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Abstract: We study the dynamics of the one-year change in P&C insurance reserves estimation by
analyzing the process that leads to the ultimate risk in the case of “fixed-sum” insurance contracts.
The random variable ultimately is supposed to follow a binomial distribution. We compute explicitly
various quantities of interest, in particular the Solvency Capital Requirement for one year change and
the Risk Margin, using the characteristics of the underlying model. We then compare them with the
same figures calculated with existing risk estimation methods. In particular, our study shows that
standard methods (Merz–Wüthrich) can lead to materially incorrect results if the assumptions are not
fulfilled. This is due to a multiplicative error assumption behind the standard methods, whereas our
example has an additive error propagation as often happens in practice.

Keywords: one-year risk; Merz–Wüthrich; solvency II; solvency capital requirement; risk margin;
fixed-sum insurance

1. Introduction

In the new solvency regulations, companies are required to estimate their risk over one year
and to compute a Risk Margin (RM) for the rest of the time until the ultimate risk margin is
reached. Actuaries are not accustomed to do so. Until recently, their task mostly consisted of
estimating the ultimate claims and their risk. There are only very few actuarial methods that
are designed to look at the risk over one year. Among the most popular ones is the approach
proposed by Merz and Wüthrich (2008) as an extension of the Chain–Ladder following Mack’s
assumptions (Mack 1993). They obtain an estimation of the mean square error of the one-year
change based on the development of the reserve triangles using the Chain–Ladder method.
An alternative way to model the one-year risk is developed by Ferriero: the Capital Over Time
(COT) method (Ferriero 2016). The latter assumes a modified jump–diffusion Lévy process to the
ultimate and gives a formula, based on this process, for determining the one-year risk as a portion
of the ultimate risk. In a previous paper, Dacorogna et al. have presented a simple model with
a binomial distribution to develop the principles of risk pricing (Dacorogna and Hummel 2008) in
insurance. This has been formalized and extended to study the diversification effects in a subsequent
work (Busse et al. 2013).

The goal of this paper is to study the time evolution of the risk that leads to the ultimate risk
through a simple example that is easy to handle, and so calculate exactly the one year and ultimate
risks. This is why we take here the example (as in Busse et al. 2013) of a binomial distribution to model
the ultimate loss, and see it as the result of an evolution of different binomials over time. The company
is exposed to the risk n times. Different exposures come in different steps, and each exposure has a
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probability p to incur in a fixed loss, say 1 hundred/thousand/million euros, and, at the end of the n
steps, the total number of exposures to the risk is equal to n. In other words, there are n policies each
with a probability p of a claim; of the n policies, a number Ni settled at time i either with a claim or with
no claim. For simplicity and without loss of meaning, we make the number of policies n coincide with
the number of time steps (indeed, in our example, the run-off is complete on average roughly at log n,
as proved in Section 3.3). This type of loss model is similar to the standard collective model widely
used in insurance. It can be encountered in reality, for example, for the so-called fixed-sum insurance
contracts, for which fixed amounts are paid to the contract owner in case of accident, like the IDA
Auto insurance in France, the MRH Multi-Risk Property insurance in France, the Personal Accident
insurance in Japan, certain products linked to the the Health insurance in Switzerland, etc.

With the help of such models, we can develop a better understanding of the dynamics at work in
the claim triangles. It also allows us to compute explicitly the various variables of interest, like the
Solvency Capital Requirement (SCR) based on the one-year change or the Risk Margin (RM) that will
account for the cost of holding the capital for this risk during the whole period. It helps also to make
more explicit the various variables that need to be considered in the problem, and have an interest on
their own.

We then compare them with the capital obtained with existing risk estimation methods.
In particular, our results show that the commonly used Merz–Wüthrich method can lead to very wrong
estimates in cases where its assumptions are not fulfilled (which is the case for our example). This is
due to a multiplicative error assumption. Instead, our example has an additive error propagation as is
often the case in practice for many different types of insurance contracts. Indeed, reserving actuaries
often estimate the reserves using the Chain–Ladder method for mature underwriting years and the
Bornhuetter–Ferguson method (Bornhuetter and Ferguson 1972; Schmidt and Zocher 2008) for young
underwriting years. In Mack (2008), Mack has used an additive model for estimating the prediction
error of reserves. Hence, claim triangles which have dominant young underwriting years will manifest
an additive error propagation structure. The method proposed by Ferriero in Ferriero (2016) (Capital
Over Time method, i.e., COT) gives instead good estimates even when its assumptions are not fulfilled
and so proves to be more robust than the Merz–Wüthrich method. Our example shows the need of
alternative methods beyond Merz–Wüthrich.

The paper is organized as follows. We present in the second section the model defining and
explaining the quantities of interest. We then study those quantities in the third section, among which
the SCR, first analytically, then their estimates numerically. In the fourth section, we develop a
framework for comparing various estimation methods using as a benchmark the regulatory capital
requirements computed explicitly by our model. We compare it to the estimates obtained by the
Merz–Wüthrich and the COT methods, respectively, and discuss the results. The conclusions are
drawn in the last section.

2. The Probabilistic Model

Let us introduce a process described by random variables following binomials’ distribution where
the risk of a claim has a probability p and the exposure to this risk is n-times. We use the same
probabilistic framework as in Busse et al. (2013). The reader can think of n as the total number of
policies and of p as the probability of a claim occurring for any policy.

Let X be a Bernoulli random variable (note that all rv’s introduced in this paper will be defined
on the same probability space (Ω,A,P)) representing the loss obtained when throwing an unbiased
dice, i.e., when obtaining a “6”:

X =

{
1, with probability p = 1/6,
0, with probability 1− p.

Recall that, for X ∼ B(p), E(X) = p and var(X) = p(1− p).
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Let (Xi, i = 1, . . . , n) be an n-sample with parent rv X, (corresponding to the sequence of exposures
n independent exposures we interpret this as a one-step case). The number of losses after n exposures

is modelled by Sn =
n

∑
i=1

Xi, a binomial distribution B(n, p). Recall that

P(Sn = k) =
(

n
k

)
pk (1− p)n−k, k = 0, · · · , n. (1)

E(Sn) = E(X) = np and that, by independence, var(Sn) = np (1− p). Note that defining the loss
as a Bernoulli variable clearly specifies each single loss amount as a fixed quantity. It is the accumulation
of these losses that will make the final loss amount Sn = ∑n

i=1 Xi stochastic. One could define a different
probability distribution for the Xi, but the Bernoulli distribution is the most appropriate choice for the
type of exposures in our case, i.e., the case in which the policies offer a lump sum as compensation.

2.1. The Case of a Multi-Step n

We consider now the case where the risk is replicated over n steps, with given n ∈ N \ {0}.
At each step i (for i = 1, . . . , n), the number of exposures is random and represented by a rv Ni that
satisfies the condition

n

∑
i=1

Ni = n, (H)

which implies that 0 ≤ N1 ≤ n and 0 ≤ Ni ≤ n−∑i−1
j=1 Nj, ∀ 2 ≤ i ≤ n.

Condition (H) is part of the assumption that the ultimate loss distribution is fixed and known.
This assumption facilitates our objective, which is to study how the risk can materialize over time given
the knowledge of the ultimate loss distribution. Actuarial methods have been developed to estimate
the ultimate risk. It is thus reasonable to assume that they are doing a good job at this. Our purpose is
thus to find ways to decompose this ultimate risk over time (steps).

All over the process, we are exposed to the risk a random number of times at each step
independently, and with the same probability p. We keep the same notation as in the one-step
case, X being the Bernoulli rv B(p) that represents the loss obtained when exposing the contract to the
risk with the probability p.

At each intermediate step i, we expose the contract Ni times. For ease of notation, let us define a
new rv Ai, which is the sum up to i of all the exposures:

Ai :=
i

∑
k=1

Nk, with A0 := 0. (2)

For the process, we obtain losses represented by

(
X1, . . . , XN1

)
, for i = 1,(

X1+Ai−1 , . . . , XNi+Ai−1

)
, for i = 2, . . . , n,

in particular, for i = n, after n-steps, the losses are (X1, . . . , Xn). The variable X will then denote the
parent rv of the Xis. Hence, when looking at the number of exposures and losses, it means that:

(i) at an intermediate step i, the number of exposures is Ni and the number of losses obtained at this
step is given by:

S(i)
Ni

:=
Ni

∑
j=1

Xj+Ai−1

d
=

Ni

∑
j=1

Xj =: SNi , (3)
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(the equality in distribution is discussed and proved in Appendix A) setting S· := ∑·j=1 Xj, and is,

conditionally on Ni, a binomial rv
(

S(i)
Ni

∣∣∣ Ni = ni

)
∼ B(ni, p), which we denote as

(
S(i)

Ni

∣∣∣ Ni

)
∼ B(Ni, p).

