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Non-technical summary 

The track record of a sixteen-year history of density forecasts of state tax revenue in Iowa is 

studied, and potential improvements sought through a search for better performing “priors” 

similar to that conducted two decades ago for point forecasts by Doan, Litterman, and Sims 

(Econometric Reviews, 1984). Comparisons of the point- and density-forecasts produced under 

the flat prior are made to those produced by the traditional (mixed estimation) “Bayesian VAR” 

methods of Doan, Litterman, and Sims, as well as to fully Bayesian, “Minnesota Prior” forecasts. 

The actual record, and to a somewhat lesser extent, the record of the alternative procedures 

studied in pseudo-real-time forecasting experiments, share a characteristic: subsequently realized 

revenues are in the lower tails of the predicted distributions “too often”. An alternative 

empirically-based prior is found by working directly on the probability distribution for the VAR 

parameters, seeking a betterperforming entropically tilted prior that minimizes in-sample mean-

squared-error subject to a Kullback-Leibler divergence constraint that the new prior not differ 

“too much” from the original. We also study the closely related topic of robust prediction 

appropriate for situations of ambiguity. Robust “priors” are competitive in out-of-sample 

forecasting; despite the freedom afforded the entropically tilted prior, it does not perform better 

than the simple alternatives. 



Nicht-technische Zusammenfassung 

 Es wird die Treffsicherheit der seit sechzehn Jahren durchgeführten Dichteprognosen zu 

den Steuereinnahmen des US-Bundesstaates Iowa analysiert und nach möglichen Verbesserungen 

gesucht; dies geschieht durch die Suche nach besseren „Priors“ ähnlich wie vor zwei Jahrzehnten 

bei den Punktprognosen von Doan, Litterman und Sims (Econometric Reviews, 1984). Die Punkt- 

und Dichteprognosen auf der Grundlage des flachen Priors werden mit jenen der traditionellen 

Bayes’schen VAR-Methoden nach Doan, Litterman und Sims sowie mit den reinen Bayesiani-

schen „Minnesota Prior“-Prognosen, verglichen. Das tatsächliche Ergebnis und – in etwas gerin-

gerem Umfang – auch jenes der alternativen Verfahren, die anhand von Experimenten in Pseudo-

echtzeit untersucht werden, haben eines gemeinsam: Die tatsächlich erzielten Einnahmen liegen 

„zu oft“ am unteren Rand der vorausgesagten Verteilung. Ein alternativer, empirisch-basierter 

Prior lässt sich ermitteln, indem die Wahrscheinlichkeitsverteilung für die VAR-Parameter direkt 

verwendet wird und ein besserer Prior gesucht wird, der den quadrierten mittleren „in-sample“-

Fehler minimiert, und zwar unter der Bedingung, dass der neue Prior nicht „zu stark“ vom Origi-

nal abweicht. Wir untersuchen auch das eng verwandte Thema einer stabilen Vorhersage, die für 

nicht eindeutige Situationen zweckmäßig ist. Stabile „Priors“ sind in „out-of-sample“-Prognosen 

kompetitiv; trotz des Freiraums dieses echteren Priors schneidet er nicht besser ab als die einfa-

chen Alternativen. 
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Abstract. The track record of a sixteen-year history of density forecasts of state tax
revenue in Iowa is studied, and potential improvements sought through a search for bet-
ter performing “priors” similar to that conducted two decades ago for point forecasts by
Doan, Litterman, and Sims (Econometric Reviews, 1984). Comparisons of the point- and
density-forecasts produced under the flat prior are made to those produced by the tradi-
tional (mixed estimation) “Bayesian VAR” methods of Doan, Litterman, and Sims, as well
as to fully Bayesian, “Minnesota Prior” forecasts. The actual record, and to a somewhat
lesser extent, the record of the alternative procedures studied in pseudo-real-time forecasting
experiments, share a characteristic: subsequently realized revenues are in the lower tails of
the predicted distributions “too often”. An alternative empirically-based prior is found by
working directly on the probability distribution for the VAR parameters, seeking a better-
performing entropically tilted prior that minimizes in-sample mean-squared-error subject to
a Kullback-Leibler divergence constraint that the new prior not differ “too much” from the
original. We also study the closely related topic of robust prediction appropriate for situ-
ations of ambiguity. Robust “priors” are competitive in out-of-sample forecasting; despite
the freedom afforded the entropically tilted prior, it does not perform better than the simple
alternatives.

