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Abstract: The chain ladder method is a popular technique to estimate the future reserves needed to
handle claims that are not fully settled. Since the predictions of the aggregate portfolio (consisting of
different subportfolios) do not need to be equal to the sum of the predictions of the subportfolios,
a general multivariate chain ladder (GMCL) method has already been proposed. However, the GMCL
method is based on the seemingly unrelated regression (SUR) technique which makes it very sensitive
to outliers. To address this issue, we propose a robust alternative that estimates the SUR parameters
in a more outlier resistant way. With the robust methodology it is possible to automatically flag
the claims with a significantly large influence on the reserve estimates. We introduce a simulation
design to generate artificial multivariate run-off triangles based on the GMCL model and illustrate
the importance of taking into account contemporaneous correlations and structural connections
between the run-off triangles. By adding contamination to these artificial datasets, the sensitivity
of the traditional GMCL method and the good performance of the robust GMCL method is shown.
From the analysis of a portfolio from practice it is clear that the robust GMCL method can provide
better insight in the structure of the data.

Keywords: claims reserving; contemporaneous correlations; outliers; robust MM-estimators;
seemingly unrelated regression

1. Introduction

Stochastic claims reserving in non-life insurance, also known as general insurance in the UK or
property and casualty insurance in the US, is an important and challenging discipline for actuaries.
Since the claims settlement in non-life insurance may last several years, insurers have to set aside money
that enables them to handle the liabilities related to current insurance contracts. These outstanding
claims reserves are often the largest position on the liability side of the balance sheet of a non-life
insurance company.

A well-known and widely used technique to forecast future claims is the chain ladder method,
a deterministic algorithm which estimates the future claims recursively using a set of development
factors. To include a stochastic component, this simple technique can be embedded into the statistical
framework of generalized linear models (GLM), introduced by Nelder and Wedderburn (1972).
The relationship between the deterministic chain ladder method and various stochastic models based
on GLMs is discussed in England and Verrall (2002) and Wüthrich and Merz (2008) for instance.

A non-life insurance company typically divides portfolios into correlated subportfolios, so that
certain homogeneity properties on each subportfolio are satisfied. The chain ladder method is
then typically applied to the different subpfortfolios, presented in the form of a single run-off
triangle. By doing so, the contemporaneous correlations between these various subportfolios are
however ignored. It is well known that the chain ladder predictions for the aggregate portfolio,
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which consists of the sum of the different subportfolios, is in general different from the sum of the
chain ladder predictions for each of the separate subportfolios (Ajne 1994). To address this issue
the claims reserving problem is also studied in a multivariate context to cope with the problem
of dependence between different subportfolios. Braun (2004) studied the bivariate model which
takes into account the correlation between two subportfolios of an aggregate portfolio. Merz and
Wüthrich (2007) consider claims reserving for a portfolio consisting of N correlated run-off triangles.
Pröhl and Schmidt (2005) and Schmidt (2006) proposed a multivariate chain ladder (MCL) model
where they deduced multivariate chain ladder predictors that take into account the dependency
between the different subportfolios. These predictors are shown to satisfy a classical optimality
criterion. Moreover, it is explained how multivariate methods solve the lack of additivity of the chain
ladder predictions. Multivariate methods also have the advantage that we can learn something about
the behavior of several subportfolios by observing another subportfolio. Merz and Wüthrich (2008)
further discussed the conditional mean squared error of prediction (MSEP) for the MCL model.

Recently, Zhang (2010) proposed a general multivariate chain ladder (GMCL) model that further
extends the MCL model by including intercepts to improve model adequacy. The parameters of this
flexible model are estimated using the seemingly unrelated regression (SUR) framework. The SUR
model (Zellner 1962) is a generalization of a linear regression model which consists of more than one
equation and where the error terms of these equations are contemporaneously correlated. The SUR
model is very popular and has found many applications in finance and insurance. Taking into account
the contemporaneous correlations among different portfolios may lead to more accurate uncertainty
assessments. Another advantage is that also structural relationships between triangles where the
development of one triangle depends on past losses from other triangles can be included in the GMCL
model. The GMCL model also allows joint development of the paid and incurred losses from multiple
business lines. The similarity and difference between the GMCL model on bivariate data and the
Munich chain ladder model (Quarg and Mack 2004) are discussed by Zhang (2010), who also shows
that several existing multivariate claims reserving estimators can find their equivalent in the SUR
estimator family.

To estimate the parameters in a SUR model, one typically uses the feasible generalized least
squares (FGLS) estimator (Zellner 1962), which takes into account the covariance structure of the
errors. Since FGLS is based on the classical covariance matrix and ordinary least squares estimation,
using FGLS makes the SUR estimates and thus in particular the GMCL estimates very sensitive to
outliers, which are data points that deviate from the pattern suggested by the majority of the data.
Such atypical observations may have a large impact on traditional statistical techniques. On the other
hand, robust statistics aim to obtain estimates for the claim provisions that is close to the classical
estimates applied on the data without the outliers (without modeling the outlier generating process).
As a consequence of fitting the majority of the data well, the outliers can be reliably detected by their
large deviations from this fit. The flagged outliers may then be inspected by experts. In Koenker and
Portnoy (1990) a robust SUR estimator is proposed based on M-estimators. Since this procedure is not
affine equivariant and does not take full account of the multivariate nature of the problem, a method
based on S-estimators was introduced in Bilodeau and Duchesne (2000). This robust SUR estimator is
regression and affine equivariant, but is computationally expensive. Therefore, Hubert et al. (2017)
proposed the FastSUR algorithm, which implements the ideas of the FastS algorithm (Salibian-Barrera
and Yohai 2006) for the SUR S-estimator. Recently, Peremans and Van Aelst (2018) developed robust
inference for the SUR model based on MM-estimators.

This paper is structured as follows. A review of the GMCL model of Zhang (2010) is given in
Section 2. In Section 3 the GMCL model is formulated in the SUR framework and the FGLS estimator is
introduced. Section 4 describes robust MM-estimators for estimating the parameters in GMCL models
and its numerical algorithm for computation. We then show the good performance of these estimators
in an extensive simulation study in Section 5. In Section 6 the robust procedure is illustrated on a real
dataset from a non-life business line. Some concluding remarks and potential directions for further
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research are given in Section 7. The Appendix contains the parameter estimates obtained from the
GMCL models for the real dataset.