Recall (see e.g., Mikosch 2004) that, by independence of Ni and X, we have

E
[
S(i)

Ni

]
= E(X)E(Ni) = pE(Ni) (4)

and

var
(

S(i)
Ni

)
= E(Ni) var(X) + var(Ni) (E(X))2 = p(1− p) E(Ni) + p2 var(Ni) (5)

(ii) up to an intermediate step i, the total number of exposures is Ai and the total number of losses is
given by

S(i) :=
i

∑
j=1

S(j)
Nj

=
i

∑
j=1

Nj

∑
k=1

Xk+Aj−1
=

Ai

∑
k=1

Xk = SAi

and is, conditionally on (Nj, 1 ≤ j ≤ i), a binomial rv:

(
SAi

∣∣ (Nj, 1 ≤ j ≤ i)
)
∼ B (Ai, p) .

Here, we have E
[
SAi

]
= E(X)

i

∑
k=1

E(Nk) = p
i

∑
k=1

E(Nk) and

var
(
SAi

)
= var(X)

i

∑
k=1

E(Nk) + (E(X))2 var (Ai) = p(1− p)
i

∑
k=1

E(Nk) + p2 var (Ai) .

(iii) at the end of the multi-steps process under condition (H), the total number of exposures is n and
the total number of losses is, as in the one-step case

Sn =
n

∑
i=1

Xi ∼ B(n, p) = U(n).

This is what is called the ultimate loss, once the process is completed.

Summarizing the notation, S(i)
Ni

is the rv of the losses at the intermediate step i, SAi is the rv of the
losses up to the intermediate step i and Sn is the rv of the ultimate losses U(n).

For 1 ≤ i ≤ n,Ni the σ-algebra (as usual,N0 or F0 denote the trivial σ-algebra {∅, Ω}) generated
by the sequence of the rvs (Nj, 1 ≤ j ≤ i)

Ni = σ
{

Nj, 1 ≤ j ≤ i
}

(6)

and let Fi denote the σ-algebra generated by the sequence of the rvs (Nj, 1 ≤ j ≤ i) and the
corresponding losses (Xj, 1 ≤ j ≤ N1 + . . . + Ni):

Fi = σ

{
(

Nj, 1 ≤ j ≤ i
)

,

(
Xj, 1 ≤ j ≤

i

∑
k=1

Nk

)}
. (7)

Note that ∀1 ≤ i ≤ n, Ni ⊂ Fi.
The process described here would generate a loss triangle following a Bornhutter–Ferguson

(Bornhuetter and Ferguson 1972) type of dynamic, which is essentially linear in the error propagation as
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in our example, and would lead this way to the ultimate. This type of dynamic is typical of certain lines
of business mentioned in the introduction and often used by reserving actuaries to estimate the ultimate
loss. Such loss triangle will be generated assuming independency across different underwriting years.
This assumption, together with the independency between development periods already mentioned
in the introduction of Section 2, are simplifications which allow to calculate explicitly the quantities of
interest (below) and are anyway two of the assumptions behind the Merz–Wüthrich methodology,
which is the standard actuarial methodology object of our study.

2.2. Random Variables of Interest

Now, let us introduce some variables of interest, namely:

• the ultimate loss U(n), which is Sn,
• the expected ultimate loss, given the information up to the step i (for 1 ≤ i ≤ n):

U(i) := E [ U(n) | Fi ] =
i

∑
j=1

S(j)
Nj

+E
[

n

∑
j=i+1

S(j)
Nj

∣∣∣∣∣ Ni

]
, (8)

the Xi s being independent of the Nis. Note that we can also define

U(0) := E [U(n) | F0] = E[U(n)] = E[Sn] = np, (9)

which corresponds to the expected loss at ultimate. Note that Equation (8) defines a martingale.
Note also that it is a real number (although the rvs are integer valued).

• the variation D(i) of the expected ultimate loss between two successive steps defines exactly the
one year change, when choosing yearly steps:

D(i) = U(i)−U(i− 1). (10)

Here D(i) is also a real rv. When i = 1, the D(1) is closely related to the solvency capital required as
defined in the Solvency II framework, which reflects the risk of changes in the technical provision
in one year. The difference lies in that D(1) does not take into account the risk margin change.
However, this is of minor importance in the SCR estimation because the risk margin change is of
a smaller order of magnitude. Indeed, in practice, it is commonly accepted that the risk margin,
which represents the risk loading for the market value of the liability, is approximately constant
from one year to the other. We note here that the D(i)s are the innovation of the martingale
defined in Equation (8).

For simplicity, all the quantities of interest are considered undiscounted in our paper. The discounting
would anyway not invalidate our findings, but only make the calculations more complex.

Note that, as in (ii), we can express the expected ultimate loss using the conditional expectations, as

U(n) = U(0) +
n

∑
i=1

D(i). (11)

The goal of this study is to understand better the behavior of D(i). This means looking for the
distribution of U(i).

Using (8) and (10), and the properties of the conditional expectation, we can write, after
straightforward computations,

D(i) = S(i)
Ni

+E
[

n

∑
j=i+1

S(j)
Nj

∣∣∣∣∣ Ni

]
−E

[
n

∑
j=i

S(j)
Nj

∣∣∣∣∣ Ni−1

]
(12)
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so that

E
[

n

∑
j=i+1

S(j)
Nj

∣∣∣∣∣ Ni

]
= E

[
Ai+(n−Ai)

∑
j=Ai+1

Xj

∣∣∣∣∣ Ni

]
= (n− Ai)E[X] .

Applying (12) provides

D(i) = S(i)
Ni

+ p (n− Ai)− p (n− Ai−1) = S(i)
Ni
− Ni p . (13)

We can see from (13) that D(i) depends on Ni but also on the past information via Ai−1. We can
then write the probability distribution of D(i) conditional on this information:

P
(

D(i) = x | Ai−1 = ai−1
)

= P
(
S(i)

Ni
− Ni p = x | Ai−1 = ai−1

)

= ∑
n−ai−1
j=0 P

(
S(i)

j − jp = x | Ai−1 = ai−1, Ni = j
)

· P
(

Ni = j | Ai−1 = ai−1
)

= ∑
n−ai−1
j=0 P

(
Sj − jp = x

)
· P
(

Ni = j | Ai−1 = ai−1
)

(14)

using the independence between the Xis and the Njs in the equation before the last, and (3) in the
last one.

Let us now choose a probability distribution for the Nis. This choice is arbitrary. We could,
for instance, use various distributions typical for modelling frequency or emergence of claims in
actuarial modelling, like the Poisson distribution. For simplicity, we will pick first the case of a uniform
distribution conditionally to N so that, for 2 ≤ i ≤ n− 1, we have

P
[
Ni = ni | (Nj = nj, 1 ≤ j ≤ i− 1)

]
=

1
1 + n−∑i−1

j=1 nj
.

We remind the reader that n = ∑n
i=1 Ni. Strictly speaking, we do not even need to have N1, ..., Ni−1

explicitly. Only their sum matters so that

P
[
Ni = ni | Ai−1 = ai−1

]
=

1
1 + n− ai−1

. (15)

We can now proceed to compute the expectation of Ni.

Proposition 1. The expectation of Ni as a function of i is equal to:

E(Ni) =
n
2i for i = 1, · · · , n− 1 . (16)

Proof of Proposition 1. Using the property of the conditional expectation, then that N1 is uniformly
distributed, and finally the linearity of the expectation, we obtain:

E(Ni) = E
(
E(Ni | Fi−1)

)
= E

(
n−∑i−1

j=1 Nj

2

)
=

1
2

n− 1
2

i−1

∑
j=1

E(Nj). (17)

Let us prove the proposition by induction. For i = 1, by uniformity of the distribution of the rv N,
we have:

E(N1) =
n

∑
n1=0

n1P[N1 = n1] =
n
2

.
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Suppose (16) is true for any i ≤ j− 1 and let us prove it for i = j. This is straightforward using (17).

Thus, the result E(Nj) =
1
2

n

(
1−

j−1

∑
i=1

1
2i

)
=

n
2j .

The last step has actually the same expectation as the previous one since it is the complementary
and is completely conditioned by the sum of the previous steps

E(Nn) = E
(

n−
n−1

∑
j=1

Nj

)
= n−

n−1

∑
j=1

E
(

Nj
)

= n−
n−1

∑
j=1

n
2j =

n
2n−1 . (18)

We have thus fully characterized the expectation of the number of exposures at each step. (In the
Appendix B one can find the distribution of the Ni and also of the D(i).)

3. Analytical Expressions of Quantities to Be Studied

3.1. Incremental Pattern and Capital

Another quantity of interest is the incremental pattern γi of the expected value of the losses. It can
be written, using (4) and (9), as:

γi :=
E
(

S(i)
Ni

)

E(U(n))
=

1
2i , for i = 1, · · · , n− 1 . (19)

For computing the RM, we need to compute the capital requirement (SCR) at each step, using the
risk measures VaR99.5% and TVaR99%, which we will simply call ρ. We define the capital requirement
Ci at step i as

Ci ≡ E
(

ρ(D(i) | Fi−1)
)

. (20)

Once we have this quantity, we can then write the RM, Rn, as a function of the number of steps n, as:

Rn = η
n

∑
i=1

Ci , (21)

where η designates the cost of capital.

