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Abstract: In this paper we consider the problem of an insurance company where the wealth of the
insurer is described by a Cramér-Lundberg process. The insurer is allowed to invest in a risky asset
with stochastic volatility subject to the influence of an economic factor and the remaining surplus
in a bank account. The price of the risky asset and the economic factor are modeled by a system
of correlated stochastic differential equations. In a finite horizon framework and assuming that
the market is incomplete, we study the problem of maximizing the expected utility of terminal
wealth. When the insurer’s preferences are exponential, an existence and uniqueness theorem is
proven for the non-linear Hamilton-Jacobi-Bellman equation (HJB). The optimal strategy and the
value function have been produced in closed form. In addition and in order to show the connection
between the insurer’s decision and the correlation coefficient we present two numerical approaches:
A Monte-Carlo method based on the stochastic representation of the solution of the insurer problem
via Feynman-Kac’s formula, and a mixed Finite Difference Monte-Carlo one. Finally the results are
presented in the case of Scott model.

Keywords: optimal investment strategy; utility function; stochastic volatility

1. Introduction

The problem of investment in a portfolio has attracted the attention of researchers and academics
in different settings for decades. Borch (1962) is among the pioneering works that deals with
a real life example of the reinsurance market under uncertainty, where participants are insurers
that seek to trade risk by acquiring reinsurance contracts. Ferguson (1965) addressed the problem
of the expected utility of wealth for the investor in the discrete case. Ferguson conjectured that
maximizing exponential utility from terminal wealth is strictly related to minimizing the ruin
probability, this conjecture was made under the assumption that the investor is allowed to borrow
an unlimited amount of money and without risk-free interest rate. Merton (1969, 1971) in his
foundational papers introduced the fundamental classical optimal investment-consumption model
in which the interest rate r of the bank account, as well as the mean rate of return µ and volatility
σ of the risky asset are constants and the investor seeks to maximize expected utility of terminal
wealth. In this case closed form solutions have been obtained. It is worth mentioning that Merton’s
work has been a great source of inspiration for many works that have been developed in recent
decades. Browne (1995) inspired by Merton (1969, 1971) considered a risk process modeled by
a Brownian motion with drift including the possibility of investment in a risky asset, which follows a
geometric Brownian motion, but without a risk-free interest rate. Browne verified the conjecture
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announced by Ferguson and produced a relationship between minimizing the ruin probability
and maximizing the exponential utility of terminal wealth, which is a clear connection between
insurance and finance. Zariphopoulou (2001) studied the problem of maximizing the expected
utility of terminal wealth, when the asset price is described by stochastic volatility models, closed
form solutions were provided by proposing a methodology to derive reduced form solutions.
Fleming and Hernández-Hernández (2005) considered an extension of the Merton’s problem by
allowing a correlation factor between the asset price and an external economic factor. Under a
HARA utility function, optimal investment strategy and optimal consumption strategy have been
produced as well as the asymptotic limit of investment. Wang (2007), studied the expected utility
of insurers by using stochastic control techniques, where explicit optimal strategies are obtained
as a solution to a Hamilton-Jacobi-Bellman equation. In Guerra and Centeno (2008), we find the
relationship between maximizing the adjustment coefficient and maximizing the expected utility
of wealth for the exponential utility function. On the other hand, Yang and Zhang (2005), inspired
by Merton as well, considered an optimal investment portfolio modeled by the Cramér-Lundberg
process with the possibility of investment in an incomplete market, closed form solution of the
optimal strategy maximizing the expected utility of wealth has been produced. In the same context
of incomplete market, Henderson (2005) solved the optimal portfolio choice for an investor with
exponential utility facing imperfectly hedgeable stochastic income. Badaoui and Fernández (2013)
considered an optimization problem, when the insurer preferences are of exponential type for a
portfolio that includes a bank account and a risky asset described by stochastic volatility model, which
is correlated to an economic factor. A general verification theorem was proved as well as an existence
and uniqueness theorem, which led to a closed form of the optimal strategy, when the correlation
factor is equal to zero (ρ = 0). Recently Hata and Yasuda (2017) introduced an extension of (Badaoui
and Fernández (2013), Fernández et al. (2008)) by considering a multidimensional linear Gaussian
stochastic-factor model. They produce an explicit optimal strategy by solving the matrix Riccati
equation.

The main purpose of this paper is to drop the correlation factor condition (ρ = 0), i.e., extending
the results obtained in Badaoui and Fernández (2013) to an incomplete market |ρ| < 1. Following the
approach presented in Badaoui and Fernández (2013), an optimal strategy and a value function are
obtained in closed form. Since our problem is modeled by a parabolic Partial Differential Equation
(PDE) then, by the Feynman-Kac’s formula we obtain a stochastic representation of the solution that
allows the use of the Monte-Carlo method, and then the solution of the PDE can be computed only at
a small number of points, which is not possible by the Finite Difference method due to stability issues.
In order to get some economic explanation on how insurers make their decision in an incomplete
market, several numerical simulations are performed by considering the impact of the correlation
coefficient on the insurer’s decision. Finally, we propose a mixed Finite Difference Monte-Carlo
method, which leads to the same results of simulation obtained by the Monte carlo method. The
mixed Finite Difference Monte-Carlo method improves the simulation results obtained in Badaoui and
Fernández (2013) and is aimed at avoiding artificial conditions, which may entitle some error in the
simulation’s results.