2. General Multivariate Chain Ladder Model

We assume that the non-life insurance company needs to handle M ≥ 1 subportfolios. Let I and
K denote the final accident and development period respectively. For 1 6 i 6 I, 1 6 k 6 K and
1 6 m 6 M denote the random variable C(m)

i,k as the cumulative claims amount of accident period i
and development period k of subportfolio m. Depending on the size of K, one refers to long or short
tail business and for simplicity we take K = I.

At time I the claims C(m)
i,k with i + k− 1 6 I are observed, while the claims C(m)

i,k with i + k− 1 > I
are not observed. Typically, the observed claims of subportfolio m are then presented in the structure
of a run-off triangle as illustrated in Table 1.

Table 1. Typical representation of subportfolio m as a run-off triangle.

Accident Development Period k

Period i 1 2 k I − 1 I

1
2 C(m)

i,k
(observed)

i
C(m)

i,k
I − 1 (predicted)

I

This triangle structure shows the development of claims for each accident period. Usually yearly,
quarterly or monthly periods are used. The columns represent the development periods whereas the
diagonals present payments in the same calendar period. The overall outstanding reserve R that will
need to be paid in future, is defined as

R =
M

∑
m=1

I

∑
i=2

(
C(m)

i,I − C(m)
i,I−i+1

)

and depends on the ultimate claim values C(m)
i,I . The aim of claims reserving is then to complete the

run-off triangles into squares, i.e., forecasting the future claims in the bottom right corner of the run-off
triangles in order to estimate the overall outstanding reserves.

Let Ci,k =
(

C(1)
i,k , . . . , C(M)

i,k

)′
denote the vector of cumulative claims of accident period i and

development period k. Consider the following model structure from development period k to k + 1:

Ci,k+1 = Ak + BkCi,k + εi,k, i = 1, . . . , I, (1)

where Ak is the M vector containing intercepts β
(1)
0,k , . . . , β

(M)
0,k , Bk is the M×M matrix that contains the

development parameters β
(m)
1,k , . . . , β

(m)
M,k for run-off triangle m in row m, and εi,k =

(
ε
(1)
i,k , . . . , ε

(M)
i,k

)′
are independent (over i) and symmetrically distributed random vectors representing the error terms.
For a non-diagonal development matrix Bk, the model allows the development of one run-off triangle
in development period k to depend linearly on the claims in the other run-off triangles at development
period k. Moreover, it is assumed that the errors εi,k satisfy

E[εi,k|Di,k] = 0, (2)

Cov[εi,k|Di,k] = diag[Ci,k]
1/2Σk diag[Ci,k]

1/2, (3)
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where Di,k = {Ci,j|j 6 k} is the set of cumulative claims for accident period i up to and including
development period k, Σk is a symmetric positive definite M×M matrix, and diag is the operator
that turns its argument(s) into a diagonal matrix. Consequently, for a non-diagonal matrix Σk the
components of the error terms εi,k are allowed to be correlated. Equations (1)–(3) for development
periods k = 1, . . . , I − 1 constitute the general multivariate chain ladder (GMCL) model as proposed
in Zhang (2010). Hence, the GMCL model is a collection of I− 1 linear models. A separate chain ladder
(SCL) model can be obtained as a special case by taking Ak the zero vector, and by imposing that Bk
and Σk are diagonal matrices. The advantages of the GMCL model over already existing models like
SCL are evident (Zhang 2010). The parameters Ak, Bk and Σk are unknown model parameters and
need to be estimated from historic claims in order to predict future losses.

3. Seemingly Unrelated Regression

In Zhang (2010) the model structure from development period k to k + 1, given in Equation (1),
has been rewritten as a seemingly unrelated regression (SUR) model. Considering the equations in (1)
for historic claims only, i.e., for i = 1, . . . , n(k) with n(k) = I − k, the following system of equations
is obtained: 

y(1)
k
...

y(M)
k

 =


X(1)

k . . . 0
...

. . .
...

0 . . . X(M)
k




β
(1)
k
...

β
(M)
k

+


ε
(1)
k
...

ε
(M)
k

 , (4)

where for m = 1, . . . , M it holds that

• y(m)
k =

(
C(m)

1,k+1, . . . , C(m)
n(k),k+1

)′
is the n(k) vector of all observed losses at development period

k + 1 from triangle m;
• X(m)

k = ((1, C′1,k)
′, . . . , (1, C′n(k),k)

′)′ is the n(k)× (M + 1) matrix of the first n(k) observations
at development period k from each triangle, including the constant 1 for the intercept. Hence,
X(1)

k = . . . = X(M)
k ;

• β
(m)
k =

(
β
(m)
0,k , . . . , β

(m)
M,k

)′
is the M + 1 vector of development parameters of triangle m, including

the intercept;

• ε
(m)
k =

(
ε
(m)
1,k , . . . , ε

(m)
n(k),k

)′
is the n(k) vector of error terms of triangle m.

From (2) and (3) it follows that

Cov[εk|Dk] = E[εkε′k|Dk] = diag[Ck]
1/2(Σk ⊗ In(k))diag[Ck]

1/2,

where εk =
(

ε
(1)′
k , . . . , ε

(M)′
k

)′
, Dk = {Ci,j|1 6 i 6 n(k), j 6 k} is the set of the first n(k) claims up to

and including development period k, and Ck =
(

C(1)′
k , . . . , C(M)′

k

)′
with C(m)

k =
(

C(m)
1,k , . . . , C(m)

n(k),k

)′
for m = 1, . . . , M. Moreover, In(k) is the identity matrix of size n(k) and ⊗ represents the Kronecker
product. Pre-multiplying both sides of Equation (4) by diag[Ck]

−1/2 leads to the following linear
regression model 

y(1)∗
k
...

y(M)∗
k

 =


X(1)∗

k . . . 0
...

. . .
...

0 . . . X(M)∗
k




β
(1)
k
...

β
(M)
k

+


ε
(1)∗
k
...

