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Abstract: Assuming that a time series incorporates “signal” and “noise” components, we propose a
method to estimate the extent of the “noise” component by considering the smoothing properties
of the state-space of the time series. A mild degree of smoothing in the state-space, applied using a
Kalman filter, allows for noise estimation arising from the measurement process. It is particularly
suited in the context of a reputation index, because small amounts of noise can easily mask more
significant effects. Adjusting the state-space noise measurement parameter leads to a limiting
smoothing situation, from which the extent of noise can be estimated. The results indicate that noise
constitutes approximately 10% of the raw signal: approximately 40 decibels. A comparison with low
pass filter methods (Butterworth in particular) is made, although low pass filters are more suitable
for assessing total signal noise.

Keywords: reputation; reputation index; signal to noise; S/N; state-space; Kalman; time series; low
pass filters; butterworth; moving average

1. Introduction

Practical ways to measure reputation have advanced rapidly in the past few years with the
increased use of internet data feeds. As with any measurement that involves a physical apparatus,
error is induced in such a measurement by the measurement process itself. The purpose of this paper is
to estimate the extent of the error induced by the process of collecting and analysing sentiment data to
produce a reputational time series. It is often argued that it is important for an organisation to maintain
a “good reputation”, but two questions are commonly left unanswered. The first is the question of
what precisely is meant by the term “reputation”. The second is how to measure it. For an example
of this approach, see Deloitte (2016). A slight advance is exemplified by Cole, in which reputation
is determined by survey, and reputational effects are noted using changes in balance sheet items.
The first of these questions has been addressed in detail in Mitic (2017a). The second was answered
in Mitic (2017b). To provide a context for the main discussion of this paper, the results of those two
papers will be summarised below. Given that reputation can be measured, the measure becomes
meaningful in commercial terms only when expressed in monetary terms. A conversion in terms of
annual company sales and profit was estimated in Mitic (2017b), thereby justifying the effort and
expenditure that is often directed at maintaining a positive reputation. The error induced in a measure
of reputation by the process of measurement therefore translates into an error in associated monetary
risk. The amount of this error is estimated in the final part of this paper. Three methods for estimating
the amount of noise in reputational time series are described and compared. The State-Space (Kalman
filter) method is the principal method, and it is compared with a simple low pass filter (Moving Average),
and a more complex low pass filter (Butterworth). Such low pass filters are more suited to assessing the
total signal noise because they do not have a dedicated parameter that controls measurement noise, as
does the Kalman filter. Nevertheless, low pass filters give an overall indication of signal noise. The
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terms time series and signal are used interchageably in this paper, the terms being used to mean the
same thing in the worlds of statistics and signal processing, respectively.

2. Reputation and Its Measurement

This section contains a summary of the main points in Mitic (2017a) and Mitic (2017b). The process
of reputation measurement is a relatively recent development, made possible by exploiting internet
connectivity and advances in sentiment analysis.

2.1. Definitions for Sentiment and Reputation

Consider a set of agents (individuals or groups) that comment on a target organisation G at time t.
Those comments can be analysed and each can be given a score in the range [−1, 1]. See Liu (2015)
for a full discussion of how such a score may be derived. A score near 1 means that the agent who
expressed the comment is very favourably disposed towards G. A score near −1 means exactly the
opposite, and a score of 0 means that the agent’s position with respect to G is neutral. The range [−1, 1]
is arbitrary, but it makes intuitive sense to cast the score in terms of positive and negative numbers.

To be more precise, let H (for Holder) denote an agent who makes a comment at time t, and denote
the corresponding score by si;H , where i is a unique identifier for the comment. Next, consider a
collection of scored comments {si;H}i∈I

t∈T , in which T is an indexing set for times and I is an indexing
set for unique identifiers. The reputation of organisation G at time t, RG(t), can then be defined as a
weighted average of the scores in such a collection. To this end, let wi be the weight of comment i.
Then, RG(t), can be expressed as:

RG(t) =
∑n

i=1 wisi;H

∑n
i=1 wi

. (1)

The weights wi are arbitrary, but represent some appropriate characteristic of the holder of the
corresponding score si;H . For example, wi could represent the influence of H. A high (positive) weight
indicates a very influential holder (for example, a national newspaper) and low (positive) weight
indicates an uninfluential holder (for example, a Twitter user with only a few followers). For example,
a Twitter user with 100 or fewer followers is assigned weight 1. A Twitter user with 1 million or more
followers is assigned weight 10. Other uses are weighted on a linear scale based on the two fixed points
defined by those users. The number of followers for each user under consideration is determined
dynamically. Similarly, for traditional media, the weights are based on circulation and viewer figures
for newspapers and broadcasts, respectively. Note that Equation (1) applies only at a single time t.
It is only a single snapshot. More generally, the reputation of G is formally defined as a time series,
R̂G (Equation (2)).

R̂G = {RG(t)}t∈T . (2)

We stress that Equation (2) does not account for opinion formulation on the basis of only a few
(perhaps only one) received comments. This is a form of “reputation” that sometimes appears in
informal discourse, and is not appropriate for the analysis in this paper.

2.2. Sentiment Procurement

Figure 1 shows an overview of the data mining and analytical stages in sentiment procurement.
Proceeding from left to tight in the figure, the stages are:

1. Receive “comments” electronically from opinion holders, H, that convey sentiment with respect
to a target G from public sources (news channels, social media, etc.).

2. Sentiment analysis for each comment, to give a sentiment “score”, nominally in the range [−1, 1].
3. For each comment, define a weight (e.g., to reflect the influence of the opinion holder of the comment).
4. Compose a reputation index applicable at a particular time using all the sentiment scores received

in a given time period (such as one day). This is Equation (1).
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5. Accumulate successive time-based reputation indexes to form the reputation time series, R̂G of
Equation (2).