This paper is organized as follows: In Section 2 we define the model of our research and recall
some results already proved in Badaoui and Fernández (2013). Section 3 contains the Main Theorem
about the existence and uniqueness of the solution of the optimization problem. Section 4 describes
the Monte-Carlo method and the mixed Finite Difference Monte-Carlo method. The last section is
devoted to presenting some simulation results and providing economic explanation based on the
behavior of the value function and the optimal strategy and how the correlation coefficient impacts the
insurer’s decision.
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2. The Stochastic Volatility Model

This section is devoted to formulating the problem of our research, which consists of a model of
an insurance company allowed to invest in a risky asset and a bank account in the presence of stochastic
volatility. Let (Ω,F ,P) be a complete probability space, which carries the following independent
stochastic processes:

• A Poisson process {Nt}t≥0 with intensity λ > 0 and jump times {Ti}i≥1;
• A sequence {Yi}i≥1 of i.i.d. positive random variables with common distribution G;

• The Cramér-Lundberg process Xt = x + ct −
Nt

∑
i=1

Yi, where x ≥ 0 is the initial reserve of the

insurance company and c is the constant premium rate;
• W1t and W2t are independent standard Brownian motions;
• The filtration Ft is defined by

Ft = σ
{

W1s, W2s, Yi1{i≤Ns}, 0 ≤ s ≤ t, i ≥ 1
}

with the usual conditions Karatzas and Shreve (1988).

In previous articles (Fernández et al. 2008; Yang and Zhang 2005), the asset price was modeled by
a geometric Brownian motion given by

dSt = St(µdt + σdWt). (1)

Empirical observations of financial markets show that some indicators of market volatility behave
in a highly erratic manner, which makes it unrealistic to assume µ, σ and r constants over long periods
of time. This fact has motivated several authors to study the so-called stochastic volatility models
(see among others Fouque et al. (2000); Scott (1997); Zariphopoulou (2001)). If the parameters in (1)
are stochastic, then motivated by (see, Castañeda and Hernández-Hernández (2005); Fleming and
Hernández-Hernández (2005)), the asset price satisfies the following stochastic differential equation:

dSt = St(µ(Zt)dt + σ(Zt)dW1t) with S0 = 1, (2)

where µ(·) and σ(·) are the return rate and volatility functions, respectively. Zt is an external factor
modeled as a diffusion process solving

dZt = g(Zt)dt + β(ρdW1t + εdW2t) with Z0 = z ∈ R, (3)

where | ρ |≤ 1, ε =
√

1− ρ2 and β 6= 0. The parameter ρ is the correlation coefficient between
W1t and W̃ = ρW1t + εW2t. For | ρ |< 1 the market is incomplete in the sense that the external factor
Zt cannot be traded. The external factor can be written in integral form as

Zt = z +
∫ t

0
g(Zs)ds + β

∫ t

0
dW̃s. (4)

Our model also contains a bank account given by the equation

dS0
t = S0

t r(Zt)dt, (5)

where r(·) is the interest rate function. The process Zt is an external factor that has an impact on both
the dynamics of the risky asset prices and the interest paid by the bank account. In Castañeda and
Hernández-Hernández (2005) and Fleming and Hernández-Hernández (2005) considered Zt as one of
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the macroeconomic variables that can be observed by the investor and for instance, can be modeled by
the mean reverting Ornstein-Uhlenbeck (O-U) process:

dZt = γ(κ − Zt) dt + β dW̃t with Z0 = z,

where γ and κ are constants and the risky asset price can be given by the Scott model
(Cont and Tankov 2003; Fouque et al. 2000):

dSt = St(µ0dt + eZt dW1t) with S0 = 1. (6)

Here, we assume that µ0 is constant.

More details about stochastic volatility models can be found in Fouque et al. (2000).

Definition 1. We say that K = (Kt)t≥0 is an admissible strategy if it is an Ft-progressively measurable process
such that:

P[| Kt |≤ CK, 0 ≤ t ≤ T] = 1,

where CK is a constant, which may depend on the strategy K. We denote the set of admissible strategies as K.

Then if Xt is the insurer’s wealth, and he invests an amount Kt ∈ K in the risky asset and the
remaining reserve Xt − Kt in the bank account, then the wealth process XK

t := X(t, x, z, K) evolves
as follows:

dXK
t = cdt +

XK
t − Kt

S0
t

dS0
t +

Kt

St
dSt − d

(
Nt

∑
i=1

Yi

)
, (7)

which can be represented in the following integral form

XK
t = x +

∫ t

0
c +
(
(µ(Zs)− r(Zs))Ks + r(Zs)Xs

)
ds +

∫ t

0
Ksσ(Zs) dW1s−

Nt

∑
i=1

Yi, (8)

If at time s < T the wealth of the company is x and the external factor is z, then the wealth
process satisfies:

Xs,x,z,K
t = x +

∫ t

s

(
c + (µ(Zv)− r(Zv))Kv + r(Zv)Xv

)
dv

+
∫ t

s
σ(Zv)Kv dW1v −

Nt

∑
i=Ns+1

Yi

Zs = z,

(9)

with the convention that
0

∑
i=1

= 0, and that, when s = 0 we write XK
t .

Remark 1. The case Xt − Kt < 0 means that the insurance company is allowed to borrow from the bank
account at the interest rate r(·) and reinvest the amount borrowed in the risky asset. In a financial language
this means that the insurance is taking a short position in the bank account and a long position in the stock
market, which is evident under our approach if we suppose that µ > r and ρ = 0. The case Kt < 0 means that
the insurance company is shorting the stock and taking a long position in the bank account which is compatible
with our approach if we suppose r > µ and ρ = 0.

A utility function u : R → R is defined as a twice continuously differentiable function, with
the property that u(·) is strictly increasing and strictly concave. Now we consider the optimization
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problem that consists in maximizing the expected utility of wealth at time T, i.e., we are interested in
the following value function:

V(s, x, z) = sup
K∈K

E
[
u(Xs,x,z,K

T )
]

. (10)

We say that an admissible strategy K∗ is optimal if

V(s, x, z) = E
[
u(Xs,x,z,K∗

T )
]

.

Assumptions 1. The functions µ(·), σ(·) and g(·) are such that there exists a strong solution for
Equations (2) and (4). The general conditions under which the solutions to Equations (2) and (4) exist in
the strong sense come from the theory of stochastic differential equations (Øksendal 2003). The function r(·) is
continuous, positive, and

r(z) < µ(z), for all z ∈ R.

The following result establishes a verification theorem, which relates the value function V(t, x, z)
with the HJB Equation (11).