ε
(M)∗
k

 , (5)

with y(m)∗
k = diag

[
C(m)

k

]−1/2
y(m)

k , X(m)∗
k = diag

[
C(m)

k

]−1/2
X(m)

k , and ε
(m)∗
k = diag

[
C(m)

k

]−1/2
ε
(m)
k .

Please note that now the n(k)× (M + 1) matrices X(m)∗
k are different for each equation, i.e., X(m)∗

k 6=
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X(m′)∗
k for m 6= m′. Moreover, denote ε∗k =

(
ε
(1)∗′
k , . . . , ε

(M)∗′
k

)′
, then for the representation of the

GMCL model given in (5) the error covariance matrix Cov[ε∗k ] satisfies the SUR assumption of
contemporaneous correlation (Zellner 1962):

Cov[ε∗k |Dk] = diag[Ck]
−1/2 Cov[εk|Dk]diag[Ck]

−1/2 = Σk ⊗ In(k).

Hence, it is straightforward to estimate the development parameters by using estimators for SUR
models on the transformed data.

Consider the estimation of the unknown development parameters βk =
(

β
(1)′
k , . . . , β

(M)′
k

)′
under

the SUR model given in (5). The equations in this model can be considered as M separate linear
regression models of the form

y(m)∗
k = X(m)∗

k β
(m)
k + ε

(m)∗
k , (6)

for m = 1, . . . , M. Then, each linear regression model can be estimated separately by least squares (LS).
However, this method may yield inefficient estimates since it ignores the correlation structure in the
error terms. Generalized least squares (GLS) is an adaptation of least squares that can handle any type
of correlation. In this context, the GLS estimator for the model in (5) becomes

β̂k = (X∗′k (Σ−1
k ⊗ In(k))X∗k )

−1X∗′k (Σ−1
k ⊗ In(k))y

∗
k , (7)

where X∗k = diag
[

X(1)∗
k , . . . , X(M)∗

k

]
is a block diagonal matrix of size n(k)M × M(M + 1),

and y∗k =
(

y(1)∗′
k , . . . , y(M)∗′

k

)′
. GLS produces efficient estimators (Zellner 1962). However, since Σk

is unknown a feasible GLS (FGLS) estimator is usually introduced. FGLS replaces the unknown

matrix Σk in (7) with Σ̂k =
(

ε̂
(1)∗
k , . . . , ε̂

(M)∗
k

)′ (
ε̂
(1)∗
k , . . . , ε̂

(M)∗
k

)
/n(k), where ε̂

(m)∗
k are the residuals

obtained from estimating (6) by least squares. The efficiency of FGLS is in general smaller than for
GLS, although the asymptotic efficiencies of both methods are indistinguishable. Please note that
this two-step procedure can be iterated until convergence of the development parameter estimates.

After estimating the development parameters βk =
(

β
(1)′
k , . . . , β

(M)′
k

)′
or equivalently the development

matrix (Ak, Bk) =
(

β
(1)
k , . . . , β

(M)
k

)′
using the LS or the FGLS estimation procedure consecutively

for all development periods k = 1, . . . , I − 1, the bottom right corner of the run-off triangles can be
predicted and the overall reserve estimate R̂ can be obtained (for all M triangles simultaneously).

4. Robust GMCL Method

In the univariate setting (M = 1) Verdonck and Debruyne (2011) have demonstrated that outliers
can affect the chain ladder method so strongly that there is huge over- or underestimation of the
overall reserve estimate. Several robust alternatives have already been developed in the univariate
claims reserving framework (see e.g., Brazauskas et al. (2009); Brazauskas (2009); Verdonck et al. (2009);
Verdonck and Van Wouwe (2011); Pitselis et al. (2015); Peremans et al. (2017)). Hubert et al. (2017) have
shown that FGLS estimators in the GMCL model are also very sensitive to outliers. Please note that
the multivariate aspect makes the task of outlier detection more challenging because outliers can be
univariate or multivariate. Multivariate outliers are observations that deviate from the multivariate
pattern indicated by the majority of the observations, i.e., inconsistent with the covariance structure of
the dataset, but in contrast to univariate outliers are not necessarily extreme along a single coordinate
(a single run-off triangle). Therefore, univariate outlier detection methods may fail to find these outliers
and it is important to rely on robust multivariate alternatives. We propose a robust methodology for
reserve estimates and outlier detection by combining robust SUR estimators with the GMCL model.

We now introduce MM-estimators for the SUR model in (5) as studied by Peremans and Van Aelst (2018).
The system of equations in (5) can be rewritten as another linear regression model by reordering the
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equations. Let Y∗i,k, X∗i,k and e∗i,k be the subvector or submatrix of y∗k , X∗k and ε∗k respectively by
extracting rows i, i + n(k), . . . , i + n(k)(M− 1). Then the system of equations in (5) is equivalent to

Y∗i,k = X∗i,kβk + e∗i,k, i = 1, . . . , n(k). (8)

In this case we easily obtain that Cov[e∗i,k|Di,k] = Σk. Decompose the covariance matrix Σk into
a shape component Γk and a scale parameter σk such that Σk = σ2

k Γk with |Γk| = 1. Here |A| denotes the
determinant of the matrix A. Since we assume that Σk is positive definite, such a decomposition always
exists. Let e∗i,k(b) be equal to Y∗i,k−X∗i,kb for any M(M+ 1) vector b according to the SUR representation
in (8). Then, given an initial estimator of the scale σ̂k, the MM-estimators (β̂k, Γ̂k) minimize

1
n(k)

n(k)

∑
i=1

ρ


√

e∗i,k(b)
′G−1e∗i,k(b)

σ̂k

 ,

over all M(M + 1) vectors b and positive definite symmetric M × M matrices G with |G| = 1.
The MM-estimator for covariance is defined as Σ̂k = σ̂2

k Γ̂k. Evidently, taking ρ(x) = x2 yields the
iterated FGLS estimator. To be robust against outliers, it is necessary to consider bounded ρ functions.
More specifically, we assume that the function ρ satisfies the following conditions:

• ρ is symmetric, twice continuously differentiable and satisfies ρ(0) = 0;
• ρ is strictly increasing on [0, c] and constant on [c, ∞[ for some c > 0.

