original Heston price with the
constant correlation ρ = µρ. In this case, we can take the original Heston price obtained by computing
the (semi-)analytical pricing formula in Heston (1993) as the benchmark.

To initialize the variance process, we take the parameters collection used in Andersen (2008) and
given in Table 1.

Table 1. Parameters collection for dνt.

Case I Case II Case III Case IV

ν0 0.04 0.04 0.09 0.04
κν 0.5 0.3 1 2.6
µν 0.04 0.04 0.09 0.04
σν 1 0.9 1 0.2
ρ −0.9 −0.5 −0.3 −0.6

T (maturity) 10 15 5 10

We see that all the parameters collection of Cases I, II, III are not under the Feller condition. Hence,
for Case IV, we choose parameters collection that are under the Feller condition. In order to let the
price be computed in the extended Heston model to coincide with the pure Heston price, as mentioned
above, e.g., we choose κρ = 2, σρ = 10−3 and set the value for µρ and ρ0 to be same as the value of ρ in
Table 1. Moreover, letting ρ2 = 0, γ1 = γ2 in (40) be 0.5, we use M = 106 for the Monte Carlo method
and report the errors for different time steps and for cases in Tables 2–5 by varying the value of the
time step ∆ from one year to 1/32 year.
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Table 2. A comparison of the relative errors in Case I using different schemes; numbers in parentheses
are standard deviations.

∆ EM HB HBM

K = 70

1 0.504 (0.046) −0.821 (0.023) −0.084 (0.022)
1/2 0.379 (0.036) −0.131 (0.023) 0.052 (0.023)
1/4 0.236 (0.030) −0.000 (0.023) 0.031 (0.022)
1/8 0.179 (0.027) 0.021 (0.022) −0.019 (0.022)
1/16 0.101 (0.025) −0.003 (0.022) −0.005 (0.022)
1/32 0.019 (0.024) −0.002 (0.022) −0.003 (0.022)

K = 100

1 −2.054 (0.040) −0.998 (0.013) −0.211 (0.013)
1/2 −1.265 (0.030) −0.332 (0.013) −0.120 (0.013)
1/4 −0.692 (0.023) −0.046 (0.013) 0.000 (0.013)
1/8 −0.361 (0.019) 0.019 (0.013) 0.027 (0.013)
1/16 −0.182 (0.017) −0.020 (0.013) −0.019 (0.013)
1/32 −0.074 (0.015) −0.003 (0.013) −0.003 (0.013)

K = 140

1 −5.264 (0.037) 0.076 (0.002) 0.084 (0.002)
1/2 −3.904 (0.021) 0.017 (0.003) 0.018 (0.003)
1/4 −2.517 (0.013) −0.004 (0.003) −0.005 (0.003)
1/8 −1.489 (0.008) −0.004 (0.002) −0.004 (0.002)
1/16 −0.814 (0.006) −0.008 (0.003) −0.008 (0.003)
1/32 −0.431 (0.004) −0.006 (0.003) −0.006 (0.003)

Table 3. A comparison of the relative errors in Case II using different schemes; numbers in parentheses
are standard deviations.

∆ EM HB HBM

K = 70

1 0.249 (0.072) −0.243 (0.048) −0.153 (0.049)
1/2 0.114 (0.063) −0.118 (0.047) −0.103 (0.047)
1/4 0.160 (0.052) 0.015 (0.046) 0.015 (0.046)
1/8 0.095 (0.050) −0.077 (0.077) −0.078 (0.077)
1/16 −0.035 (0.025) 0.006 (0.052) 0.005 (0.049)
1/32 −0.013 (0.052) 0.079 (0.047) 0.079 (0.047)

K = 100

1 −1.285 (0.064) 0.397 (0.044) 0.465 (0.044)
1/2 −0.774 (0.053) 0.153 (0.040) 0.164 (0.040)
1/4 −0.624 (0.051) 0.075 (0.044) 0.075 (0.044)
1/8 −0.410 (0.051) 0.053 (0.045) 0.052 (0.045)

1/16 −0.092 (0.046) 0.059 (0.041) 0.059 (0.041)
1/32 −0.072 (0.046) 0.023 (0.043) 0.023 (0.043)

K = 140

1 −3.259 (0.152) 0.224 (0.040) 0.182 (0.041)
1/2 −2.279 (0.069) 0.043 (0.035) 0.028 (0.035)
1/4 −1.365 (0.041) −0.013 (0.043) −0.018 (0.044)
1/8 −0.750 (0.040) 0.022 (0.037) 0.020 (0.036)
1/16 −0.475 (0.040) 0.056 (0.033) 0.055 (0.033)
1/32 −0.236 (0.046) −0.022 (0.039) −0.023 (0.040)
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Table 4. A comparison of the relative errors in Case III using different schemes; numbers in parentheses
are standard deviations.