All models are wrong but some are useful.

G.E.P. Box

1. Introduction

The Institute for Economic Research at The University of Iowa has, since 1990, produced

Bayesian density forecasts for state tax revenue growth using vector autoregressions (VARs)

under noninformative prior distributions. In the beginning, these were met by state officials

Date: April, 2006. PRELIMINARY AND INCOMPLETE.
JEL codes: C11, C15, C32.
† We thank Chris Sims, who, by objecting to some aspects of it, sharpened our thinking about the approach
of this paper.
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2 K.F. LEWIS AND C.H. WHITEMAN

with incredulity (“the range of reasonable predictions seems quite wide”) or disdain (an

official long since departed “didn’t like those inverted umbrellas” surrounding the median

predicted time path). But after an early success in prediction (that would have saved the

state–had it only listened–from multiple arbitration proceedings with its largest labor unions

and from subsequent very painful layoffs), the relevant decision makers did indeed realize

that they in fact wanted the best possible advice regarding the future, and a reasonable

measure of the uncertainties they face.

This paper provides a description of the density forecast effort, and an assessment of the

record. The upshot of this is that there have been more occasions (though perhaps not

statistically significantly so) than one would prefer in which subsequently realized revenue

growth occurred in the lower left tails of the predictive distributions. This suggests that

the model used and the predictive densities produced imparted a greater sense of security

to the policy makers than was warrented. Thus we conduct a search for better predictive

densities by considering alternative models (within the class of vector autoregressions–VARs),

and “better performing” prior distributions in the spirit of the search conducted by Doan,

Litterman, and Sims (1984) for point forecasts two decades ago.

One alternative to our procedure would involve leaving the class of fixed-specification VAR

models. While this is a subject for future research and development, we were motivated by

Box’s statement to try to determine how to proceed in forecasting given a universe of models

(albeit a small one) that is unlikely to contain the “one true model”. Thus we consider two

procedures that can be interpreted as pragmatic alternatives to Bayesian updating to be used

when the model generating the forecasts is potentially misspecified, there are no obviously

correct alternative specifications, and the objective is to produce accurate density forecasts

at multi-step horizons.

Both procedures work directly on the subjective probabilities of what is taken to be un-

known in our exercise–the parameters of the models we consider. The first of these, which

we call “entropic tilting”, can be interpreted as a nonparametric (or “super parametric”,

depending on perspective) alternative to the search over hyperparameters of a hierarchi-

cally specified prior (as in Doan, Litterman, and Sims (1984)), in which the objective is

better out-of-sample forecast performance. Given an initial posterior distribution for the

unknown parameters, the entropic tilt finds a new distribution that achieves a forecasting

2



BAYESIAN DENSITY FORECASTING 3

objective not employed in the construction of the original distribution, subject to a penalty

for Kullback-Leibler divergence between the two.

The second, closely related procedure, involves a reasonable (and recently axiomatically

justified) response to the possibility that the model might be misspecified. The resulting

“robust” prediction involves a new density which is an entropically tilted version of the

original.

The results of the paper indicate that much of the forecasting benefit of the Monte Carlo

era is in the production of density forecasts rather than point forecasts. Even a flat-prior

posterior predictive density does well in comparison to various feasible shrinkage schemes.

That is, density forecasts used to produce point predictions under reasonable loss seem to

improve over direct point forecasts using fixed parameterizations, and this improvement is

about as great as what can be achieved employing best shinkage practices. Moreover, the

results of the entropic tilting exercises are largely negative. Robust predictions provide a

little more realism, but the effort to design a better performing prior by pursuing this goal

directly did not improve out-of-sample forecasts appreciably.