The most favored family of ρ functions for MM-estimators is the class of Tukey bisquare ρ functions
given by ρ(x) = min(x2/2− x4/2c2 + x6/6c4, c2/6). The tuning parameter c > 0 is usually chosen to
obtain a certain level of asymptotic efficiency under the SUR model with normally distributed errors.
From now on, we will always consider Tukey bisquare ρ function with tuning parameter c = 5.1229
(to obtain MM-estimators with 25% efficiency under the normal model).

MM-estimators require an initial estimator of scale σ̂k. In order for MM-estimators to be robust,
also this scale estimator should be robust. Therefore, highly robust S-estimators are computed to obtain
a highly robust scale estimator. S-estimators have been introduced for SUR models in Bilodeau and
Duchesne (2000), and a computational efficient algorithm has been proposed in Hubert et al. (2017).
Robustness can be measured by the breakdown point of an estimator, which is roughly equal to the
maximal fraction of contaminated observations that an estimator can tolerate before its bias becomes
unbounded. For MM-estimators the breakdown point can be up to 50%. In this paper we have tuned
the MM-estimators to have a 25% breakdown point and 95% normal efficiency, which is commonly
considered to be a good compromise between robustness and precision of the estimator.

MM-estimators do not have explicit solutions, although they satisfy a similar set of equations
as the FGLS estimators given in (7). Indeed, the MM-estimators (β̂k, Σ̂k) satisfy the following set
of equations

β̂k = (X∗′k (Σ̂
−1
k ⊗ Dk)X∗k )

−1X∗′k (Σ̂
−1
k ⊗ Dk)y

∗
k

Σ̂k = M(e∗1,k(β̂k), . . . , e∗n(k),k(β̂k))Dk(e
∗
1,k(β̂k), . . . , e∗n(k),k(β̂k))

′
(

n(k)

∑
i=1

ρ′(di,k)di,k

)−1

with Dk = diag[w(d1,k), . . . , w(dn(k),k)] where w(x) = ρ′(x)/x, d2
i,k = e∗i,k(β̂k)

′Σ̂
−1
k e∗i,k(β̂k),

and e∗i,k(β̂k) = Y∗i,k −X∗i,k β̂k are the residuals derived from the representation in (8). Starting from
the initial S-estimates, MM-estimates are computed simply by iterating these estimating equations
until convergence. If w is bounded and non-increasing, the convergence of this iterative procedure to
a local minimum is guaranteed (Maronna et al. 2006). The function w can be interpreted as a weight
function that can be used to identify outliers. Indeed, a small value of w(di,k) corresponds with a large
residual distance di,k and indicates that the observation corresponding to accident period i is an outlier.
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For more details on the properties of S and MM-estimators, we refer to Peremans and Van Aelst (2018).
We now explore the use of these robust estimators in the GMCL model to obtain robust reserve
estimates and identify outliers in the run-off triangles.

5. Simulation Study

First, we introduce a simulation design according to the GMCL model to generate multivariate
run-off triangles. Then, we investigate the prediction performance of the classical and robust estimators
for GMCL models by simulation.

We consider the case where two run-off triangles are available (M = 2), but the results can easily
be generalized to more triangles (M > 2). To generate two run-off triangles under the GMCL model
in (1), we first generate C(m)

i,1 for i = 1, . . . , I and m = 1, 2 independently from a uniform distribution
on the interval [104, 2× 104]. These numbers represent the losses observed in the first development
period. Then, let

Ak =

(
104sk
104sk

)
, Bk =

(
1 0.1sk

0.1sk 1

)
,

for k = 1, . . . , I − 1 with sk = 0.9(k−1). The entries of the first (second) rows determine the increase
of the cumulative claims of the first (second) triangle. Please note that the structural connections
among triangles, i.e., the non-diagonal entries of Bk, decrease towards zero for k → I − 1 to ensure
that the cumulative claims stabilize at a certain point in time. Furthermore, assume that the error
terms e∗1 , . . . , e∗n from the representation in (8) are independently and normally distributed with mean
zero and covariance Σk. The covariance matrices Σk are defined by multiplying the equicorrelation
matrix with correlation 0.5 by the scalar 102sk for k = 1, . . . , I − 1. This choice of Σk leads to error
terms that become smaller for k→ I − 1. If no shrinkage would be applied on the covariance matrices,
then the error terms would grow on average because they are linearly related to the cumulative claims
of the previous period which increase over time. Finally, the cumulative claims C(m)

i,k for i = 1, . . . , I,
k = 2, . . . , I and m = 1, 2 can be computed according to the GMCL model in (1) by generating
independent error terms from the aforementioned error distribution. We have chosen the parameters
Ak, Bk and Σk such that the resulting run-off triangles resemble real data. The cumulative and
incremental claims of two run-off triangles simulated according to this data generating process are
shown in Figure 1.

Please note that the patterns in these run-off triangles behave similar for every accident period.
Consider the prediction of a single cell E

[
C(m)

i,k

]
of subportfolio m for i + k > I + 1, i.e.,

the prediction of a future loss. Given historic claims of M subportfolios, the development parameters
Ak and Bk of the GMCL model can be estimated for k = 1, . . . , I − 1. Following the GMCL model these
parameter estimators yield a corresponding prediction estimator Ĉ(m)

i,k for E
[
C(m)

i,k

]
. To measure the

prediction accuracy of the estimator Ĉ(m)
i,k , we consider its mean squared error of prediction (MSEP),

given by

MSEP
[
Ĉ(m)

i,k

]
= E

[(
Ĉ(m)

i,k − E
[
C(m)

i,k

])2
]

.

Since in general it is not possible to derive a simple expression for the MSEP, we adopt a
Monte-Carlo simulation strategy to estimate this quantity. By repeatedly generating M run-off triangles
as described before, fitting the GMCL model and predicting E

[
C(m)

i,k

]
through the computation of the

estimator Ĉ(m)
i,k , we obtain J prediction estimators denoted by

(
Ĉ(m)

i,k

)
1

, . . . ,
(

Ĉ(m)
i,k

)
J
. Then, an estimator

of the MSEP of Ĉ(m)
i,k is given by
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M̂SEP
[
Ĉ(m)

i,k

]
=

1
J

J

∑
j=1

((
Ĉ(m)

i,k

)
j
− E

[
C(m)

i,k

])2
.