∆ EM HB HBM

K = 70

1 0.097 (0.069) −0.286 (0.060) −0.111 (0.060)
1/2 0.040 (0.066) −0.111 (0.059) −0.063 (0.059)
1/4 0.085 (0.063) −0.042 (0.061) −0.030 (0.061)
1/8 0.090 (0.061) −0.033 (0.059) −0.030 (0.059)
1/16 0.030 (0.061) −0.077 (0.060) −0.076 (0.060)
1/32 0.147 (0.060) 0.037 (0.059) 0.038 (0.059)

K = 100

1 −0.634 (0.065) 0.362 (0.053) 0.480 (0.054)
1/2 −0.404 (0.060) 0.160 (0.052) 0.192 (0.052)
1/4 −0.183 (0.055) 0.029 (0.053) 0.036 (0.053)
1/8 −0.144 (0.073) −0.015 (0.052) −0.014 (0.052)
1/16 −0.099 (0.055) −0.011 (0.056) −0.011 (0.056)
1/32 0.037 (0.051) −0.022 (0.053) −0.022 (0.053)

K = 140

1 −1.249 (0.057) 0.593 (0.044) 0.567 (0.045)
1/2 −1.069 (0.064) 0.125 (0.044) 0.114 (0.044)
1/4 −0.652 (0.047) 0.094 (0.044) 0.090 (0.044)
1/8 −0.346 (0.045) 0.127 (0.044) 0.126 (0.044)

1/16 −0.308 (0.046) −0.062 (0.045) −0.062 (0.045)
1/32 −0.110 (0.045) 0.006 (0.044) 0.006 (0.044)

Table 5. A comparison of the relative errors in Case IV using different schemes; numbers in parentheses
are standard deviations.

∆ EM HB HBM

K = 70

1 0.108 (0.059) −3.989 (0.067) 0.089 (0.059)
1/2 −0.020 (0.059) −1.081 (0.061) 0.169 (0.059)
1/4 −0.071 (0.059) −0.447 (0.060) −0.088 (0.059)
1/8 0.015 (0.059) −0.117 (0.059) −0.020 (0.059)
1/16 0.008 (0.059) −0.001 (0.059) 0.024 (0.059)
1/32 0.079 (0.059) −0.005 (0.059) 0.002 (0.059)

K = 100

1 0.078 (0.050) −4.000 (0.058) −0.008 (0.050)
1/2 0.079 (0.050) −1.097 (0.052) 0.163 (0.050)
1/4 0.045 (0.050) −0.354 (0.051) 0.016 (0.050)
1/8 0.027 (0.050) 0.003 (0.051) 0.105 (0.050)
1/16 0.023 (0.050) −0.081 (0.051) −0.054 (0.051)
1/32 0.064 (0.050) −0.104 (0.051) −0.097 (0.051)

K = 140

1 0.091 (0.039) −3.330 (0.047) 0.003 (0.039)
1/2 −0.014 (0.039) −0.990 (0.042) 0.068 (0.039)
1/4 0.047 (0.039) −0.261 (0.040) 0.051 (0.039)
1/8 −0.066 (0.039) −0.136 (0.040) −0.049 (0.040)
1/16 0.021 (0.039) −0.017 (0.040) 0.006 (0.039)
1/32 −0.022 (0.039) 0.032 (0.039) 0.038 (0.039)

We consider first the results for Case I in Table 2 and find that both the discretization schemes
HB and HBM have an advantage over the EM scheme, and the advantage is considerable for the
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out-of-money options with K = 140. By comparison to the HB scheme, one can realize that it
is beneficial by adding a martingale correction for computing the in-the-money and at-the-money
options with a simulation step of ∆ = 1 or ∆ = 1

2 .
Since the results for Cases II and III are qualitatively similar to those of Case I, one can reach the

same conclusion that both the HB and HBM schemes outperform the EM scheme. It is worth to noting,
for the less challenging Case III, that the results for Case III by using the EM scheme are better than
those of Cases I and II.

Now, we turn to the Case IV where the parameters obey the Feller condition. The performance of
the HB scheme in this case is a bit poor, especially, with a large time step ∆. Actually, we have also
tested the pure QE scheme in Andersen (2008) for this case and obtained the same output. By contrast,
the performance of the EM scheme for this case is surprisingly good. Fortunately, for this case, the
martingale correction has brought a huge benefit so that the HBM scheme still performs better.

About comparing the numerical efficiency, we check the average computation times of the HB and
HBM schemes relative to the EM scheme for all runs in Tables 2–5, which are 0.61 and 0.79, respectively.
Obviously, both HB and HBM schemes are more efficient than the EM scheme because, compared to
the EM scheme, we have one random variable less to simulate with the HB and HBM schemes.