The result is a single number per time period (in practice daily) that measures the reputation
of the target organisation, G. The approach indicated above was pioneered by the London business
intelligence consultancy Alva Group (www.alva-group.com). The precise calculation of the elements
RG(t) in Equation (1) is more complex than indicated here, and is not publicly available.

Figure 1. The stages in the process of reputation measurement.

The short series, S, i.e., Equation (3), shows a few examples of the result of the process shown in
Figure 1 (Ford Motors, starting on 1 July 2015, adapted from data from Alva Group). Positive and
negative numbers correspond ,respectively, to positive and negative sentiment.

S = [−0.1815,−0.0036,−0.0967, 0.2937, 0.0135,−0.0316] (3)

The entries in Equation (3) show some numbers with relatively high absolute values, and a few
that are close to zero. The latter are the subject of this paper. This point will be explored in more detail
shortly in this paper.

2.2.1. Reputation and Financial Risk

Basic definitions of sentiment and reputation were given in Mitic (2017a). The essential premise
of that paper is that reputation can be expressed in terms of monetary units (GBP, USD, EUR, etc.).
The finding differentiated between three operational cases. The first is a “business as usual” (BAU)
context, in which there are no major reputational shocks. The second is the “stressed” context, in
which a significant reputational event results in a noticeable change in the values in the reputation
index following the event. The third is the “super-stressed” context, in which a very significant
reputational event results in a prolonged and deep change to the profile of the reputation index.
An example of a “super-stressed” event is the Volkswagen emissions revelation in September 2015.
See Jung and Park (2016) or the wiki entry (https://en.wikipedia.org/wiki/Volkswagen_emissions_
scandal) for an account of the history of this affair. The conversions from accumulated annual
reputation to profit after tax are shown in Table 1.

www.alva-group.com
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal


Int. J. Financial Stud. 2018, 6, 19 4 of 18

Table 1. Effect of annual reputation change on profit after tax.

Context Positive Reputation Negative Reputation

BAU 0.6% −1.1%
Stressed 2.3% −2.7%

Super-Stressed 5% −15%

In the analysis that follows, a convenient risk metric, and also a telling visual illustration, is to
calculate the cumulative reputation, R̃G, which is the set of cumulative sums of the reputation scores
RG(t) in R̃G. With the indexing set T for times t:

R̃G = {
t

∑
s=1

RG(s)}t∈T . (4)

The way in which R̃G changes with small changes in particular values of RG(t) can be expressed
in monetary terms. This is the methodology proposed in Section 3 to assess the effect of measurement
error in values of RG(t).

2.2.2. Reputation Measurement Error

There is an induced error in measuring reputation in the way described above due to data
collection and sentiment analysis of that data. A small error or change in the detailed sentiment
assessment for a component of a term RG(t) can reverse the sign of RG(t), provided that the value of
RG(t) is very marginally positive or very marginally negative. The purpose of this study is to assess
the extent of this error and to calculate how much it is worth in monetary terms. This permits an
error bound on RG(t) to be calculated in the following way. First assume that a set of very marginal
negative reputation values should, in fact, have been positive. Changing their signs from negative to
positive then increases the proportion of positive sentiment scores that enter the calculation of RG(t).
Similarly, a set of sentiment scores, incorrectly recorded as positive, could have their signs changed
to negative, and thereafter be treated as negative scores. This would then increase the proportion
of negative components values in RG(t). The process of transferring negative sentiment values to
positive, and positive to negative, followed by a recalculation of RG(t) in the two cases, allows us to
estimate an upper and a lower bound on the value of RG(t) induced by the measurement process.
The monetary value of those error bounds can then be estimated.

As a simple example, consider the second reputation score, −0.0036, in S (Equation (3)), which
is close to zero. Suppose that the weighted components of that sum are 0.245, 0.109, −0.078, −0.27,
−0.0122. Suppose, further, that a change to the sentiment analysis algorithm results in a small change
to one of these components. For example, the first component, 0.245 changes to 0.260. That is enough
to change the sum of the five components from negative to a positive value, 0.0088, thereby reversing
the sign and sense of the reputation score. Alternatively, suppose that a change to the data collection
procedure results in an additional weighted component, 0.007. When the six components are summed,
the result is 0.0008, again reversing the overall sign and sense of the reputation score.

Following this numerical illustration, we now discuss the detailed algebraic implementation of a
method to calculate measurement error bounds.

3. Methodology

The methodology used to assess the inherent measurement error described in the previous
section is to apply a smoothing filter to the times series R̂G to isolate, objectively, a set of positive and
negative values of RG(t) that are in the neighbourhood of zero. The upper bound is then obtained
by mapping the negative values in that neighbourhood to a positive value, thereby boosting the
cumulative reputation, R̃G. Similarly, the lower bound is obtained by mapping the positive values
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in that neighbourhood to a negative value, thereby reducing the cumulative reputation. State space
smoothing is the preferred method used to achieve the above objectives. The reasons are given in
the next sub-section. The following subsections contain a summary of the state-space methodology,
and the specialisations of it applicable to the task in hand. The State-Space method is one of many
methods that filter parts of a signal. We associate noise with the high frequency parts of a signal,
and aim to remove that noise using the filter. The Kalman filter is associated with the State-Space
method. More generally, we also consider removal of high frequency noise using other low pass. They
are designed to transmit the low frequency parts of the signal, and to block the high frequency parts. In
general we are less confident in using low pass filtering for our purpose because they have no specific
parameter to assess measurement noise.

3.1. Nomenclature

For the purposes of this paper, a time series received from a source without further processing or
analysis will be referred to as an Observed Signal. Such an Observed Signal comprises two components:
an Unobserved Signal, which is the part we would like to discover, and Noise. The Unobserved Signal
and the Observed Signal at time t will be denoted by the symbols xt and yt, respectively. In the
uni-dimensional state-space analysis that follows, both yt and xt are scalars, but more generally they
are vectors.