2. The Iowa Experience

The Institute for Economic Research at The University of Iowa began producing density

forecasts of state tax revenues in 1990. This section describes the nature of that effort,

provides an assessment of the forecast record, and makes note of some lessons learned from

that assessment. Other aspects of the Institute’s forecast effort have been examined in

Whiteman (1996) and Otrok and Whiteman (1998).

A typical budget cycle in the State of Iowa begins in December, the sixth month of the

fiscal year, with the Official Revenue Estimates. The estimates are of revenues to be received

during the current and ensuing fiscal years, and must be made, in accord with statute, by

December 15. Subsequently, the Governor makes spending proposals in early January, in

conjunction with the “Condition of the State” speech that opens the legislative session. The

legislature meets during the spring; bills passed by both houses of the legislature are sent

to the Governor for signature or veto. Most spending bills sent to the Governor during

the session are for expenditures to take place during the next fiscal year, though sometimes

3



4 K.F. LEWIS AND C.H. WHITEMAN

“supplemental” spending bills for the current fiscal year are passed. Both the Governor’s

spending recommendations and all spending bills must hold spending to 99% of revenues

estimated to be available during the fiscal year of the expenditure.

The Official Revenue Estimates are set by the Revenue Estimating Conference (REC),

comprising three individuals appointed by the Governor. Two of the appointees are from

state government. Typically, the Governor has appointed the Directors of the Legislative

Service Bureau (the state agency analogous to the U.S. Congressional Budget Office) and

the Department of Management (the state analogue to the U.S. Office of Management and

Budget). The third appointment goes to an individual not associated with state government,

but the third appointee must be agreed to by the other two.

Resources available to the REC include analyses made by staff members in the Legislative

Service Bureau, the Department of Management, and the Department of Revenue (which is

responsible for collecting the revenue). In addition, the Conference has available the report

of the Governor’s Council of Economic Advisors (CEA), which meets prior to the REC. The

Council comprises a dozen or so business and academic economists, including the Director

of the University of Iowa Institute for Economic Research. The Institute’s revenue forecasts

(and forecasts of economic conditions) form an important part of the basis of discussions

during quarterly CEA meetings, and are made available ahead of time to the CEA, the REC,

staff members of the relevant state agencies, and the Legislature.

2.1. The Model. When the Institute’s modern forecast effort began in February of 1990,

revenue data were available monthly from July 1982. Earlier data were collected under

quite different accounting conventions, meaning that additional data comparable to the more

recent observations were not available.1 The paucity of data dictated consideration of small

models (or incorporation of substantial prior information, which was not readily available).

Given the success of forecasts made using Vector Autoregression (VARs) at the Federal

Reserve Bank of Minneapolis (Litterman (1986)), effort was undertaken to develop a VAR

forecasting model for Iowa revenues.2 The lack of data suggested a small, low-order VAR,

1More precisely, a Research Assistant was unable to find data that could be sensibly spliced to the 1982 data
despite a month spent in the state capital attempting to do so.
2Prior to 1990, and under the administration of a different director, the Institute employed a commercial
consulting firm to design and periodically reestimate a standard (for the time) simultaneous equations
forecasting model for economic conditions, but not tax revenues. When informed of the decision to move
the Institute’s focus to locally maintained Vector Autoregression models, the firm dispatched a senior sales
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BAYESIAN DENSITY FORECASTING 5

and experimentation with 2- and 3-variable VARs with 1-4 lags and time series represent-

ing components of employment (e.g., employment in services, employment in retail trade,

employment in durable goods manufacturing, etc.) and income (e.g., wage and salary dis-

bursements, property income, etc.) led to a two-lag (later changed to four) quarterly speci-

fication involving total revenues and total nonfarm personal income. Deterministic variables

included a constant and seasonal dummies. The experimentation involved pseudo-real time

forecasting experiments like those described in Litterman (1979) and Doan, Litterman, and

Sims (1984) and in Section 5 below. Briefly, this involved specification of a holdout sample

beginning in period T + 1 (prior to the end of the sample), estimation of the parameters of

the equations by ordinary least squares, equation by equation (which coincides in this simple

case with maximum likelihood) using data from the beginning of the sample until period T ,

forecasting through T +h using the estimated parameters and the chain rule, recording of the

resulting “out-of-sample” forecast accuracy, and finally incrementing T and repeating the

process until all the data had been exhausted. The best performing model in this exercise

was the one chosen. This model choice was revisited in 2004, when over 500 two- and three-

variable models involving permutations of variables to be included alongside tax revenue

were pitted against one-another in pseudo-real time forecasting over the period 1999-2004.