Smaller values of MSEP indicate a better prediction performance. In our simulation results we
will report the square root of the MSEP denoted by RMSEP.
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(a) Cumulative claims triangle 1
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(b) Cumulative claims triangle 2
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(c) Incremental claims triangle 1
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(d) Incremental claims triangle 2

Figure 1. Cumulative and incremental claims for a pair of dependent run-off triangles. Development
periods are on the horizontal axis, accident periods are on the vertical axis. The bar plot represents
a color code indicating the magnitude of the numbers.

For data simulated as described before we consider three procedures: the SCL model in
combination with LS (in short SCL-LS) and the GMCL model in combination with FGLS and robust
MM-estimators (in short GMCL-FGLS and GMCL-MM respectively). As noted by Zhang (2010,
pp. 595–96) it is difficult to fit the SUR models for the upper right part of the triangles because
the data is scarce. To avoid numerical instabilities, it is recommended to use SCL for the development
in the tail. Naturally, we advice to combine the robust procedure based on MM-estimators with a robust
SCL method such as proposed in Verdonck and Debruyne (2011) for the tail development. Since the
focus of this paper is on the multivariate model, we present all results without the tail development
part, i.e., the final 10 development periods using traditional or robust SCL.

Consider the prediction of the expected claim size E
[
C(m)

I,2

]
for m = 1, 2. The top right panel of

Figure 2 shows the estimated RMSEP of Ĉ(1)
I,2 for SCL-LS, GMCL-FGLS and GMCL-MM as a function

of the total number of accident periods I ranging from 25 to 50 for J = 1000 simulations.
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Figure 2. RMSEP estimates of Ĉ(1)
I,2 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of I for the restricted, general and outlier settings.

We can see that the RMSEP estimates are larger for SCL-LS. This is expected because SCL does not
take structural connections among run-off triangles into account and contemporaneous correlations
between the error terms of the run-off triangles are ignored. Please note that GMCL-FGLS and
GMCL-MM perform similarly in this setting where the triangles contain only regular measurements.
Moreover, similar performance was obtained for Ĉ(2)

I,2 and hence, these results are omitted.
We now change the parameters Ak, Bk and Σk in the simulation design in such a way that it

matches the SCL structure. For k = 1, . . . , I − 1 take

Ak =

(
0
0

)
, Bk =

(
1 0
0 1

)
,

and let Σk be the identity matrix multiplied with the scalar 102sk. In this setting SCL is optimal, whereas
the GMCL model uses too many parameters. Intercepts, slopes measuring the effects of the other
triangles and correlation parameters are unnecessary in this case. When we compare the results of
both estimation procedures, presented in the top left window of Figure 2, we observe that the RMSEP
is only slightly larger for GMCL models.

To illustrate the sensitivity of the classical procedures and the robustness of MM-estimators,
we now consider the following outlier setting: for each pair of run-off triangles we replace the
simulated error term e2 to generate C2,2 with (105, 105)′. Based on J = 1000 generated pairs of triangles
of this kind, we obtained the results in the bottom left panel of Figure 2. Clearly, both classical
estimates break down because they largely overestimate E

[
C(m)

I,2

]
, while the robust estimates are not



Risks 2018, 6, 108 10 of 18

influenced by the outliers. The robust results are similar to the classical results that were obtained
when no outliers were present in the data. We also show the effect of small losses in run-off triangles.
Therefore, we consider a second outlier setting: for each pair of run-off triangles we replace C2,2 with
(0, 0)′. The bottom right plot of Figure 2 shows the RMSEP estimates for this outlier setting. Now,
both classical estimators underestimate E

[
C(m)

I,2

]
due to a small loss observed in accident period two,

leading to large RMSEP values. On the other hand, the robust method resists the effect of the outlier
and still performs well. In both outlier settings the robust method can also detect the outlier because
the weight of the corresponding accident period is zero as can be seen in Figure 3 for the first outlier
setting.

Outlier setting (overestimation)
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e
ig
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Figure 3. Weights obtained from GMCL-MM for a pair of dependent run-off triangles with one outlier.

For the second outlier setting the plot of weights is nearly identical.
To illustrate the impact of the outlier’s distance to the regular data, we also consider a third outlier

setting: for each pair of run-off triangles we replace the simulated error term e2 to generate C2,2 with
104(d, d)′ where d ranges from −1 to 1. Non-contaminated error terms take values between −3000 and
3000 for the first development period. Therefore, the situations when |d| > 0.3 are cases with outliers.
Again J = 1000 bivariate run-off triangles are generated and the prediction accuracy of the expected
claim E

[
C(m)

I,2

]
is measured by MSEP. As opposed to the previous simulations we now fix the number

of accident periods I to 25. Figure 4 contains the RMSEP results for different outlier distances d.

−1.0 −0.5 0.0 0.5 1.0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Outlier setting (outlier distance)

R
M

S
E

P

SCL−LS

GMCL−FGLS

GMCL−MM

Figure 4. RMSEP estimates of Ĉ(1)
I,2 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of the outlier distance d.

When |d| ≤ 0.3 no outliers are generated and the prediction performance of the procedures
GMCL-FGLS and GMCL-MM are identical, as we have seen before. For situations with outliers the
classical methods yield large RMSEP values because their predictions under- or overestimate the target
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claim due to the presence of the outliers. The larger the outlier distance d, the worse the prediction
accuracy is for non-robust methods. On the other hand, the prediction estimates obtained from the
robust method remain stable for all situations.

A more general case is to consider the prediction of E
[
C(m)

I,k

]
for m = 1, 2 with k > 2. In particular,

we consider k = 15. We repeat the same procedure of squaring J = 500 pairs of dependent triangles
and measure the prediction accuracy of Ĉ(m)

I,15 by means of RMSEP. The results for the general setting are
shown in Figure 5. The performance of the different methods is comparable to their performance in the
previous setting when predicting E

[
C(m)

I,2

]
. However, since k = 15 the prediction of E

[
C(m)

I,15

]
depends

on 14 model fits, and consequently, the MSEP estimates of Ĉ(m)
I,15 become much larger. The prediction

performance in the restricted setting and outlier settings (not shown) are also similar as before.
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Figure 5. RMSEP estimates of Ĉ(1)
I,15 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of I for the general setting.