3.2. The State-Space and the Kalman Filter

State space analysis, otherwise known as “dynamic linear modelling”, originates from the work
of Kalman (1960) in the context of tracking the position (i.e., the state) of a spacecraft with location
xt, given a noisy location measurement yt. xt is termed the state vector. It contains all available
information to describe the investigated system, and is usually multidimensional. The measured
vector, yt, represents observations related to the state vector. yt is often of lower dimension than
the state vector. The idea that some quantity has a value which we can estimate by measuring
is central to the argument in this paper. Measuring reputation by collecting expressed sentiments
electronically is not exact. A certain amount of expressed sentiment constitutes “noise” in the sense
that the sentiment is expressed routinely such that it does not reflect any significant event. Chapter
6 in Shumway and Stoffer (2017) is a good account of the Kalman filter in the context of state-space
analysis, and the summary that follows is based on it. The Kalman filter can be used for any of three
purposes: prediction, filtering and smoothing. We exploit the latter here. The name filter should be
thought of as a filtering out of noise (i.e., noise reduction, not elimination). A useful phrase summarising
Kalman filtering is:

Noisy signal in: less noisy signal out

The Kalman filter technique is used in the context of reputational analysis for three main reasons:

• Kalman filtering incorporates a specific smoothing parameter which can be used to assess
measurement noise. Other smoothing methodologies (e.g., Loess filter and moving average)
do not have such a specific relationship with measurement.

• Construction of the reputation index (specifically resetting to an initial value every period)
produces a signal for which a static model with noise is appropriate: there is necessarily no trend
and no seasonality. A particularly simple version of the Kalman model is available for precisely
this situation.

• Very little lag is introduced by the smoothing process.
• The Kalman filter (state-space) method makes direct use of the distribution of reputation scores,

which can be modelled successfully by a Normal distribution.
• The Kalman filter methodology assumes that the time series being analysed is stationary. All of

the reputational time series in this study are stationary, as demonstrated by examining their
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frequency spectra. It is expected that others will also be stationary unless they are driven by
seasonal events.

3.3. Kalman Filter Fundmentals

Let the current unobserved state of a quantity x at time t be xt, where t varies discretely in steps of
1 between 0 and a maximum value τ. In one dimension, this is the single state variable. Then, in terms
of the state at the prior time slot t−1,

xt = Ftxt−1 + Btut + wt, (5)

in which ut is a control variable that can influence xt and Bt is, in general, a control matrix which
maps controls to state variables. wt is a stochastic error which is usually taken as N(0, Q), where Q
is a correlation matrix measurement of volatility of the state variable itself. Ultimately, we aim to
calculate an estimator, x̂t, of xt. The observed variable yt is related to xt by Equation (6), in which ut

also appears with another control matrix Ct. The matrix Ht is known as the observation matrix and
represents a measurement scaling. There is another stochastic error term vt which is usually taken as
N(0, R), where R is a measurement error matrix.

yt = Htxt + Ctut + vt (6)

In the uni-dimensional case, all matrices in Equation (6) are 1-by-1, so they are scalars.
The Kalman analysis continues by defining a predict and an update stage. Let x̂t|t denote the

estimate of state xt at time t. In addition, let Pt|t be the variance matrix of the error xt − x̂t|t. The goal is
to minimize Pt|t. The prediction stages for x̂ and P are (the superscript T denotes transpose):

x̂t|t−1 = Ft x̂t−1|t−1 + Btut; 1 ≤ t ≤ τ. (7)

Pt|t−1 = FtPt−1|t−1FT
t + Qt; 1 ≤ t ≤ τ. (8)

The predict stage is initialised with known values x0 for x̂0|0, and P0 for P0|0. The corresponding
update stage is given in terms of a measurement residual vector z̃t, a residual variance matrix St, and
an innovation part which gives the transition of x̂t|t−1 to x̂t|t in terms of a Kalman gain matrix, Kt:

z̃t = yt − Ht x̂t|t−1.
St = HtPt|t−1HT

t + Rt.
x̂t|t = x̂t|t−1 + Kt z̃t.

(9)

There is an optimal gain Kalman Filter, defined by

Kt = Pt|t−1HT
t S−1

t . (10)

With this Kt, the update equations resolve to:

x̂t|t = x̂t|t−1 + Kt(yt − Ht x̂t|t−1).
Kt = Pt|t−1HT

t (HtPt|t−1HT
t + Rt)−1.

Pt|t = (I − KtHt)Pt|t−1.
(11)

The three predict Equations (9) and the three update Equations (11) define the basis of the special
case that follows.
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3.3.1. Kalman Smoothing: The Static Model Specialisation

In this section, we modify the predict and update equations such that they apply to the case where
there is effectively a constant noisy signal. In Mitic (2017a) the idea of a standardised reputation score
was introduced and developed (Subsection 3.3.1 in this paper has a summary). A daily score in the
range [−1, 1] is produced, the range (0, 1] corresponding to positive sentiment and the range [−1, 0)
corresponding to negative sentiment. A score of 0 represents completely neutral sentiment, and a score
in a neighbourhood of 0 is the noise that we wish to estimate. This score is the observed signal yt, time
t referring to a daily measurement. Details of the physical method of sentiment procurement were also
given in Subsection 3.3.1, and a fuller account may be found in Mitic (2017b). In that paper, and also
in Subsection 2.1 of this paper, the formal time series definition of the reputation of an organisation G
at time t is written as RG(t), but the notation yt serves for the current purpose because it is consistent
with much of the notation on state-space analysis in the literature. The methodology is such that the
neutral score is the starting point each day.