No model was found to be measurably superior to a 4-lag, 2-variable VAR involving tax

revenue and personal income.

This procedure for choosing the model to be used of course violates the likelihood principle

(Berger and Wolpert (1988)). By the time the exercise is completed, all the data have been

used, but the evidence regarding the unknown parameters is summarized not exclusively

by the likelihood function (i.e., in one-step-ahead prediction), but rather by performance in

multi-step forecasting. The procedure is essentially the same one used by Doan, Litterman,

and Sims (1984), and is a pragmatic approach to model choice when there is suspicion that

the model is not correct. It is quite unlikely that the process generating income, revenue, and

employment data is literally a VAR or anything remotely like it. Indeed, the motivation for

using VARs, stemming from Sims’s original work (Sims (1980) is that they merely represent

stationary time series in the sense of reproducing the first and second moments of the time

series. Moreover, following Box’s dictum, it is unlikely that the universe of models that could

executive, whose last ditch appeal to keep the contract involved the statement “we don’t care about accuracy,
we care about consistency.” The appeal failed.
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6 K.F. LEWIS AND C.H. WHITEMAN

be considered without massive research efforts every three months would in fact include the

true model. Yet the false model (here, the VAR) is useful for producing forecasts, and it

seems natural to base aspects of its specification on how useful it is in producing them.

The specification employed was

(1) yt = BDDt + B1yt−1 + B2yt−2 + ... + Bmyt−m + εt

where yt is the 2 × 1 vector including the (log of) revenues and personal income, Dt is

the deterministic component, and εt
iid∼ N(0,Ψ). It is convenient to group the parameters

together in the vector θ:

θ = (BD,B1, ...,Bm,Ψ) .

The model selected in this fashion was to be used in a fully Bayesian fashion to produce

predictive densities for revenue growth for the current and one ensuing fiscal year. To

understand this procedure, it is helpful to fix some notation (which follows Geweke and

Whiteman (2006) closely). First, denote by Yt the history {ys}t
s=1. Then the probability

density function for yt is given by

(2) p (yt | Yt−1, θ)

Thus (2) compactly encodes the structure and distributional assumptions of (1). It should

be understood as a function involving the random vector yt. The density for the entire

history YT = {ys}T
s=1 is given by

(3) p (YT | θ) =

T∏
t=1

p (yt | Yt−1, θ) .

Using the superscript o to denote the observed value of a random vector, the likelihood

function associated with the observed sample is

(4) L (θ;Yo
T ) ∝ p (Yo

T | θ) .

The prior distribution, representing pre-sample subjective beliefs regarding the unobservable

parameter vector θ is p (θ), and the posterior distribution for θ after observing the sample

YT is given by

(5) p (θ | Yo
T ) ∝ p (θ) p (Yo

T | θ)

6



BAYESIAN DENSITY FORECASTING 7

The predictive density for the next h values of y is obtained by integrating the product of

the conditional predictive given θ and the posterior:

(6) p (yT+1, . . . ,yT+h | Yo
T ) =

∫
Θ

p (θ | Yo
T ) p (yT+1, . . . ,yT+h | Yo

T , θ) dθ.

We shall seek to generate a Monte Carlo sample from this predictive density. This is accom-

plished by first sampling from the posterior, θ(i) iid∼ p (θ | Yo
T ), and then for each i, performing

a dynamic simulation from the VAR by drawing h k−variate noise values εT+1, εT+2, . . . , εT+h

from the distribution N(0,Ψ) and computing yT+1,yT+2, . . . ,yT+h sequentially using (1).