We have also investigated how the position of the outlier influences the prediction performance.
Here the outlier’s position refers to the development period in which it has occurred because the effect
is similar for all accident years. If the outlier occurs after the target claim, then both the classical and
robust methods yield reliable prediction results for the target claim. However, when the outlier occurs
before the target claim, then the classical methods yield prediction estimates that are affected by the
outlier, while the robust method remains reliable. Only when the outlier appears in the upper right tail
of a run-off triangle, it will affect any method, whether it is robust or not, because there is not enough
data available in this tail to be able to identify an outlier. Since the position of outliers is unknown in
practice, this illustrates the importance of robust procedures which offer protection against outliers in
almost any position of the run-off triangles.

6. Real Data

To illustrate the new methodology, we consider an example with paid and incurred data from
a motor third party liability (MTPL) and a general third party liability (GTPL) insurance portfolio from
a non-life insurance company operating in Belgium. The data have been recorded between March 2008
and December 2015. Quarterly data are available leading to run-off triangles of dimension 31× 31
shown in Figure 6.

Observe that from accident trimester 15 onwards the cumulative claim amounts for MTPL become
much smaller. This effect is due to a decrease in total premium volume, and hence, also in total number
of claims. For the GTPL data, accident trimester 1 seems suspicious. The claim amounts are much
larger in comparison to any other period. Finally, notice that for the first 15 accident trimesters the
losses in the subportfolios are almost fully developed, i.e., the changes in consecutive cumulative
claims are minuscule in the last development years.
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(a) MTPL paid
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(b) MTPL incurred
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(c) GTPL paid

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

0
5

1
0

1
5

2
0

2
5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

0
1
0

2
0

3
0

4
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

0
1

2
3

4
5

Figure 6. Cumulative run-off triangles (divided by 100,000) of a real insurance portfolio. Development
periods are on the horizontal axis, accident periods are on the vertical axis. The bar plot represents
a color code indicating the magnitude of the numbers.

We model these run-off triangles separately with SCL and jointly with GMCL. The joint model is
given by Equation (1) with M = 3. The separate model simplifies the joint model by excluding
intercepts, structural connections and contemporaneous correlations. We have applied SCL-LS,
GMCL-FGLS and GMCL-MM to square the run-off triangles up until period 21. As explained before,
we exclude the tail development part in order to focus on the multivariate models.

Table A1 in Appendix A contains the estimates of the development parameters and the sample
correlations between the resulting residuals obtained by SCL-LS for all development periods. While the
run-off triangles have been modeled separately, for some development periods there are substantial
correlations between the residuals which indicates that the independence assumption might be violated
for these data.

The parameter estimates obtained from GMCL-FGLS are summarized in Table A2 in Appendix A.
The slope estimates β̂21, β̂31, β̂12, β̂32, β̂13 and β̂23 measure the contribution of the other two triangles
when predicting future losses in a triangle. From Table A2 it can be seen that for some development
periods these estimates are substantially different from zero. They improve the model fit and the
prediction performance. The last three columns of Table A2 contain the sample correlations between
the residuals of the three run-off triangles, which have been obtained as

ρ̂mm′ =
σ̂mm′√

σ̂mmσ̂m′m′
,

for m, m′ = 1, 2, 3, where σ̂mm′ are the entries of the covariance matrix Σ̂k. Several moderate to large
correlations have been obtained which again supports the joint GMCL model for these data.
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We now apply the robust method GMCL-MM which yields the development parameter estimates
shown in Table A3 in Appendix A. Based on this robust procedure we can now detect possible outliers.
The weights assigned to each observation in the SUR models are shown in Figure 7.
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Figure 7. Weights obtained from GMCL-MM for a real insurance portfolio. Each row corresponds to
an accident trimester used in the fitting procedure. Each columns represents a SUR model.

The smaller the weight, the more outlying is an observation with respect to the bulk of the data.
For example, from Figure 7 we can observe that in the first development period there are two major
outliers corresponding to accident trimesters 16 and 28 respectively.

The outliers identified by the GMCL-MM method may have affected the classical estimators, and
hence, also the prediction of future losses. Hence, in Table 2 we compare the total reserve estimates for
all methods.

Let us first focus on the paid losses of the MTPL portfolio. The non-robust SCL-LS and
GMCL-FGLS methods both yield a total reserve estimate that is larger than for the robust GMCL-MM.
A close inspection of the predicted run-off triangles revealed that the transition from development
trimester 20 to 21 is highly responsible for these large differences. For development trimester 21 one
can observe in Figure 6 a large incremental increase of the losses that occurred in accident trimester 8.
The SCL-LS and GMCL-FGLS fits for this transition period are both largely influenced by this particular
observation. Consequently, the predicted future losses from this development trimester onward are
much larger. On the other hand, the robust GMCL-MM method is much less influenced by this
observation and is able to flag this observation as an outlier.

Table 2. Total reserve estimates for all run-off triangles of a real insurance portfolio obtained from
SCL-LS, GMCL-FGLS and GMCL-MM.

Method Run-Off Triangle

MTPL Paid MTPL Incurred GTPL Paid

SCL-LS 1,924,001 −654,695 386,949
GMCL-FGLS 12,198,112 −1,175,336 −670,116
GMCL-MM 167,221 1,043,591 −128,463

Let us now consider the reserve estimates of the incurred losses. The two non-robust approaches
agree quite well. The difference is mainly caused by accident trimester 29 for which unexpectedly small
paid losses have been observed but at the same time large incurred losses were recorded. In the joint
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GMCL model the development factor β12 for the model from development period 7 to 8 differs from
zero and thus influences the incurred losses obtained by GMCL-FGLS which is not the case for SCL-LS.
Moreover, remark that these reserve estimates are negative. Negative reserve estimates are often
observed for incurred run-off triangles due to overestimation of the losses. The robust total reserve
estimate obtained by GMCL-MM is much larger than for the non-robust methods. This indicates that
the presence of outliers has again affected the classical results. More specifically, in this case the classical
procedures yield smaller prediction estimates as compared to the robust procedure. For example,
one can verify that for the transition from development trimester 18 to 19 the prediction estimates
obtained by GMCL-MM are much larger than those obtained by GMCL-FGLS.

