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Abstract: Although both over-dispersed Poisson and log-normal chain-ladder models are popular in
claim reserving, it is not obvious when to choose which model. Yet, the two models are obviously
different. While the over-dispersed Poisson model imposes the variance to mean ratio to be common
across the array, the log-normal model assumes the same for the standard deviation to mean ratio.
Leveraging this insight, we propose a test that has the power to distinguish between the two models.
The theory is asymptotic, but it does not build on a large size of the array and, instead, makes use
of information accumulating within the cells. The test has a non-standard asymptotic distribution;
however, saddle point approximations are available. We show in a simulation study that these
approximations are accurate and that the test performs well in finite samples and has high power.

Keywords: non-nested testing; encompassing; chain-ladder

1. Introduction

Which is the better chain-ladder model for claim reserving: over-dispersed Poisson or log-normal?
While the expert may have a go-to model, the answer should be informed by the data. Choosing the
wrong model could substantially influence the quality of the reserve forecast. Yet, so far, no statistical
theory is available that supports the actuary in his/her decision and that allows him/her to make a
solid argument in favour of either model.

We develop a test that can distinguish between over-dispersed Poisson and log-normal data
generating processes, both of which have a long history in claim reserving. The test exploits that the
former model fixes the variance to mean ratio across the array, while the latter assumes a common
standard deviation to mean ratio. Consequently, the test statistic is based on estimators for the
variation in the respective models. The idea is drawn from the econometric literature on encompassing.
Intuitively, the test asks whether the null-model can accurately predict the behaviour of the rival
model’s variation estimator when the null-model is true.

The over-dispersed Poisson model is appealing since it naturally pairs with Poisson quasi-likelihood
estimation, replicating the popular chain-ladder technique in run-off triangles (Kremer 1985, pp. 130).
Furthermore, this model makes for an appealing story due to its relation to compound Poisson
distributions. Such distributions give the aggregate incremental claims an interpretation as the sum
over a Poisson number of claims with random individual claim amounts (Beard et al. 1984, Section 3.2).
A popular method to generate distribution forecasts for the over-dispersed Poisson model is
bootstrapping (England and Verrall 1999; England 2002). While in widespread use, there is so far no
theory proving the validity of the bootstrap in this setting. Furthermore, in some settings, the method
seems to produce unsatisfactory results.

Recently, Harnau and Nielsen (2017) developed a theory that gives the over-dispersed Poisson
model a rigorous statistical footing. They propose an asymptotic framework based on infinitely-divisible
distributions that keeps the dimension of the data array fixed and instead builds on large cell means.
This resolves the incidental parameter problem (Lancaster 2000; Neyman and Scott 1948) that renders
a standard asymptotic theory based on a large array invalid and arises since the number of parameters
grows with the size of the array. The class of infinitely-divisible distributions includes compound Poisson
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distributions, which are appealing in an insurance context, as noted above. We can then interpret
large cell means as the result of a large latent underlying number of claims. Other infinitely-divisible
distributions that can be reconciled with the over-dispersed Poisson structure include Poisson, gamma
and negative binomial.

The intuition for the theory by Harnau and Nielsen (2017) is that the array is roughly normally
distributed for large cell means, so that the results remind us of a classical analysis of variance (ANOVA)
setting. Harnau and Nielsen (2017) show that Poisson quasi-likelihood estimators are t-distributed, and
F-tests based on Poisson likelihoods can be used to test for model reduction, such as for the absence
of a calendar effect. Finally, chain-ladder forecast errors are t-distributed, giving rise to closed-form
distribution forecasts including for aggregates, such as the reserve or cash-flow. In their simulations,
Harnau and Nielsen (2017) find that while the bootstrap (England and Verrall 1999; England 2002)
matches the true forecast error distribution better on average, the t-forecast produces fewer outliers
and appears more robust.

Building on the asymptotic framework put forward by Harnau and Nielsen (2017), Harnau (2018a)
proposes misspecification tests for two crucial assumptions of the over-dispersed Poisson model. First,
the variance to mean ratio is assumed to be common across the array. Second, accident effects are not
allowed to vary over development years and vice versa. To check for a violation of these assumptions,
Harnau (2018a) suggests splitting the run-off triangle into sub-samples and then testing whether a
reduction from individual models for each sub-sample to a single model for the full array can be
justified. While the idea of splitting the sample is borrowed from time-series econometrics (Chow 1960),
the theory for a reduction to a single model is again reminiscent of an ANOVA setting. A classical
Bartlett test (Bartlett 1937) can be used to assess whether we can justify common variance to mean
ratios. This is followed by an independent F-test for the absence of breaks in accident and development
effects. Again, the asymptotics needed to arrive at these results keep the dimension of the array fixed,
growing instead the cell means. Harnau (2018a) also shows that these misspecification tests can be
used in a similar fashion in a finite sample log-normal model.

The log-normal model introduced by Kremer (1982), who relates it to the ANOVA literature,
features a predictor structure that is reminiscent of the classical chain-ladder. Verrall (1994) refers to
this as the chain-ladder linear model, while Kuang et al. (2015) use the term geometric chain-ladder.
The latter authors show that the maximum likelihood estimators in the log-normal model can be
interpreted as development factors of geometric averages, compared to an interpretation of arithmetic
averages arising for the classical chain-ladder. An advantage of the log-normal model is that an exact
Gaussian distribution theory applies to the maximum likelihood estimators. However, since these
estimators are computed on the log scale, a bias is introduced on the original scale. Verrall (1991)
tackles this issue and derives unbiased estimators for the mean and standard deviation on the original
scale. One issue for full distribution forecasts in the log-normal model is that the insurer is usually
not interested in forecasts for individual cells, but rather for cell sums such as the reserve or the
cash-flow. However, the log-normal distribution is not closed under convolution, so that cell sums are
not log-normally distributed.

Recently, Kuang and Nielsen (2018) proposed a theory that includes closed-form distribution
forecasts for cell sums, such as the reserve, in the log-normal model, thus remedying one of its
drawbacks. Kuang and Nielsen (2018) combined the insight by Thorin (1977) that the log-normal
distribution is infinitely divisible and the asymptotic framework by Harnau and Nielsen (2017). Based
on this, they propose a theory for generalized log-normal models, a class that nests the log-normal
model, but is not limited to it. In particular, the distribution is not assumed to be exactly log-normal,
but merely needs to be infinitely divisible with a moment structure close to that of the log-normal
model. The asymptotics in this framework again leave the dimension of the array untouched to avoid
an incidental parameter problem. In contrast to the theory for large cell means in the over-dispersed
Poisson model, results are now for small standard deviation to mean ratios.
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For the generalized log-normal model, Kuang and Nielsen (2018) show that least squares
estimators computed on the log scale are asymptotically t-distributed, and simple F-tests based on the
residual sum of squares can be used to test for model reduction. Reassuringly, these results match the
exact results in a log-normal model. Beyond that, they also prove that forecast errors on the original
scale are asymptotically t-distributed so that distribution forecasting for cell sums is straightforward.
Further, they show that the misspecification tests by Harnau (2018a) are asymptotically valid for the
generalized log-normal model, just as they were in finite samples for the log-normal model.

We remark that besides over-dispersed Poisson and log-normal models, there exist a number
of reserving models that we do not consider further in this paper. England and Verrall (2002) give
an excellent overview. Perhaps the most popular contender is the “distribution-free” model by
Mack (1993). This model also replicates the classical chain-ladder, but differs from the over-dispersed
Poisson model. Mack (1993) derives the expression for forecast standard errors. However, so far, no
full distribution theory exists for this model.

With a range of theoretical results in place for over-dispersed Poisson and (generalized) log-normal
models, discussed further in Section 3, a natural question is when we should employ which model.
The misspecification tests by Harnau (2018a) seem like a natural starting point. For example, if we
can reject the specification of the log-normal, but not the over-dispersed Poisson model, the latter
seems preferable. However, the misspecification tests may not always have enough power to make
this distinction, as we show in Section 2.

Since generalized log-normal and over-dispersed Poisson models are not nested, a direct test
between them is not trivial. Cox (1961, 1962) introduced a theory for non-nested hypothesis testing
with a null model. Vuong (1989) provided a theory for non-nested model selection without a null
model; in selection, the goal is to choose the better, not necessarily the true, model. However, both
procedures are likelihood based, so that the results are not applicable here, since we did not specify
exact distributions and, thus, do not have likelihoods available.

Given the lack of likelihoods for the models, we look to the econometric encompassing literature
for inspiration. The theory for encompassing allows for a more general way of non-nested testing.
As Mizon and Richard (1986) put it, “Among other criteria, it seems natural to ask whether a specific
model, say M1, can mimic the DGP [data generating process], in that statistics which are relevant within
the context of another model, M2 say, behave as they should were M1 the DGP.” The encompassing
literature originates from Hendry and Richard (1982) and Mizon and Richard (1986); for a less technical
introduction, see Hendry and Nielsen (2007, Section 11.5). Ermini and Hendry (2008) applied the
encompassing principle in a time-series application. They tested whether disposable income is better
modelled on the original scale or in logs. Taking the log model as the null hypothesis, they evaluated
whether the log model can predict the behaviour of estimators for the mean and variance of the model
on the original scale.

Building on the encompassing literature, we find the distribution of the over-dispersed Poisson
model estimators under a generalized log-normal data generating process and vice versa. It turns out
that both Poisson quasi-likelihood and log data least squares estimators for accident and development
effects are asymptotically normal, regardless of the data generating process. Differences arise in the
second moments. This manifests in the limiting distributions of the variation estimators. While these
are asymptotically χ2 under the correct model, their distribution is a non-standard quadratic form
of normals under the rival model. However, these distributions involve the unknown dispersion
parameter, which needs to be estimated. Employing the variation estimator of the correct model for
this purpose, we arrive at a test statistic with a non-standard asymptotic distribution: the ratio of
dependent quadratic forms. Saddle point approximations to such distributions are available (Butler
and Paolella 2008; Lieberman 1994). Further, we can show that the power of the tests originates from
variation in the means across cells. This is intuitive given that the main difference between the models
disappears when all means are identical; then, both standard deviation to the mean and variance to
mean ratios are constant across the array. These findings are collected in Section 4.
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With the theoretical results for encompassing tests between over-dispersed Poisson and
generalized log-normal models in place, we show that they perform well in a simulation study.
First, we demonstrate that saddle point approximations to the limiting distributions of the statistics
work very well. Second, we tackle an issue that disappears in the limit: we have the choice between
a number of asymptotically-identical estimators that generally differ in finite samples. Simulations
reveal substantial heterogeneity in finite sample performance, but also show that some choices
generally do well. Third, we show that the tests have high power for parameterizations we may
realistically encounter in practice. We also find that power grows quickly with the variation in the
means. The simulation study is in Section 5.

Having convinced ourselves that the tests do well in simulations, we demonstrate their application
in a range of empirical applications in Section 6. First, we revisit the empirical illustration of the
problem from the beginning of the paper. We show that the test has no problem rejecting one of the two
rival models. Second, we consider an example that perhaps somewhat cautions against starting with a
model that may be misspecified to begin with. In this application, dropping a clearly needed calendar
effect turns the results of the encompassing tests upside down. Third, taking these insights into
account, we implement a testing procedure that makes use of a whole range of recent results: deciding
between the over-dispersed Poisson and generalized log-normal model, evaluating misspecification
and testing for the need for a calendar effect.

We conclude the paper with a discussion of potential avenues for future research in Section 7.
These include further misspecification tests, a theory for the bootstrap and empirical studies assessing
the usefulness of the recent theoretical developments in applications.

2. Empirical Illustration of the Problem

We illustrate in an empirical example that the choice between the over-dispersed Poisson and
(generalized) log-normal model is not always obvious. Table 1 shows a run-off triangle taken from
Verrall et al. (2010, Table 1) with accident years i in the rows and development years j in the columns.
Calendar years k = i + j− 1 are on the diagonals.

Table 1. Run-off triangle taken from Verrall et al. (2010) with an indication for splitting into sub-samples
corresponding to the first and last five accident years. Accident years i in the rows; development years
j in the columns.

i, j 1 2 3 4 5 6 7 8 9 10

1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1729
2 448,627 512,882 168,467 130,674 56,044 33,397 56,071 26,522 14,346 -
3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864 - -
4 652,043 546,406 244,474 200,896 106,802 106,753 63,688 - - -
5 566,082 503,970 217,838 145,181 165,519 91,313 - - - -
6 606,606 562,543 227,374 153,551 132,743 - - - - -
7 536,976 472,525 154,205 150,564 - - - - - -
8 554,833 590,880 300,964 - - - - - - -
9 537,238 701,111 - - - - - - - -

10 684,944 - - - - - - - - -

While Kuang et al. (2015) and Harnau (2018a) model the data in Table 1 as log-normal, it is
not obvious whether a log-normal or an over-dispersed Poisson model is more appropriate. In a
log-normal model, the aggregate incremental claims Yij are independent:

MLN : log(Yij) = N(αi + β j + δ, ω2)
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where α and β are accident and development effects, respectively. On the original scale, this
implies that:

MLN =⇒ E(Yij) = exp
(

αi + β j + δ +
ω2

2

)
,

sd(Yij)

E(Yij)
=
√

exp(ω2)− 1. (1)

Thus, the standard deviation to mean ratio, as well as the log data variance are common across
cells. If we instead chose an over-dispersed Poisson model, we would maintain the independence
assumption and specify the first two moments of the claims Yij as:

MODP : E(Yij) = exp(αi + β j + δ),
var(Yij)

E(Yij)
= σ2.

Thus, the variance to mean ratio σ2 is identical for all cells.
To choose between the two models, we could take the misspecification tests by Harnau (2018a)

as a starting point. To implement the tests, the data are first split into sub-samples. For the
Verrall et al. (2010) data, Harnau (2018a) considers a split into two sub-samples consisting of cells
relating to the first and last five accident years, as illustrated in Table 1. The idea is then to test for
common parameters across the sub-samples. In the log-normal model, we first perform a Bartlett test
for common log data variances ω2 across sub-samples and, if this is not rejected, an F-test for common
accident and development effects. Similarly, in the over-dispersed Poisson model, we first test for
common over-dispersion σ2 and then again for common accident and development effects.