3.2. Moments of D(i)

The properties we present here are specific to our choice of process, but they can be easily
generalized in the framework of martingale assumptions. Let us compute the first two conditional
moments of the vector D = (D(1), ..., D(n)) given F .
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Proposition 2. Let 0 ≤ i ≤ n− 1. For k such that i < k ≤ n, we have

(i)
E[D(k) | Fi] = 0 , (22)

(ii)

var(D(k)|Fi) =





(n−Ai)p(1−p)

2k−i if k 6= n ,

(n−Ai)p(1−p)

2n−i−1 if k = n,
(23)

(iii) For k = i + 1,

Cov(D(i + 1) | Fi) = p (1− p) (n− Ai) ·




2−1 0 . . . 0

0 2−2 . . .
...

...
. . . . . .

21+i−n 0
0 . . . 0 21+i−n




, (24)

where D(i + 1) := (D(i + 1), ..., D(n)).

Corollary 1. From which, we can deduce the following two expressions as corollary:

(a) As a consequence of the Proposition 2, the moments of D are given by

E(D) = 0 and Cov(D) = np(1− p) ·




2−1 0 . . . 0

0 2−2 . . .
...

...
. . . . . .

21−n 0
0 . . . 0 21−n




. (25)

(b) The conditional variance of the ultimate is

var(U(n) | Fi) = (n− Ai) p(1− p) .

Proof of Proposition 2. (i) Using the definitions (8) and (10) and the tower property (with k > i) produces

E[D(k) | Fi] = E
(
E[U(n) | Fk] | Fi

)
− E

(
E[U(n) | Fk−1] | Fi

)
= E[U(n) | Fi]−E[U(n) | Fi] = 0 .

(ii) The conditional variance of D(i) can be obtained in the following way: again, take
k ∈ {i + 1, ..., n}, and recall the general property of conditional variance, for two random variables
X and Y, var(X) = E(var(X|Y)) + var(E(X|Y)). By using this result on var(D(k)|Fi), we obtain

var(D(k) | Fi) = E(var(D(k)|Nk) | Fi) + var(E(D(k) | Nk)|Fi) . (26)

We now use Equation (13) on both terms of the right side of the last equation. Since S(k)Nk
∼ B(Nk, p),

E(D(k) | Nk) = E
(

S(k)
Nk
− Nk p

∣∣∣ Nk

)
= E

(
S(k)

Nk

∣∣∣ Nk

)

︸ ︷︷ ︸
=Nk p

−Nk p = 0 ,
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which sets the second term of Equation (26) to 0. Let us calculate the first term.

E
(

var
(

D(k) | Nk

)
| Fi

)
= E

(
var

(
S(k)

Nk
− Nk p | Nk

)
| Fi

)

= E
(

var
(

S(k)
Nk

∣∣∣ Nk

) ∣∣∣ Fi

)

= E(Nk p(1− p) | Fi)

= p(1− p) E(Nk | Fi) .

We now consider the following argument: Assuming Fi known, is equivalent in terms of rvs to
starting a new process with n− i steps and n− Ai rvs. A generalization of Equations (16) and (18)
therefore gives

E(Nk | Fi) =
n− Ai

2k−i , if k ∈ {i + 1, ..., n− 1}

and
E(Nn | Fi) = E(Nn−1|Fi) =

n− Ai

2n−i−1 .

It follows then that

var(D(k) | Fi) =
(n− Ai) p(1− p)

2k−i if k 6= n

and that

var(D(n) | Fi) =
(n− Ai) p(1− p)

2n−i−1 .

We also notice that, since Nn = n− An−1 is Fn−1−measurable,

var(D(n) | Fn−1) = var
(

S(n)
Nn

∣∣∣Fn−1

)
= Nn p(1− p) .

This finishes the calculation of the conditional variance.
(iii) Only calculation of the conditional covariance remains. Let i ∈ {0, 1, ..., n − 2} and

j, k ∈ {i + 1, ..., n}, with j < k. Since E(Dj | Fi) = 0,

Cov(D(j), D(k) | Fi) = E(D(j)D(k) | Fi)

= E(E(D(j)D(k) | Fj) | Fi)

= E(D(j) E(D(k) | Fj)︸ ︷︷ ︸
=0

| Fi) = 0 .

This finishes the characterization of the second moment of D(i). Indeed, we have shown that
∀i ∈ {0, 1, ..., n− 1},

E(D(i + 1) | Fi) = 0

and

Cov(D(i + 1) | Fi) = p (1− p) (n− Ai) ·




2−1 0 . . . 0

0 2−2 . . .
...

...
. . . . . .

21+i−n 0
0 . . . 0 21+i−n




. (27)
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Proof of Corollary 1. Since the particular case i = 1 corresponds to the unconditional moments of D,
we have:

E(D) = E(D | F0) and Cov(D) = Cov(D | F0).

(a) Thus, the unconditional moments of D are given by

E(D) = 0 and Cov(D) = np(1− p) ·




2−1 0 . . . 0

0 2−2 . . .
...

...
. . . . . .

21−n 0
0 . . . 0 21−n




, (28)

(b) As an immediate consequence of Equation (24), one can write the conditional variance of the
ultimate as

var(U(n) | Fi) = var

(
U(0) +

i

∑
j=1

D(j) +
n

∑
j=i+1

D(j)

∣∣∣∣∣ Fi

)

=
n

∑
j=i+1

var (D(j)|Fi) = (n− Ai) p(1− p) .

(This formula can also be derived directly, arguing that U(n) | Fi ∼ B
(

n−∑i
j=1 Nj, p

)
.)

3.3. Completion Time

Our process is defined on a finite time scale of n-steps. However, the process will, most of the
time, finish much before the n-th step (the ultimate time). It is therefore of interest to know how fast
the process reaches the maximum exposures allowed. This is also very important for computational
reasons. Indeed, when simulating from the process, one can stop the simulation procedure earlier than
the ultimate time thus sparing large amounts of calculations. In order to answer this question, we first
consider a type of process that differs slightly from ours in the sense that it has an infinite time range
(infinite steps), but is still only allowed a finite number of exposures, n. For an infinite time process
with n rvs, let us denote by

Tn = inf

{
t :

t

∑
k=1

Nk = n

}

the completion time given by the step at which the last exposure is realized. Before trying to
approximate a finite process with an infinite process, we need to show that the infinite process
finishes with probability 1.

Proposition 3. The probability of the completion time at infinity is 0:

P(Tn = ∞) = 0. (29)

Proof of Proposition 3. For n = 1, we can argue that

P(T1 = ∞) = P(T1 = ∞ | N1 = 1)︸ ︷︷ ︸
=0

P(N1 = 1)︸ ︷︷ ︸
= 1

2

+P(T1 = ∞ | N1 = 0)︸ ︷︷ ︸
=P(T1=∞)

P(N1 = 0)︸ ︷︷ ︸
= 1

2

=
1
2
P(T1 = ∞) ,
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which implies that P(T1 = ∞) = 0. Note that P(T1 = ∞ | N1 = 0) = P(T1 = ∞) is justified by the fact
that, since the process is infinite, assuming N1 = k is equivalent to starting a new infinite process with
n− k rvs. This argument is used here with k = 0 but is explained with general k because we will use it
further for other values of k. For n > 1, we can do very similar calculations by induction. Assume that
P(Ti = ∞) = 0, ∀i ∈ {1, ..., n− 1}. Then,

P(Tn = ∞) = P(Tn = ∞ | N1 = 0)︸ ︷︷ ︸
=P(Tn=∞)

P(N1 = 0)︸ ︷︷ ︸
= 1

n+1

+
n

∑
k=1

P(Tn = ∞ | N1 = k)︸ ︷︷ ︸
=P(Tn−k=∞)

P(N1 = k)︸ ︷︷ ︸
= 1

n+1

=
1

n + 1
P(Tn = ∞) +

1
n + 1

n

∑
k=1

P(Tn−k = ∞)︸ ︷︷ ︸
=0 by ind. hyp.

=
1

n + 1
P(Tn = ∞) ,

which again proves that P(Tn = ∞) = 0.

Since the process finishes with probability 1 and the probability of an infinite process with n rvs
finishing after time n is very small for n large enough, the approximation is very reasonable.

We would like to find a formula for E(Tn). By conditioning on the first step, we obtain

E(Tn) = E
(
E(Tn | F1)

)
=

n

∑
k=0

E(Tn | N1 = k) P(N1 = k) .

Again, assuming N1 = k is equivalent to starting a new process with n − k rvs.
Therefore, E(Tn|N1 = k) = 1 + E(Tn−k), where the 1 takes into account the first step. As E(Tn)

only depends on n, let us denote it by E(Tn) = f (n). We can then write the following iterative formula

f (n) =
1

n + 1

n

∑
k=0

(1 + f (n− k)) = 1 +
f (0) + ... + f (n)

n + 1
.