Finally, we also consider the estimated reserve for the GTPL portfolio. The unusual data in the
first accident trimester affect the total reserve estimates of both non-robust methods. On the other hand,
the robust GMCL-MM detected the deviating pattern in the first accident trimester as well as other
moderate outliers and yields a robust total reserve estimate that is not driven by atypical behavior
in the available data. Please note that the GMCL-based methods yield negative reserve estimates for
these data. While negative reserve estimates are not uncommon for incurred losses, they are rather
unusual for run-off triangles with paid losses. However, the real data have been obtained from a small
company and the company informed us that for some claims there has been substantial recovery of
initially paid losses. These recoveries have an impact on the cumulative claims data which may explain
the negative reserve estimates in this case.

To further investigate the performance of the estimation methods, we now focus on the prediction
of the values on the last diagonal of all run-off triangles. To measure the accuracy of the predictions,
we consider their MSEP. More specifically, we leave out the last diagonal of all three run-off triangles,
apply the different methods on the remaining data and calculate the mean squared relative prediction
error for each method. The results are given in Table 3 for each subportfolio separately as well as all
portfolios jointly.

While the three methods perform quite similar on the first two run-off triangles, this is not the
case for the GTPL paid data as can be seen from Table 3. The MSEP of GMCL-FGLS is large for this
run-off triangle. SCL-LS performs better, but not as good as GMCL-MM which is the only method
that yields reasonable performance for these data. As a result, GMCL-MM also shows the best overall
performance which illustrates that the outliers in these run-off triangles affect the predictions of the
non-robust methods.

Table 3. MSEP for the last diagonal of all run-off triangles (and totals) of a real insurance portfolio
obtained from SCL-LS, GMCL-FGLS and GMCL-MM.

Method Run-Off Triangle Total

MTPL Paid MTPL Incurred GTPL Paid

SCL-LS 0.024 0.021 0.142 0.187
GMCL-FGLS 0.032 0.057 0.337 0.426
GMCL-MM 0.024 0.040 0.076 0.140

7. Conclusions

In this paper, we have presented a robust estimation method for the general multivariate chain
ladder model proposed by Zhang (2010). Hence, our proposed methodology takes into account
contemporaneous correlations and structural connections between different run-off triangles and still
yields reliable results when the data are contaminated. Moreover, it allows us to automatically identify
the most influential and atypical claims in the run-off triangles.

We believe that experts should then further examine these flagged outliers to find out why these
observations are atypical. If the outlier(s) are simply errors or are very unlikely to happen again in
future, then the robust results can be used as reserve estimates. However, if it is likely that similar
outliers will re-occur in future, then we advice to model their process so that one can predict how
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much money will be needed for these deviations in future years. The final total reserve estimate may
then be equal to the robust total reserve estimate and a safe margin based on this prediction. Note that
it can also happen that outliers lead to an underestimation of the total reserve estimate even if the
atypical claims are larger than the expected claims.

The robust GMCL method was applied to simulated run-off triangles illustrating its excellent
performance. From a portfolio analysis of real run-off triangles from a small non-life insurance company
in Belgium it was clear that the proposed robust methodology is helpful to gain insight in the data and
to build up a more realistic reserve, certainly when it is used in addition to the classical multivariate
chain ladder method.
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Appendix A

Table A1. Development parameter estimates and empirical correlation estimates obtained from SCL-LS
for a real insurance portfolio.

k β̂11 β̂22 β̂33 ρ̃12 ρ̃13 ρ̃23

1 1.29 1.04 1.88 0.13 0.51 0.04
2 1.14 1.01 1.18 −0.22 −0.08 0.13
3 1.08 0.99 1.35 0.20 −0.08 −0.08
4 1.05 1.01 1.06 0.26 −0.02 −0.09
5 1.04 1.00 1.12 0.11 −0.02 0.18
6 1.03 1.00 1.05 −0.22 −0.01 0.08
7 1.03 1.00 1.01 −0.14 −0.11 0.53
8 1.02 0.99 1.03 0.38 0.14 0.26
9 1.02 0.99 1.02 0.39 0.14 0.01
10 1.01 1.01 1.01 0.36 −0.11 0.17
11 1.02 1.00 1.01 −0.35 −0.01 −0.03
12 1.01 0.99 1.03 0.26 0.16 0.08
13 1.01 1.01 1.02 −0.29 −0.13 −0.28
14 1.01 0.99 1.03 0.17 0.05 −0.28
15 1.02 0.99 1.02 0.11 −0.23 −0.01
16 1.01 0.99 1.01 0.09 0.43 0.49
17 1.01 1.00 1.03 −0.23 −0.17 0.24
18 1.01 0.99 1.03 −0.54 −0.18 −0.08
19 1.01 0.99 1.03 0.08 −0.28 0.32
20 1.04 0.99 1.01 −0.37 −0.07 −0.04
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Table A2. Development parameter estimates and correlation estimates obtained from GMCL-FGLS for a real insurance portfolio.