If one of the models is flagged as misspecified, but not the other, the choice becomes obvious.
However, in this application, we cannot reject either model based on these tests. For the log-normal
model, the Bartlett test for common log data variances yields a p-value of 0.09 and the F-test for
common effects a p-value of 0.91; the p-values for the equivalent tests in the over-dispersed Poisson
model are 0.78 and 0.64, respectively. Therefore, the question remains: Which model should we choose?

3. Overview of the Rival Models

We first discuss two common elements of the rival models, namely the data structure and the
chain-ladder predictor and its identification. Then, we in turn state assumptions, estimation and known
theoretical results for the over-dispersed Poisson and the generalized log-normal chain-ladder model.

3.1. Data

We assume that we have data for a run-off triangle of aggregate incremental claims. We denote
the claims for accident year i and development year j by Yij. Further, we count calendar years with an
offset, so the calendar year k = i + j− 1. Then, we can define the index set for a run-off triangle with I
accident, development and calendar years by:

I = {(i, j) : 1 ≤ i, j, k ≤ I}.

We define the number of observations in I as n. We could also allow for data in a generalized
trapezoid as defined by Kuang et al. (2008) without changing the results of the paper. Loosely,
generalized trapezoids allow for an unbalanced number of accident and development years, as well as
missing calendar years both in the past and the future.

3.2. Identification

We briefly discuss the identification problem of the chain-ladder predictor αi + β j + δ that is
common to both over-dispersed and generalized log-normal models. Kremer (1985) showed that
based on this predictor, Poisson quasi-likelihood estimation replicates the classical chain-ladder point
forecasts in a run-off triangle.
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The identification problem is that for any a and b,

µij = αi + β j + δ = (αi + a) + (β j + b) + (δ− a− b)

where αi and β j are accident and development effects, respectively. Thus, no individual effect
is identified. Several ad hoc identification methods are available; for example, we could set
∑i αi = ∑j β j = 0. Kuang et al. (2008) suggest a parametrization that is canonical in a Poisson model
and allows for easy counting of degrees of freedom. The idea is to re-write the linear predictor in terms
of a level and deviations from said level as:

µij = µ11 +
I

∑
s=2

1(i≤s)∆αs +
I

∑
t=s

1(j≤s)∆βs.

Thus, we can write:
µij = x′ijξ

where the design xij and identified parameter ξ are given by:

xij = (1, 1(i≤2), . . . , 1(i≤I), 1(j≤2), . . . , 1(j≤I))
′ ξ = (µ11, ∆α2, . . . , ∆αI , ∆β2, . . . , ∆β I)

′ ∈ Rp.

For the asymptotic theory in the over-dispersed Poisson model, it turns out to be useful to
explicitly decouple the level and its deviations by decomposing as:

ξ = (µ11, ξ(2)
′
)′ and xij = (1, x(2)

′

ij )′.

We can then define the aggregate predictor τ and the frequencies πij as:

τ = ∑
ij∈I

exp(µij) and πij =
exp(µij)

τ
=

exp(x(2)
′

ij ξ(2))

∑ij∈I exp(x(2)
′

ij ξ(2))
. (2)

Importantly, the frequencies πij are invariant to the level µ11, the first component of ξ.
Therefore, we can vary the aggregate predictor τ by varying µ11 without affecting the frequencies
πij. The frequencies πij are, in turn, functions of ξ(2) alone. Further, we note that given ξ(2), there is a

one-to-one mapping between µ11 and τ through τ = exp(µ11)∑ij∈I exp(x(2)
′

ij ξ(2)).
While this choice of identification scheme is useful for derivation of the theory in this paper, any

scheme may be used in applications of the results. This is because, as Kuang et al. (2008) point out,
the linear predictor µij is identified, unlike the individual effects. Since the main results of the paper
rely on estimates of the linear predictors µij alone, they are unaffected by the choice of a particular
identification scheme.

Furthermore, the results in this paper are not limited to the chain-ladder predictor; we could, for
example, include a calendar effect. Nielsen (2015) derives the form of the design vector for extended
chain-ladder predictors in generalized trapezoids. The identification method is implemented in the R
(R Core Team 2017) package apc (Nielsen 2015), as well as in the Python package of the same name
(Harnau 2017).

We note that the identification method can introduce arbitrariness into the forecast for models
that require parameter extrapolation, such as the extended chain-ladder model with calendar effects.
In the standard chain-ladder model, we can forecast claim reserves without parameter extrapolation;
in a continuous setting, Lee et al. (2015) refer to this as in-sample forecasting. In contrast, in the
extended chain-ladder model, we cannot estimate parameters for future calendar years from the
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run-off triangle. For this case, Kuang et al. (2008) and Nielsen and Nielsen (2014) explain how forecasts
can be influenced by ad hoc constraints and lay out conditions for the identification method that make
forecasts invariant to these arbitrary and untestable constraints.

3.3. Over-Dispersed Poisson Model

We give the assumptions of the over-dispersed Poisson model and discuss its estimation by
Poisson quasi-likelihood. We state the sampling scheme proposed by Harnau and Nielsen (2017) and
the asymptotic distribution of the estimators.

3.3.1. Assumptions

The first assumption imposes the over-dispersed Poisson structure on the moments. We can write
it as:

MODP : E(Yij) = exp(µij),
var(Yij)

E(Yij)
= σ2.

The second assumption is distributional and allows for the asymptotic theory later on. We assume
that the independent aggregate claims Yij have a non-degenerate, non-negative and infinitely-divisible
distribution with at least three moments. As noted by Harnau and Nielsen (2017), an appealing
example for claim reserving of such a distribution is compound Poisson. The interpretation is that

the aggregate incremental claims Yij can be written as Yij = ∑
Nij
`=1 X` for a Poisson number of claims

Nij
D
= Poisson{exp(µij)} independent of the independent and identically distributed random claim

amounts X`.

3.3.2. Estimation

We estimate the over-dispersed Poisson model by Poisson quasi-likelihood. The appeal is that,
as noted in Section 3.2, Poisson quasi-likelihood estimation replicates the chain-ladder technique.
We explicitly distinguish between the model, subscripted with ODP, and its standard estimators, sub-
or super-scripted with ql, to avoid confusion later on when we evaluate the estimators under the
rival model.

The fitted values for the linear predictors are given by:

µ̂
ql
ij = x′ij ξ̂ql where ξ̂ql = arg max

ξ∈Rp
∑

ij∈I
{Yij(x′ijξ)− exp(x′ijξ)}.

The fitted value for the aggregate predictor τ is then given by:

τ̂ql = ∑
ij∈I

exp(µ̂ql
ij ) = ∑

ij∈I
Yij,

a result implied by the fact that the re-parametrization of the Poisson likelihood in terms of the
mixed parameter (τ, ξ(2)) is linearly separable, so the parameters are variation independent; see,
for example, Harnau and Nielsen (2017); Martínez Miranda et al. (2015) or, for a more formal treatment,
Barndorff-Nielsen (1978, Theorem 8.4). This implies that the estimator for the aggregate predictor is
unbiased for the aggregate mean.

As an estimator for the over-dispersion σ2, Harnau and Nielsen (2017) use the Poisson deviance
D scaled by the degrees of freedom. The deviance is the log likelihood ratio statistic against a model
with as many parameters as observations, giving a perfect fit. The estimator is given by:

σ̂2 =
D

n− p
where D = 2 ∑

ij∈I
Yij{log(Yij)− µ̂

ql
ij }. (3)
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3.3.3. Sampling Scheme

For the asymptotic theory, we adopt the sampling scheme proposed by Harnau and Nielsen (2017).
The idea is to grow the overall mean τ = ∑ij∈I E(Yij) while holding the frequencies πij and thus ξ(2) fixed.
We note that this also implies that µ11 is O{log(τ)}. In this sampling scheme, information accumulates in
the estimated frequencies. In this sense, it is reminiscent of multinomial sampling as used, for example,
by Martínez Miranda et al. (2015) in a Poisson model conditional on the data sum. Furthermore, we
assume that τ increases in such a way that the skewness vanishes. Harnau and Nielsen (2017) remark
that this is implicit for distributions such as Poisson, negative binomial and many compound Poisson
distributions. Importantly, the sampling scheme holds the number of cells in the run-off triangle fixed.
If we instead grew the dimension of the array, the number of parameters would also increase, thus making
an asymptotic theory difficult.

3.3.4. Asymptotic Theory

Based on the assumptions in Section 3.3.1 and the sampling scheme Section 3.3.3, Harnau and
Nielsen (2017) derived the asymptotic distribution of the estimators.

The theory hinges on Harnau and Nielsen (2017, Theorems 1, 2), which for our purposes can be
formulated as:

τ−1/2{Yij − exp(µij)} = τ1/2(Yij/τ − πij)
D→ N(0, σ2πij) and

Yij

τ

P→ πij. (4)

An implication of the sampling scheme is that we cannot consistently estimate µ11 since the
overall mean τ and thus the level µ11 grow. However, the remaining parameters ξ(2) are fixed and can
be estimated in a consistent way. To ease notation, we define the design matrix X and the diagonal
matrix of frequencies Π so:

X = {xij : (i, j) ∈ I}′ and Π = diag{πij : (i, j) ∈ I}. (5)

Harnau and Nielsen (2017, Lemma 1) derive the distribution of the estimator for the mean parameters
in terms of the mixed parametrization (τ, ξ(2)

′
)′. The advantage is that the two components of the

mixed parameter are variation independent, so the covariance matrix featured in the asymptotic
distribution is block-diagonal. This property turns out to be useful for example in the derivation of
distribution forecasts. However, we opt to state the results in terms of the original parameterization by
ξ to ease the analogy with the generalized log-normal model below. For our purposes, this does not
complicate the theory.

As a corollary to Harnau and Nielsen (2017, Lemma 1), we can then state the distribution of the
quasi-likelihood estimator ξ̂ql as follows. All proofs are in Appendix A.

Corollary 1. In the over-dispersed Poisson model Sections 3.3.1 and 3.3.3,

√
τ(ξ̂ql − ξ) =

√
τ

{
(µ̂11 − µ11)

ξ̂
(2)
ql − ξ(2)

}
D→ N{0, σ2(X′ΠX)−1}.

Thus, even though the level µ11 → ∞, the difference between estimator and level (µ̂11 − µ11)

vanishes in probability. We note that τX′ΠX corresponds to the Fisher information about ξ in a
Poisson model.

Further, Harnau and Nielsen (2017, Lemma 1) find that the asymptotic distribution of the deviance
is proportional to a χ2:

D D→ σ2χ2
n−p.

Thus, the estimator σ̂2 has an asymptotic distribution, which is unbiased for σ2.
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3.4. Generalized Log-Normal Model

Following the same structure as for the over-dispersed Poisson model above, we set up the
generalized log-normal model as introduced by Kuang and Nielsen (2018) and discuss its estimation
and theoretical results. This model nests the log-normal model. While the log-normal model allows
for an exact distribution theory for the estimators, Kuang and Nielsen (2018) provide an asymptotic
theory that covers the generalized model. We are going to employ this asymptotic theory for the
encompassing tests below.

3.4.1. Assumptions

The assumptions for the generalized log-normal model mirror those for the over-dispersed
Poisson model closely. The assumption of independent Yij with a non-negative, non-degenerate
infinitely-divisible distribution and at least three moments is maintained. The difference lies in the
moment assumptions, which are replaced with:

MGLN : E(Yij) = exp
(

µij +
ω2

2

)
and

sd(Yij)

E(Yij)
=
√

ω2{1 + o(1)}

where o(1) vanishes as ω2 goes to zero. Thus, in the generalized log-normal model, the standard
deviation to mean ratio, also known as the coefficient of variation, is common across the data for small
ω2. This is in contrast to the variance to mean ratio in the over-dispersed Poisson model. Kuang and

Nielsen (2018, Theorem 3.2) point out that the log-normal model log(Yij)
D
= N(µij, ω2) satisfies these

assumptions. There, the standard deviation to mean ratio is
√

exp(ω2)− 1 as in (1).
Based on the infinite divisibility assumption, we can construct a story similar to the compound

Poisson story for the over-dispersed Poisson model. By definition, Y is infinitely divisible if for any
m > 0, there exist independent and identically distributed random variables X1, . . . , Xm, so ∑m

`=1 X`

has the same distribution as Y. Thus, as pointed out by Kuang and Nielsen (2018), we can again think
of m as the unknown number of claims and of X` as the individual claim amounts.

3.4.2. Estimation

We estimate the generalized log-normal model on the log scale by least squares. We define:

Z = {log(Yij) : (i, j) ∈ I}′.

Then, least squares fitted values for the linear predictors µij are, with the design X as defined
in (5), given by:

µ̂ls
ij = x′ij ξ̂ls where ξ̂ls = (X′X)−1X′Z.

We estimate the variation parameter ω2 based on the residual sum of squares written as:

ω̂2
ls =

RSS
n− p

where RSS = ∑
ij∈I

(Zij − µ̂ls
ij )

2 = Z′MZ for M = I − X(X′X)−1X′. (6)

The estimator for the aggregate predictor τ as defined in (2) is then:

τ̂ls = ∑
ij∈I

exp(µ̂ls
ij ).

Unlike in the over-dispersed Poisson model, this estimator is generally not unbiased. Instead, the
sum of linear predictors is unbiased for the sum of logs since ∑ij∈I µ̂ls

ij = ∑ij∈I Zij.
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3.4.3. Sampling Scheme

We adopt the sampling scheme Kuang and Nielsen (2018) put forward for the generalized
log-normal model. In this scheme, ω2 vanishes in such a way that the skewness of Yij goes to zero
while ξ remains fixed. In a log-normal model, this corresponds to letting the log data variance ω2, thus
the standard deviation to mean ratio

√
exp(ω2)− 1, go to zero. Again, the dimension of the array I

remains fixed.