As such, we regard the resulting reputational time series as measuring deviations from a constant
value (namely the neutral score), with, necessarily, no trend and no seasonality. This condition allows
us to set the 1-by-1 transition matrix in Equation (7) to 1: Ft = 1; 0 ≤ t ≤ τ. In addition we assume
there is no control term, so ut = 0. The matrix H represents a scaling with respect to the measurement,
and is also set to 1 since we make no measurement scaling. The process is a scalar, so P is a scalar.
Process noise Q is assumed to be a constant scalar with value q. The same applies for measurement
noise, so we set R to a constant scalar value r. The predict Equations (9) and the update Equations (11)
then reduce to the following equations for 1 ≤ t ≤ τ. The smoothing case is for 0 ≤ t < τ. The case
t = τ corresponds to filtering and if t > τ, the Kalman process is in predictive mode.

Predict:
x̂t|t−1 = x̂t−1|t−1; 1 ≤ t ≤ τ.
Pt|t−1 = Pt−1|t−1 + q; 1 ≤ t ≤ τ.
x̂0|0 = x0.
P0|0 = P0

(12)

Update:
x̂t|t = x̂t|t−1 + Kt(yt − x̂t|t−1); 1 ≤ t ≤ τ.
Kt = Pt|t−1(Pt|t−1 + r)−1; 1 ≤ t ≤ τ.
Pt|t = (1− Kt)Pt|t−1; 1 ≤ t ≤ τ.

(13)

3.3.2. Normality Assumption of State-Space Analysis

The state-space methodology, summarised in terms of the Kalman filter, by Equations (9) and (11),
and the specialisation in Equations (12) and (13) depend on a normality assumption. Specifically, the
elements of the input time series, yt, must be normally distributed. State space is a linear representation
of the dynamic behaviour of yt, so if yt is normally distributed, so is its state-space formulation,
xt (Hamilton 1986). Further, the Kalman filter algorithm assumes that the state transitions are
linear, and that the error terms when fitting to data are normally distributed. See, for example,
Cosma and Evers (2010) or Shumway and Stoffer (2017) for a full discussion of this point. Calculation
of confidence limits in the analysis that follows depends on this assumption of normality.

If the input time series yt is not normally distributed, it is generally possible to apply a transformation
such that the transformed series is normally distributed. Generally, power transformations are successful,
and in particular the Box-Cox transformation (Equation (14), which depends on selecting a suitable
parameter λ. Using Box-Cox, each element y of yt is mapped to y’, where

y′ = (yλ − 1)/λ. (14)
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Alternatively, log transformations are often successful in transforming to normal distributions.
Many of the input time series used in this analysis have outliers that indicate non-normality. Therefore
a Box-Cox transformation has been applied to normalise them sufficiently to permit calculation of
confidence limits.

3.3.3. Kalman Filter Noise Estimation

Equations (12) and (13) can now be applied to estimate the noise component in a signal. The first
stage is to fix the volatility parameters q and r. Parameter q is taken as the standard deviation of the
observed signal. It is assumed to be an intrinsic property of the observed signal, and is therefore fixed.
Parameter r represents measurement noise, and is determined by considering a range of appropriate
values and choosing one that results in maximum noise, as determined by the method outlined
below. Once a value for r has been found, the noise in the observed signal can be isolated using the
confidence interval, J, given by Equation (15). In (15), mx and sx are the mean and standard deviation
respectively of the unobserved (i.e., smoothed) signal xt, and z0.99 is the 99% 2-tail critical value on the
standard Normal distribution. In addition, recall that τ is the number of elements in both observed
and unobserved time series. The confidence interval is based on the assumed Normal distribution for
the unobserved signal once it has been modified by Box-Cox.

J = (mx − z0.99
sx√

τ
, mx + z0.99

sx√
τ
) (15)

The values of mx and sx vary with the value of the parameter r. For each r, the number of
unobserved signals within the confidence interval J can be identified and counted. Writing {yt ∈ J|r}
and {yt 6∈ J|r} for the sets of observed signals in J and the observed signals not in J, respectively (so
that τ = count{yt ∈ J|r}+ count{yt 6∈ J|r}), the percentage of noise in the unobserved signal, P, is then
given by Equation (16). This percentage is taken to be the percentage of noise in the observed signal.

P = 100
count{yt ∈ J|r}

τ
(16)

3.4. Low Pass Filter Noise Estimation

The action of a low pass filter is to transmit signals with a frequency lower than a cutoff frequency,
and to reject signals with frequencies higher than the cutoff. In signal processing, the word attenuate
is used is used in place of “reject”. Using a low pass filter on the reputational signals considered in
the paper is based on the assumption that the informative parts of the signal have the more extreme
values (near +1 or −1). They correspond to the low frequency part of the signal, simply because there
are more of them. Noise is confined to values near to zero. There are many more of them, and we
associate those values with high frequency. In principle, it is difficult to link the concept of frequency
in the context of a reputation signal with the way “frequency” is used in the context of an audio
signal. Audio signals are generally treated as superpositions of sinusoidal sub-signals in the form of a
Fourier series. This approach has not been hitherto been applied to a reputation signal. We attempt
to estimate the amount of noise by filtering out the high frequency noise. In general, low pass filters
have only one parameter available for controlling which frequencies are filtered out. Therefore, they
filter out all noise, not just measurement noise. They are therefore not as suitable as a means to assess
measurement noise, but it is interesting to see the results of using this type of filter. Smith (2007)
(Chapter 1) has a simple account of how a low pass filter is intended to work, and Hamming (1989)
has a more rigourous account. Practical guidance on programming digital filters using Matlab may be
found in Jackson (1996). In principle, any method of smoothing a time series can be used as a filter.
None has a dedicated parameter for measurement noise, so they are not as suitable as the Kalman
filter for our purposes. The following sections concentrate on two: Butterworth, (Butterworth (1930)),
because the low pass property is easy to define, and Moving Average, as a simple comparison.
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The overall way in which a digital filter works is to define a new series by applying a
transformation Tt to yt (Equation (17)). Thus, if the filtered signal is xt,

xt = {T(yt)}t∈[1..n]. (17)