Theorem 1. (The Verification Theorem, Badaoui and Fernández (2013)) Assume Assumptions 1 and that there
exists a classical solution f (t, x, z) ∈ C1,2,2([0, T]×R×R) to the HJB equation:

λ
∫ ∞

0
f (t, x− y, z)− f (t, x, z) dG(y) + sup

K∈R
LK f (t, x, z) = 0, (11)

with terminal condition f (T, x, z) = u(x) and

LK f (t, x, z) = ft +
1
2 σ2(z)K2 fxx +

1
2 β2 fzz + ρβKσ(z) fxz

+(c + (µ(z)− r(z))K + r(z)x) fx + g(z) fz,
(12)

such that for each K ∈ K
∫ T

0

∫ ∞

0
E| f (s, XK

s− − y, Zs)− f (s, XK
s−, Zs)|2 dG(y) ds < ∞, (13)

∫ T

0
E|Ks− fx(s, XK

s−, Zs)|2 ds < ∞, (14)

∫ T

0
E|Ks− fz(s, XK

s−, Zs)|2 ds < ∞. (15)

Then for each s ∈ [0, t], (x, z) ∈ R2

f (s, x, z) ≥ V(s, x, z).

If in addition there exists a bounded measurable function K∗(t, x, z) such that:

K∗(t, x, z) ∈ argmaxK∈R

{
1
2

σ2(z)K2 fxx + ρβKσ(z) fxz + (µ(z)− r(z))K fx

}
.

Then K∗t = K∗(t, Xt, Zt) defines an optimal strategy and

f (s, x, z) = V(s, x, z) = E[u(Xs,x,z,K∗
T )].

Proof. For details about the proof we refer to Badaoui and Fernández (2013).
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Now we state the Existence and Uniqueness Theorem used later to prove the main Theorem 3 for
the incomplete market, which will be given in terms of the following Cauchy problem whose solution
has been already proved for the case ρ = 0 in Badaoui and Fernández (2013).

First we need the following Assumptions:

Assumptions 2. We assume that r(z) = r constant. Moreover,

g(z)− ρβ(µ(z)− r)
σ(z)

is bounded and uniformly Lipschitz, and

(µ(z)− r)2

σ2(z)

is bounded with a bounded first derivative.

Theorem 2. (Existence and Uniqueness Theorem, Badaoui and Fernández (2013))
In addition to Assumptions 1 and 2 we assume:∫ ∞

0
exp

{
8αyerT

}
dG(y) < ∞ (16)

and ∫ ∞

0
y exp

{
αyerT

}
dG(y) < ∞. (17)

Define

θt =
∫ ∞

0

(
exp

{
αyer(T−t)

}
− 1
)

dG(y). (18)

Then for all δ 6= 0 the Cauchy problem
ϕt +

1
2

β2 ϕzz +

(
g(z)− ρβ(µ(z)− r)

σ(z)

)
ϕz

− 1
δ

(
1
2
(µ(z)− r)2

σ2(z)
+ cαer(T−t) − λθt

)
ϕ = 0

ϕ(T, z) = 1

(19)

has a unique solution, which satisfies the following conditions:

|ϕ(z, t)| ≤ C1(1 + |z|) (20)

and
|ϕz(z, t)| ≤ C2(1 + |z|), (21)

where C1 and C2 are constants.

Proof. For details about the proof we refer to Badaoui and Fernández (2013).

Remark 2. From the existence and uniqueness Theorem we know that the solution of the PDE (19) admits
a stochastic representation given by the Feynman-Kac formula (see, Friedman (1975)):

ϕ(z, t) = E
[
exp
(
−1

δ

∫ T

t

(
(µ(Z̃s)− r)2

2σ2(Z̃s)
+ cαer(T−s) − λθs ds

))∣∣∣∣Z̃t = z
]

, (22)
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where Z̃u satisfies the following stochastic differential equation:

Z̃u = z +
∫ u

t

(
g(Z̃s)−

ρβ(µ(Z̃s)− r)
σ(Z̃s)

)
ds + β

∫ u

t
dW̃s, t ≤ u ≤ T (23)

where W̃t is a standard Brownian motion and for all (z, t) ∈ R2, ϕ(z, t) > 0.

3. Existence of a Solution for the Exponential Utility Function

In this section we consider both cases | ρ |< 1, which means that the market faced by the insurer
is incomplete and |ρ| = 1 for complete market. We will prove the existence and uniqueness of the
solution of (11), when the insurer’s preferences are exponential, i.e., the utility function is given by:

u(x) = −e−αx, α > 0.

The next theorem relates the value function with the HJB given by (11), when the market is
incomplete, i.e., |ρ| < 1.

Theorem 3. (The Main Theorem) In addition to conditions under which Theorem 2 is satisfied we assume
|ρ| < 1 and that there exists C > 0 such that

P
[∣∣∣∣µ(Zt)− r

ασ(Zt)
+

ρβ

(1− ρ2)α

ϕz(t, Zt)

ϕ(t, Zt)

∣∣∣∣ < C, 0 ≤ t ≤ T
]
= 1. (24)

Now let ϕ be the solution of the Cauchy problem (19). Then the value function defined by (10) has the
following form:

V(t, x, z) = −ϕ(t, z)
1

1−ρ2 exp
{
−αxer(T−t)

}
, (25)

and

K∗(t, z) =
µ(z)− r
ασ2(z)

e−r(T−t) +
ρβ

(1− ρ2)ασ(z)
ϕz(t, z)
ϕ(t, z)

e−r(T−t) (26)

is an optimal strategy. When r = ρ = 0, we have:

V(t, x, z) = −ϕ(z, t) exp {−αx},

and

K∗(t, z) =
µ(z)

ασ2(z)
.