k β̂01 β̂11 β̂21 β̂31 β̂02 β̂12 β̂22 β̂32 β̂03 β̂13 β̂23 β̂33 ρ̂12 ρ̂13 ρ̂23

1 23,397.72 1.14 0.02 0.93 −11.47 0.08 1.00 0.83 21,694.08 −0.02 0.00 1.22 0.20 0.50 0.03
2 15,223.35 1.09 0.01 −0.15 20,020.27 0.12 0.95 −0.23 1727.03 0.01 0.00 1.07 −0.22 −0.10 0.04
3 16,228.14 0.99 0.04 −0.14 15,116.47 −0.01 0.99 −0.03 −12,277.95 0.05 −0.02 1.57 0.23 0.02 −0.07
4 10,350.14 1.00 0.03 −0.06 50,876.00 −0.07 1.03 −0.11 4182.92 0.00 0.00 1.00 0.23 −0.19 −0.23
5 1028.93 0.94 0.05 −0.01 −6957.99 −0.05 1.04 0.01 −1377.61 0.02 −0.01 1.01 −0.01 0.04 0.19
6 12,243.16 0.97 0.03 −0.03 8286.35 0.06 0.98 −0.36 10,968.80 0.00 0.00 0.97 −0.29 −0.01 −0.01
7 −3719.21 1.02 0.00 0.04 −6260.32 −0.13 1.07 0.00 −379.22 0.00 0.00 1.00 −0.22 −0.05 0.62
8 −755.07 1.03 0.00 −0.01 5287.58 −0.04 1.00 0.17 −1120.14 0.00 0.00 1.01 0.41 0.19 0.45
9 −11,302.41 1.05 −0.01 −0.07 −4825.36 0.00 1.00 −0.08 904.91 0.00 0.00 1.00 0.36 0.08 −0.05
10 6920.22 0.97 0.03 0.01 37,848.84 −0.15 1.09 −0.06 502.78 0.00 0.00 1.00 0.17 −0.02 0.24
11 9660.89 0.95 0.04 0.00 −27,830.17 0.09 0.96 −0.05 −438.20 0.00 0.00 1.02 −0.26 0.20 −0.04
12 −16,214.89 1.01 0.01 0.00 8784.70 −0.07 1.03 0.10 −1370.21 0.01 0.00 1.00 0.20 0.14 0.16
13 −18,821.47 1.00 0.02 0.01 −30,184.25 −0.08 1.07 0.08 −1385.69 0.01 0.00 1.00 −0.44 0.02 −0.16
14 −17,224.86 1.00 0.02 0.00 40,874.99 −0.06 1.02 −0.19 −11,617.13 0.01 0.00 1.02 0.08 0.08 −0.32
15 −20,373.50 1.02 0.00 0.12 −24,051.79 0.06 0.97 −0.11 −7141.82 0.00 0.00 1.01 0.20 −0.21 −0.12
16 −2082.74 1.02 0.00 −0.02 17,582.20 0.02 0.98 −0.05 1397.56 0.00 0.00 1.00 0.05 0.36 0.43
17 −44,523.11 1.04 0.00 −0.02 61,268.64 −0.04 1.00 0.03 2554.84 0.00 0.00 1.05 −0.07 −0.04 −0.11
18 −13,650.45 1.02 0.00 −0.03 −51,338.15 0.02 0.99 0.05 −6862.07 0.01 0.00 1.04 −0.56 −0.13 −0.10
19 −37,910.90 1.01 0.01 0.06 4693.44 0.00 0.99 0.02 −55,064.83 0.04 0.00 0.97 0.06 −0.45 0.56
20 874,470.74 0.53 0.07 −0.48 −76,063.75 0.04 0.99 0.01 −1304.77 0.00 0.00 1.00 −0.31 −0.18 −0.03
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Table A3. Development parameter estimates and correlation estimates obtained from GMCL-MM for a real insurance portfolio.

k β̂01 β̂11 β̂21 β̂31 β̂02 β̂12 β̂22 β̂32 β̂03 β̂13 β̂23 β̂33 ρ̂12 ρ̂13 ρ̂23

1 7820.38 1.15 0.02 1.16 −3680.41 0.08 1.00 1.03 1717.07 0.01 0.00 1.11 0.24 −0.31 0.06
2 12,144.56 1.09 0.01 −0.11 16,619.03 0.13 0.95 −0.19 873.94 0.01 0.00 1.06 0.20 0.11 −0.10
3 23,528.36 1.00 0.03 −0.20 22,422.99 0.00 0.98 −0.10 1918.65 0.01 0.00 0.99 0.08 0.30 0.10
4 8438.94 1.01 0.02 −0.04 891.69 0.06 0.97 −0.11 4896.14 0.00 0.00 1.00 0.03 0.00 0.21
5 −2355.67 0.98 0.03 −0.02 −30,886.96 −0.06 1.05 0.04 1715.40 −0.01 0.00 1.03 −0.03 −0.21 −0.04
6 8351.98 0.97 0.04 −0.04 9538.34 0.07 0.97 −0.33 −209.96 0.00 0.00 1.00 −0.29 −0.20 −0.08
7 −2873.28 1.02 0.00 0.03 −4771.62 −0.12 1.07 0.02 −243.36 0.00 0.00 1.00 −0.23 −0.17 0.64
8 −806.41 1.00 0.01 0.01 821.12 −0.06 1.02 0.13 −1135.19 0.00 0.00 1.01 0.06 0.09 0.32
9 −6931.74 1.03 0.00 −0.03 1925.54 −0.03 1.01 −0.02 1272.45 0.00 0.00 1.00 −0.19 0.21 0.02
10 8446.18 0.97 0.02 0.00 13,573.18 0.00 0.99 −0.06 44.18 0.00 0.00 1.00 −0.46 −0.05 −0.17
11 −1481.68 0.98 0.03 0.00 −3558.47 0.04 0.97 0.04 −588.16 0.00 0.00 1.02 −0.02 0.15 −0.03
12 −19,036.01 1.01 0.01 0.00 10,657.18 −0.07 1.03 0.08 −1020.05 0.00 0.00 1.00 0.13 0.77 0.10
13 −17,979.52 1.03 0.00 −0.02 21,175.00 −0.07 1.03 0.08 −1469.87 0.01 0.00 1.00 0.23 −0.25 −0.18
14 −6110.32 1.01 0.00 0.00 −21,779.08 0.02 1.00 −0.08 −4066.28 0.00 0.00 1.00 −0.34 0.66 0.16
15 −2628.61 0.99 0.00 0.15 −20,629.80 0.05 0.97 −0.10 219.13 0.00 0.00 1.01 −0.07 −0.50 −0.11
16 621.54 1.02 0.00 −0.03 −42,626.20 0.03 1.00 −0.05 −2510.24 0.00 0.00 0.99 −0.59 0.79 −0.22
17 −39,374.59 1.04 0.00 −0.10 70,972.58 −0.07 1.00 0.25 2017.96 0.00 0.00 1.00 0.15 −0.12 0.60
18 25,424.10 0.98 0.01 −0.02 101,648.10 −0.11 1.03 0.09 −25,270.86 0.02 −0.01 1.02 0.12 0.09 −0.97
19 −42,462.66 1.02 0.02 −0.11 74,563.74 −0.04 1.01 −0.13 4055.82 0.00 0.00 1.02 0.83 −0.89 −0.99
20 −23,405.29 1.01 0.00 0.03 −61,530.32 0.04 0.99 0.00 2593.46 0.00 0.00 1.00 0.21 0.52 −0.08
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