3.4.4. Asymptotic Theory

The asymptotic theory Kuang and Nielsen (2018) introduced for the generalized log-normal
model allows one to find parameter uncertainty, testing for nested model reduction and closed-form
distribution forecasts.

Kuang and Nielsen (2018, Theorem 3.4) find that for small ω2,

(ω2)−1/2{Yij − exp(µij)}
D→ N{0, exp(2µij)}.

Thus, generalized log-normal random variables are asymptotically normal, but heteroskedastic
on the original scale. Furthermore, Kuang and Nielsen (2018, Theorem 3.3) prove that:

(ω2)−1/2(Zij − µij)
D→ N(0, 1). (7)

Therefore, conversion to the log scale yields asymptotic normality, as well. The difference is
that the variance is now homoskedastic. We recall that µij is fixed under the sampling scheme in

the generalized log-normal model. Therefore, these results imply that Yij
P→ exp(µij) and Zij

P→ µij.

This also means that the data sum ∑ij∈I Yij
P→ τ.

The small ω2 distribution of the estimators in the generalized log-normal model is given by
Kuang and Nielsen (2018, Theorem 3.5) as:

(ω2)−1/2(ξ̂ls − ξ)
D→ N{0, (X′X)−1} and

RSS
ω2

D→ χ2
n−p. (8)

In an exact log-normal model, the results in (8) hold for any ω2.
In contrast to the over-dispersed Poisson model, the full parameter vector ξ, including the level

µ11, can now be consistently estimated since it is fixed under the sampling scheme. This comes at the
cost that ω2 and, thus, the standard deviation to mean ratio move towards zero.

4. Encompassing Tests

With the two rival models in place, we aim to test the over-dispersed Poisson against the
generalized log-normal model and vice versa. Since the models are generally not nested, we cannot
simply test for a reduction from one to the other. Instead, we investigate whether the null model can
correctly predict the behaviour of the statistics of the rival model if the null model is true. We first
consider identifiable differences between the two models. Then, we in turn look at scenarios where the
null is the over-dispersed Poisson model versus where it is the generalized log-normal model.

4.1. Identifiable Differences

It is interesting to consider what key features let us differentiate between the generalized
log-normal and the over-dispersed Poisson model. Looking first at the means, we find that differences
between the two models are not identifiable. This is because for any ξ = (µ11, ξ(2)

′
)′ and ω2 in the
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generalized log-normal model, we can define ξ† = (µ11 + ω2/2, ξ(2)
′
)′ for the over-dispersed Poisson

model, so:

EGLN(Yij; ξ, ω2) = exp
(

x′ijξ +
σ2

2

)
= exp(x′ijξ

†) = EODP(Yij; ξ†).

Thus, we could not even tell the models apart based on the means if we knew their true values.
In contrast, differences in the second moments are identifiable. In the generalized log-normal

model, the standard deviation to mean ratio is constant for small ω2, while the variance to mean ratio
is constant in the over-dispersed Poisson model. Since:

var(Yij)

E(Yij)
=

{
sd(Yij)

E(Yij)

}2

E(Yij),

constancy in one ratio generally implies variation in the other, except when all means are identical.
Thus, the standard deviation to mean ratio in an over-dispersed Poisson model varies by cell, and so
does the variance to mean ratio in a generalized log-normal model. Thus, if nature presented us with
the true ratios, we could tell the models apart. As noted, an exception arises when all cells have the
same mean, a scenario that seems unlikely in claim reserving. If this were the case, the assumptions of
the two models are identical: the over-dispersed Poisson model becomes a generalized log-normal
model and vice versa. Thus, non-identifiable differences between the ratios imply that both models are
congruent with the data generating process in this dimension. Loosely, the two models become more
different as the variation in the means increases. We may thus conjecture that there is a relationship
between the power of tests based on standard deviations and variance to mean ratios and the variation
in the means.

4.2. Null Model: Over-Dispersed Poisson

We find the asymptotic distribution of the least squares estimators, motivated in the generalized
log-normal model, when the data generating process is over-dispersed Poisson. We propose a test
statistic based on these estimators and find its limiting distribution under an over-dispersed Poisson
data generating process.

The estimators from the log-normal model are computed on the log scale. Thus, we first find the
limiting distribution of over-dispersed Poisson Yij on the log scale.

Lemma 1. In the over-dispersed Poisson model Sections 3.3.1 and 3.3.3, limτ→∞ P(Yij = 0) = 0. For positive
Yij, with Zij = log(Yij),

√
τ(Zij − µij) =

√
τ{log(Yij/τ)− log(πij)}

D→ N(0, σ2π−1
ij ).

We stress again that µij is not fixed under the sampling scheme so that the result does not imply
that Zij converges to µij, rather it implies that their difference (Zij − µij) vanishes. We can relate this

lemma to Harnau and Nielsen (2017, Theorem 2), which states that Yij/ exp(µij)
P→ 1. This implies

that log{Yij/ exp(µij)} = log(Yij)− µij
P→ 0, matching what we find here.

Given the limiting distribution on the log scale, we can find the distribution of the estimators in
the same way as we would in a Gaussian model. Since the asymptotic distribution of

√
τ(Zij − µij) is

now heteroskedastic, unlike in the generalized log-normal model as shown in (7), we can anticipate
that the results will not match those found in the generalized log-normal model. This is confirmed by
the following lemma, using the notation for the design matrix X and the diagonal matrix of frequencies
Π introduced in (5).
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Lemma 2. Define Ω = (X′X)−1X′Π−1X(X′X)−1, and let U = N(0, I). Then, in the over-dispersed Poisson
model Sections 3.3.1 and 3.3.3,

√
τ(ξ̂ls − ξ) =

√
τ

{
(µ̂11 − µ11)

ξ̂
(2)
ls − ξ(2)

}
D→ N(0, σ2Ω),

τ̂ls
τ

P→ 1 and τRSS D→ σ2U′Π−1/2MΠ−1/2U.

As could be expected given Lemma 1, the results in Lemma 2 match finite sample results in
a heteroskedastic independent Gaussian model. Notably, the residual sum of squares RSS is not
asymptotically χ2. However, the over-dispersion σ2 enters their distribution only multiplicatively.
The frequency matrix Π enters as a nuisance parameter that we can, however, consistently estimate
since it is a function of ξ(2) alone. For example, we could use plug-in estimators Π̂ql = Π(ξ̂

(2)
ql ) or

Π̂ls = Π(ξ̂
(2)
ls ). If we knew σ2, we could feasibly approximate the limiting distribution of RSS. Besides

Monte Carlo simulation, numerical methods are available; see, for example, Johnson et al. (1995,
Section 18.8). These methods exploit that the distribution of the quadratic form can be written as a
weighted sum of χ2

1. Generally, for a real symmetric matrix A and independent χ2
1 variables Vij,

U′AU D
= ∑

ij∈I
λijVij

where λij are the eigenvalues of A; this follows directly by the eigendecomposition of A.
Unfortunately, the over-dispersion σ2 is generally unknown, so that we cannot simply base an

encompassing test on the residual sum of squares RSS. Therefore, we require an estimator for σ2.
An obvious choice in the over-dispersed Poisson model is the estimator σ̂2 = D/(n− p). However,
computed on the same data, D and RSS are not independent. We could tackle this issue in two
ways. First, similar to Harnau (2018a), we could split the data I into disjoint and thus independent
sub-samples. Then, we could compute RSS on one sub-sample and D on the other, making the
two statistics independent. However, in doing so, we would incorporate less information into each
estimate and likely lose power. Beyond that, it seems little would be gained by this approach since
no closed-form for the distribution of RSS is available in the first place. The second way to tackle the
issue is to find the asymptotic distribution of the ratio RSS/D with each component computed over
the full sample. This is the way we are going to go.

Before we proceed, we derive an alternative estimator for the over-dispersion σ2 that gives us
more choice later on for the encompassing test. Lemma 1 is suggestive of a weighted least squares
approach on the log scale since the form of the heteroskedasticity is known, taking Π as given. For:

X∗ = Π1/2X, Z∗ = Π1/2Z and M∗ = I − X∗(X∗
′
X∗)−1X∗

′
, (9)

the weighted least squares estimators on the log scale are given by:

ξ̂∗ = (X∗
′
X∗)−1X∗

′
Z∗ and RSS∗ = Z∗

′
M∗Z∗.

Of course, Π is unknown, so these estimators are infeasible. However, we can consistently
estimate Π. Thus, we can compute feasible weighted least squares estimators. For a first stage
estimation of the weights by least squares, we write:

Π̂ls = Π(ξ̂
(2)
ls ), X∗ls = Π̂1/2

ls X, Z∗ls = Π̂1/2
ls Z and M∗ls = I − X∗ls(X∗

′
ls X∗ls)

−1X∗
′

ls ,

so the (least squares) feasible weighted least squares estimators are:

ξ̂∗ls = (X∗
′

ls X∗ls)
−1X∗

′
ls Z∗ls and RSS∗ls = Z∗

′
ls M∗lsZ∗ls.
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Similarly, using instead the quasi-likelihood-based plug-in estimator Π̂ql = Π(ξ̂
(2)
ql ) for the

weights, we write:

Π̂ql = Π(ξ̂
(2)
ql ), X∗ql = Π̂1/2

ql X, Z∗ql = Π̂1/2
ql Z and M∗ql = I − X∗ql(X∗

′
ql X∗ql)

−1X∗
′

ql ,

so the (quasi-likelihood) feasible weighted least squares estimators are:

ξ̂∗ql = (X∗
′

ql X∗ql)
−1X∗

′
ql Z∗ql and RSS∗ql = Z∗

′
ql M∗qlZ

∗
ql .

While we would generally expect them to differ in finite samples, it turns out that the Poisson
quasi-likelihood and the (feasible) weighted least squares estimators are asymptotically equivalent.
We formulate this in a lemma.

Lemma 3. In the over-dispersed Poisson model Sections 3.3.1 and 3.3.3,
√

τ(ξ̂∗ − ξ̂ql)
P→ 0, and for the

Poisson deviance D as in (3), τRSS∗ − D P→ 0. These results still hold if ξ̂∗ is replaced by ξ̂∗ls or ξ̂∗ql , RSS∗ is
replaced by RSS∗ls or RSS∗ql , or τ is replaced by τ̂ql or τ̂ls.

We are now armed with four candidate statistics for an encompassing test:

Rls = τ̂ls
RSS

D
, Rql = τ̂ql

RSS
D

, R∗ls =
RSS

RSS∗ls
, and R∗ql =

RSS
RSS∗ql

. (10)

To find their asymptotic distribution, we exploit that the distribution of each one is asymptotically
equivalent to a quadratic form of the same random vector Y. This is reflected in the limiting distribution.
which we formulate in a theorem.

Theorem 1. In the over-dispersed Poisson model Sections 3.3.1 and 3.3.3, Rls, Rql , R∗ls and R∗ql are

asymptotically equivalent, so that the difference of any two vanishes in probability. For U D
= N(0, I), Π

as in (5), M as in (6) and M∗ as in (9), each statistic is asymptotically distributed as:

RODP =
U′Π−1/2MΠ−1/2U

U′M∗U
.

Crucially, the asymptotic distribution RODP is invariant to σ2. While it is again a function of the
unknown, but consistently estimable frequencies πij, for large τ, the plug-in version R̂ODP = RODP(Π̂)

has the same distribution as RODP(Π).
Theorem 1 allows us to test whether the over-dispersed Poisson model encompasses the

generalized log-normal model. For a given critical value, if we reject that the R-statistic was
drawn from R̂ODP, then we reject that the over-dispersed Poisson model MODP encompasses the
generalized log-normal model. While this indicates that the over-dispersed Poisson model is likely
wrong, it could mean that the generalized log-normal model is correct or that some other model is
appropriate. Conversely, non-rejection means that we cannot reject that the over-dispersed Poisson
model encompasses the generalized log-normal model.

The distribution RODP does not have a closed-form, but precise saddle point approximations are
available, as we show below. Furthermore, it is of interest to investigate the impact of the choice among
the different test statistics and plug-in estimators for Π appearing in RODP in finite samples. Above
that, we may question the power properties of the test. We discuss these points below in Section 5.
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4.3. Null Model: Generalized Log-Normal

We first derive the small-ω2 asymptotic distribution of Poisson quasi-likelihood and weighted
least squares estimators when the data generating process is generalized log-normal. Then, we find
the asymptotic distribution of the R-statistic proposed for an encompassing test above.

First, given asymptotic standard-normality on the log scale as in (7), we can easily show asymptotic
normality of the weighted least squares estimator. As it turns out, Poisson quasi-likelihood estimators are
also asymptotically equivalent to the weighted least squares estimators when the data generating process
is generalized log-normal. We formalize this result in a lemma.

Lemma 4. Define Σ = (X′ΠX)−1X′Π2X(X′ΠX)−1, and let U D
= N(0, I). Then, in the generalized

log-normal model Sections 3.4.1 and 3.4.3,

(ω2)−1/2(ξ̂∗ − ξ)
D→ N(0, Σ) and (ω2)−1RSS∗ D→ U′Π1/2M∗Π1/2U.

Further, (ω2)−1/2(ξ̂∗ − ξ̂ql)
P→ 0 and (ω2)−1(RSS∗ − D/τ)

P→ 0. These results still hold if ξ̂∗ is
replaced by ξ̂∗ls or ξ̂∗ql , RSS∗ is replaced by RSS∗ls or RSS∗ql , or τ is replaced by τ̂ql or τ̂ls.

With these results in place, we can find the distribution of the R-statistics in the generalized
log-normal model.

Theorem 2. In the generalized log-normal model Sections 3.4.1 and 3.4.3, Rls, Rql , R∗ls and R∗ql as in (10) are

asymptotically equivalent so that the difference of any two vanishes in probability. For U D
= N(0, I), Π as in (5),

M as in (6) and M∗ as in (9), each statistic is asymptotically distributed:

RGLN =
U′MU

U′Π1/2M∗Π1/2U
.