To operationalize this, note that the k right-hand-side variables of each of the equations

in (1) are the same, and collect the T observations on these variables in a T × k matrix XT .

Then the VAR can be written in the form

(7) vecyT = (I⊗XT )b + UT

where now b contains the elements of the Bi’s in (1), and UT is the T × 2 matrix of values

of the ε’s in (1), UT ∼ N(0,Ψ ⊗ IT ). Following the development in Zellner (1971), under

the “noninformative” prior

p(Ψ) ∝|Ψ|−(p+1)/2

where p is the number of equations, the posterior distribution is given by

(8) b|Ψ,yT ,∼N(b̄,Ψ ⊗ (X
′
TXT )−1)

Ψ|yT∼IW (S, T − k)

where b̄ denotes the OLS estimates of the slope parameters, and IW denotes the in-

verted Wishart distribution with “shape” parameter S (given by the OLS residual variance-

covariance matrix) and degrees of freedom T − k.

This form for the posterior distribution means that it is straightforward to generate a

Monte Carlo sample θ(i) iid∼ p (θ | Yo
T ). The random sample from the predictive distribution is

used to create a density forecast like the one in Figure 1, taken from the Institute’s December

2005 forecast. During the first few quarters the Institute produced such forecasts, state

officials seemed to interpret the densities as granting them latitude in making predictions.

However, after making several forecast errors larger than what would have occurred at the

7



8 K.F. LEWIS AND C.H. WHITEMAN

Institute’s mean by embracing that latitude, they began to see the spread in the predictive

density as an indication of the degree of uncertainty characterizing the decision making

environment. This recognition by state officials–that many things can happen, some more

likely than others–was perhaps the most important consequence of the decision to produce

density forecasts.

The predictive density summarizes possible outcomes and associated probabilities for the

vector y at some future date, say T + h. We denote this random vector by ỹT+h. If a

point forecast is needed (as is required of the REC in Iowa), it is necessary to specify a loss

function describing the costs associated with making a point prediction, say yF
T+h, of the

random vector ỹT+h: L(yF
T+h, ỹT+h). Then the loss minimizing forecast yF

T+h minimizes

(9) E
[
L

(
yF

T+h, ỹT+h

) | Yo
T

]
=

∫
L

(
yF

T+h, ỹT+h

)
p (ỹT+h | Yo

T ) dỹT+h.

Since the early 1990’s, the Institute has reported loss-minimizing point predictions under

the loss functions

(10) L
(
yF

T+h, ỹT+h

)
= d ·(yF

T+h − ỹT+h

)
I(−∞,yF

T+h)
(ỹT+h)+

(
ỹT+h − yF

T+h

)
I(yF

T+h,∞) (ỹT+h) ,

where yT+h denotes the (scalar) annual growth rate of revenue computed from the relevant

element of yT+h, and d = 1, 2, . . . , 10. This loss function represents the view that revenue

shortfalls are d times as costly as equal-sized surpluses. The solution to the minimization

problem for given d is to set yT+h equal to the 1/(1 + d)’th quantile of the predictive distri-

bution of ỹT+h.

An example of this sort of prediction for annual revenue growth is given in Table 1. Thus

the 3-1 loss-ratio forecast for fiscal year 2007 is 2% growth. Although there is no necessary

connection between the Institute’s density forecasts and the official REC forecast, and the

REC does not indicate anything about how it arrives at its estimate, the estimates have

been coincidentally similar to the 3-1 loss ratio forecast. The next subsection assesses the

forecast record.