Solving for f (n) and realising that f (0) = 0, we obtain

f (n) = 1 +
1 + f (1) + ... + f (n− 1)

n
,

which gives by iteration, for n ≥ 2:

f (n) =
1
n

+ f (n− 1) . (30)

Note that

f (1) = E(T1) =
∞

∑
j=1

jP(T1 = j) =
∞

∑
j=1

j
1
2

1
2j−1 = 2 .

Hence, by iterating Equation (30), we obtain the formula

f (n) = f (1) +
n

∑
j=2

1
j
= 1 +

n

∑
j=1

1
j

. (31)

We have now an expression that gives the average completion time of an infinite process as 1 plus
the truncated harmonic series, which can itself be approximated by

f (n) = 1 +
n

∑
j=1

1
j
= 1 + γ + ln(n) +O

(
n−1

)
≈ ln(n) + 1.57 , (32)
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where γ ≈ 0.5772 is the Euler constant. If n is large enough, we therefore have a simple way to estimate
approximately how many steps the process will last on average.

3.4. Distribution of the D(i)

In Section 3.2, we studied analytically the two first moments of the D(i). Here, we simulate
200,000 times the process of size n = 15 to estimate the empirical distribution of the D(i). We also
compute the normal distribution with same mean and variance to compare the distributions.
The results are displayed in Figure 1. Let us recall Equation (13), which states D(i) = S(i)

Ni
− Ni p.

Conditional on Ni, this random variable has centered binomial distribution (i.e., binomial distribution
minus its average). The Central Limit Theorem applies to binomial rv X with parameters n, p.
Thus, the distribution, f , of a sum of n independent Bernoulli rvs with parameter p will converge to a

Gaussian distribution: f (X) ≈ N
(

np, np(1− p)
)

, for n large enough. Assume that F is a discrete

mixture of normal distributions with mean 0, variances σ2
1 , ..., σ2

N and weights p1, ..., pn. Then, ∀x ∈ R,

F(x) =
n

∑
i=1

pi · P[ W ≤ x ] =
n

∑
i=1

pi ·Φ(x/σi) ,

where W is a normal rv N (0, σ2
i ). In particular, if for some indices i and j, 1/σi and 1/σj are close

to each other, then Φ(x/σi) and Φ(x/σj) are also going to be close to each other. In our case,
1/σi = (ip(1− p))−1/2 and these values are going to be close when i is large enough. If a sufficiently
large part of the weight is on large values of i, our mixture of centred binomial distributions is going
to be close to a Normal distribution. In other words, D(i) is going to have a distribution that is close
to Normal only if the probability of having a large Ni is high. For n = 15, as we can see in Figure 1,
it is the case. For i = 2, the approximation is still reasonable despite a mass larger than normal
around 0. For i > 2, the fit is rather good for large and small quantiles but not for the middle part of
the distribution. We recall from Equation (16) that expectation of Ni is divided by 2 at every step so
that small values of Ni and in particular 0 will have a larger probability. It should be noted that, due
to the probability mass of small values of Ni, these mixture distributions, even if they are close to a
normal distribution, will always have a higher than normal probability density around 0. To verify
this intuition empirically, we also simulate 200,000 times the process for sizes n = 50 and n = 100.
The results do confirm our intuition. Indeed, for n = 50, the approximation is good for i = 1, 2, 3 and
starts failing for i = 4, where E(N4) = 3.125. For n = 100, we can of course go one step further, which
makes the normal approximation good also for D(4).
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Figure 1. Simulated distribution of the D(i), i = 1, ..., 6 for a process of length n = 15. A normal
distribution with mean 0 and variance set at the value calculated in Section 3 is plotted in red.

3.5. Simulation of the Completion Time

We have seen, in Section 3.3, Equations (31) and (32), how to approximate the average time until
the end of the process. We test this result empirically by simulating 10,000 times the process of size n for
n = 20, 40, ..., 100, 200, 400, ..., 1000, 2000, 4000, ..., 30,000. For each n, we calculate the average time to
complete the total number of exposures and the 95% Gaussian confidence interval given by adding or
subtracting 1.96 times the empirical standard deviation of the sample. We also calculate the harmonic
series and its approximation by a logarithm. The two approximations are almost identical and fit
very well the results. Indeed, in 25 times, the 95% confidence interval misses once, which is what is
expected. The approximations should however be expected not to be valid for very short processes
because the logarithm approximation is based on convergence and because both the logarithm and
harmonic series approximations are based on the approximation of a finite process by an infinite one,
which is inaccurate for very short processes. In order to know how long a process must be for the
approximation to be valid, we simulate 10,000 times the process of size n for n = 2, ..., 20. From the
results, displayed in Figure 2, we see that for n = 1, ..., 6, the fit is not good. However, from n ≥ 7
onwards, our approximation is a reasonable and easy way to find the completion time. We shall use
this result later when we build loss triangles.
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Figure 2. Average run-off time of the process for short size processes.

4. Capital Requirements

In this section, we propose a framework to test the accuracy of some of the methods to estimate the
one year change. We construct triangles using the model presented in Section 3.4. From these triangles,
we estimate the one year change using the classica Merz–Wüthrich method Wüthrich and Merz (2008)
and the capital-over-time (COT) method, currently used at SCOR Ferriero (2016). We then compare the
results obtained analytically and by simulation based on the specifications of our model to those estimated
by the Merz–Wüthrich and with the capital-over-time (COT) method.

4.1. Triangles

Until now, we have only considered the development properties of one process. Actual liability
data are generally available in the form of triangles that represent the losses attributed to insurance
contracts for each underwriting year after their current numbers of years of development. It is
therefore reasonable to compare the results of our model in this framework. We first need to define the
notation. Let us consider n representations of the process of size n. We denote their ultimate losses
U1(n), ..., Un(n). The ultimate loss of the triangle is then

U(n) =
n

∑
i=1

Ui(n) .

We denote by Ni,1, ..., Ni,n the number of exposures realized at each step of the ith process and

S(j)
Ni,j

the losses due to Ni,j. The cumulated losses of row i up to column j are written S(j)
i . We consider

the discrete filtration (Fk)0≤k≤n given by the information available at each calendar year. Formally,

Fk = σ
(

Ni,j, S(j)
Ni,j

: i + j ≤ n + 1 + k
)

.
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The individual filtrations of each representation of the process are denoted by

Fi,k = σ
(

Ni,j, S(j)
Ni,j

: j ≤ k
)

.

We denote the jth one-year change of the ith individual process by Di(j) and define the one-year
changes of the triangle until its completion by

∆(k) = E(U(n) | Fk)−E(U(n) | Fk−1)

= Dk+1(n) + Dk+2(n− 1) + ... + Dn(k + 1)

= ∑n
i=k+1 Di(n + k + 1− i) .

(33)

Equation (33) simply writes the global one-year change as the sum of the individual one-year
changes. Note that, due to linearity of expectation, Equation (33) also implies that the ∆(i) have
expectation 0 and are uncorrelated. Their variances can be calculated by summing the variances of the
individual one-year changes that constitute them.

Similarly to the individual process situation, we define the capital requirement for calendar year i as

Ki = E
(

ρ (∆(i) | Fi−1)
)

, i = 1, ..., n− 1 ,

for some risk measure ρ. The risk-margin associated with these capitals is

Rn = η
n−1

∑
i=1

Ki ,

for the cost of capital η.

4.2. Methodology and Results’ Comparison

We now describe the methodology used to obtain our risk measure results and to compare them
with the Merz–Wüthrich and the COT methods, both briefly explained in Appendix D. For convenience,
we use the following notation

Ñi,j = n−
j

∑
k=1

Ni,k

for the number of exposures remaining to be realized for row i of the triangle after time j.
In particular, Ni,j ∼ Unif

(
{0, 1, ..., Ñi,j−1}

)
for j = 1, ..., n− 1. In particular, Ñi,j is an Fi,j−measurable

random variable.

4.2.1. First Year Capital Comparison

A first value of interest is the required capital for the first year

K1 = TVaRκ(∆(1)|F0) .

The Merz–Wüthrich method only provides var(∆(1)|F0), while the COT method was originally
designed for xTVaR (A4). An assumption concerning the link between var and TVaR is therefore to
be made. Since ∆(1)|F0 follows a mixture of binomial distributions for a generally large number of
rvs, its distribution can be approximated relatively well by a normal distribution (this approximation
may lead up to 20% underestimation of the risk depending on the number of exposures n). Note that
the number of rvs from the binomial is not a uniform variable but a sum of uniform variables, which
diminishes the probability of very large or very low values, thus making the normal approximation
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better than for a simple uniform number of rvs. Normal distribution fixes the relation between var
and TVaR:

TVaRκ

(
N (µ, σ2)

)
= µ + σ

φ(Φ−1(κ))

1− κ︸ ︷︷ ︸
≈2.665 for 99%

. (34)

In our case, µ = E(∆(1)|F0) = 0 and

σ2 = var(∆(1)|F0)

= E(var(∆(1)|N2,n, ..., Nn,2)|F0) + var(E(∆(1)|N2,n, ..., Nn,2)︸ ︷︷ ︸
=0

|F0)

= E((N2,n + ... + Nn,2)p(1− p)|F0)

=

(
Ñ2,n−1 + ∑n

j=3
Ñj,n+1−j

2

)
· p(1− p) .