Figure 2 illustrates the use of a low pass filter. The solid line shows an ideal state where frequencies
less than a cutoff frequency fc are transmitted, and where no frequencies greater than or equal to fc are
transmitted. The vertical axis shows the gain, which is the ratio of the amplitude of the output signal
to the input signal. The “ideal state” filter is shown in red. The horizontal portion corresponding to
frequencies f where 0 < f < fc, and is also shown. All frequencies in that range are transmitted with
no degradation in amplitude, shown by gain = 1. The gain for f ≥ fc is zero because, ideally, no signal
is transmitted in that range. The “non-ideal state” filter is shown in blue. The gain is sub-optimal due
to signal degradation, the cutoff at frequency fc is not sharp, and high frequencies are not completely
removed. In the context of a reputation signal, frequency is ill-defined. It is replaced by an appropriate
parameter of the method used to assess the noise level. The green profile shows a frequency response
where there is no clear cutoff. This shows a response that often occurs in practice: see Subsection 3.4.2.

fc Frequency, f

Gain

1
"Ideal" filter with sharp cutoff and no loss in gain

 "Non-ideal" filter with sloped and incomplete cutoff, 

and losses in gain

 "Non-ideal" filter with no clear cutoff 

Figure 2. Ideal (red) and non-ideal (blue) filters, showing gains as a function of Frequency.

3.4.1. The Power Spectral Density (PSD)

The PSD (sometimes called the Power Spectrum) of a signal shows the power in the signal as a
function of frequency, per unit frequency. For a discrete signal, power is measured as the square of
the signal amplitude divided by the number of signals. A detailed theoretical basis may be found in
Stoica (2005). For a simpler treatment, see Cerna (2009). The PSD calculation starts by calculating the
Discrete FourierTransform (DFT) of the signal, yt (Equation (18), in which f is a frequency and n is the
number of elements in the series {yt}).

F( f ) =
n−1

∑
t=0

yte−2πi f t/n (18)

The DFT is a complex number for every f, and its amplitude is given by |F( f )|. Therefore, the PSD
is given by the series in Equation (19), in which φ is a set of frequencies.

PSD = {(F( f ))2/n}, f ∈ φ (19)

The PSD is used in our context to examine the effectiveness of the filtering methodology used.
The shape of the PSD is sometimes indicative of a clear noise cutoff level, such that we can regard
frequencies above that cutoff as “noise”.

3.4.2. Low Pass Filter Procedures

The steps in the general approach used in applying a low pass filter to a reputation signal are as
follows. This approach makes use of the PSD to find a noise cutoff frequency.
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1. Obtain the PSD for the input signal under consideration
2. Determine a cutoff frequency, fc, by finding the point at which the power spectrum stabilises.

All power spectra considered have the property that the power density stabilises at some fraction
of the total number of ordinates in the spectrum. Most reputation power spectra exhibit shape
frequency profiles similar to the profile illustrated in Subsection 4.2.2. The plot shows a limiting
value at frequency 0.7. There is one exception where the spectrum indicated periodicity with
period of 100 days (organisation NW in Table 4). This periodicity was likely due to chance, as no
reason for it was apparent and it was not observed for other organisation. There is a discussion
of special treatment of two other organisations in Subsection 4.3.

3. Apply a filter to the input signal yt using the cutoff frequency fc to obtain the output signal xt

4. Obtain the PSD for the output signal, xt. If there are n PSD components p1, p2, ..., pn, denote
the normalised cumulative sums of the square of those components by St = ∑t

i=1 p2
i (squaring

emphasises any distinction between low and high frequencies).
5. Estimate the noise level, P (expressed as a percentage) from Equation (20). In Equation (20),

#[St > q] denotes the number of St entries that are greater than q.

P = 100
#[St > q]

n
(20)

Two types of filter will be considered for this analysis. The Butterworth filter aims to achieve an
“ideal” filter profile (as in Figure 2). The Moving Average filter is discussed as a comparison.

3.4.3. Moving Average Filter

The Moving Average filter is a very simple form of low pass filter, and is generally used for smoothing
time series. When used for filtering, the only parameter that can be used is the number of terms in the
moving average. Moving averages introduce lag, so if a very fast response is needed, this may not be
an ideal filter method. However, it is very simple to define and implement. If yt denotes the input time
series, the output time series (i.e., the filtered series) of order n, xt, is given by Equation (21).

xt =
1
n

n−1

∑
i=0

yt+i (21)

The main use of a Moving Average filter in practice is to reduce random white noise while keeping
a sharp “ideal” step response, as in Figure 2. There is a discussion of this filter and variations of it in
Smith (1999), Chapter 15.

3.4.4. Butterworth Filter

The Butterworth filter is more complex than the Moving Average filter, and is designed to have as
flat a frequency response as possible in the pass band (frequencies that should be transmitted), and to
block as many frequencies as possible in the stop band (frequencies that should not be transmitted).
The pass band can be defined as a frequency range. The useful pass band for the purpose of analysing
reputational signals is the range [0, fc], where fc defines a maximum low frequency to be transmitted.
Frequencies greater than fc, which represent noise, should be blocked. A full discussion may be
found in, for example, Oppenheim (1989). For such a filter, the square of the amplitude of the filtered
signal (termed the Frequency Response), Hc( f , fc, n) is given by Equation (22), in which the independent
variable is the frequency, and n (an integer greater than 1) is the order of the filter. The greater the order,
the steeper the response at the cutoff point. The Frequency Response should be as flat as possible for
frequencies less than or equal to fc. Figure 3 shows three examples. The Frequency Response parameter is
the only parameter available to control the extent of what is nominally noise. As such the Butterworth
filter is less suitable for the purpose of assessing the amount of measurement noise (as opposed to
the system noise), but it is worth noting the results of using it as a comparison with the Kalman filter.
It should be noted that, in practice, not all frequencies less than or equal to fc are transmitted, and not
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all frequencies greater than fc are blocked. The greatest frequency transmission errors occur near fc,
and for low values filter orders.