Proof. Following the same approach described in Castañeda and Hernández-Hernández (2005);
Zariphopoulou (2001) we assume first that for some δ > 0 the solution of the HJB Equation (11) has
the form

f (t, x, z) = −ϕ(z, t)δ exp{−αxer(T−t)}, (27)
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where for all (z, t) ∈ R2, the function ϕ(z, t) > 0, and satisfies the condition (24). In what follows
we will use the expressions of the partial derivatives of f (we drop out the dependence on (t, x, z) to
simplify the notation):

ft =
(
−δϕt ϕδ−1 − αxrϕδer(T−t)

)
exp

{
−αxer(T−t)

}
, (28)

fx = αϕδer(T−t) exp
{
−αxer(T−t)

}
, (29)

fxx = −α2 ϕδe2r(T−t) exp
{
−αxer(T−t)

}
, (30)

fz = −δϕz ϕδ−1 exp
{
−αxer(T−t)

}
, (31)

fzz = −
(

δϕzz ϕδ−1 + δ(δ− 1)ϕ2
z ϕδ−2

)
exp

{
−αxer(T−t)

}
, (32)

fxz = αδϕz ϕδ−1er(T−t) exp
{
−αxer(T−t)

}
. (33)

Observe first that from (12) we have

supK∈R LK f (t, x, z) = supK∈R

{
σ2(z)

2 K2 fxx + ρβσ(z)K fxz + (µ(z)− r)K fx

}
+ ft +

1
2 β2 fzz + (c + xr) fx + g(z) fz

= S + ft +
1
2 β2 fzz + (c + xr) fx + g(z) fz.

(34)

Using (29), (30), and (33) we obtain

S = supK∈R

{
σ2(z)

2 K2 fxx + ρβσ(z)K fxz + (µ(z)− r)K fx

}
= er(T−t) exp

{
−αxer(T−t)

}
ϕδ−1

× supK∈R

{
− σ2

2 α2 ϕer(T−t)K2 + ρβαδσ(z)ϕzK + (µ(z)− r)αϕK
}

.

(35)

Since we have assumed that the function ϕ is strictly positive, the supremum in the last expression
is attained, and the optimal strategy given by

K∗(t, z) =
µ(z)− r
ασ2(z)

e−r(T−t) +
δρβ

ασ(z)
ϕz

ϕ
e−r(T−t), (36)

is an admissible one from condition (24). Substituting (36) in (35) we obtain

S= exp{−αxer(T−t)}ϕδ−1
{
(µ(z)− r)2

2σ2 ϕ+
(µ(z)− r)ρβδ

σ
ϕz+

ρ2β2δ2 ϕ2
z

2ϕ

}
. (37)

Substituting (37) and the partial derivatives in (34) and (11) we obtain:

0 = δ exp{−αxer(T−t)}ϕδ−1

×
{

ϕt +
1
2

β2 ϕzz +

(
g(z)− ρβ(µ(z)− r)

σ(z)

)
ϕz +

1
2

β2(−ρ2δ + δ− 1)
ϕ2

z
ϕ

(38)

− 1
δ

(
1
2
(µ(z)− r)2

σ2(z)
+ cαer(T−t) − λθt

)
ϕ

}
.
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Since δ and ϕ are strictly positive we obtain the following non linear partial differential equation:

0 = ϕt +
1
2 β2 ϕzz +

(
g(z)− ρβ(µ(z)−r)

σ(z)

)
ϕz +

1
2 β2(−ρ2δ + δ− 1) ϕ2

z
ϕ

− 1
δ

(
1
2
(µ(z)−r)2

σ2(z) + cαer(T−t) − λθt

)
ϕ.

(39)

We choose δ in such a way that
−ρ2δ + δ− 1 = 0,

that is
δ =

1
1− ρ2 .

Then Equation (39) becomes the Cauchy problem stated in Theorem 2. Finally, from Remark 2 we
obtain that the solution is positive, and the proof is completed.

Remark 3. We observe that the expression given by (26) consists of two terms. The first term represents
the Merton strategy Merton (1969) in the absence of the external factor and the second term appears also in
Merton (1971) and was interpreted as an intertemporal hedging demand. Henderson (2005) considered an
investor facing an imperfectly hedgeable stochastic income and the optimal strategy obtained is similar to the one
given by (26) but in a different setting, and finally the optimal strategy depends only on time regardless of the
level of wealth.

The assumptions in the theorems are sufficient conditions for the existence and uniqueness of
the solution of the PDE involved in this work. Since in general the coefficients of stochastic volatility
models are unbounded functions, then usually a truncated strategy is suggested. For any function
l ∈ C1(R), its truncated version will be defined as follows:

lv(z) =



l(z) if −a ≤ z ≤ a,
l(a)(1 + sin(z− a)) if a ≤ z ≤ a + π

2 ,
2l(a) if z ≥ a + π

2 ,
l(−a)(1− sin(z + a)) if −a− π

2 ≤ z ≤ −a,
2l(−a) if z ≤ −a− π

2 .

We observe that lv is bounded, Lipschitz and that it has a bounded derivative. By this procedure
of truncation we get a class of functions that satisfy the sufficient assumptions required to assure the
existence and uniqueness of the solution.

Since in the theorems there are various assumptions on functions µ, σ, ϕ, f . It would be important
to give one explicit example of the functions that satisfy all the assumptions of the theorems.

Example 1. Liang et al. (2011) considered a risky asset with constant volatility and the drift is a linear function
of the external factor, it turns out that the model proposed by Liang et al. (2011) is a particular case of our
stochastic volatility model. Then, following the same approach by Liang et al. (2011) for which:

µ(z) = az, σ(z) = σ and g(z) = bz,

where a, σ and b are constants, the PDE given by (19) becomes as follows:
ϕt +

1
2

β2 ϕzz +

(
bz− ρβ(az− r)

σ

)
ϕz

− 1
δ

(
1
2
(az− r)2

σ2 + cαer(T−t) − λθt

)
ϕ = 0,

ϕ(T, z) = 1.

(40)
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Following the same approach by Liang et al. (2011), we seek solutions of the form:

ϕ(z, t) = eJ(t)z2 + P(t)z + Q(t).

We observe that:
ϕt(z, t) = (J′(t)z2 + P′(t)z + Q′(t))ϕ(z, t),

ϕz(z, t) = (2J(t)z + P(t))ϕ(z, t),

ϕzz(z, t) =
(

2J(t) + (2J(t)z + P(t))2
)

ϕ(z, t).