(35)

Combining Equations (34) and (35), we can obtain an approximate analytical value for K1,

K1 ≈
φ(Φ−1(κ))

1− κ
· (p(1− p))1/2 ·

(
Ñ2,n−1 +

n

∑
j=3

Ñj,n+1−j

2

)1/2

. (36)

The COT method, such as explained in Appendix D, was designed for real insurance data.
In particular, parameter b models the dependence between relative loss increments. In the case of
our model, the relative loss increments are uncorrelated, which points to the choice of parameter
b = 0.5 instead of the value chosen with mean time to payment. The choice of coefficient pb is also
arbitrary. Indeed, pb determines the proportion of the risk that is due to the jump part of the process.
For our process, there is no “special” type of behaviour that the model could have and that would
increase the risk. Therefore, we choose pb = 0. In general, the type of data is not known, in particular
the dependency between loss increments is not known. Thus, we are also interested in the results
given by the COT method applied the standard way. We therefore also compute the COT estimator
with pb chosen according to Formula (A5). In our case, b cannot be chosen like in the formula, as
the pattern used in the mean time to payment computation is a paid pattern that we do not have for
our model. For the jump case, we choose b = 0.75 as for a long-tail process. Indeed, the (incurred)
pattern of our n-step process corresponds generally to the type of patterns that one can find in long
(or possibly medium) tail lines of business. We will refer to the two variations of the method as
“COT method with jump part” for the version with standard pb and b = 0.75 and “COT method
without jump part” for the version with b = 0.5 and pb = 0.

In the case of an n-step Bernoulli model triangle, we notice that the accident-year (incremental)
patterns are given by

γi =

(
n

∑
j=2

Ñj,n+1−j

)−1

·
(

Ñi+1,n−i

2i−1 +
n

∑
j=i+2

Ñj,n+1−j

2i

)
. (37)

The first factor is simply the total number of exposures remaining to be realized, the first row not
being counted because it is finished. Since, at each step but the last, half of the current exposures of the
process are expected to be realized, the number of exposures remaining for each unfinished is expected
to be the number of exposures remaining in the original triangle divided by 2 for each past step that is
not the last step. Hence, the expected remaining exposures are

n

∑
j=i+2

Ñj,n+1−j

2i



Risks 2018, 6, 75 17 of 29

for the lines that are not finished after i steps, plus

Ñi+1,n−i

2i−1

for the line that finishes precisely after i steps. The pattern designates the results of the binomial
random variable and not the number of exposures. However, since the rvs (random variable X) are
independent and have the same expectation, the numerator and denominator are both multiplied by p
leaving the result unchanged.

In particular, with the help of Equation (37) and after few manipulations, we have that

var(∆(i)|F0) = E(var(∆(i)|Fi−1)|F0) + var(E(∆(i)|Fi−1)︸ ︷︷ ︸
=0

|F0) = γi · var(U(n)|F0) .

This result uses the property of martingales that the variance of the sum of martingale increments
is equal to the sum of variances. An analogous property is false for the TVaR. However, we get for the
COT model without jump part, an approximation (see Ferriero 2016)

TVaRκ(∆(1)|F0) ≈ γ1/2
1 · TVaRκ(U(n)|F0) .

Moreover, if we assume that the normal approximation is not an approximation but indeed an
exact distribution, it can be shown through straightforward calculations that this expression becomes
an exact result for the required capital for the first year (see Ferriero 2016).

The Merz–Wüthrich method is the one posing the most problems. Indeed, the triangles generated
with our process are very noisy in the sense that the simulated triangles can quite often have many
zeros. The Mack hypotheses, on which the Merz–Wüthrich method is based, are multiplicative in
nature and, therefore, very sensitive to zeros. If there is a zero in the first column of a triangle, Mack’s
estimation fails to compute the parameters σ1. There are more robust ways, such as the one developed
in Busse et al. (2010), to calculate these estimators. However, all of them (except removing the line)
fail if an entire row of the triangle is 0. This happens quite often for n small. If n is large, the problem
becomes, as we explain in Section 3.5, that the process terminates on average in time log(n) + 1.57,
which means that the largest part of the triangle shows no variation at all and gives σi = 0. In order
to eliminate all these problems, we simulate our test triangles with n = 100,000 and work on the
truncated top side of the triangle of size m = d5 + log(n) + 1.57︸ ︷︷ ︸

≈E(Tn)

e = 19, where 5 is a safety margin to

insure that the run-off of the process is finished or at least almost finished.
We set p = 0.1%, which is a more realistic value given the high number of policies, simulate

500 triangles and, for each of them, calculate the first year capital K1 using the theoretical value,
the COT method with and without jumps and the Merz–Wüthrich method. We display, in Table 1,
the mean capital and the standard deviation of the capital around that mean over the 500 triangles.
We also calculate the mean absolute deviation (MAD)

MAD = E
(
|X̂− X|

)

and mean relative absolute deviation (MRAD)

MRAD = E
( |X̂− X|

X

)

with respect to the theoretical value using standard and robust mean estimation.
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Table 1. Statistics for the first year capital on the 500 simulated triangles. The mean first year capital,
the standard deviation of the capital around that mean and the mean absolute and relative deviations
(MAD/MRAD) from the true value are displayed. The latter are computed using both a standard
and the robust Huber M-estimator, Huber (1981). The mean reserves estimated with chain-ladder
are 101.87, which are consistent with the reserves calculated with our model, i.e., n(1− 1/2I)p =

100,000(1− 219)0.001 = 100.00.

Method Mean Std. Dev. MAD MRAD Rob. MAD Rob. MRAD

Theoretical value 18.37 3.92 0 0% 0 0%
SCOR, without jumps 19.08 3.93 0.71 4.14% 0.71 3.93%

SCOR, with jumps 18.81 3.86 0.43 2.47% 0.44 2.42%
Merz–Wüthrich 252.89 149.6 234.5 1365.6% 213.9 1217.8%

Note that, in our example, the relative risk, i.e., the first year capital relative to the reserves volume,
is about 18% (the reserves are approximately 100 and the first year capital approximately 18), which is
a realistic value. The reserves in our model can be easily computed by the close formula n(1− 1/2m)p,
as proved in Appendix C. As a point of comparison, using the prescription of the Solvency Standard
Formula, we find a stand-alone capital intensity (SCR/Reserves) between 14% to 26% for the P&C
reserves. Given the type of risks we are considering here, it is logical that the capital intensity should
be at the lower end of the range. By the way, we also see, as expected, that the average claim is much
smaller than the maximum claim (100,000) given the fact that the chances that 100,000 independent
policies claim at the same time with such a low probability of claims (p = 1h) is practically nil.

The results presented in Table 1 are striking. While the COT method gives answers close to the
theoretical value with a slight preference, as expected, for the COT without jumps, the Merz–Wüthrich
method is way off (1356.6% off the true value), and the true result is not even within one standard
deviation away. The coefficient of variation σ/µ for this method is more than 59% while in all the
other cases it hovers around 21%. There are many explanations for this. Looking at triangles and
analysing the properties of the methods allows us to understand those results. The true risk depends
on the number of rvs remaining to be realized. In most cases, only the few last underwriting years are
truly important in that matter because the others will be almost fully developed. For Merz–Wüthrich,
as most of the volatility of the process will appear on the first step, the most crucial part of the triangle is
the last line of the triangle, which is the only process representation at this stage of development. If the
latter is large, it influences the Merz–Wüthrich capital in the same direction. Merz–Wüthrich interprets
a large value as: “Something happened on that accident year, there is going to be more to pay than
expected”. The logic behind our model is different, through the “fixed number of rvs” property,
it is: “What has been paid already needs not to be paid anymore”. A large value on the last line of
the triangle is therefore likely to indicate that few rvs remain to be realized, which implies smaller
remaining risk. This explains negative correlation because the same cause has the exact opposite effect
on the result.

How can we explain the difference of magnitude in the estimated capitals? This may be due
to the fact that our model is additive while Merz–Wüthrich is multiplicative. If a small number
appears in the first column and then the situation reestablishes on the second step by realizing a larger
number of exposures, we know that this is irrelevant for future risk. However, Mack and subsequently
Merz–Wüthrich don’t consider the increase but the ratio. If the first value is small, the ratio may be
large. However, the estimated ratio f̂ j is the mean of the ratios weighted with the value of the first
column, i.e., Equation (A2) can be rewritten as

f̂ j =
∑

n−j
i=1 S(j)

i ·
(

S(j+1)
i /S(j)

i

)

∑
n−j
i=1 S(j)

i

.
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Therefore, cases with large ratios, such as described before, will not appear in f̂1 but in σ̂2
1 .