Thus, the test statistics are asymptotically distributed as the ratio of quadratic forms in both data
generating processes. The difference arises in the sandwich-matrices. While the orthogonal projections
M and M∗ feature in both distributions, the frequency matrix Π acts in different ways on RODP and
RGLN . Intuitively, RODP is the ratio of “bad” least squares to “good” weighted least squares residuals
computed in a heteroskedastic Gaussian model. In contrast, RGLN has the interpretation as the ratio
of “good” least squares to “bad” weighted least squares residuals now computed in a homoskedastic
model. Thus, we may expect draws from RGLN to likely be smaller than those from RODP.

4.4. Distribution of Ratios of Quadratic Forms

We discuss the support of and numerical saddle point approximations to the limiting distributions
of the encompassing tests under either data generating process.

The limiting distribution under the null hypothesis in both models is a ratio of dependent
quadratic forms in normal random variables. This class of distributions is rather common. Besides
standard F distributions, which are a special case, they appear for example in the Durbin–Watson test
for serial correlation (Durbin and Watson 1950, 1951). While the distributions generally do not permit
closed-form computations of the cdf, fast and precise numerical methods are available.

Butler and Paolella (2008) study a setting that includes ours, but is more general. They consider

R = ε′Aε/ε′Bε where A and B are symmetric n× n matrices, B is positive semidefinite and ε
D
= N(ν, I).

In our scenario, both A and B are positive semidefinite, and ν = 0.
Butler and Paolella (2008, Lemma 2) state that R is degenerate if and only if A = cB for some

constant c. In our setting, this occurs if Π = n−1 I, so all cells have the same mean. This matches
our observation from Section 4.1 that generalized log-normal and over-dispersed Poisson model are
indistinguishable if all cells Yij have the same mean. In that case, both the standard deviation to mean
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and the variance to mean ratio are constant across cells. This manifests in the collapse of both RODP
and RGLN to a point mass at n.

Further, Butler and Paolella (2008, Lemma 3) derive the support of R for a variety of cases
depending on the properties of A and B. Building on their work, we can prove the following result.

Lemma 5. The distributions RGLN and RODP have the same support. In non-degenerate cases, the support is
(l, r) for 0 < l < r < ∞.

The cumulative distribution functions and densities of ratios of quadratic forms admit saddle
point approximations. We adapt the discussion in Butler and Paolella (2008) to our scenario in which
ν = 0; a setting that matches Lieberman (1994). We aim to approximate:

P(R ≤ r) = P
(

ε′Aε

ε′Bε
≤ r
)
= P(Xr ≤ 0) where Xr = ε′(A− rB)ε

First, we compute the eigenvalues of A − rB denoted λ1, . . . , λn. We can write the cumulant
generating function K(s), the log of the moment generating function ϕ(s) = E[exp{s(A− rB)}], of Xr

and its `-th derivative as:

K(s) = −1
2

n

∑
t=1

log(1− 2sλt), K(`)(s) =
(

∂

∂s

)`

K(s) = (2`− 2)!!
n

∑
t=1

(
λt

1− 2sλt

)`

where a!! = a(a− 2)(a− 4) · · · is the double factorial with the usual definition that 0!! = 1. The saddle
point is the root:

ŝ : K(1)(ŝ) =
n

∑
t=1

(
λt

1− 2ŝλt

)
= 0.

Except for the special case when all eigenvalues λt are zero, so K(1)(s) = 0, ŝ is unique since
K(1)(s) is strictly increasing. The former case occurs if and only if E(Xr) = 0, which is the case
for r = trace(A)/trace(B). This case is dealt with separately. For the other cases, we compute:

ŵ = sgn(ŝ)
√
−2K(ŝ) and û = ŝ

√
K(2)(ŝ).

Then, denoting by Φ(.) and φ(.) the standard normal cdf and density, respectively, the first order
approximation to the cdf of R is:

P̂(R ≤ r) =





Φ(ŵ) + φ(ŵ)(ŵ−1 − û−1), if E(Xr) 6= 0
1
2 + K(3)(0)

6
√

2πK(2)(0)3/2 , if E(Xr) = 0
.

This saddle point approximation is a special case of the more general form in Lugannani and Rice
(1980). This is what Lieberman (1994) built on. Lugannani and Rice (1980) analysed the error behaviour
for a sum of independent and identically distributed random variables and showed uniformity of the
errors for a large sample. Butler and Paolella (2008) instead considered a fixed sample size and show
uniformity of errors in the tail of the distribution. This seems appealing for our scenario, since we
would expect the rejection region of the test to correspond to the tail of the distribution.

4.5. Power

We show that the conjecture of a link between the power of the tests and variation in the means
raised above in Section 4.1 is correct. To prove this, we consider a sequential asymptotic argument in
which first, depending on the data generating process, τ becomes large or ω2 becomes small and then
the means become “more dispersed” in a sense made precise below. Based on this argument, we can
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justify a one-sided test where the rejection region corresponds to the upper tail when the null model is
generalized log-normal and to the lower tail when it is over-dispersed Poisson.

The sequential asymptotics allows us to exclusively consider the impact of more dispersed
means on RGLN and RODP without worrying about the effect on the distribution of Rls, Rql , R∗ls or R∗ql .

However, larger mean dispersion would be linked to changes in ξ(2), a parameter that we keep fixed
when deriving the asymptotic distribution of the test statistics in the first stage of the asymptotics.
Therefore, we would expect the approximation quality achieved in the first stage to be affected by the
second stage. The interpretation of the results is thus for a given first stage approximation quality,
however large τ or small ω2 may be needed to achieve this.

We model “more dispersed” means by increasing the variation in the frequencies πij and
specifically by letting some frequencies go to zero. In this way, we do not make a statement about the
means in absolute terms, but merely say that some cell means become large relative to others.

For our analysis, we exclude cells for which estimation would yield a perfect fit; equivalently, we
can impose that the frequencies do not exclusively vanish for perfectly-fitted cells. For example, in a
chain-ladder model for the run-off triangle in Table 1, the corner cells (1, 10) and (10, 1) would be fit
perfectly as they have their own parameters ∆β10 and ∆α10.

To increase the variation in the frequencies πij, we decide on n− q cells of the run-off triangle for
which we want the frequencies to vanish. We require that the remaining q cells with non-vanishing
frequencies make up an array on which we can estimate a model with the same structure for the linear
predictor µij as for the full data without obtaining a perfect fit. For example, for a chain-ladder model
in which µij = αi + β j + δ, this would be the case for rectangular arrays with at least two columns and
rows or for triangular arrays with at least three rows and columns.

For the ease of notation, we sort rows and columns of the frequency matrix Π defined in (5) such
that the cells with vanishing frequencies are in the bottom right block of the matrix. Then, for a q× q
matrix Π1 and an (n− q)× (n− q) matrix Π2, we define a new frequency matrix:

Π(t) = s(t)

(
Π1 0
0 tΠ2

)
where s(t) = {trace(Π1) + t · trace(Π2)}−1 (11)

so s(t) takes care of the normalization such that the elements of Π(t) are still frequencies. The idea is to
model the vanishing frequencies by letting t→ 0. Clearly, Π(1) corresponds to Π, whereas Π(0) has all
frequencies in the the bottom right block equal to zero. We assume that Π1 6= q−1 I, so that the limiting
case does not correspond to a scenario without variation in the frequencies.

Similarly, we sort rows and columns of the design matrix X to obtain a convenient partition.
We sort the rows such that the q cells relating to non-vanishing frequencies are in the first q rows.
Further, we sort the columns so the p1, say, parameters relevant for these q cells are in the first p1

columns. Then, we can partition:

X =

(
X11 X12

X21 X22

)
(12)

where X11 is q× p1 and X22 is (n− q)× (p− p1). Column sorting ensures that X12 = 0. Imposing
that there is no perfect fit for the q cells without vanishing frequencies implies that p1 < q, so there are
fewer parameters than cells.

We are now interested in the properties of the large τ or small ω2 limiting distributions of the
R statistics’ when some frequencies are small. For fixed t, Theorems 1 and 2 apply. Thus, for fixed
frequencies Π(t), the large τ and small ω2 distributions of the R statistics in an over-dispersed Poisson
and generalized log-normal model, respectively, are:

R(t)
ODP =

U′Π−1/2
(t) MΠ−1/2

(t) U

U′M∗
(t)U

and R(t)
GLN =

U′MU
U′Π1/2

(t) M∗
(t)Π

1/2
(t) U
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where M∗(t) is the weighted least squares orthogonal projection matrix I − X∗(t)(X∗
′

(t)X
∗
(t))
−1X∗

′
(t) for

X∗(t) = Π1/2
(t) X. Thus, Π(t) enters not only directly, but also indirectly through M∗(t).

We study the tests’ power by looking at the limit of R(t)
ODP and R(t)

GLN as t→ 0. We reiterate that the
sequential asymptotics neglect interactions between first stage asymptotics for large τ or small ω2 and
the second stage small t asymptotics. A first intuition that neglects the potential influence of M∗(t) may

tell us that R(t)
GLN should be well behaved while R(t)

ODP blows up for small t. This turns out to be correct.

Theorem 3. Let U D
= N(0, I) and let U1 contain the first q elements of U. Further define Π̆1 = s(0)Π1,

X̆∗11 = Π̆1/2
1 X11 and M̆∗11 = I − X̆∗11(X̆∗

′
11X̆∗11)

−1X̆∗
′

11. Then, as t→ 0,

R(t)
GLN

a.s.→ U′MU
U′1Π̆1/2

1 M̆∗11Π̆1/2
1 U1

:= R(0)
GLN while R(t)

ODP
a.s.→ ∞.

Further, for α ∈ (0, 1), let q(t)GLN,α be the α-quantile of R(t)
GLN and similarly for q(t)ODP,α. Then,

R(t)
ODP > q(t)GLN,α and R(t)

GLN ≤ q(t)ODP,α almost surely as t→ 0.

Theorem 3 justifies one-sided tests and shows that the power of the tests under either data
generating process goes to unity in the sequential asymptotic argument. Since the distribution of RODP
and RGLN coincides for equal means, the power of the tests to distinguish between the data generating
processes comes entirely from the variation in means. As the mean variation becomes large, RODP first
order stochastic dominates RGLN . Thus, we can consider the lower tail of RODP and the upper tail of
RGLN as rejection regions. While still controlling the size of the test under the null, we gain power
compared to two-sided tests as the mean variation increases.

The denominator of R(0)
GLN can be interpreted as “bad” weighted least squares residuals in a

homoskedastic Gaussian model computed on just the subset of q cells with non-vanishing frequencies.
For a brief intuition as to why only cells and parameters relating to X11 matter in the limit of the
denominator, we consider weighted least squares estimation for Z = Xξ +Π−1/2

(t) ε, taking Π(t) as given.

We solve this by minimizing |Π1/2
(t) (Z− Xξ)|2. For t > 0, the minimum is given by Z′Π1/2

(t) M∗(t)Π
1/2
(t) Z.

When t = 0, the last n− q elements of Z and rows of X corresponding to the vanishing frequencies
do not contribute to the norm. The same holds for the last p− p1 parameters in ξ that are then not
identified. Thus, for t = 0, letting Z1 contain the first p1 elements of Z, the minimum of the norm
equals Z′1Π̆1/2

1 M̆∗11Π̆1/2
1 Z1.

5. Simulations

With the theoretical results for encompassing tests between over-dispersed Poisson and
generalized log-normal models in place, we show that they perform well in a simulation study.
First, we show that saddle point approximations to the limiting distributions RODP and RGLN are
very accurate. Second, we tackle an issue that disappears in the limit; namely, the choice between
asymptotically identical estimators that generally differ in finite samples. We show that finite sample
performance is indeed affected by this choice. However, we find that for some choices, finite sample
and asymptotic distributions are very close. Third, we show that the tests have high power in finite
samples and, considering the behaviour of the limiting distributions alone, that power increases
quickly with the variation in means. For the simulations and empirical applications below, we use the
Python packages quad_form_ratio (Harnau 2018b) and apc (Harnau 2017). The package was inspired
by the R (R Core Team 2017) package apc (Nielsen 2015) with similar functionality.

5.1. Quality of Saddle Point Approximations

We show that saddle point approximations work well compared to large Monte Carlo simulations.
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We consider three parameterizations. First, we let the design X correspond to that of a chain-ladder
model for a ten-by-ten run-off triangle and set the frequency matrix Π to the least squares estimates
Π̂ls = Π(ξ̂

(2)
ls ) of the Verrall et al. (2010) data in Table 1 (VNJ). Second, for the same design, we now set

the frequency matrix to the least squares plug-in estimates based on a popular dataset by Taylor and
Ashe (1983) (TA). We provide these data in the Appendix A in Table A2. Third, we consider a design
X for an extended chain-ladder model in an eleven-by-eleven run-off triangle and set Π to the least
squares plug-in estimates of the Barnett and Zehnwirth (2000) data (BZ), also shown in the Appendix
in Table A1. We remark that in the computations, we drop the corner cells of the triangles that would
be fit perfectly in any case; this helps to avoid numerical issues without affecting the results.

Given a data generating process R chosen from RODP and RGLN , a design matrix X and
a frequency matrix Π, we use a large Monte Carlo simulation as a benchmark for the saddle
point approximation. First, we draw B = 107 realizations rb from R. For the Monte Carlo cdf
P̂MC(R ≤ q) = B−1 ∑B

b=1 1(rb ≤ q), we then find the quantiles qα, so P̂MC(R ≤ qα) = α for
α = 0, 0.005, 0.01, . . . , 1. To compute the saddle point approximation P̂SP(R ≤ q), we use the
implementation of the procedure described in Section 4.4 in the package quad_form_ratio. Then, for
each Monte Carlo quantile qα, we compute the difference P̂SP(R ≤ qα)− α. Taking the Monte Carlo
cdf as the truth, we refer to this as the saddle point approximation error.