Hc( f , fc, n) =
1

1+ ( f
fc
)2n

(22)

Figure 3. Examples Butterworth Frequency Responses, critical frequency = 10.

3.5. Signal to Noise Calculation

Expressing the noise level in a time series in terms of the signal to noise (S/N) ratio enables
a ready comparison with noise in an audio signal, which may be more familiar to some readers.
We therefore include a way to measure the S/N ratio using the terms in Equation (16). There are
several established ways to calculate a S/N ratio. See, for example, Smith (1999). A convenient
method in this context is to use the square of the ratio of the signal amplitude to the noise amplitude.
There is a direct implementation in Matlab: the function snr() (see https://uk.mathworks.com/help/
signal/ref/snr.html). Thus, if A denotes amplitude,

S/N = (
Asignal

Anoise
)2 =

∑τ
t=1{y2

t 6∈ J|r)}
∑τ

t=1{y2
t ∈ J|r)}

. (23)

Expressed in decibels, the S/N ratio is given by 10log10(S/N).

4. Results

In this section, we present numerical illustrations of the theory in Subsections 3.2 to 3.5. Reputation
data for ten retail UK banks and six UK motor manufacturers provided the observed (i.e., noisy) time
signals yt, of Equation (6). The data covered the period January 2014 to January 2016. To generate
normal distributions for each time series, a Box-Cox transformation was first applied to each. It was
sufficient to set a common parameter λ (Equation (14)) to a value derived by aggregating the data
from all the time series, and calculating an optimal value. The optimal value was found using package
MASS in the R statistical language, which exports a function boxcox. This function fits a Normal
distribution to data that have been transformed using trial values of the Box-Cox parameter λ, using
maximum likelihood as the optimisation criterion. The value obtained was λ = 1.846.

4.1. Kalman Filter Results

The sequence of equations leading to (13) was used to derive values for the unobserved (less
noisy) signals, x̂t|t. The process noise parameter, q, was set to the standard deviation of the observed
signals yt. Appendix A gives a justification for using this value, and Appendix B gives parameter
values and some details of the calculation methodology. The measurement noise parameter, r, was
set to values in the range [0.5, 10.5] in steps of 0.1. Values of r less than 0.5 were excluded because
they resulted in minimal smoothing, which did not provide an effective assessment of measurement
error. With the indicated range it was possible to achieve a moderate degree of smoothing of the
observed signal yt whilst still preserving the profile of the signal. As an example, Figure 4 shows the

https://uk. mathworks.com/help/signal/ref/snr.html
https://uk. mathworks.com/help/signal/ref/snr.html
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first 100 days for both series yt (the unsmoothed input signal) and x̂t|t (the smoothed output signal) for
organisation FT when r is set to 0.7, which is the value that results in maximum noise.

Figure 4. Example Reputation time series (organisation FT): measured (observed yt) and smoothed
(unobserved x̂t|t), with measurement noise parameter set to 0.7. The plots derive from Box-Cox
transformed standard reputation signals.

Figure 4 shows that the degree of smoothing is such that the extremes that exist in the observed
signal are damped with a minimal lag. The measurement noise to be estimated is in the region near
the horizontal line that represents the mean unobserved signal value. For the complete series the
mean is −0.379 (indicating an overall negative sentiment towards FT) and for the first 100 entries
in the series (shown in Figure 4) the mean is −0.402. Although the theoretical index value can vary
between −1 and +1, the observed values are clustered closely about the mean. The only way to attain
a perfectly positive score of +1 or a perfectly negative score of −1 would be for all opinion holders to
simultaneously express the same perfectly positive or perfectly negative sentiment. Differing opinions
among opinion holders results in a reversion towards a zero score.

Figure 5 shows, for organisation FT, how the percentage of noise due to measurement changes as
the value of the measurement noise parameter r changes between 0.5 and 10.5. That percentage was
calculated from Equation (16) using the confidence interval in Equation (15). Maximum noise is often
associated with low values of r. The profile shown is typical.

Figure 5. Variation of percentage of signal noise with measurement noise parameter r: organisation FT.

Table 2 shows the resulting % noise and S/N ratios in decibels for the organisations considered
in this study. The entries in the Organisation column are codes to keep the organisations anonymous.
The table shows the mean and maximum noise levels as r varies, as well as the S/N values.

An immediate observation from Table 2 is that the noise levels are mostly of the same order,
indicating that the results are not merely a feature of the data used. Higher noise levels are largely due
to excessive volatility in the observed signal after a major negative reputational hit.
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Table 2. Percentage of Noise in Reputation Signals, measured using a Kalman Filter.

Organisation Mean % Noise Max. % Noise S/N in db

BM 7.2 9.5 6.7
FT 4.4 6.3 10.5
FD 6.5 8.7 7.5

HUD 16.1 18.1 9.8
NSS 6.2 7.7 8.5
MB 8.5 10.7 6.2

VOL 4.4 5.2 9.6
BSG 11.1 12.3 9.3
RYB 5.8 8.1 11.7
NW 5.2 7.2 12.1
HX 9.8 13.1 10.7
HS 6.7 7.7 12.5
LL 9.8 11.1 9.2
NT 8.1 12.9 10.6
TB 7.8 10.8 11.3
VG 6.3 9.7 13.3
BB 9.2 10.8 10
DB 4.7 8.3 8.9

Mean 7.6 9.9 9.9

4.2. Low Pass Filter Results

The procedures listed in Subsection 3.4.2, and summarised in Equation (20), were applied separately
to each organisation mentioned in the preceding paragraph. Figure 6 is the power spectrum for the
unfiltered signal of organisation BS in Table 2. It is a typical power spectrum for reputational signals.
The plot shows a limiting cutoff value at frequency∼0.7, indicating a distinction between “signal” and
noise at that point. This indicates that, in the unfiltered signal, the noise level is about 30%. The following
subsections show the effects of applying different low pass filters to this, and other, signals.