8



BAYESIAN DENSITY FORECASTING 9

Revenue Growth (%) Forecasts
Loss Factor FY06 FY07 FY08

1 3.5 3.0 4.2
2 2.9 2.3 3.4
3 2.6 2.0 3.0
4 2.4 1.6 2.7
5 2.3 1.3 2.5
6 2.1 1.1 2.3
7 2.1 1.0 2.2
8 2.0 1.0 2.1
9 1.9 0.9 2.0
10 1.8 0.8 1.8

Table 1. Loss Ratio Forecasts for Iowa Revenue Growth Made December 2005

2.2. The Record. The density forecast record is summarized in Table 2 and Figures 2 and

3. Table 3 provides the complete record of annual revenue growth realizations, together with

the predictive means and standard deviations, and subsequently realized quantiles of the

one- and two-year forecasts made at the end of the calendar year just prior to the December

meeting of the REC. The root mean squared error over the entire period for the (most)

important one-step forecast is 2.6%. This is perhaps comforting, given the remark by former

state comptroller Marvin Seldon (quoted in Geweke and Whiteman (2006)) at the inception

of this effort: “if you can find a revenue forecaster who can get you within 3 percent, keep

him”.

But the focus on the root mean squared error or the mean absolute error of the forecast

obscures how well the density forecasts performed. The column labeled “Percentile” indicates

the quantile of the predictive distribution at which the realized value occurred. Under the

correct specification, these percentiles should be distributed uniformly (Section 3 of Diebold,

Gunther, and Tay (1998)). The omnibus Pearson χ2 tests for uniformity using quartiles have

p-values 0.27 and 0.29 for the one- and two-step forecasts, but this test has little power with

so few observations–15 and 14, respectively. A more powerful procedure involves comparison

of the empirical and population cumulative distributions. These are displayed in Figure 2.

The Kolmogorov-Smirnov statistic (the maximum absolute deviation between the empirical

and population CDF ’s) for testing uniformity is 0.34 for the one-step forecast, which is at

9



10 K.F. LEWIS AND C.H. WHITEMAN

Fiscal Year 1 Fiscal Year 2
Forecast Actual Mean Std Dev Percentile Actual Mean Std Dev Percentile
Dec-90 4.7 4.3 1.7 0.59 5.9 4 4.3 0.67
Dec-91 5.9 6.7 1.5 0.30 10.3 4.7 3.7 0.93
Dec-92 10.3 11.5 1.8 0.25 6.9 5.1 4.2 0.67
Dec-93 6.9 8.6 2.3 0.23 5.7 5 4.6 0.56
Dec-94 5.7 7.9 1.4 0.06 7.1 4.8 2.2 0.85
Dec-95 7.1 7.3 1.3 0.44 3.4 5.5 2 0.15
Nov-96 3.4 6.4 1.3 0.01 5 6.3 2 0.26
Nov-97 5 4.2 1.2 0.75 1 3.1 2.1 0.16
Nov-98 1 3.3 1.3 0.04 4.5 6.3 2.3 0.22
Nov-99 4.5 3.3 1.6 0.77 0.4 4.7 3.2 0.09
Nov-00 0.4 5.9 1.3 0.00 -2.1 6 2.3 0.00
Nov-01 -2.1 3.7 1.4 0.00 0.8 3.6 3.1 0.18
Nov-02 0.8 3.2 1.2 0.02 4.2 2 2 0.86
Dec-03 4.2 3.3 1.3 0.76 5.25 0.8 2 0.99
Dec-04 5.25 2.8 1.3 0.97 NA 2.4 1.9 NA

MSE MAE MSE MAE
90-04 2.6 2.1 90-04 3.5 2.9
90-97 1.6 1.3 90-97 2.6 2.2
98-04 3.4 2.9 98-04 4.2 3.7

Table 2. Real-Time Performance Statistics, Iowa Revenue Forecasts

the 5% point of the sampling distribution for a sample size of 15, but the p-value for the

two-step statistic 0.24 exceeds 20%.

Of course not being able to reject uniformity may be small consolation in practice. Indeed,

there are several realized values in the 0−5% left tails of the one-step predictive distributions,

and such lower-tail values can be especially problematic for state budgeting. Moreover,

there is evidence of serial correlation in the realizations depicted in Figure 3: Ljung-Box

Q-Statistics have p-values of 0.04 (fiscal year 1) and 0.09 (fiscal year 2) based on three

autocorrelations. The next section begins a study of whether it might be possible to improve

on the density forecast record.