Figure 1a shows the generalized log-normal saddle point approximation error P̂SP(RGLN ≤
qα) − α plotted against α. One and two (pointwise) Monte Carlo standard errors

√
α(1− α)/B

are shaded in blue and green, respectively. While the approximation errors for TA are generally
not significantly different from zero, the same cannot be said for the other two sets of parameters.
For the parameterizations VNJ and BZ, the errors start and end in zero and are negative in between.
Despite statistically-significant differences, the approximation is very good with a maximum absolute
approximation error of just over −0.006. The errors in the tails are much smaller, as we might have
expected given the results by Butler and Paolella (2008) discussed in Section 4.4.

0.00 0.25 0.50 0.75 1.00

α

−0.006

−0.004

−0.002

0.000

BZ

TA

V NJ

(a) P̂SP(RGLN ≤ qα)− α

0.00 0.25 0.50 0.75 1.00

α

0.000

0.001

0.002

0.003

0.004

0.005
BZ

TA

V NJ

(b) P̂SP(RODP ≤ qα)− α

Figure 1. Approximation error of the first order saddle point approximation to RGLN , shown in (a),
and RODP, displayed in (b). Monte Carlo simulation with 107 draws taken as the truth. One and two
Monte Carlo standard errors shaded in blue and green, respectively.

Figure 1b shows the plot for the approximation error to RODP produced in the same way as
Figure 1a. The approximation error is positive and generally significantly different from zero across
parameterizations. Yet, the largest error is about 0.005 with smaller errors in the tails.

We would argue that the saddle point approximation errors, while statistically significant, are
negligible in applications. That is, using a saddle point approximation rather than a large Monte Carlo
simulation is unlikely to affect the practitioner’s modelling decision.
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5.2. Finite Sample Approximations under the Null

The asymptotic theory above left us without guidance on how to choose between test statistics R
and estimators for the nuisance parameter Π that appears in the limiting distributions R. While the choice
is irrelevant for large τ or small ω2, we show that it matters in finite samples and that some combinations
perform much better than others when it comes to approximation under the null hypothesis.

In applications, we approximate the distribution of R by R̂ = R(Π̂). That is, defining the α

quantile of R̂ as qR̂
α , we hope that P(R ≤ qR̂

α ) ≈ α under the null hypothesis. To assess whether this
is justified, we simulate the approximation quality across 16 asymptotically identical combinations
of R-statistics and ratios of quadratic forms R̂. We describe the simulation process in three stages.
First, we explain how we set up the data generating processes for the generalized log-normal and
over-dispersed Poisson model. Second, we lay out explicitly the combinations we consider. Third, we
explain how we compute the approximation errors. As in Section 5.1, we point out that we drop the
corner cells of the triangles in simulations. This aids numerical stability without affecting the results.

For the generalized log-normal model, we simulate independent log-normal variables Yij,

so log(Yij)
D
= N(x′ijξ, ω2). We consider three settings for the true parameters corresponding largely to

the estimates from the same three datasets we used in Section 5.1, namely the Verrall et al. (2010) data
(VNJ), Taylor and Ashe (1983) data (TA) and Barnett and Zehnwirth (2000) data (BZ). Specifically,
we consider pairs (ξ, ω2) set to the estimated counterparts (ξ̂ls, ω̂2/s) for s = 1, 2. The estimates ω̂2

are 0.39 for VNJ, 0.12 for TA and 0.001 for BZ. Theory tells us that the approximation errors should
decrease with ω2, thus as s increases.

For the over-dispersed Poisson model, we use a compound Poisson-gamma data generating
process, largely following Harnau and Nielsen (2017) and Harnau (2018a). We simulate independent

Yij = ∑
Nij
`=1 Xs where Nij

D
= Poisson{exp(x′ijξ)} and Xs are independent Gamma distributed with

scale σ2 − 1 and shape (σ2 − 1)−1. This satisfies the assumptions for the over-dispersed Poisson
model in Sections 3.3.1 and 3.3.3. For the true parameters (τ, ξ(2), σ2), we consider three sets of
estimates (sτ̂ql , ξ̂

(2)
ls , σ̂2) from the same data as for the log-normal data generating process. We use least

squares estimates ξ̂
(2)
ls so that the frequency matrix Π is identical within parameterization between

the two data generating processes. The estimates for σ̂2 are 10,393 for VNJ, 52,862 for TA and 124
for BZ. Those for τ̂ql are 14, 633, 814 for VNJ, 34, 358, 090 for TA and 10, 221, 194 for BZ. Again,
we consider s = 1, 2, but this time scaling the aggregate predictor. If this increases, so should the
approximation quality. We recall that ξ(2) and τ pin down µ11 through the one-to-one mapping

τ = exp(µ11)∑ij∈I exp(x(2)
′

ij ξ(2)). Thus, multiplying τ by s corresponds to adding log(s) to µ11.

For a given data generating process, we independently draw B = 105 run-off triangles
4b = {Yij,b : (i, j) ∈ I} and compute a battery of statistics for each draw. First, we compute
the four test statistics Rls, Rql , R∗ls and R∗ql as defined in (10). Second, we compute the estimates for
the frequency matrices Π based on least squares estimates, quasi-likelihood estimates and feasible
weighted least squares estimates with least squares and with the quasi-likelihood first stage. This leads
to four different approximations to the limiting distribution, which, dropping the subscript for the
data generating process, we denote by:

R̂ls = R{Π(ξ̂
(2)
ls )}, R̂ql = R{Π(ξ̂

(2)
ql )}, R̂∗ls = R{Π(ξ̂

∗(2)
ls )}, and R̂∗ql = R{Π(ξ̂

∗(2)
ql )}.

Given a data generating process and a choice of test statistic and limiting distribution
approximation (R, R̂), we approximate P(R ≤ qR̂

α ) by Monte Carlo simulation. For each combination
(R, R̂), we have B paired realizations; for example, Rb and the distribution R̂b are based on the
triangle 4b. Denote the saddle point approximation to the cdf of R̂b as Gb(q) = P̂SP(R̂b ≤ q).
Neglecting the saddle point approximation error, we then compute P(R ≤ qR̂

α ) as P̂MC(R ≤ qR̂
α ) =
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B−1 ∑B
b=1 1{Gb(Rb) ≤ α}, exploiting that Gb(Rb) ≤ α whenever Rb ≤ G−1

b (α) = qR̂
α,b. We do this for

α ∈ A = {0.005, 0.01, . . . , 0.995}.
To evaluate the performance, we consider three metrics: area under the curve of absolute errors

(also roughly the mean absolute error), maximum absolute error and error at (one-sided) 5% critical
values. We compute the area under the curve as AUC = ∑199

`=1 |P̂MC(R ≤ qR̂
α`
) − α`|∆α` where

α` = 0.005 · `, so ∆α` = 0.005; we can also roughly interpret this as the mean absolute error MAE =

200/199 ·AUC since α` = 200−1. The maximum absolute error is maxα∈A |P̂MC(R ≤ qR̂
α )− α|. Finally,

the error at 5% critical values is P̂MC(R > qR̂
GLN,0.95) − 0.05 for the generalized log-normal and

P̂MC(R ≤ qR̂
ODP,0.05)− 0.05 for the over-dispersed Poisson data generating process.

Figure 2 shows bar charts for the area under the curve for all 16 combinations of R and R̂
stacked across the three parameterizations for s = 1. The chart is ordered by the sum of errors across
parameterizations and data generating processes within combination, increasing from top to bottom.
The maximum absolute error summed over parameterizations is indicated by “+”. Since a bar chart
for the maximum absolute errors is qualitatively very similar to the plot for the area under the curve,
we do not discuss it separately and instead provide it as Figure A1 in the Appendix A.

0.00.10.20.3

(Rql, R̂∗ls)
(Rql, R̂ls)

(Rql, R̂∗ql)
(Rql, R̂ql)

(Rls, R̂∗ql)
(Rls, R̂∗ls)
(Rls, R̂ls)

(R∗ql, R̂∗ql)
(Rls, R̂ql)

(R∗ql, R̂∗ls)
(R∗ql, R̂ls)

(R∗ls, R̂ql)
(R∗ql, R̂ql)

(R∗ls, R̂∗ql)
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(R∗ls, R̂∗ls)

Generalized Log-Normal

0.0 0.1 0.2 0.3

Over-dispersed Poisson
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BZ

Figure 2. Bar chart of the area under the curve of absolute approximation errors (also roughly mean
absolute error) for the considered combinations of R and R̂. Ordered by the sum of errors within the
combination across the data generating processes and parameterizations increasing from top to bottom.
Sum of maximum absolute errors across parameterizations indicated by “+”. VNJ, TA and BZ are
short for parameters set to their estimates from the Verrall et al. (2010) data in Table 1, the Taylor and
Ashe (1983) data in Table A2 and the Barnett and Zehnwirth (2000) data in Table A1, respectively. Based
on 105 repetitions for each parametrization. s = 1.

Looking first at the sum over parameterizations and data generating processes within
combinations, we see large differences in approximation quality both for the area under the curve of
absolute errors and the maximum absolute error. The former varies from about 5 pp (percentage-points)
for (R∗ls, R̂∗ls) to close to 30 pp for (Rql , R̂∗ls), the latter from 8 pp to 45 pp. It is notable that the four
combinations involving Rql are congregated at the bottom of the pack. In contrast, the three best
performing combinations all involve R∗ls. These three top-performers have a substantial head start
compared to their competition. While their AUC varies from 4.8 pp to 6.0 pp, there is a jump to 13.9 pp
for fourth place. Similarly, the maximum absolute errors of the top three contenders lie between 7.5 pp
and 9.3 pp, while those for fourth place add up to 20.5 pp.
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Considering next the contributions of the individual parameterizations to the area under the
curve across data generating processes, the influence is by no means balanced. Instead, the average
contribution over combinations of the VNJ, TA and BZ parameterizations is about 35%, 57% and 8%,
respectively. This ordering is well aligned in magnitude and ordering with that of ω2 and σ2/τ, loosely
interpretable as a measure for the expected approximation quality. Still, considering the contributions
of the parameterizations within combinations, we see substantial heterogeneity. For example, the TA
parameterization contributes much less to (R∗ql , R̂∗ql) than VNJ, while the reverse is true for (Rls, R̂ls).

Finally, we see substantial variation between the two data generating processes. While the range
of areas under the curve of absolute errors aggregated over parameterizations for the generalized
log-normal is 0.7 pp to 10 pp, that for the over-dispersed Poisson is 3.2 pp to 19.4 pp. The best
performer for the generalized log-normal is, perhaps unsurprisingly, (R∗ls, R̂ls). Intuitively, since the
data generating process is log-normal, the asymptotic results would be exact for this combination if
we plugged the true parameters into the frequency matrices. Just shy of these, we plug in the least
squares parameter estimates, which are maximum likelihood estimated. It is perhaps more surprising
that using Rql is not generally a good idea for the over-dispersed Poisson data generating process
even though the fact that these combinations take the bottom four slots is largely driven by the TA
parametrization. Reassuringly, the top three performers across data generating processes also take the
top three spots within data generating processes, albeit with a slightly changed ordering.

Figure 3a shows box plots for the size error at 5% nominal size computed over the three
parameterizations and two data generating processes within combinations (R, R̂) for s = 1. Positive
errors indicate an over-sized and negative errors an under-sized test. In the plots, medians are indicated
by blue lines inside the boxes. The boxes show the interquartile range. Whiskers represent the full
range. The ordering is increasing in the sum of the absolute errors at 5% critical values from top
to bottom.
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Figure 3. Box plots of size error at 5% critical values over parameterizations (VNJ, TA and BZ) and
data generating processes (generalized log-normal and over-dispersed Poisson). Results for s = 1
shown in (a) and for s = 2 in (b). Medians indicated by blue lines inside the boxes. The boxes show the
interquartile range. Whiskers represent the full range.

Looking at the medians, we can see that these are close to zero, ranging from −0.15 pp to 0.37 pp.
However, there is substantial variation in the interquartile range, 0.1 pp for (Rls, R̂∗ql) to 0.7 pp for

(R∗ql , R̂ls) and range, 0.4 pp for (R∗ls, R̂∗ls) to 6.7 pp for (Rql , R̂ls)). The best and worst performers from
the analysis for the area under the curve and maximum absolute errors are still found in the top and



Risks 2018, 6, 70 22 of 37

bottom positions. Particularly the performance of (R∗ls, R̂∗ls) seems close to perfection with a range
from −0.2 pp to 0.2 pp.

Figure 3b is constructed in the same way as Figure 3a, but for s = 2, halving the variance for
the generalized log-normal and doubling the aggregate predictor for the over-dispersed Poisson data
generating process. Theory tells us that the approximation quality should improve, and this is indeed
what we see. The medians move towards zero, now taking values between −0.05 pp and 0.14 pp; the
largest interquartile range is now 1.1 pp and the largest range 2.9 pp.

Overall, the combination (R∗ls, R̂∗ls) performs very well across the considered parameterizations
and data generating processes. This is not to say that we could not marginally increase performance in
certain cases, for example by picking (R∗ls, R̂ls) when the true data generating process is log-normal.
However, even in this case in which we get the data generating process exactly right, not much seems
to be gained in approximation quality where it matters most, namely in the tails relevant for testing.
Thus, it seems reasonable to simply use (R∗ls, R̂∗ls) regardless of the hypothesized model, at least for
size control.

5.3. Power

Having convinced ourselves that we can control size across a number of parameterizations, we
show that the tests have good power. First, we consider how the power in finite sample approximations
compares to power in the limiting distributions. Second, we investigate how power changes as the
means become more dispersed based on the impact on the limiting distributions RGLN and RODP alone,
as discussed in Section 4.5.