Figure 6. Power Spectrum of the Reputation signal for organisation BS, showing limiting cutoff
frequency of approximately 0.7.

4.2.1. Low Pass Filter Results: Moving Average Method

The Moving Average filter is a single parameter method that uses the order of the moving average
(i.e., the number of elements over which the average is calculated) to control the separation of signal and
noise. The results are shown in Table 3. The corresponding S/N values are calculated using the method
of Subsection 3.5.

In general, the mean and maximum noise levels for the Moving Average filter are much higher
than the corresponding values for the Kalman filter. This is to be expected because the Kalman filter
has been configured to estimate the measurement noise as opposed to the system noise, whereas the
Moving Average result incorporates both of these. The S/N ratios are all low compared to reasonable
audio signals, indicating that noise is a significant component of the total signal. There is much variation
in the results between organisations, so that we can summarise the results by noting the Mean entries.
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Table 3. Percentage of Noise in Reputation Signals, measured using a Moving Average Filter. The results
are means for moving average orders between 2 and 14 (to cover periods of up to two weeks).

Organisation Mean % Noise Max % Noise S/N in db

BW 9.5 25.9 24.1
FT 10.4 24.4 15.3
FD 13.7 41.1 22

HUD 13 29.6 18.5
NSS 18.2 54.3 26.5
MB 13.3 42.6 19.8

VOL 10.1 28.9 7.8
BSG 11.9 29.7 15.8
RYB 6.3 15.4 9.6
NW 3.1 10.2 7.8
HX 10.3 29.7 9.8
HS 8.2 27.1 5.6
LL 11.5 34.1 9.4
NT 19 56 9.7
TB 5.5 14.8 13.5
VG 9.9 28 14.6
BB 8.3 24.2 13.3
DB 14.4 36 21.9

Mean 10.9 30.7 14.7

4.2.2. Low Pass Filter Results: Butterworth Method

The Butterworth filter method uses a single parameter to control the separation of signal and
noise: the filter order. The mean and maximum noise levels for filter orders between 10 and 25 inclusive
was then calculated. These limits provide a reasonably steep cutoff profile (aiming to be similar to the
“ideal” filter in Figure 2) without undue complexity. Table 4 shows the results. This table also shows
the corresponding S/N values, calculated using the method of Subsection 3.5.

Table 4. Percentage of Noise in Reputation Signals, measured using a Butterworth Filter. The results
are means for filter orders between 10 and 25 inclusive.

Organisation Mean % Noise Max % Noise S/N in db

BW 30.7 30.8 13.9
FT 32 32.3 21.9
FD 12.4 12.6 35.4

HUD 24.8 25.5 17.9
NSS 6.2 22.7 66.8
MB 12.1 12.6 31.8

VOL 9.9 13.3 6.9
BSG 25.2 25.8 13.9
RYB 21.5 21.6 11.1
NW 25 25.2 5.7
HX 16.1 17.3 18.1
HS 16.4 22 6.3
LL 29.8 29.9 27.3
NT 7.4 13.7 49.6
TB 23.7 23.8 8.9
VG 19.1 19.2 16.2
BB 30.3 30.4 16.9
DB 28.9 28.9 28.9

Mean 20.6 22.6 22.1

Comparing the results in Tables 3 and 4 , it is difficult to settle on any general characteristics
that might distinguish the two result sets. In general, the Butterworth filter attributes more noise
to the overall signal, although they are of the same order. The implication is that it is sufficient
to use a simple filtering method (Moving Average) rather than a more complex method such as
Butterworth. The complexities of the latter tend to be embedded in software procedures, whereas code
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for the Moving Average method is easily visible. The results in Table 4 also show significant variation
between organisations. This variation simply reflect differing volatility in the original reputation signal.
Overall, the S/N values are higher than for the Kalman filter, but are low in comparison to S/N values
encountered in good audio signals (approximately 70–100 db). Further comments are in Section 5.

4.3. Special Treatment of Power Spectra Arising from Reputational Shocks

Two organisations, VOL and HS in Tables 3 and 4, suffered one severe reputational shock each in
the period 2014–2015. They were both involved in illegal activities which were widely reported in the
press at the time, and there was much adverse comment on social media. Long-lasting reputational
downturns resulted. The power spectra of the unfiltered signals show apparently exceptionally high
noise levels in the order of 70%. This does not seem reasonable, and we think that the shock levels are
so severe that all non-shock parts of the signal appear to be “noise”. To give a more reasonable estimate
of the noise level, the outer quartiles of the signal (i.e., the lowest 25% and the highest 25%) of the
scores were excluded from the power spectrum assessment. This process resulted in noise extimates of
approximately 80%.

4.4. Monetary Impact

In Mitic (2017b), several results for the monetary effect of reputation are given. We consider, as an
illustration, the figures given for monetary gain or loss in stressed circumstances. This is not a “worst
case”. It represents either very negative or very positive reputation, but not extreme cases of either,
which are very rare. Suppose that, in general, positive reputation accounts for P+% of profit after
tax, and that negative reputation accounts for P−% of profit after tax. Suppose, further, that the mean
maximum and maximum maximum percentage noise levels for filter F considered are MF,mean and MF,max
respectively. F takes the values K (for Kalman), B (for Butterworth) or MA (for Moving Average). Then,
we attribute percentage monetary amounts with the products (P+ MF,mean/100) and (P+ MF,max/100)
as the mean and maximum noise associated with positive reputation respectively over a one year
period. The expressions for negative reputation are similar: P+ is replaced by P−. In addition to the
parameter F for the filter method, let parameter α refer to the “mean/max” designation (so it takes
values mean or max), and let parameter β refer to “positive/negative” reputation (so it takes values “+”
or “−”). Then, Equation (24) gives an expression for VF,α,β, the revised percentage monetary value of
the reputation component of profit after tax when noise is removed.