Substituting the last expression in (40), we get the following nonlinear differential equation:(
J′(t) + 2β2 J2(t) + 2

(
b− aρβ

σ

)
J(t)− 1

2
a2

σ2δ

)
z2+

(
P′(t) +

(
2β2 J(t)− aρβ

σ
+ b
)

P(t) +
2ρβr

σ
J(t) +

ar
σδ

)
z+

Q′(t) +
1
2

β2
(

2J(t) + P2(t)
)
+

ρβr
σ

P(t)− 1
δ

(
r2

2σ2 + cαer(T−t) − λθt

)
= 0,

and J(t), P(t) and Q(t) are respectively the solutions of the following ordinary differential equations: J′(t) + 2β2 J2(t) + 2
(

b− aρβ

σ

)
J(t)− 1

2
a2

σ2δ
= 0

J(T) = 0,
(41)

 P′(t) +
(

2β2 J(t)− aρβ

σ
+ b
)

P(t) +
2ρβr

σ
J(t) +

ar
σδ

= 0

P(T) = 0,
(42)

 Q′(t) +
1
2

β2
(

2J(t) + P2(t)
)
+

ρβr
σ

P(t)− 1
δ

(
r2

2σ2 + cαer(T−t) − λθt

)
= 0

Q(T) = 0.
(43)

Let

τ = 2β2, ϑ = 2
(

b− aρβ

σ

)
, ε = −1

2
a2

σ2δ
.

By using general methods of ordinary differential equation and assuming that ϑ2 − 4τε > 0 and since
Equation (41) is a Riccati equation; we find the following solutions:

J(t) = C +
et
√

ϑ2 − 4τε

1
C

et
√

ϑ2 − 4τε +
τ√

ϑ2 − 4τε

(
et
√

ϑ2 − 4τε − eT
√

ϑ2 − 4τε

) , (44)

where

C =
−ϑ−

√
ϑ2 − 4τε

2τ
.

From (44), the solution of (42) is given by:

P(t) =e
−
∫ T

t

(
2β2 J(s)− aρβ

σ
+b
)

ds∫ T

t

(
2ρβr

σ
J(s) +

ar
σδ

)
e
−
∫ T

s

(
2β2 J(u)− aρβ

σ
+ b
)

du
ds. (45)
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From (44) and (45) the solution of the equation (43) has the following form:

Q(t) =
∫ T

t

1
2

β2
(

2J(s) + P2(s)
)
+

ρβr
σ

P(s)− 1
δ

(
r2

2σ2 + cαer(T−s) − λθs

)
ds.

The optimal strategy (26) becomes explicit as

K∗(t, z) =
az− r
ασ2 e−r(T−t) +

ρβ

(1− ρ2)ασ
(2zJ(t) + P(t)) e−r(T−t),

where J(t) and P(t) are given respectively by (44) and (45).
Finally, the solution of the HJB Equation (11) has the following form:

f (t, x, z) = −e
δ
(

J(t)z2 + P(t)z + Q(t)
)

exp{−αxer(T−t)}.

When the volatility depends on the external factor as in the case of Scott’s model, where σ(z) = ez, it is
more difficult to adopt the approach above. Therefore, a numerical approach is implemented to solve the PDE (19).

For a complete market, the correlation between the asset price and the external factor is perfect
in the sense that | ρ |= 1, then it is obvious that the approach above cannot be adopted to solve the
problem of the complete market. In this case we have the following Theorem.

Theorem 4. Under the same conditions of Theorem 2, assume |ρ| = 1 and let ϕρ be the solution of the following
parabolic partial differential equation

ϕ
ρ
t +

1
2

β2 ϕ
ρ
zz +

(
g(z)− ρβ(µ(z)− r)

σ(z)

)
ϕ

ρ
z −

(
1
2
(µ(z)− r)2

σ2(z)
+

cαer(T−t) − λθt

)
= 0

ϕρ(T, z) = 0.

(46)

In addition, assume there exists C > 0 such that

P
[∣∣∣∣µ(Zt)− r

ασ(Zt)
+

ρβ

α
ϕ

ρ
z(t, Zt)

∣∣∣∣ < C, 0 ≤ t ≤ T
]
= 1. (47)

Then the value function defined by (10) has the following form:

Vρ(t, x, z) = −eϕρ
exp

{
−αxer(T−t)

}
and

K∗ρ(t, z) =
µ(z)− r
ασ2(z)

e−r(T−t) +
ρβ

ασ(z)
ϕ

ρ
z e−r(T−t). (48)

Proof. In this case we also have that fxx < 0 and the optimal strategy is attained. Substituting the
partial derivatives in (11) we obtain directly (without the non linear term) the result.

Remark 4. The conditions (24) and (47) depend essentially on the external factor Zt, and the coefficients µ and
σ. A way to obtain these conditions is to stop the process Zt at a given constant.
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Bounds for K∗ρ(0, z) and Vρ(0, x, z)

The purpose of this subsection is to find some bounds for We observe the optimal strategy K∗ρ(0, z)
and the utility function Vρ(t, x, z) for both cases ρ = 1 and ρ = −1. Indeed, the solution of the PDE (46)
has the following stochastic representation:

ϕρ(z, t) = −E
[∫ T

t

(
(µ(Z̃ρ

s )− r)2

2σ2(Z̃ρ
s )

+ cαer(T−s) − λθs

)
ds

∣∣∣∣∣Z̃ρ
t = z

]

where

Z̃ρ
u = z +

∫ u

t

(
g(Z̃ρ

s )−
ρβ(µ(Z̃ρ

s )− r)
σ(Z̃ρ

s )

)
ds + β

∫ u

t
dW̃s.

Then

ϕρ(z, 0) = −E
[∫ T

0

(
(µ(Z̃ρ

s )− r)2

2σ2(Z̃ρ
s )

+ cαer(T−s) − λθs

)
ds

∣∣∣∣∣Z̃ρ
0 = z

]

≤
∫ T

0
−cαer(T−s) + λθs ds

≤ λT
(

MY(αerT)− 1
)

,

where MY is the moment generating function of Y.