5.3.1. Finite Sample Approximations Under the Alternative

We show that combinations of R-statistics and approximate limiting distributions R̂ that do well
for size control under the null hypothesis also do well when it comes to power at 5% critical values.
The data generating processes are identical to those in Section 5.2 and so are the three considered
parameterizations VNJ, BZ and TA. To avoid numerical issues, we again drop the perfectly-fitted
corner cells of the triangles without affecting the results.

To avoid confusion, we stress that we do not consider the impact of more dispersed means in this
section. Thus, if we mention asymptotic results, we refer to large τ when the true data generating
process is over-dispersed Poisson and for small ω2 when it is generalized log-normal, holding the
frequency matrix Π fixed.

For a given parametrization, we first find the asymptotic power. When the generalized log-normal
model is the null hypothesis, we find the 5% critical values cGLN : P(RGLN > cGLN) = 0.05, using the
true parameter values for Π. Then, we compute the power P(RODP > cGLN). Conversely, when the
over-dispersed Poisson is the null model, we find cODP : P(RODP ≤ cODP) = 0.05 and compute the
power P(RGLN ≤ cODP). Lacking closed-form solutions, we again use saddle point approximations,
iteratively solving the equations for the critical values to a precision of 10−4.

Next, we approximate the finite sample power of the top four combinations for size control
in Section 5.2, (R∗ls, R̂∗ls), (R∗ls, R̂ls), (Rls, R̂ql) and (R∗ls, R̂∗ql), by the rejection frequencies under the
alternative for s = 1. For example, say the generalized log-normal model is the null hypothesis,
and we want to compute the power for the combination (R∗ls, R̂∗ls). Then, we first draw B = 105

triangles 4b from the over-dispersed Poisson data generating process. For each draw b, we find
5% critical values cR̂

GLN,ls,b : P(R̂∗GLN,ls,b > cR̂
GLN,ls,b) = 0.05. We compute these based on saddle

point approximations, solving iteratively up to a precision of 10−4. Then, we approximate the
power as B−1 ∑B

b=1 1{R∗GLN,ls,b > cR̂
GLN,ls,b}. For the over-dispersed Poisson null hypothesis, we

proceed equivalently, using the left tail instead. In this way, we approximate power for all three
parameterizations and all four combinations.

Before we proceed, we point out that we should be cautious to interpret power without taking
into account the size error in finite samples. A test with larger than nominal size would generally have
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a power advantage purely due to the size error. One way to control for this is to consider size-adjusted
power, which levels the playing field by using critical values not at the nominal, but at the true size.
In our case, this would correspond to critical values from the true distribution of the test statistic R,
rather than the approximated distribution R̂. Therefore, the choice of R̂ would not play a role any more.
To sidestep this issue, we take a different approach and compare how close the power of the finite
sample approximations matches the asymptotic power.

Table 2 shows the asymptotic power and the gap between power in finite sample approximations
and asymptotic power.

Looking at the asymptotic power first, we can see little variation between data generating
processes within parameterizations. The power is highest for the VNJ parameterization with 99%,
followed by BZ with 95% and TA with 65%. This ordering aligns with that of the standard deviations
of the frequencies πij under these parameterizations, which are given by 0.016, 0.012 and 0.009 for
VNJ, BZ and TA, respectively.

Table 2. Power in % at 5% critical values for large τ (over-dispersed Poisson DGP) and small ω2

(generalized log-normal DGP) along with the power gap in pp for the top four performers from Table 3.
DGP is short for data generating process. Based on 105 repetitions. s = 1.

P(RGLN ≤ cODP) P(R ≤ cR̂
ODP)− P(RGLN ≤ cODP)

H0 DGP Π (R∗ls, R̂∗ls) (R∗ls, R̂ls) (Rls, R̂ql) (R∗ls, R̂∗ql)

GLN ODP VNJ 99.02 0.25 0.14 0.18 0.22
BZ 94.61 −0.94 −0.96 −0.97 −0.94
TA 65.39 4.18 3.41 5.28 3.15

P(RODP > cGLN) P(R > cR̂
ODP)-P(RODP > cGLN)

(R∗ls, R̂∗ls) (R∗ls, R̂ls) (Rls, R̂ql) (R∗ls, R̂∗ql)

ODP GLN VNJ 99.23 −0.30 −0.25 −0.34 −0.20
BZ 94.67 −1.14 −1.15 −1.12 −1.12
TA 64.73 0.81 0.15 4.68 2.49

When considering the finite sample approximations, we see that their power is relatively close
to the asymptotic power. For VNJ, absolute deviations range from 0.14 pp to 0.34 pp and for BZ
from 0.94 pp and 1.15 pp. Compared to that, discrepancies for the TA parameterization are larger.
The smallest discrepancy of 0.14 pp arises for (R∗ls, R̂ls) when the data generating process is generalized
log-normal. As before, this is intuitive since it corresponds to plugging maximum likelihood estimated
parameters ξ̂(2) into Π. With 5.28 pp, the largest discrepancy arises for (Rls, R̂ql) for an over-dispersed
Poisson data generating process. Mean absolute errors across parameterizations and data generating
processes are rather close, ranging from 1.01 pp for (R∗ls, R̂ls) to 2.1 pp for (Rls, R̂ql). Our proposed
favourite from above (R∗ls, R̂∗ls) comes in second with 1.27 pp. We would argue that we can still justify
the use of (R∗ls, R̂∗ls) regardless of the data generating process.

5.3.2. Increasing Mean Dispersion in Limiting Distributions

We consider the impact of more dispersed means on power based on the the test statistics’ limiting
distributions RGLN and RODP. We show that the power grows quickly as we move from identical
means across cells to a scenario where a single frequency hits zero.

For a given diagonal frequency matrix Π with values πij, we define the linear combination:

Π(t) = tΠ + (1− t)n−1 In.

Thus, for t = 1, we recover Π, while for t = 0, we are in a setting where all cells have the
same frequencies, so all means are identical. In the latter scenario, RGLN and RODP collapse to a
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point-mass at n, as discussed in Section 4.4. We consider t ranging from just over zero to just under
tmax : tmax minij∈I (πij) + (1− tmax)n−1 = 0. The significance of tmax is that Π(tmax) corresponds to the
matrix where the smallest frequency is exactly zero.

For each t, we approximate one-sided 5% critical values of R(t)
GLN = RGLN(Π(t)) and R(t)

ODP =

RODP(Π(t)) through:

c(t)GLN : P̂SP(R(t)
GLN > c(t)GLN) = 0.05 and c(t)ODP : P̂SP(R(t)

ODP ≤ c(t)ODP) = 0.05.

We iteratively solve the equations up to a precision of 10−4. Theorem 3 tells us that the critical
values should grow for both models, but that c(t)GLN converges as t approaches tmax, while c(t)ODP goes
to infinity.

Then, for given t and critical values, we find the power when the null model is generalized
log-normal P(R(t)

ODP > c(t)GLN) and when the null model is over-dispersed Poisson P(R(t)
GLN ≤ c(t)ODP).

Again, we use saddle point approximation. Based on Theorem 3, we should see the power go to unity
as t approaches tmax.

We consider the same parameterizations VNJ, TA and BZ of frequency matrices Π and design
matrices X as above. The values for tmax are 1.083 for VNJ, 1.396 for TA and 1.103 for BZ. To avoid
numerical issues, we again drop the perfectly-fitted corner cells from the triangles. In this case,
while the power is not affected, the critical values are scaled down by the ratio of τ̂ls computed over
the smaller array without corner cells to that computed over the full triangle. Since this is merely
proportional, the results are not affected qualitatively.

Figure 4a shows the power when the generalized log-normal model is the null hypothesis. For all
considered parameterizations, this is close to 5% for t close to zero, increasing monotonically with t
and approaching unity as t approaches tmax, as expected.
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(b) P(R(t)
ODP > c(t)GLN)− P(R(t)

GLN ≤ c(t)ODP)

Figure 4. Power as t increases from zero to tmax. Values for tmax are 1.083 for VNJ, 1.396 for TA and
1.103 for BZ. (a) shows power when the null model is generalized log-normal, and (b) shows the
difference in power between the two models.

For t = 1, where Π(t) corresponds to the least squares estimated frequencies from the data, the
power matches what we found in Table 2.

Figure 4b shows the difference in power between the two models plotted over t. For the three
settings we consider, these curves have a similar shape and start and end at zero. Generally, the power
is very comparable, with differences between −2 pp and 1 pp, again matching our findings from
Table 2 for t = 1.
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Figure 5a shows the one-sided 5% critical values c(t)GLN plotted over t. As expected, these are

increasing for all settings. Figure 5b shows the ratio of the critical values c(t)ODP to c(t)GLN . This starts at
unity, initially decreases, then increases and, finally, explodes towards infinity as we approach tmax.

Taking the plots together, we get the following interpretation. We recall that the two distributions
are identical for t = 0. Further, the rejection regions for the generalized log-normal null is the upper
tail, while the lower tail is relevant for the over-dispersed Poisson model. However, for small t, the
mass of both R(t)

GLN and R(t)
ODP is highly concentrated around n, and the distributions are quite similar.

This explains why the power is initially close to 5% for either. Further, due to the concentration, c(t)GLN

and c(t)ODP are initially close. As t increases, both distributions become more spread out and move up

the real line, with R(t)
ODP moving faster than R(t)

GLN . This is reflected in the increase in power. Initially,

c(t)GLN increases faster than c(t)ODP, so their ratio decreases. Yet, for t large enough, c(t)ODP overtakes

c(t)GLN , indicating the point at which power reaches 95% for either model. The power differential is

necessarily zero at this point. Finally, c(t)ODP explodes while c(t)GLN converges as t approaches tmax, so the
ratio diverges.
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(a) c(t)GLN : P(R(t)
GLN > c(t)GLN)

0.0 0.5 1.0

t

1

2

3

4

V NJ

TA

BZ

(b) c(t)ODP/c(t)GLN

Figure 5. Critical values as t increases. (a) shows critical values of R(t)
GLN and (b) the ratio of critical

values of R(t)
ODP to R(t)

GLN .

6. Empirical Applications

We consider a range of empirical examples. First, we revisit the empirical illustration of the
problem from the beginning of the paper in Section 2. We show that the proposed test favours the
over-dispersed Poisson model over the generalized log-normal model. Second, we consider an example
that perhaps somewhat cautions against starting off with a model that may be misspecified to begin
with: dropping a clearly needed calendar effect turns the results of the encompassing tests upside
down. Third, taking these insights into account, we implement a testing procedure that makes use of a
number of recent results: deciding between the over-dispersed Poisson and generalized log-normal
model, evaluating misspecification and testing for the need for a calendar effect.

6.1. Empirical Illustration Revisited

We revisit the data in Table 1 discussed in Section 2 and show that we can reject that the
(generalized) log-normal model encompasses the over-dispersed Poisson model, but cannot reject
the alternative direction. Thus, the encompassing tests proposed in this paper have higher power to
distinguish between the two models than the misspecification tests Harnau (2018a) applied to these
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data. We remark that the encompassing tests were designed explicitly to distinguish between the two
models, in contrast to the more general misspecification tests.

Table 3 shows p-values for all 16 combinations of R-statistics and R̂ under both null hypotheses.

Table 3. p-Values in % for the Verrall et al. (2010) data.

H0: Generalized Log-Normal H0: Over-Dispersed Poisson

Rls Rql R∗
ls R∗

ql Rls Rql R∗
ls R∗

ql

R̂ls 0.43 0.39 0.14 0.27 8.53 9.00 14.59 10.89
R̂ql 0.32 0.29 0.10 0.19 11.80 12.40 19.35 14.79
R̂∗ls 0.35 0.32 0.11 0.22 10.42 10.97 17.34 13.14
R̂∗ql 0.38 0.34 0.13 0.24 9.48 9.99 15.96 12.01

Computing the four R-statistics in (10) yields:

Rls = 104.87, Rql = 105.61, R∗ls = 113.19 and R∗ql = 108.39.

Thus, while not identical, the test statistics appear quite similar.
First, we consider the generalized log-normal model as the null model so:

H0 : generalized log-normal vs. HA : over-dispersed Poisson.

This is consistent with the applications in Kuang et al. (2015) and Harnau (2018a), who consider
these data in a log-normal model. Looking at our preferred combination (R∗ls, R̂∗ls), we find a p-value
of 0.001, rejecting the model. Reassuringly, we reject the generalized log-normal model for any
combination of R and R̂. The most favourable impression to this null hypothesis is given by (Rls, R̂ls)

with a p-value of 0.004.
If we instead take the over-dispersed Poisson model as the null, so:

H0 : over-dispersed Poisson vs. HA : generalized log-normal,

the model cannot be rejected with a p-value of 0.17 for (R∗ls, R̂∗ls). Again, this decision is quite robust
to the choice of estimators with a least favourable p-value of 0.09 obtained based on (Rls, R̂∗ql). If we
accept the null, we can evaluate the power against the generalized log-normal model. For instance, the
5% critical value under the over-dispersed Poisson model is 95.7. The probability of drawing a value
smaller than that from the generalized log-normal model is 0.99. Thus, the power at the 5% critical
value is close to unity. We can also find the power at the value taken by R∗ls, interpretable as the 17%
critical value if we like. This is simply one minus the p-value of the generalized log-normal model,
thus equal to 1− 0.001 = 0.999.

6.2. Sensitivity to Invalid Model Reductions

The Barnett and Zehnwirth (2000) data are known to require a calendar effect for modelling.
We show those data in Table A1 in the Appendix. Barnett and Zehnwirth (2000), Kuang et al. (2015)
and Harnau (2018a) approached these datasets using log-normal models. Here, we find that an
encompassing test instead heavily favours an over-dispersed Poisson model. Further, we show that
dropping the needed calendar effect substantially affects the test results.

We again first consider a generalized log-normal model; however, we initially allow for a calendar
effect. Adding the prefix “extended” to models with calendar effect, we test:

H0 : extended generalized log-normal vs. HA : extended over-dispersed Poisson.
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Our preferred test statistic R∗ls = 114.40. Paired with R̂∗ls, this yields a p-value of 0.02. Thus,
the generalized log-normal model is clearly rejected. For illustrative purposes, we continue anyway
and test whether we can drop the calendar effect from the generalized log-normal model. Thus, the
hypothesis is:

H0 : generalized log-normal vs. HA : extended generalized log-normal.