VF,α,β = MF,α (1−
Pβ

100
) (24)

The numerical values of the variables used in this section are:

1. MK,max = 9.9% (from Section 4.1)
2. MK,mean = 7.6% (from Section 4.1)
3. MB,max = 22.6% (from Section 4.2.2)
4. MB,mean = 20.6% (from Section 4.2.2)
5. MA,max = 30.7% (from Section 4.2.1)
6. MA,mean = 10.9% (from Section 4.2.1)
7. P+ = 2.3% (from Mitic (2017b): Table 5 average)
8. P− = 2.7% (from Mitic (2017b): Table 5 average)

Table 5 gives the values obtained by applying Equation (24) with the numerical values above.
Values in the table are given correct to 1 decimal place, which is an appropriate accuracy in this context.

A few points are noteable from Table 5. First, there is very little differentiation between
the results for positive and negative reputation, and for the “mean” and “maximum” estimates.
That differentiation is much more marked in cases of extreme reputational stress, for which the value
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of the parameters P+ and P− are of the order 5% and 10% respectively (see Mitic 2017b, sct. 4.2).
Even so, the absolute monetary amount can be substantial. Suppose, for example, that profit after tax
is about $500 m. Using the “maximum” Kalman figures from Table 5, positive reputation can add 2.1%,
or $10.5 m, to that profit. Negative reputation can remove 2.5%, or $12.5 m from it.

Table 5. Revised Reputation Contributions to Profit after Tax using mean and Maximum Noise Estimates.

Filter Reputation Max % Noise Estimate Mean % Noise Estimate

Kalman Positive 2.1 2.1
Kalman Negative 2.5 2.4

Butterworth Positive 1.8 1.8
Butterworth Negative 2.1 2.1

Moving Average Positive 2 1.6
Moving Average Negative 2.4 1.9

5. Discussion

The aim of this study was to measure the extent of noise in a reputational time series. The Kalman
filter is particularly suited for this purpose because it is possible to adjust a filtering parameter
specifically for assessing measurement noise, and because its formulation admits an appropriate
simple static model. The limiting nature of the degree of smoothing applied allows us to identify the
noise component in the observed signal. The results shown in Table 2 indicate that a figure of about
10% would be a reasonable estimate for a maximum noise level applicable to all data sets considered.
The mean noise level, a rounded value for which is 8%, is only slightly less. These estimates arise
from setting the critical value for the confidence interval in Equation (15) to 99%. If the 95% critical
value is used instead the noise percentages may be reduced by approximately one quarter. The S/N
values in Table 2 are extremely low compared to what would be expected of a good audio signal
(70–100 decibels). Listening to a reputation signal would be like listening to a whisper in a lot of hiss!
The Kalman filter results are compared with those derived from low pass filters, principally using the
Butterworth filter. Filters other than Kalman do not really assess the amount of measurement noise:
they measure total noise. Consequently they are not as suitable as the Kalman filter in answering the
question “How much noise does the measurement process add?”.

Overall, the result is useful because it enables us to identify a neighbourhood of the neutral value
of the observed signal that is unreliable. Sentiment in this region conveys very little reputational
information, and may be interpreted as “chatter”. These small deviations from the neutral value can
therefore be discarded in further analyses.
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Appendix A. Calculation of System Noise Parameter q

Using the standard deviation of the observed signal as an estimate of the process noise in the
Kalman analysis may be justified by noting the stability of the volatility of the signal, measured on
overlapping time slices. For each organisation, the standard deviation of the reputation scores in
100-day (approximately three months) periods, overlapping by 50 days, were noted. The mean of those
standard deviations was then compared with the standard deviation of the scores taken over the entire
time. The results are noted in Table A1. They indicate that, to an acceptable degree of accuracy, that
the standard deviations are stable over time. Therefore the standard deviation taken over the entire
time is a reasonable estimate of process noise.
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Table A1. Comparison of Mean of Time-sliced Standard Deviations and overall Standard Deviation of
Reputation Signals.

Organisation Mean Time-Sliced SD Overall SD

BW 0.049 0.048
FT 0.078 0.076
FD 0.058 0.058

HUD 0.075 0.072
NSS 0.066 0.067
MB 0.049 0.047

VOL 0.097 0.094
BSG 0.115 0.112
RYB 0.112 0.108
NW 0.108 0.099
HX 0.098 0.091
HS 0.117 0.099
LL 0.143 0.135
NT 0.124 0.114
TB 0.150 0.147
VG 0.141 0.137
BB 0.087 0.085
DB 0.093 0.084

Appendix B. Kalman Calculation Parameters

Table A2 shows calculated Kalman parameters for each organisation. In that table, column Relative
% Error is the relative error 100(yt − xt)/yt, where yt and xt are defined in Section 3.2. The Kalman
calculations were implemented in Excel, and the maximum likelihood calculations used to calculate
the Box-Cox parameter λ were implemented in R.

Table A2. Kalman Calculation Parameter Values.

Organisation Relative % Error Parameter q Estimate Parameter r Estimate

BM 1.11 0.05 7.3
FT 0.11 0.08 4.31
FD 0.82 0.06 6.53

HUD 1.26 0.07 16.04
NSS 0.56 0.07 6.18
MB 0.65 0.05 8.58

VOL 0.29 0.1 4.36
BSG 0.39 0.11 10.5
RYB 0.17 0.11 5.79
NW 0.26 0.11 5.19
HX 0.29 0.1 9.83
HS 0.16 0.12 6.65
LL 0.35 0.14 9.9
NT 0.2 0.12 8.08
TB 0.26 0.15 7.69
VG 0.25 0.14 6.22
BB 0.28 0.09 9.19
DB 0.48 0.09 4.66
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