The optimal strategy is given by:

K∗ρ(t, z) =
µ(z)− r
ασ2(z)

e−r(T−t) +
ρβ

ασ(z)
ϕ

ρ
z e−r(T−t).

For ρ = 1, K∗1(0, z) is bounded from above as follows:

K∗1(0, z) ≤ µ(z)− r
ασ2(z)

e−rT + λT(MY(αerT)− 1)
β

ασ(z)
e−rT .

For ρ = −1, K∗−1(0, z) is bounded from below as follows:

K∗−1(0, z) ≥ µ(z)− r
ασ2(z)

e−rT − λT(MY(αerT)− 1)
β

ασ(z)
e−rT .

The value function V(t, x, z) is given by:

Vρ(t, x, z) = −eϕρ
exp

{
−αxer(T−t)

}
and for |ρ| = 1 we have the following lower bound:

Vρ(0, x, z) ≥ −eλT(MY(αerT)−1)e−αxerT
.
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4. Numerical Methods

4.1. The Monte Carlo Method

In this subsection we describe the Monte Carlo method for solving the parabolic PDE given
by (19). From the existence and uniqueness Theorem we know that the solution of the PDE (19) admits
a stochastic representation (see, Friedman (1975)) by:

ϕ(z, t) = E
[
exp
(
−1

δ

∫ T

t

(
(µ(Z̃s)− r)2

2σ2(Z̃s)
+ cαer(T−s) − λθs

)
ds
)∣∣∣∣Z̃t = z

]
(49)

where Z̃u is given by the following stochastic differential equation:

Z̃u = z +
∫ u

t

(
g(Z̃s)−

ρβ(µ(Z̃s)− r)
σ(Z̃s)

)
ds + β

∫ u

t
dW̃s, (50)

and W̃t, t ≥ 0 is a standard Brownian motion. For simplicity we adopt the following notations:

ζ(t, z) = −1
δ

(
(µ(Z̃s)− r)2

2σ2(Z̃s)
+ cαer(T−t) − λθt

)
,

h(z) :=
(

g(z)− ρβ(µ(z)− r)
σ(z)

)
.

To describe the Monte Carlo method for the problem given by Equations (49) and (50) we use the
same approach presented in (Asmussen and Glynn 2007; Talay 1996).

Step1: We generate M independent standard Brownian Motion W̃ j
t , for j = 1 · · ·M.

Step2: Let D = [t, T], then a uniform grid on D is given by:

ti = t + (i− 1)k, i = 1 . . . N, k = (T − t)/N − 1.

By a Forward Euler scheme (see, Kloeden and Platen (1992)), and for each Brownian motion
j = 1 · · ·M, Equation (50)

Z̃j
u = z +

∫ u

t

(
g(Z̃s)−

ρβ(µ(Z̃s)− r)
σ(Z̃s)

)
ds + β

∫ u

t
dW̃ j

s ,

is discretized on D as follows:

Z̃j
i = Z̃j

i−1 + h(Z̃j
i−1)k + β(W̃ j

i − W̃ j
i−1) (51)

where:
t(i) := ti, Z̃j

i := Z̃j
t(i) and W̃ j

i := W̃ j
t(i).

Step3: To estimate the path integral in (49), we use the Trapezoidal rule (see, Calfisch and
Moskowitz (1995)). Then the path integral is approximated as follows:

∫ T

t
ζ(s, Z̃s) ds =

k
2

[
ζ(t, z) + 2

N−1

∑
i=2

ζ(ti, Z̃i) + ζ(T, Z̃N)

]
+ o(k2). (52)

For j = 1 · · ·M, let:

Γj =
∫ T

t
ζ(s, Z̃j

s) ds =
k
2

[
ζ(t, z) + 2

N−1

∑
i=2

ζ(ti, Z̃j
i ) + ζ(T, Z̃j

N)

]
.
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Step4: We use the sample path given in (52) to estimate the conditional expectation given by the
Feynman-Kac formula (49) as follows:

ϕM(z, t) :=
1
M

M

∑
i=1

eΓi . (53)

Step5: The strong law of large numbers implies that:

ϕM(z, t) −→
M↗∞

ϕ(z, t)

4.2. The Mixed Finite Difference-Monte Carlo Method

Since the numerical computations can only be performed on finite domains, the first step is
to reduce the Cauchy problem (19) to a bounded domain, i.e., R is replaced by [−a, a], and instead
of artificial conditions, which were imposed on a and −a (see, Badaoui and Fernández (2013)) the
boundary conditions will be simulated by the Monte Carlo method as shown by (53). The Cauchy
problem to solve is the following:

ϕt +
1
2 β2 ϕzz + h(z)ϕz + ξ(t, z)ϕ = 0

ϕ(z, T) = 1, ∀z ∈ (−a, a),

ϕ(z, t) = ϕM(t, z), ∀ (z, t) ∈ {−a, a} × [0, T].

(54)

For existence and uniqueness results for the Cauchy problem (54) we refer to Friedman (1975).
Now we discretize (54) in the domain D′ := [−a, a]× [0, T]. A uniform grid on D is given by:

zi = −a + (i− 1)h, i = 1 . . . N′, h = 2a/N′ − 1,
tj = (j− 1)k, j = 1 . . . M′, k = T/M′ − 1.

The space and time derivatives are discretized using finite differences as follows:

ϕt(zi, tj) '
ϕ(zi, tj)− ϕ(zi, tj − k)

k
,

ϕz(zi, tj) '
ϕ(zi + h, tj)− ϕ(zi − h, tj)

2h
,

ϕzz(zi, tj) '
ϕ(zi + h, tj)− 2ϕ(zi, tj) + ϕ(zi − h, tj)

h2 .