Kuang and Nielsen (2018) show that for small ω2, we can use a standard F-test for this purpose.
If we assumed that the data generating process is not generalized log-normal, but log-normal, the
F-test would be exact. This test rejects the reduction with a p-value of 0.00. If again we decide to
continue anyway, we can now test the generalized log-normal against an over-dispersed Poisson
model, both without the calendar effect. Thus, the hypothesis is:

H0 : generalized log-normal vs. HA : over-dispersed Poisson.

Interestingly, the log-normal model does not look so bad any more now. For this model,
R∗ls = 87.54, which yields a p-value of 0.10. Of course, this should not encourage us to assume that the
generalized log-normal model without the calendar effect is actually a good choice. Rather, it draws
attention to the fact that tests computed on inappropriately-reduced models may yield misleading
conclusions. The tests proposed in this paper assume that the null model is well specified, and the
results are generally only valid if this is correct. In applications, we may relax this statement to “the
tests only give useful indications if the null model describes the data well”. In this case, we did not
only ignore the initial rejection of the generalized log-normal model, but also that calendar effects are
clearly needed to model the data well.

We now start over, switching the role of the two models, thus starting with an extended
over-dispersed Poisson model. The first hypothesis is the mirror image from above:

H0 : extended over-dispersed Poisson vs. HA : extended generalized log-normal.

The test statistic is still R∗ls = 114.40, but now, we cannot reject the null hypothesis with a p-value
of 0.14. We may thus feel comfortable to model the data using an over-dispersed Poisson model with a
calendar effect. Next, we investigate whether the calendar effect can be dropped, testing:

H0 : over-dispersed Poisson vs. HA : extended over-dispersed Poisson.

Harnau and Nielsen (2017) showed that for large τ, this can be done with an F-test based on
Poisson deviances. This reduction is clearly rejected, again with a p-value of 0.00. We move on anyway,
drop the calendar effect and test:

H0 : over-dispersed Poisson vs. HA : generalized log-normal.

In this case, the p-value is 0.01, and we reject the null, so we get the opposite result.
Comparing the outcomes of the tests, it seems clear that an over-dispersed Poisson model with

the calendar effect is the most reasonable choice. However, if we had not started at this point, but
rather never considered a calendar effect in the first place, we might have come to a very different
conclusion. This indicates that the starting point can matter a great deal for the model choice and that
it may be a good idea to start with a more general model and test for reductions, even if we were fairly
certain that the reduced model is a good choice.

6.3. A General to Specific Testing Procedure

The Taylor and Ashe (1983) data have frequently been modelled as over-dispersed Poisson, for
example by England and Verrall (1999), England (2002) and Harnau (2018a). We provide those data in



Risks 2018, 6, 70 28 of 37

Table A2 in the Appendix A. Based on the insight from the application to the Barnett and Zehnwirth
(2000) data above, we start with a general model with the calendar effect and use a whole battery of tests
to see if a generalized log-normal or over-dispersed Poisson chain-ladder model can be justified. We find
that an over-dispersed Poisson chain-ladder model is reasonable for these data.

We first consider a generalized log-normal model with the calendar effect. We test:

H0 : extended generalized log-normal vs. HA : extended over-dispersed Poisson.

The null hypothesis is clearly rejected with a test statistic of R∗ls = 81.5 and a p-value of 0.001.
Thus, we do not proceed further with this model.

Instead, we now start with an over-dispersed Poisson model with the calendar effect.
The hypothesis:

H0 : extended over-dispersed Poisson vs. HA : extended generalized log-normal

cannot be rejected with a p-value of 0.92. We point out that this indicates that the draw is in the right
tail of R̂ODP. While we would argue this is not the case here, we may worry about values that are too
far out in the right tail of R̂ODP, which would perhaps indicate that we should reject both models.

Next, we apply the misspecification tests by Harnau (2018a). We first split the run-off triangle
into four sub-samples, as indicated in Figure 6.

i, j 1 5 10

1
I1 I3

I2
5

I4

10

Figure 6. Split of a run-off triangle into four sub-samples as in Harnau (2018a).

We can now test whether the over-dispersion is common across sub-samples:

H0 : σ2
` = σ2.

Harnau (2018a) showed that we can use a Bartlett test based on the Poisson deviance for this
purpose. In the model with the calendar effect, this test yields a p-value of just above 0.05, a rather close
call. In light of the fact that the ultimate goal of the exercise is forecasting reserves and that forecasting
often benefits from simpler models, we decide to accept the hypothesis. Next, we consider the
hypothesis that there are no breaks in accident, development and calendar effects between sub-samples:

H0 : αi,` + β j,` + γk,` + δ` = αi + β j + γk + δ.

As demonstrated by Harnau (2018a), this can be tested with a deviance based F-test that is
independent of the Bartlett tests for large τ. This test yields a p-value of 0.07. Based on the same
argument as above, we accept the hypothesis.

Now that we are reasonably happy with the over-dispersed Poisson extended chain-ladder model,
we test whether the calendar effects can be dropped.

H0 : over-dispersed Poisson vs. HA : extended over-dispersed Poisson.
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Based on an F-test, this hypothesis cannot be rejected with a p-value of 0.30. Thus, we move on,
retesting whether the over-dispersed Poisson model still encompasses the log-normal model.

H0 : over-dispersed Poisson vs. HA : generalized log-normal.

Based on a test statistic R∗ls = 73.5, this cannot be rejected with a p-value of 0.73. We can now go
back and apply the misspecification tests by Harnau (2018a) once again, except this time for models
without the calendar effect. Using the same sub-sample structure, a Bartlett test cannot reject the
hypothesis of common over-dispersion H0 : σ2

` = σ2 with a p-value of 0.08. Further, an F-test for the
hypothesis of the absence of breaks in the mean parameters H0 : αi,` + β j,` + δ` = αi + β j + δ cannot
be rejected with a p-value of 0.93.

In conclusion, an over-dispersed Poisson chain-ladder model for the Taylor and Ashe (1983) data
survived a whole battery of specification tests, and we may at least be more comfortable with this
model choice, having found no strong evidence telling us otherwise. In contrast, the generalized
log-normal model was clearly rejected.

7. Discussion

While there has been a range of recent advances for both over-dispersed Poisson and (generalized)
log-normal models, there are still several areas left for further research. This spans from further
misspecification tests and refinements thereof over a potential theory for the bootstrap to empirical
studies evaluating the impact of the theoretical procedures in practice.

As pointed out by Harnau (2018a), the misspecification tests require a specific choice for the
number of sub-samples and their shape. A generalization that is agnostic about these choices would
be desirable. Harnau (2018a) also remarked that a misspecification test for independence would be
useful. The assumption of independence across cells is common to both over-dispersed Poisson and
generalized log-normal models. It seems likely that a test that is valid in one model would translate
easily to the other.

The closed-form distribution forecasts proposed by Harnau and Nielsen (2017) for the over-dispersed
Poisson model and by Kuang and Nielsen (2018) for the generalized log-normal model are both based on
t-distributions and thus symmetric. These forecasts seem to perform rather well and, in some settings,
appear more robust than the bootstrap by England and Verrall (1999) and England (2002). However, with
an appealing asymptotic theory in place for both types of models, it may be worth considering whether a
theory for the bootstrap could be developed to allow for potential asymmetry of the forecast distribution
that we might expect in finite samples.

Finally, given the range of recent theoretical developments, an empirical study that evaluates
the impact of the contributions in applications seems appropriate. Since the main concern in claim
reserving is forecasting, such a study would likely require data not just for run-off triangles, but also
for the realized values in the forecast array, that is the lower triangle. Such data are available, for
example, from Casualty Actuarial Society (2011). For instance, it would be interesting to see how the
forecast performance between rival models differs if one were rejected by the theory, but not the other.
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Appendix A

Appendix A.1. Proof of Corollary 1

The proof is similar to that for the distribution of the mixed parameter in Harnau and Nielsen
(2017, Lemma 1). We define the Poisson quasi-likelihood estimator g(Y) = ξ̂ql for Y = (Yij : i, j ∈ I).
We make use of the fact that g(Y) = (µ̂11, ξ̂

(2)′

ql )′ and g(Y/τ) = {µ̂11 − log(τ), ξ̂
(2)′

ql }
′ for identical µ̂11

and ξ̂
(2)
ql . This follows from the Poisson score equation ∑ij∈I Yijxij = exp(µ̂11)∑ij xij exp(x(2)

′

ij ξ̂
(2)
ql )

in which replacing Yij by Yij/τ goes hand in hand with replacing µ̂11 by µ̂11 − log(τ). Thus, only
µ̂11 is affect by scaling the variables. By Johansen (1979, Theorem 7.1), g(.) is Fisher consistent so
g{E(Y)} = (µ11, ξ(2)

′
)′ and g{E(Y)/τ} = (µ11 − log(τ), ξ(2)

′
)′. By Johansen (1979, Lemma 7.2),

∂g/∂Y|Y={E(Y)/τ} = (X′ΠX)−1X′.

By independence of Yij, (4) generalizes to τ1/2{Y/τ − E(Y)/τ} D→ N(0, σ2Π). Applying g(.)
to this result using the δ-method, similar to Johansen (1979, Theorem 7.3), and taking into account
that g(Y/τ) − g{E(Y)/τ} = ξ̂ql − ξ yields the desired result. For the δ-method see, for example,
Casella and Berger (2002, Theorem 5.5.24); to avoid confusion, we point out that in our notation, the
sequence is not over n but rather over τ (for proofs relating to the generalized log-normal model below
the sequence is over ω2).

Appendix A.2. Proof of Lemma 1

First, we show that limτ→∞ P(Yij = 0) = 0. Recall that Yij/τ
P→ πij > 0. Thus, limτ→∞ P(Yij/τ =

0) = 0. Since P(Yij = 0) = P(Yij/τ = 0) the results follows. Next, we know from (4) that
√

τ(Yij/τ − πij)
D→ N(0, σ2πij). For Yij > 0 we can employ the δ-method to apply log(.) to Yij/τ.

The result follows since log(Yij/τ) − log(πij) = log(Yij) − log(τ) − [log{exp(µij)} − log(τ)] and
∂ log(x)/∂x|x=E(Yij/τ) = π−1

ij .

Appendix A.3. Proof of Lemma 2

Define Z = (Zij : i, j ∈ I) and µ = (µij : i, j ∈ I). Taking into account the independence,

the multivariate version of Lemma 1 is
√

τ(Z− µ)
D→ N(0, σ2Π−1).

To obtain the distribution of the least-squares estimator, we pre-multiply by (X′X)−1X′.

This yields
√

τ(ξ̂ls − ξ)
D→ N(0, σ2Ω) with Ω as defined in the lemma. We find the distribution

of the residual sum of squares using the continuous mapping theorem. With that, τZ′MZ =

{
√

τ(Z− µ)}′M{
√

τ(Z− µ)} D→ U′Π−1/2MΠ−1/2U for U D
= N(0, I).

Finally, we show that τ̂ls/τ
P→ 1 where τ̂ls = ∑ij∈I exp(x′ij ξ̂ls). Define f (ξ) = ∑ij∈I exp(x′ijξ).

For this map, with ξ = (µ11, ξ(2)
′
)′ and defining ξτ = (µ11 − log(τ), ξ(2)

′
)′, we have f (ξτ) = f (ξ)/τ.

Further by the equivalent argument made in the Proof of Corollary 1, subtracting log(τ) from Z
(element-wise) affects only the estimate for the intercept µ11. That is, for the least squares estimator

g(Z) = (µ̂ls
11, ξ̂

(2)′

ls )′ and with Zτ = {Zij − log(τ) : i, j ∈ I}, we have g(Zτ) = (µ̂ls
11 − log(τ), ξ̂

(2)′

ls )′ =:

ξ̂τ
ls. Thus, ξ̂τ

ls− ξτ = ξ̂ls− ξ and
√

τ(ξ̂τ
ls− ξτ)

D→ N(0, σ2Ω). Now, we apply f (.) by the δ-method to get
that
√

τ{ f (ξ̂τ
ls)− f (ξτ)} = Op(1). Since f (ξ̂τ

ls)− f (ξτ) = τ̂ls/τ − 1 it follows that τ̂ls/τ = 1 + op(1).

Appendix A.4. Proof of Lemma 3

Define the vector Y = (Yij : i, j ∈ I) and let exp(µ) = {exp(µij) : i, j ∈ I}. Then, using the

independence, (4) generalizes to τ−1/2{Y− exp(µ)} D→ N(0, σ2Π).
In Corollary 1, we followed the approach by Harnau and Nielsen (2017, Lemma 1) to derive the

asymptotic distribution of the Poisson quasi-likelihood estimator ξ̂ql through the δ-method. Using
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Johansen (1979, Theorems 7.1 and 7.3, Lemma 7.2), we showed that the mapping Y 7→ ξ̂ql estimator is
asymptotically equivalent to the linear mapping Y 7→ (X′ΠX)−1X′Y.

Meanwhile, the weighted least squares estimator maps Z 7→ (X′ΠX)−1X′Π1/2Π1/2Z = ξ̂∗.
Thus, the only non-linear component of the mapping Y 7→ ξ̂∗ is the transformation from Y to Z.
However, while this mapping is non-linear in finite sample, for large τ it is equivalent to the linear
map from Y to Π−1Y as seen in the proof of Lemma 1. Asymptotically, this conforms to sequentially
applying the transformations Π−1 followed by (X′ΠX)−1X′Π1/2Π1/2 to Y. Taken together, the
map reduces to (X′ΠX)−1X′. Thus, both the Poisson quasi-likelihood and weighted least squares

mapping asymptotically apply the same transformation to τ−1/2{Y− exp(µ)} D→ N(0, σ2Π). Thus,
√

τ(ξ̂∗ − ξ̂ql)
P→ 0.