The Merz–Wüthrich (Mack) method considers that small and large values are as likely to be multiplied
by a factor, which is not the case with our model for which small values are likely to be multiplied by
large factors and large values are likely to be multiplied by small factors.

This is confirmed by plotting and comparing the distributions of the different capital
measurements (Figure 3), we can notice that, while the true capital and the two COT capitals seem to
follow a normal distribution, the distribution of the Merz–Wüthrich capital seems to follow rather a
log-normal distribution.

Figure 3. Simulated distribution of the capital for the different methods.

Another interesting statistic to understand how related these capital measurements are is the
correlation between them. Computing the correlation matrix yields the results presented in Table 2,
we see that the correlation is almost 100% for the two COT estimates and the true value. Indeed,
with or without jumps, the COT method is very close to the theoretical result. This is partially due
to the fact that the ultimate distribution is known and that all these methods simply multiply the
ultimate risk by a constant. The correlation is not exactly 100% due to the stochasticity induced by the
simulations used to calculate ultimate risk in the COT methods. The Merz–Wüthrich capital however
shows a negative correlation. The standard and robust estimators are very different, which suggests
the presence of very large values of Merz–Wüthrich capital and departure from normality. This is
confirmed by Figure 3 where the distribution in the bottom right plot is very different from a Gaussian.
It indicates in particular that the robust estimator is more representative of the data. A correlation of
−46% is rather strong. It is not true though that a small true capital implies a large Merz–Wüthrich
capital, nor the opposite, but there is a real tendency among large values of true capital to coincide
with relatively small values of Merz–Wüthrich capital.
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Table 2. Correlation matrix of the different capital measures. Above, the standard correlation estimate
and below, the robust “MVE” estimate Rousseeuw and Leroy (1987).

Standard Corr True Value SCOR, No Jumps SCOR, Jumps Merz–Wüthrich

True value 100% 99.98% 99.97% −37.64%
SCOR, no jumps 100% 99.99% −37.65%

SCOR, jumps 100% −37.64%
Merz–Wüthrich 100%

MVE Corr True Value SCOR, No Jumps SCOR, Jumps Merz–Wüthrich

True value 100% 99.98% 99.97% −46.56%
SCOR, no jumps 100% 99.99% −46.61%

SCOR, jumps 100% −46.60%
Merz–Wüthrich 100%

4.2.2. Risk Margin Comparison

Another important quantity to study is the risk margin defined in Equation (21). We compare
here the results obtained with the COT method described in Appendix D to those obtained from theory.
Note that we cannot do this for the Merz–Wüthrich method as it is only giving the variation for the
first year.

We want to estimate
Ki = E [TVaRκ(∆(i)|Fi−1)|F0] .

Our methodology is very close to the one for the first-year capital using normal approximation
and Equations (34) and (35). Assume Fi−1 known, we can then generalise Equation (36), to get the
following expression

var(∆(i)|Fi−1) ≈
(

Ñi+1,n−1 +
n

∑
j=i+2

Ñj,n+i−j

2

)
· p(1− p) . (38)

We then use the normality assumption to write

TVaRκ(∆(i)|Fi−1) =
φ(Φ−1(κ))

1− κ

√
var(∆(i)|Fi−1) , (39)

thus obtaining a theoretical form for the tail value at risk, given the triangle developed up to
calendar-year i − 1. Our methodology, starting from a triangle of realized rvs, is to complete it
R times using the Bernoulli model and to calculate on each completed triangle TVaRκ(∆(i)|Fi−1)

according to the formula of Equation (39). By taking the mean over all R triangles, we obtain the
required capital for calendar-year i that we sum up and multiply by the cost of capital (chosen here at
6%, as in the Solvency II directive) to obtain the risk margin.

In this case, we do not need to simulate truncated large triangles to make our comparison.
Indeed, both the COT method and the theoretical simulation method work on small triangles.
However, for the results to be similar and to avoid too frequent “zero risk left” situations, we still use
a truncated large triangle like for the first-year capital comparison, i.e., triangles of size 19 and with
n = 100,000 rvs. Like for the first-year capital, we simulate 500 triangles from the process and, for
each of them, calculate the capital required at each consecutive year and the risk margin using for the
theoretical simulation method R = 10,000 triangle completions and for the COT b = 0.5 and pb = 0
(without jump part) and b = 0.75 (long tail) and pb from Equation (A5) (with “jump part”). In Table 3
and Figure 4, we can observe the results obtained on average and the measures of deviation over the
500 triangles.
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Table 3. Statistics for the risk margin on the 500 simulated triangles. The average risk margin,
the standard deviation of the risk margin around the average and the mean absolute and relative
deviation (MAD/MRAD) from the true value are displayed.

Method Mean Std. Dev. MAD MRAD

True value (simulation) 5.89 1.27 0 0%
SCOR, without jumps 6.49 1.34 0.61 10.57%

SCOR, with jumps 4.32 0.89 1.57 26.52%

Figure 4. Comparison of the average yearly required capital over 500 triangles as proportion of the ultimate.

As we just saw, assuming normality, the first year capital of the COT method without jump part
is an exact result. However, for i > 1 (still assuming normality), the method gives

E(TVaRκ(∆(i)|Fi−1)|F0) =
φ(Φ−1(κ))

1− κ
·E
(√

var(∆(i)|Fi−1)

∣∣∣∣F0

)
. (40)

However, from Schwarz inequality, which also holds for conditional expectation, for any positive
integrable random variable Y and any σ−algebra F , the COT method without jumps is systematically
overestimating the true capital, as we can see in Figure 4. However, the overestimation is not very big
(Table 3) and the method replicates reasonably well the form of the actual yearly capital. The average
relative absolute error of the risk margin is 10.57% (see results in Table 3). We do not show the results
for the capital at each year, but they lead to a similar message with the error increasing with the years
as the capital itself decreases. The same method with jumps has less success with 26.52% of absolute
error. This error is always underestimation, which is also true for each year. The error on the capital is
always bigger with jumps. It is only at the end (calendar year 13 here) that the capital estimation is
better with jumps and these values are almost 0, so they are not very relevant for the risk margin.

In general, one can see (Tables 1 and 3) that, for our n-steps model, the COT method without jumps
is the one that performs the best. If we compute the autocorrelation of consecutive loss increments,
we obtain 5% of mean correlation, which is close to independence. The independence situation
corresponds to the calibration of the COT method with b = 0.5, thus explaining why the COT method
without jumps provides the best results. This raises the question of what value of b would give the
risk margin the closest to the benchmark. To answer this, we simulate another 100 triangles and
calculate each time the risk margin with the benchmark method and with both COT methods with and
without jumps, for all values of parameter b between 0.3 and 1 by steps of 0.01. For the COT method
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without jumps, we find that the fitted values for b are between 0.52 and 0.53, which is very close to the
b = 0.5 that we have been using. For the COT method with jumps, the mean best b is also close to 0.5.
However, we find some best b observations that are below 0.5, which stands for negative dependence
between accident years and is not accepted by the COT method. In this case, the best b is much further
than the one that has been used (0.75) by SCOR for real data. This is not unexpected since the method
yields rather poor results (Table 3) for our n-steps model. (In the Appendix E we discuss the numerical
stability of the above approximations. Furthermore, in the Appendix F we discuss the one-year capital
for the first period as proportion to the sum of all the one-year capitals over all the periods.)

5. Conclusions

In this study, we have decomposed the various steps to reach the ultimate loss through a simple,
but realistic example, which is used in a variety of line of business all over the World. The goal is
to study the one year change required by the new risk based solvency regulations (Solvency II and
the Swiss Solvency Test). Our example allows us to compute explicit analytical expressions for the
variables of interest and thus test two methods used by actuaries to derive the one year change: the
Merz–Wüthrich method and the COT method developed at SCOR. We find that the COT method
is able to reproduce quite well the model properties while Merz–Wüthrich is not, even though the
assumptions behind both methodologies are not satisfied in the case of our example (therefore the COT
methodology is more robust). It is thus dangerous to use the Merz–Wüthrich method without making
sure that its assumptions are met by the underlying data. Even though this seems obvious at first, the
authors feel the need to warn about the risk of using the Merz–Wüthrich methodology acritically to
any non-life portfolio, ignoring the fullfillment of the Merz–Wüthrich method’s assumptions, as this is
the tendency among practitioners, regulators and auditors in the last years.
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Appendix A. Proof of an Equality in Distribution

In this appendix, we examine the equality in distribution formulated in Equation (3):

S(k)
Nk

=
Nk

∑
j=1

Xj+Ak−1

d
=

Nk

∑
j=1

Xj = SNk .

The reason for it is that both sides are a sum of Nk Bernoulli random variables with the same
parameter, so that no matter what the distribution of Nk is, both sides will have the same distribution.
This can be proved rigorously by calculating both characteristic functions. The characteristic function
of a random variable Y is defined as

φY(t) = E
(

eitY
)

and determines uniquely the distribution of a function.
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The characteristic function of S(k)
Nk

is

φ
S(k)

Nk

(t) = E
(

eitS(k)
Nk

)
by definition of the characteristic function

= E
(
E
(

eitS(k)
Nk | Nk

))
by definition of conditional expectation

=
n

∑
j=0

E
(

eitS(k)
Nk | Nk = j

)
· P(Nk = j) by developing the expectation

=
n

∑
j=0

E
(

eitSj
)
· P(Nk = j) because Xj ⊥⊥ Nk.