4.2. The Effect of Imposing Stochastic Correlation on Implied Volatility

In this section, we analyze the effect of imposing stochastic correlation on the implied volatilities.
To do this, we show the role of using stochastic correlation process in implied volatility, namely to see
how the values of parameters of the correlation process will drive the implied volatilities. We display
in Figure 1 the changes of implied volatilities by varying each parameter of stochastic correlation
process. For this experiment, we prefer to use the HBM scheme.
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Figure 1. Comparison of implied volatilities for varying each parameter of stochastic correlation
processes. (a) Varying µρ; (b) Varying σρ; (c) Varying κρ; (d) Varying ρ0.
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We consider a Call-option with S = 120, T = 0.5 and the strikes from 114 to 126 in increments
of 1, r = 1%. For the variance process, we set ν0 = 0.03, µν = 0.04, κν = 2.1, σν = 0.4, and, for the
correlation process, we choose κρ = 3.5, σρ = 0.1, µρ = −0.6 (equal to the constant correlation) and set
ρ0 = −0.4 except for the one that is varying. Finally, we set ρ2 = 0.1 and use M = 106 for the Monte
Carlo simulation.

From Figure 1, we realize that the parameters of correlation process can control the skewness or
smiles of the implied volatilities. Compared to using a constant correlation parameter, including
stochastic correlation provides more flexibility and can thus improve the calibration to the real
market data.

4.3. A Comparison with the Effect of Stochastic Correlation

In order to be able to compare with the pure Heston price, in the numerical experiments
above, we have initialized the stochastic correlation process such that it can rapidly reach its mean
value. Now, we want to test our numerical schemes including the effect of stochastic correlations.
Teng et al. (2016c) found the well approximated characteristic function of the Heston model extended
by including stochastic correlations driven by the OU process in a closed-form, which can be used for
analytical pricing purposes. Moreover, a comparison to the EM scheme has already been provided in
Teng et al. (2016c); for more detailed information, we refer to Teng et al. (2016c).

Next, we test all of the numerical schemes by comparing them to the method in Teng et al. (2016c).
For this, we take a five years Call with S0 = 100 and report the price differences between using the
proposed numerical schemes and the approach in Teng et al. (2016c) in Table 6.

Table 6. Paramter values of the stochastic volatility and correlation: κν = 2.3, ν0 = µν = 0.04, σν = 0.09,
κρ = 2, ρ0 = −0.1, µρ = −0.5, σρ = 0.02, ρ2 = 0, r = 0.

∆ EM HB HBM

K = 70

1 0.072 (0.042) −6.246 (0.047) −0.153 (0.042)
1/2 −0.003 (0.042) −1.569 (0.043) 0.007 (0.042)
1/4 −0.089 (0.042) −0.339 (0.042) 0.061 (0.042)
1/8 0.013 (0.042) −0.071 (0.042) 0.020 (0.042)
1/16 0.033 (0.042) −0.014 (0.042) −0.000 (0.042)
1/32 0.033 (0.042) −0.005 (0.042) −0.011 (0.042)

K = 100

1 −0.006 (0.033) −4.924 (0.039) −0.182 (0.033)
1/2 0.018 (0.033) −1.225 (0.035) −0.011 (0.033)
1/4 −0.052 (0.033) −0.274 (0.033) 0.027 (0.033)
1/8 0.022 (0.033) −0.040 (0.033) 0.021 (0.033)
1/16 0.046 (0.033) −0.010 (0.033) −0.009 (0.033)
1/32 0.047 (0.033) (0.033) −0.011 (0.033)

K = 140

1 −0.063 (0.022) −2.900 (0.027) −0.156 (0.022)
1/2 −0.001 (0.022) −0.696 (0.023) −0.016 (0.022)
1/4 −0.033 (0.022) −0.184 (0.022) −0.019 (0.022)
1/8 −0.025 (0.022) −0.136 (0.022) −0.014 (0.022)
1/16 −0.015 (0.022) −0.014 (0.022) −0.017 (0.022)
1/32 0.031 (0.022) 0.005 (0.022) −0.005 (0.022)

The used parameter values for dνt are not under the Feller condition. We thus obtain similar
results to those of Case IV: the HB scheme does not perform well with a large time step ∆. From all
the numerical experiments, we conclude that: the HB and HBM schemes outperform the EM scheme
when the parameter values of dν are not subject to the Feller condition. By contrast, under the Feller
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condition, the EM and HBM schemes are more favorable since they outperform the HB scheme at a
large time step ∆.

5. Conclusions

In this work, we extended the Heston model by imposing stochastic correlations driven by a SDE.
We have introduced different numerical algorithms including numerical analysis and compared their
merits. We showed which algorithms are more favorable for which model parameterizations. Thereof,
the HB and HBM scheme arose by adopting the QE scheme in Andersen (2008).

A couple of numerical results are provided. It has been shown that the numerical schemes
proposed in this paper can work so well for the extended Heston by including stochastic correlations
as the QE scheme in Andersen (2008) for the pure Heston model. Moreover, we realized the benefit of
incorporating stochastic correlations by investigating the effect of stochastic correlations on the implied
volatility. Because of the increased number of model parameters through the correlation process, the
extended Heston with stochastic correlations can provide more than enough skews or smiles in the
implied volatility as the market requires than the pure Heston model.
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