The proof for τRSS∗ − D P→ 0 follows by the same argument. The main insight is that the
asymptotic distribution of the Poisson deviance is asymptotically equivalent to that of the quadratic
form τ−1{Y− exp(µ)}′(Π−1 − X′(X′ΠX)−1X′){Y− exp(µ)}, as Harnau and Nielsen (2017, Proof of
Lemma 1) show building on Johansen (1979, Theorems 7.7, 7.8). This is again asymptotically identical
to the sequential mapping from Y to Z followed by the map from Z to the scaled residual sum of
weighted least squares τRSS∗ = {

√
τΠ1/2(Z− µ)}′M∗{

√
τΠ1/2(Z− µ)}.

To show that we can replace the weight matrix Π in the weighted least squares estimator by Π̂ls or
Π̂ql we note that both matrices converge in probability to Π and then apply Slutsky’s theorem (Casella
and Berger 2002, Theorem 5.5.17). Combining this argument with the proof of the equivalence of D and
RSS∗ in the last paragraph, it also follows that we can replace the weights in RSS∗ without affecting

the result. Finally, both τ̂ls/τ
P→ 1 and τ̂ql/τ

P→ 1 so we can replace τ as well by Slutsky’s theorem.

Appendix A.5. Proof of Theorem 1

Taking into account the results from Lemma 3, it follows that (τRSS∗)/D P→ 1 and that the result

still holds if we replace RSS∗ by RSS∗ls or RSS∗ql and τ by τ̂ls or τ̂ql . Thus, for example, Rls
P→ Rql so

their difference vanishes and similarly for any other of the six total combinations.
Both RSS = Z′MZ and RSS∗ = Z∗

′
M∗Z∗ = ZΠ1/2M∗Π1/2Z are quadratic forms in the

same random vector Z. It follows from the proofs of Lemma 2 and Lemma 3 that τRSS D→
U′Π−1/2MΠ−1/2U and τRSS∗ D→ U′M∗U for the same U D

= N(0, In). The distribution of RSS/RSS∗

follows by the continuous mapping theorem. Since τRSS∗ − D P→ 0 as in Lemma 3, τRSS∗/D P→ 1 so

that RSS/RSS∗ − τRSS/D P→ 0 follows.
We can replace τ by τ̂ql since Harnau and Nielsen (2017, Theorem 2) gives us that τ/τ̂ql

P→ 1.

From Lemma 2, τ̂ls/τ
P→ 1. Further, both Π(ξ̂

(2)
ls ) and Π(ξ̂

(2)
ql ) converge to Π in probability. Then, by

Slutsky’s theorem, we can replace the true parameters with their estimates in τRSS/D and RSS/RSS∗

without affection the limiting distribution.

Appendix A.6. Proof of Lemma 4

The asymptotic distribution of the weighted least squares estimators follows by the same argument

as in Lemma 2, except now taking (ω2)−1/2(Z− µ)
D→ N(0, In), as shown by Kuang and Nielsen (2018,

Theorem 3.3), as a starting point.
The asymptotic equivalence of weighted least squares and Poisson quasi likelihood estimation

follows from the same argument as in Lemma 3, except now (ω2)−1/2{Y − exp(µ)} D→
N[0, diag{exp(µ)}]. The argument for replacing true parameters in the frequency matrix Π and
the aggregate means τ by estimates is identical to that in Lemma 3 as well.
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Appendix A.7. Proof of Theorem 2

This follows by the same argument as the proof for Theorem 1 above, except now combining
the asymptotic distribution of the least squares estimator in the generalized log-normal model from
Kuang and Nielsen (2018, Theorem 3.5) in (8) and Lemma 4.

Appendix A.8. Proof of Lemma 5

First, we show that RGLN and RODP share a common support. If we recall that:

RGLN(U) =
U′MU

U′Π1/2M∗Π1/2U
and RODP(U) =

U′Π−1/2MΠ−1/2U
U′M∗U

,

the main insight is that RGLN(Π−1/2U) = RODP(U). Formally, both RGLN : Rn 7→ R and RODP :
Rn 7→ R are random variables on {Rn,B(Rn), P} where P is the measure associated with N(0, In).
We now show that P{RGLN ∈ S} = 1 implies that P{RODP ∈ S} = 1; the opposite direction follows.
Notationally, P{RGLN ∈ S} = P{u ∈ Rn : RGLN(u) ∈ S} and, for some set A ⊆ R we denote by
R−1

GLN(A) the pre-image {u ∈ Rn : RGLN(u) ∈ A}. Now, RGLN is measurable since it is continuous
almost everywhere, the exception being the measure zero set where the denominator is zero. Thus,

P{RGLN ∈ S} = P{U ∈ R−1
GLN(S)}.

Since the support of N(0, In) is Rn, we must have that R−1
GLN(S) = Rn and hence S = RGLN(Rn).

Since Π is invertible, Π−1/2Rn = Rn so that RGLN(Rn) = RGLN(Π−1/2Rn) = RODP(Rn). Thus,
RODP(Rn) = S and so R−1

GLN(S) = R−1
ODP(S). Taken together,

P{RGLN ∈ S} = P{U ∈ R−1
GLN(S)} = P{U ∈ R−1

ODP(S)} = P{RODP ∈ S} = 1.

Since this holds in both directions and for any such S , it holds for the support which is a special
case of S .

Now that we showed that RGLN and RODP have identical support, we show that the support
is a bounded compact set (l, r). To do so, we specify the support of RGLN . The key insight is that
the real symmetric matrices A = M and B = Π1/2M∗Π1/2 commute so AB = BA. Thus, they are
simultaneously diagonalizable (Newcomb 1961). Beyond that, both matrices are of rank n− p. Thus,
we can find an orthogonal matrix of Eigenvectors P′ such that:

PAP′ =

(
ΛA 0
0 0

)
and PBP′ =

(
ΛB 0
0 0

)

where ΛA and ΛB are diagonal n− p× n− p matrices of Eigenvalues. Since M is a projection matrix,
ΛA = I. Then, making use of Butler and Paolella (2008, Lemma 3 Case 2(c)), the upper bound of
the support of RGLN is given by the largest element of Λ−1

B ΛA = Λ−1
B . Thus, it is finite. To find

the lower bound, we consider the upper bound of −RGLN , thus swapping A for −A. By the same
argument, the lower bound is the largest element of Λ−1

B times −1, thus the smallest element of
Λ−1

B . Since B is positive semi-definite and because ΛB contains only the non-zero eigenvalues, this
must be larger then zero. Denoting the diagonal elements of ΛB sorted in descending magnitude by
λB = (λB,(1), . . . λB,(n−p)), we can write the support as (l, r) = (λ−1

B,(1), λ−1
B,(n−p)).

Appendix A.9. Proof of Theorem 3

We assume that rows and columns from the design X and the frequency matrix Π that relate to
cells with perfect fit, such as the corners in a run-off triangle, have been removed. In this way, there is
no need to keep track of the restriction that not only frequencies relating to such cells can go to zero.
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Further, we assume without loss of generality that rows and columns of X and Π have been sorted as
described in Section 4.5.

First, we establish a useful equivalence of the denominators of both R(t)
GLN and R(t)

ODP. We can

write these as a quadratic form of the type V(t)′M∗(t)V
(t) where V(t) = Π1/2

(t) U for R(t)
GLN and V(t) = U

for R(t)
ODP. Now, for any t > 0,

V(t)′M∗(t)V
(t) = |M∗(t)V

(t)|2 = min
ξ∈Rp
|V(t) − X∗(t)ξ|

2.

To understand the last equality, we note that minimizing argument for the last expression is the
least squares estimator ξ̂ = (X∗

′
(t)X

∗
(t))
−1X∗

′
(t)V

(t). The expression itself corresponds to the squared

length of the least squares residuals. We compute these residuals as M∗(t)V
(t) and their squared length

is given by |M∗(t)V
(t)|2.

Now, we derive the small t limit of R(t)
GLN . We denote the first q and last n− q elements of U by U1

and U2, respectively, and similarly for ξ. Then, using the partition of Π(t) in (11) and X in (12) where
X12 = 0, we can write the denominator as:

U′Π1/2
(t) M∗Π1/2

(t) U = s(t) min
ξ∈Rp

∣∣∣∣∣

(
Π1/2

1 (U1 − X11ξ1)

t Π1/2
2 {U2 − (X21ξ1 + X22ξ2)}

)∣∣∣∣∣

2

where s(t) = {trace(Π1) + t · trace(Π2)}−1. We note that the norm can only every decrease as t
becomes smaller. This is because for t1 < t2, we could still choose the optimal ξ∗ under t2 and make
the norm smaller by replacing t2 with t1. For t = 0, the right hand side simplifies to:

min
ξ1∈Rp1

|Π̆1/2
1 (U1 − X11ξ1)|2 = U′1Π̆1/2

1 M̆∗11Π̆1/2
1 U1.

Therefore,
lim
t→0

U′Π1/2
(t) M∗(t)Π

1/2
(t) U = U′1Π̆1/2

1 M̆∗11Π̆1/2
1 U1.

The numerator does not depend on t. Thus, as long as U 6= 0, which happens with probability one,

lim
t→0

R(t)
GLN =

U′MU
limt→0 U′Π1/2

(t) M∗
(t)Π

1/2
(t) U

=
U′MU

U′1Π̆1/2
1 M̆∗11Π̆1/2

1 U1
= R(0)

GLN .

It follows that R(t)
GLN

a.s.→ R(0)
GLN .

Next, we consider R(t)
ODP. For the denominator, we have:

U′M∗(t)U = min
ξ∈Rp
|U − X∗(t)ξ|

2 ≤ |U|2

where the inequality follows since we can always set ξ = 0. Thus, the denominator is bounded from
above. Looking at the numerator U′Π−1/2

(t) MΠ−1/2
(t) U, we see that the limit of Π−1/2

(t) does not exist.
We look at this in more detail. Partition M so M11 is the q× q top right element and so on. Then we
can write the numerator as:

s(t)−1(U′1Π−1/2
1 M11Π−1/2

1 U1 + t−1U2Π−1/2
2 M22Π−1/2

2 U2 + 2t−1/2U1Π−1/2
1 M12Π−1/2

2 U2).

The normalization s(t) converges to {trace(Π1)}−1 as t → 0. The first term of the sum is
non-negative and does not vary with t. The second term is non-negative and Op(t−1) while the
third term is Op(t−1/2) with ambiguous sign. Further, dropping cells with perfect fit from X ensures
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M22 6= 0. Thus, since U2 6= 0 with probability one, the second term is positive with probability one so
overall the numerator U′Π−1/2

(t) MΠ−1/2
(t) U a.s.→ ∞. Thus, since the denominator is bounded, R(t)

ODP
a.s.→ ∞.

Finally, R(t)
ODP > q(t)GLN,α almost surely since for α ∈ (0, 1), the quantile q(t)GLN,α

a.s→ q(0)GLN,α < ∞.

Conversely, q(t)ODP,α
a.s→ ∞ so R(t)

GLN ≤ q(t)ODP,α almost surely.

0.00.10.20.3

(Rql, R̂∗ls)
(Rql, R̂ls)

(Rql, R̂∗ql)
(Rql, R̂ql)

(Rls, R̂∗ls)
(Rls, R̂∗ql)
(Rls, R̂ql)

(Rls, R̂ls)

(R∗ql, R̂∗ql)
(R∗ls, R̂ql)
(R∗ql, R̂∗ls)
(R∗ql, R̂ls)

(R∗ql, R̂ql)

(R∗ls, R̂∗ql)
(R∗ls, R̂∗ls)
(R∗ls, R̂ls)

Generalized Log-Normal

0.0 0.1 0.2 0.3

Over-dispersed Poisson

V NJ

TA

BZ

Figure A1. Bar chart of maximum absolute errors for the considered combinations of R and R̂. Ordered
by the sum of errors within combination across data generating processes and parameterizations
increasing from top to bottom. Sum of maximum absolute errors across parameterizations indicated by
“+”. VNJ, TA, and BZ is short for parameters set to their estimates from the Verrall et al. (2010), Taylor
and Ashe (1983) and Barnett and Zehnwirth (2000) data, respectively. Based on 105 repetitions for each
parametrization. s = 1.

Table A1. Insurance run-off triangle taken from Barnett and Zehnwirth (2000, Table 3.5) as used in the
empirical application in Section 6.2 and the simulations in Section 5.

i, j 1 2 3 4 5 6 7 8 9 10 11

1 153,638 188,412 134,534 87,456 60,348 42,404 31,238 21,252 16,622 14,440 12,200
2 178,536 226,412 158,894 104,686 71,448 47,990 35,576 24,818 22,662 18,000 -
3 210,172 259,168 188,388 123,074 83,380 56,086 38,496 33,768 27,400 - -
4 211,448 253,482 183,370 131,040 78,994 60,232 45,568 38,000 - - -
5 219,810 266,304 194,650 120,098 87,582 62,750 51,000 - - - -
6 205,654 252,746 177,506 129,522 96,786 82,400 - - - - -
7 197,716 255,408 194,648 142,328 105,600 - - - - - -
8 239,784 329,242 264,802 190,400 - - - - - - -
9 326,304 471,744 375,400 - - - - - - - -

10 420,778 590,400 - - - - - - - - -
11 496,200 - - - - - - - - - -
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Table A2. Insurance run-off triangle taken from Taylor and Ashe (1983) as used in the empirical
application in Section 6.3 and the simulations in Section 5.

i, j 1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046 -
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405 - -
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286 - - -
5 443,160 693,190 991,983 769,488 504,851 470,639 - - - -
6 396,132 937,085 847,498 805,037 705,960 - - - - -
7 440,832 847,631 1,131,398 1,063,269 - - - - - -
8 359,480 1,061,648 1,443,370 - - - - - - -
9 376,686 986,608 - - - - - - - -

10 344,014 - - - - - - - - -
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