The same calculations and arguments give the characteristic function of SNk :

φSNk
(t) = E

(
eitSNk

)
by definition of the characteristic function

= E
(
E
(

eitSNk | Nk

))
by definition of conditional expectation

=
n

∑
j=0

E
(

eitSNk | Nk = j
)
· P(Nk = j) by developing the expectation

=
n

∑
j=0

E
(

eitSj
)
· P(Nk = j) because Xj ⊥⊥ Nk

= φ
S(k)

Nk

(t) ,

thus proving the equality in distribution.
The calculations can be pushed forward. Indeed,

φSNk
(t) = φ

S(k)
Nk

(t) =
n

∑
j=0

E
(

eitSj
)
· P(Nk = j)

=
n

∑
j=0

E
(

eit·∑j
l=1 Xl

)
· P(Nk = j)

=
n

∑
j=0

Ej
(

eitX
)
· P(Nk = j) because the Xl are i.i.d,

=
n

∑
j=0

(
1− p + peit

)j
· P(Nk = j) because X is Bernoulli.

Note that, if k = 1, and N1 ∼ U ({0, ..., n}), then we can write

φSN1
(t) =

n

∑
j=0

(
1− p + peit

)j
· P(N1 = j)

=
1

n + 1

n

∑
j=0

(
1− p + peit

)j

=





1
n+1

1−(1−p+peit)
n+1

p(1−eit)
, if t 6= 0,

1
n+1 ∑n

j=0 1 = 1, if t = 0 .
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We therefore have a close form for the characteristic function of SN1 .

Appendix B. The Distributions of Ni and of D(i)

Proposition A1. The distribution of Ni, for 1 ≤ i ≤ n− 1, is

P[Nn−1 = k] =
1

1 + n

n−k

∑
an−2=0

an−2

∑
an−3=0

· · ·
a2

∑
a1=0

n−2

∏
k=1

1
1 + n− ak

, (A1)

and P[Nn = k] = P[Nn−1 = k].

Proof. Indeed, the first value of the probability is

P[N1 = n1] =
1

1 + n
.

Then, we can write, for n = 2,

P[N2 = n2] =
n−n2

∑
a1=0

P[N2 = n2 | N1 = a1] P[N1 = a1] =
1

1 + n

n−n2

∑
a1=0

1
1 + n− a1

,

and, for n = 3,

P[N3 = n3] =
n−n3

∑
a2=0

P[N3 = n3 | A2 = a2] P[A2 = a2] =
1

1 + n

n−n3

∑
a2=0

a2

∑
a1=0

1
1 + n− a2

1
1 + n− a1

.

We can continue iteratively up to n− 1 and obtain (A1).
We should note here that, because of Condition (H), for the last distribution, we have

P[Nn = k] = P[Nn−1 = k]. Alternatively, reminding that Nn + Nn−1 = n − An−2, we come to the
same conclusion.

Proposition A2. The distribution of D(i) conditioned to Ai−1, 2 ≤ i ≤ n is equal to

P
(

D(i) = x | Ai−1 = ai−1
)
=

1
1 + n− ai−1

n−ai−1

∑
j=0

(
j

x + jp

)
px+jp(1− p)j(1−p)−x 1I(x+jp∈N)

for 0 ≤ ai−1 ≤ n, and x ∈ R.

Proof. The formula can be obtained directly from (14), by using (15) and that Si has binomial distribution.

Appendix C. The Reserves in Our Model

For our model with only one row, i.e., one rv, the reserves at i < n years (steps) are simply

n

∑
j=i+1

E(Xj) = E(Sn)−
i

∑
j=1

E(Xj) = np

(
1−

i

∑
j=1

1
2j

)
=

np
2i .

In case we have a claims triangle with m rows and columns, where each row is our process with
n exposures, the reserves at calendar year i are

m

∑
i=1

n

∑
j=i+1

E(Xj) = np
m

∑
i=1

1
2i = np

(
1− 1

2m

)
.
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Appendix D. Presentation of the Methods to Compute the One-Year Change Volatility

We briefly present here the methods we use in Section 4.2.

Appendix D.1. Merz–Wüthrich Method

The Merz–Wüthrich method Wüthrich and Merz (2008) is the most commonly used approach to
model one-year change volatility. It is based on the distribution free method developed by Mack (1993)
to estimate the ultimate uncertainty of the reserves on a triangle of claims. Using our notation, Mack
makes the following assumptions:

1. Independence across rows of the triangle.
2. There exists a sequence of factors f1, ..., fn−1, such that

E
(

S(j+1)
i

∣∣∣ Fi,j

)
= f j S(j)

i .

3. There exists a sequence of factors σ2
1 , ..., σ2

n−1, such that

var
(

S(j+1)
i

∣∣∣ Fi,j

)
= σ2

j S(j)
i .

Under these assumptions, Mack proposes the following unbiased estimators for the factors:

f̂ j =
∑

n−j
i=1 S(j+1)

i

∑
n−j
i=1 S(j)

i

, j = 1, ..., n− 1, (A2)

and

σ̂2
j =

1
k− j− 1

k−j

∑
i=1

S(j)
i

(
S(j+1)

i

S(j)
i

− f̂ j

)2

, j = 1, ..., k− 2 .

For j = n − 1, Mack uses σ̂2
n−1 = min(σ̂2

n−2, σ̂2
n−3, σ̂2

n−2/σ̂2
n−3). Furthermore, he uses the

estimates f̂ j to estimate the future parts of the triangle with the estimator

Ŝ(j)
i = S(n+1−i)

i · f̂n+1−i · · · f̂ j−1 , i + j > n + 1 .

Based on these estimators, Wüthrich and Merz (2008), among other risk measures, calculate

v̂ar(Di(n + 2− i)|Fi,n+1−i) =
(

Ŝ(n)
i

)2
Ψi ,

where

Ψi =
σ̂2

n+1−i

f̂ 2
n+1−i S(n+1−i)

i

.

Summing these conditional variances, they obtain an estimator for the first one year change:

v̂ar(∆(1) | F0) .

The idea behind the Merz–Wüthrich method is to calculate the Chain–Ladder estimation of the
ultimate uncertainty at time 0 and at time 1 after adding the next diagonal. They then calculate the
uncertainty of the difference to obtain the one-year uncertainty. We illustrate this in Figure A1 by
showing the addition of one diagonal.
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Summing these conditional variances, they obtain an estimator for the first one year change:

v̂ar(∆(1) | F0) ,

The idea behind the Merz-Wüthrich method is to calculate the Chain-Ladder estimation of

the ultimate uncertainty at time 0 and at time 1 after adding the next diagonal. They then

calculate the uncertainty of the difference to obtain the one-year uncertainty. We illustrate this

in Figure 5 by showing the addition of one diagonal.

i \ j 1 2 · · · n

1 S
(1)
1 S

(2)
1 · · · S

(n)
1

2 S
(1)
2 S

(2)
2

. .
.

...
... . .

.

n S
(1)
n

⇒

i \ j 1 2 · · · n n+ 1

1 S
(1)
1 S

(2)
1 · · · S

(n)
1 S

(n+1)
1

2 S
(1)
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(2)
2

. .
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S
(n+1)
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...
... . .

.
. .
.

n S
(1)
n S

(2)
n+1

Figure 5: The current triangle (left) and the next year triangle (right). The present is outlined in blue and
the one-year ahead future in red. Merz-Wüthrich method allows to compute the ultimate on both triangles
and calculate the uncertainty of the difference.

The COT method

The COT formula used at SCOR [5] consists in computing first the ultimate risk, in our case, the

TVaR99% of a B(Ñ , p) distribution, and taking a part of it, to be determined, as the required

capital for each year. The idea behind the COT formula is to look at the evolution of the

risk over time till the ultimate, and thus obtain the one-year period risks as a portion of the

ultimate risk. In what follows we give a brief description of the COT formula however the

detailed derivation is presented in [5]. Here, Ñ designates the number of exposures that remain

to be included in the whole triangle. This can be written as

Ki = δi · ρκ(U(n) | F0) , (43)

where

ρκ(X) = xTVaRκ(X) = TVaRκ(X)− E(X), κ = 99%. (44)

The vector δ = (δ1, ..., δn−1) is called the COT-pattern and is obtained through the following

relation:

δk = γbk(1− pb) + pb

n∑

i=k

γi ,

where γ = (γ1, ..., γn−1) designates the incremental calendar year pattern,

pb = (1− λ)

[
1− VaR1−α(U(n))− E(U(n))

ρκ(U(n))

]
, (45)

32

Figure A1. The current triangle (left) and the next year triangle (right). The present is outlined in blue
and the one-year ahead future in red. The Merz–Wüthrich method allows for computing the ultimate
risk on both triangles and calculate the uncertainty of the difference.