Since our Cauchy problem is given with a terminal condition, we follow the same procedure
described in Cont and Tankov (2003), but backward in time. We denote by ϕ

j
i := ϕ(zi, tj) the solution

on the discretized domain. Then by substituting the derivatives by the expressions given above,
(54) becomes:

ϕ
j
i − ϕ

j−1
i

k
+

1
2

β2 ϕ
j
i+1 − 2ϕ

j
i + ϕ

j
i−1

h2 + h(zi)
ϕ

j
i+1 − ϕ

j
i−1

2h
+ ξ(ti, zi)ϕ

j
i = 0,

and

−
ϕ

j−1
i
k

+

(
1
k
− β2

h2 + ξ(ti, zi)

)
ϕ

j
i +

(
β2

2h2 +
1

2h
h(zi)

)
ϕ

j
i+1

+

(
β2

2h2 −
1

2h
h(zi)

)
ϕ

j
i−1 = 0.
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Then for j = 2 . . . M′ and i = 2 . . . N′ − 1 , ϕ
j
i satisfies the following explicit scheme:

ϕ
j−1
i =

(
1− kβ2

h2 + kξ(ti, zi)

)
ξ

j
i+

(
kβ2

2h2 +
k

2h
h(zi)

)
ξ

j
i+1+

(
kβ2

2h2 −
k

2h
h(zi)

)
ξ

j
i−1.

The final condition is given by:

ϕM′
i = 1, for all i = 1 . . . N′.

Now the boundary conditions will be given by (53) as follows:

ϕ
j
1 = ϕM(z(1), t(j)) for all j = 1 . . . M′ − 1,

ϕ
j
N′+1 = ϕM(z(N′ + 1), t(j)) for all j = 1 . . . M′ − 1.

Our algorithm given by the explicit scheme, final condition and the boundary conditions is
backward in time, forward in space, and hence, by the explicit scheme, the numerical solution can
be computed.

4.3. Stability of the Explicit Numerical Scheme

First we assume that the claims are exponentially distributed with parameter ν, then for
T < 1

r log(ν/α) we get:

θt =
αer(T−t)

ν− αer(T−t)
. (55)

To ensure that our explicit scheme is numerically stable we need to determine a relationship
between the space step and the time step. This relationship ensures that the error does not blow up,
when (4z,4t)→ (0, 0).

Assumptions 3. Under the assumption that |ρ| < 1, let

M4 = M1 + cα− λαerT

ν− αerT ,

M5 = M2 + cαerT − λα

ν− α
,

and
δ∗ = 1− ρ2.

We define M1, M2 and M3 as follows:

M1 = min
z∈[−a,a]

1
2
(µ(z)− r)2

σ2(z)
,

M2 = max
z∈[−a,a]

1
2
(µ(z)− r)2

σ2(z)
,

M3 = max
z∈[−a,a]

(
g(z)− ρβ(µ(z)− r)

σ(z)

)2

.

Proposition 1. If

T <
1
r

log
(

ν

α

(
M1 + cα

λ + M1 + cα

))
,
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Then a sufficient condition for the stability of the explicit scheme is given as follows:

k2 < min

( 2δ∗M4h2

(δ∗M4h)2+M2
3

)2

,
h4

(δ∗M5)2h4 + (M2
3+4δ∗M5β2)h2+4β4

 . (56)

Remark 5. A simplified representation of the stability condition given in (56) can be written as:

k2 < Ch4

where

C = max

((
2δ∗M4

M3

)2
,

1
4β2

)
.

The approach to get the mathematical conditions under which the explicit scheme is Consistent, Stable and
Well-posed is well described in Badaoui and Fernández (2013).

5. Numerical Experiments

5.1. Optimal Investment Strategy and Utility Function

Our purpose in this section is to get some economic interpretation about the impact of the
external factor on the insurer decisions. To perform this task we consider the Scott model with some
specific parameters described as follows:

The external Factor:
dZt = γ(κ − Zt) dt + β dW̃t, Z0 = z

where γ and κ are constants .
The risky asset price is given by:

dSt = St(µ0dt + eZt dW1t) with S0 = 1, (57)

and µ0 is constant.
The values assigned to the parameters involved in this simulation are explicitly given in the

following Table 1:

Table 1. The Parameter values used to simulate K∗(t, z) and V(t, x, z).

c λ T µ0 σ r α β γ κ ν a

5 3 1 0.3 ez 0.04 0.02 0.3 0.1 0 2 1

The results of the simulation by using both Monte-Carlo and mixed Finite Difference Monte-Carlo
methods are presented in the following figures.

When β = −0.3 the optimal strategy shows a behavior opposite to what was previously obtained:

Remark 6. The following conclusions are obtained for the particular set of parameters (see, Table 1) used during
the simulations.

1. From Figures 1–4 we observe that the optimal strategy is decreasing with increasing external factor, and as
a consequence the insurers invest less in the risky asset regardless the sign of the correlation coefficient.

2. The optimal strategy as a function of the correlation coefficient ρ increases for β > 0 and decreases
for β < 0. When the correlation factor is nonnegative, then the external factor and the risky asset are
positively correlated i.e, both are moving in the same direction, which is favorable in a financial environment
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Schlesinger and Doherty (1985), because the insurer is facing only one source of risk (an increase in the
external factor implies an increase in the price of the risky asset) and insurers increase their investment to
get more profit. When the correlation coefficient is negative the two risks faced by the insurers are evolving
in opposite directions Schlesinger and Doherty (1985), which leads to high risk (an increase in the external
factor implies losses in the risky asset), then insurers have to invest less as ρ becomes negatively large, this
fact was observed in Zou and Cadenillas (2014) under a deterministic volatility model, when the preferences
of the investor are Logarithmic or Exponential.

3. The Figures 5 and 6 that show the impact of the external factor on the utility function admit the same
economic explanation as those of the optimal strategy.

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

z

10

20

30

40

50

60

70

80

90

100

110

K
* (t

,z
)

ρ=0.9

ρ=0.5

ρ=0

ρ=-0.9

ρ=-0.5

Asterisk: Monte Carlo
Solid line: Mixed FD-MC

Figure 1. The optimal strategy K∗(t, z) at t = 0 for different values of ρ.
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Figure 2. The optimal strategy K∗(t, z) at t = 0.5 for different values of ρ.
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Figure 3. The optimal strategy K∗(t, z) at t = 0 for different values of ρ.
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Figure 4. The optimal strategy K∗(t, z) at t = 0.5 for different values of ρ.
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Figure 5. The utility function V(t, x, z) for t = 0, x = 0 and different values of ρ.
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Figure 6. The utility function V(t, x, z) for t = 0.5, x = 1 and different values of ρ.