Appendix D.2. The COT Method

The COT formula used at SCOR Ferriero (2016) consists of computing first the ultimate risk, in our
case, the TVaR99% of a B(Ñ, p) distribution, and taking a part of it, to be determined, as the required
capital for each year. The idea behind the COT formula is to look at the evolution of the risk over time
till the ultimate, and thus obtain the one-year period risks as a portion of the ultimate risk. In what
follows, we give a brief description of the COT formula; however, the detailed derivation is presented
in Ferriero (2016). Here, Ñ designates the number of exposures that remain to be included in the whole
triangle. This can be written as

Ki = δi · ρκ(U(n) | F0) , (A3)

where
ρκ(X) = xTVaRκ(X) = TVaRκ(X)−E(X), κ = 99%. (A4)

The vector δ = (δ1, ..., δn−1) is called the COT-pattern and is obtained through the following relation:

δk = γb
k(1− pb) + pb

n

∑
i=k

γi ,

where γ = (γ1, ..., γn−1) designates the incremental calendar year pattern,

pb = (1− λ)

[
1− VaR1−α(U(n))−E(U(n))

ρκ(U(n))

]
, (A5)

and parameters are fixed to the values λ = x
−(1−b)

1−α , x = 10, α = 10%. Parameter b is set to 0.6 for
short-tailed Lines of Business, 0.65 for medium-tailed LoB and 0.75 for long-tailed LoB, where the
duration is determined by the notion of mean time to payment τ. It is defined as

τ =
n

∑
i=1

γ̃i(i− 0.5) =
n

∑
i=1

iγ̃i −
1
2

,

where γ̃ designates the incremental calendar year paid pattern. A short-tail is defined as τ ≤ 2,
medium-tail by τ ∈ [2, 4] and long-tail by τ > 4. Once we have the Ki, we can sum them and multiply
them by the cost of capital to obtain the risk margin

Rn = η (∑n
k=1 δk) · ρκ(U(n))

= η
(
(1− pb)∑n

k=1 γb
k + pb ∑n

k=1 ∑n
i=k γi

)
· ρκ(U(n))

= η
(
(1− pb)∑n

k=1 γb
k + pb ∑n

k=1 kγk

)
· ρκ(U(n)) .

(A6)
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In short, this model is based on the idea that claims will develop partially with a “good”
continuous part and partially according to a “bad” part characterized by sudden jumps, the bad
part being modelled as the total rest of the claims realising at once. The variable pb is a coefficient
between [0, 1] that determines in which proportion the evolution is going to be continuous or discrete
and b ∈ [0.5, 1] models the dependence between different calendar years.

In order for the COT method to be exact, the following assumptions must be true:

1. The evolutions of the claims losses and of the best estimates are stochastic processes as described
in Ferriero (2016); roughly speaking, the relative losses evolve from the start to the end as a
Brownian motion, except during a random time interval in which they evolve as a fractional
Brownian motion, and the consequently best estimates evolve as the conditional expectation
of the ultimate loss plus a sudden reserves jump, which may happen as a result of systematic
under-estimations of the losses.

2. The volatility, measured in standard deviations, of the attritional claims losses is small relative to
the ultimate loss size.

However, the COT method is robust in the sense that gives good estimates even when the
assumptions are not fullfilled as we show here with our example.

Appendix E. Numerical Stability

In Section 4.2, we calculate the risk margin by simulating triangle completions according to our
n-steps model. It is therefore legitimate to ask if the R = 10,000 simulations we use are enough to obtain
stable results. To investigate this question, we simulate an n-steps model triangle. We then calculate its
risk margin 200 times using our simulation method with a grid of values of R. From these, we calculate
the mean and the standard deviation of the computed risk margins for each value of R. The distribution
of the calculated risk margin being approximatively normal due to the central limit theorem, the mean
and standard deviation fully characterize the distribution allowing us in particular to draw confidence
intervals. We chose for this test R ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000} and obtained
the values presented in Table A1.

The results seem to indicate that the standard deviation of the risk margin calculation is inversely
proportional to

√
R as one would expect. The mean prediction is almost the same no matter what

the number of simulations is even though the variation of this mean around 3.28 diminishes as R
grows. The value R = 10,000 that we have used seems in any case sufficient as, for this value, the 95%
confidence interval represents only a variation of ±0.34% around the mean.

Table A1. Test of the number R of random triangle completions for the risk margin calculation.
The mean and standard deviation allow for constructing a Gaussian 95% confidence interval by adding
(resp. subtracting) 1.96 times the standard deviation to the mean to obtain the upper (resp. lower)
bound. The “Variation” column designates the variation around the mean that represents the 95%
confidence interval, i.e., 1.96 times the standard deviation.

R Mean Standard Dev. Confidence Interval Variation

10 3.279 0.176 [2.935, 3.624] ±10.50%
20 3.294 0.122 [3.055, 3.533] ±7.28%
50 3.287 0.077 [3.136, 3.438] ±4.60%

100 3.291 0.057 [3.180, 3.402] ±3.38%
200 3.289 0.042 [3.206, 3.372] ±2.53%
500 3.281 0.027 [3.228, 3.333] ±1.60%
1000 3.284 0.018 [3.248, 3.320] ±1.09%
2000 3.283 0.013 [3.258, 3.308] ±0.76%
5000 3.282 0.009 [3.265, 3.300] ±0.53%

10,000 3.283 0.006 [3.272, 3.294] ±0.34%
20,000 3.283 0.004 [3.275, 3.291] ±0.24%
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Appendix F. Capital Properties of the Model

In this section, we discuss the properties of the ratio first year capital divided by the sum of all
required capitals. That is the ratio

K1

∑m−1
j=1 Kj

,

where m represents the size of the triangle. We would like to know in particular how a variation
of the parameter n will influence that ratio. To investigate this question, we simulate 100 triangles
with n exposures per line, for values of n in the set {k · 104 : k = 1, ..., 10}. Like for the previous
capital requirement calculations, we truncate the triangles to size m = d5 + log(n) + 1.57e = 19.
This avoids considering triangles of very large sizes without changing the result, as, in most cases,
almost all exposures will have been realized before this step. For each triangle, we compute the capital
requirements using 2000 random triangle completions, as the study of Appendix E has shown that
this is sufficient to have less than 1% error. For convenience reasons, we only show some statistics of
the results that are representative of the spread of the whole sample (Table A2), the mean, standard
deviation and the two extremal values observed.

Table A2. Statistics of the proportion of the capital represented by the first year as a function of the number
of rvs n. Note that the number of rvs modifies the number of steps I = d5+ log(n) + 1.57e.

Number of rvs Number of Steps Mean Standard Dev. Min. Obs. Max. Obs.

10,000 16 0.3137 0.00395 0.3067 0.3267
20,000 17 0.3129 0.00472 0.3049 0.3286
30,000 17 0.3130 0.00444 0.3056 0.3278
40,000 18 0.3125 0.00372 0.3064 0.3257
50,000 18 0.3129 0.00465 0.3040 0.3244
60,000 18 0.3123 0.00412 0.3041 0.3240
70,000 18 0.3123 0.00422 0.3057 0.3279
80,000 18 0.3118 0.00440 0.3039 0.3264
90,000 18 0.3125 0.00465 0.3041 0.3284

100,000 19 0.3118 0.00383 0.3033 0.3231

The results are quite independent of the number of rvs and show no obvious pattern of
development. The size of the changes between different values of n is much smaller than the standard
deviation indicating that n has no (or non-significant) effect on the ratio of interest. The standard
deviation shows no sign of correlation to the number of realized rvs per line, and the maximal
observation is slightly more volatile than the minimal. However, both are very stable, giving no
indication that n might have any significant effect on the ratio.

Let us give some intuition behind these results. In our model, with the exception of the move
from penultimate column to ultimate, for which all not yet realized exposures are forced to be realized,
each move forward in the triangle means, in expectation, dividing by two the number of remaining
rvs to be realized. Since we use 2000 triangle completion, we can assume that we are at the expectation.
The variance is proportional to the number of rvs remaining. This means that the TVaR, which is
proportional to the standard deviation (under normality assumption), is proportional to the square
root of the same number. The crucial number in calculating capital is therefore the expectation of
the square root of the number of rvs as described in Equations (38) and (40). The expectation of the
square root is divided every calendar year by a factor that is almost the same, except near the end.
This factor depends on the triangle, unlike the square root of the expected variance (the square root of
the expected variance is approximately divided by

√
2 at every step). However, it is generally close to

0.69. Therefore, the ratio is approximately

K1

∑m−1
j=1 Kj

≈ K1

∑m−1
j=1 K1 · 0.69j−1

≈ 1
∑∞

j=1 0.69j−1 = 1− 0.69 = 0.31 .
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This is obviously not an exact result but shows that this quantity has a small sensitivity to m, p,
and gives an insight into why the results are so similar every time.
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