Remark 7. Following the same definitions and issues addressed in Schlesinger and Doherty (1985), a real-world
example of external factors that determine market incompleteness in the sense considered in this paper and to
evaluate whether these factors are negatively or positively correlated with the risky asset, the simplest example
is to consider the external factor as any event that can affect the oil price, and a risky asset may be modeled by
holding shares in a power generation company (electricity). In this case an increase in the oil price is accompanied
by an increase in the price of electricity, then, under the Schlesinger and Doherty (1985) approach, this situation
implies a positive correlation coefficient and therefore more benefit for shareholders. However, if instead of the
power generation industry, we consider the automobile industry, then the correlation coefficient is negative,
which means losses for holders of shares in the automobile industry.

Since analytical results can be derived, the sensitivities to changes in other parameters (initial
surplus, premium rate, risk aversion, average claim size, jump intensity of the Poisson process) will be
studied in the following way. Let

ω(z, t) = E
[
exp
(
−1

δ

∫ T

t

(µ(Z̃s)− r)2

2σ2(Z̃s)
ds
)∣∣∣∣Z̃t = z

]
, (58)

where δ =
1

1− ρ2 .Then the optimal strategy and the value function given by (26) and (25) can be

written as:

K∗(t, z) =
µ(z)− r
ασ2(z)

e−r(T−t) +
ρβ

(1− ρ2)ασ(z)
ωz(t, z)
ω(t, z)

e−r(T−t),

V(t, x, z) = −ω(t, z)
1

1−ρ2 exp
{
−
∫ T

t

(
cαer(T−s) − λθs

)
ds
}

exp
{
−αxer(T−t)

}
,

1. Initial Surplus

• K∗(t, z) does not depend on x.

• ∂V(t, x, z)
∂x

= −αer(T−t)V(t, x, z) > 0, then V(t, x, z) is increasing as a function of x.

2. Premium Rate

• K∗(t, z) does not depend on c.
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• ∂V(t, x, z)
∂c

= −
(∫ T

t
αer(T−s) ds

)
V(t, x, z) > 0, then V(t, x, z) increases with the premium rate.

3. Risk Aversion

• K∗(t, z)
∂α

= − 1
α

K∗(t, z) may be negative or positive depending on the parameters of the
model.

•
∂V(t, x, z)

∂α
= −

( ∫ T

t

(
cer(T−s) − λer(T−s)E

[
Y exp

{
αYer(T−s)

}])
ds

+xer(T−t)

)
V(t, x, z).

Then the behavior of V(t, x, z) as a function of α depends on the sign of:

∫ T

t
cer(T−s) − λer(T−s)E

[
Y exp

{
αYer(T−s)

}]
ds + xer(T−t)

4. Average Claim size

• If η = E[Y] is the average claim size in the Cramér-Lundberg model, then K∗(t, z) does not
depend on η.

• ∂V(t, x, z)
∂η

= λ

(∫ T

t

∂θs

∂η
ds
)

V(t, x, z) which depends on the probability distribution of

Y. For instance, if the claims are exponentially distributed with parameter ν we know from
(55) that:

θt =
αer(T−t)

ν− αer(T−t)
=

αηer(T−t)

1− αηer(T−t)

and
∂V(t, x, z)

∂η
= λα

(∫ T

t

er(T−s)

1− αηer(T−s)
ds

)
V(t, x, z) < 0,

then V(t, x, z) decreases as a function of η.
5. Jump Intensity

• K∗(t, z) does not depend on λ.

• ∂V(t, x, z)
∂λ

=

(∫ T

t
θs ds

)
V(t, x, z) < 0, then V(t, x, z) is deceasing as a function of λ.

5.2. Ruin Probability

Following the approach described in Hata and Yasuda (2017), let Xt be the wealth process without
investment (The Cramér-Lundberg model) and XK∗

t the wealth process when the insurer decides to
follow the optimal strategy K∗. The ruin probability under K∗ is defined as follows:

Ψ(x, z) = P
[

inf
0≤t≤T

XK∗
t ≤ 0

]
and the ruin probability without investment as

Φ(x) = P
[

inf
0≤t≤T

Xt ≤ 0
]

.

To find the ruin probability we generate N = 5× 104 sample paths for both the wealth process
without investment and with investment. The ruin probability is given by the average of the number
of paths that fall below zero in each case until maturity time T.
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Due to the high computational effort required, we present some simulations under the optimal
strategy maximizing the expected utility K∗(t, z) (which is not necessary the optimal strategy
minimizing the ruin probability) for the case ρ = 0 with the following set of parameters given
in Table 2:

Table 2. The Parameter values used to simulate Ψ(x, z) and Φ(x, z).

c λ µ0 σ r β γ κ η z

5 3 0.3 ez 0 0.3 0.1 0 2 0

From the figures of the ruin probability, we observe the following:

Remark 8. From Figure 7 we observe that the ruin probability decreases for large initial surplus. For a short
time horizon, Figure 8 shows that the ruin probability is higher in the presence of investment, but for large time
horizon the ruin probability is smaller than in the case without investment.
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Figure 7. The ruin probability when T = 1 and α = 0.1.
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Figure 8. The ruin probability when T = 5 and α = 0.1.
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6. Discussion

1. The approach used in this work is more general because it includes both the study of Complete
and Incomplete markets. In the case of ρ2 6= 1, the presence of the second Brownian motion cannot
be eliminated, which means that the external factor cannot be traded through the risky asset.

2. One consequence of our approach is to recover and improve the behavior of both expected utility
and optimal strategy obtained in Badaoui and Fernández (2013), since there is no need to impose
artificial boundary conditions, which in this work are approximated via the Monte Carlo method.

3. When the insurer’s preferences are of exponential type, the optimal strategy depends only on
time and the external factor regardless of the level of wealth.

4. The Monte Carlo method is a good alternative for the finite difference method, when stochastic
representation of the solution is available.
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