3. Conventional Alternative Procedures for Producing Density Forecasts

In this section we outline several alternative VAR structures whose performance is studied

in Section 5. As benchmarks, we first consider flat-prior and “Minnesota Prior” VARs treated

in customary historical fashion–estimated using equation-by-equation ordinary least squares

10



BAYESIAN DENSITY FORECASTING 11

and mixed estimation procedures, and used to produce forecasts at the point estimates of

the parameters. The accuracy of these forecasts is assessed conventionally. We also con-

sider fully Bayesian flat-prior and Minnesota prior VARs analyzed by posterior importance

samplers. When analyzed in fully Bayesian fashion, it is straightforward to produce density

forecasts from these models, and we study the perfomance of such forecasts in pseudo-real

time experiments.

The classes of models are:

(1) VAR (equation (1)) estimated by ordinary least squares,

(2) “Shrinkage” (mixed) equation-by-equation estimation of (1) with a Minnesota prior,

(3) VAR (equation (1)) analyzed by fully Bayesian Monte Carlo methods (the model of

Section 2),

(4) VAR (equation (1)) analyzed by fully Bayesian Monte Carlo methods with a Min-

nesota prior.

By the early 1980’s, conventional wisdom based on experience (e.g., the evidence in Fair

(1979)) and James and Stein (1961)-like shrinkage arguments had it that OLS estimation of

VARs, while straightforward, led to poor out-of-sample forecasting performance, and that

“shrinkage” of OLS estimates toward virtually anything else could improve performance.

This spurred Litterman (1979) and later Doan, Litterman, and Sims (1984) to develop a

class of shrinkage targets intended to improve forecasting performance. Collectively, this

class is known as the Minnesota prior.

The Minnesota prior embodies the notion that the collection of time series can be approx-

imated as a set of univariate random walks. In terms of the parameters of (1), the simplest

version of the prior is silent on the deterministic components in Bd, takes the mean of the

first lag of variable i in equation i (the “own first lag coefficient”) to be unity, and sets

the mean value of the other slope parameters to zero. Prior certainty (that the parameters

are zero) increases with the lag. Specifically, if δl
ij is the prior standard deviation of the

coefficient on lag l of variable j in equation i,

(11) δl
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
lγ1

if i = j

λγ2σ̂i

lγ1 σ̂j
if i �= j

11



12 K.F. LEWIS AND C.H. WHITEMAN

where γ1 (the “decay rate”) is nonnegative, γ2 (“others’ weight”) and λ (“overall tightness”)

are scale factors, and σ̂i and σ̂j are the estimated residual standard deviations in unrestricted

ordinary least squares estimates of equations i and j of the system. (This is the formulation

in Litterman (1979); subsequently, Litterman (1986) took these scale factors from univariate

autoregressions.) As others’ weight is reduced, the specification shrinks toward a univariate

autoregression. For small γ2 (others’ weight), as the decay rate increases, the specification

shrinks toward a random walk. Finally, the prior exerts a greater influence on the results

the smaller is λ (overall tightness). We will refer to the collection of hyperparameters as Λ.

The Minnesota prior can be understood as a set of stochastic (the RATS manual (Doan

(2004)) uses the term “fuzzy”) linear restrictions on the coefficients Bj of equation (1) of

the form

(12) ri = Riβi + vi; vi ∼ N(0, λ2I)

where βi represents the lag coefficients in equation i (the ith row of B1,B2,...,Bm in equation

(1)), Ri is a diagonal matrix with elements λ/δl
ij corresponding to the lth lag of variable j,

and ri is a vector of zeros except for a one corresponding to the first lag of variable i.

As ordinarily implemented, the prior is applied equation by equation. To see how this is

carried out, let Yit denote the T × 1 vector of observations on the i’th element of yt, and

write equation i as

(13) YiT = XT βi+uiT .

where uiT ∼ N(0, σ2
i I). A fully Bayesian, single-equation analysis would work with the

product of the Gaussian likelihood associated with (13) and the Gaussian prior distribution

in (12), which is in turn Gaussian with mean determined by completion of the square.

Alternatively, the more customary “shrinkage” estimator analysis works with a regression

interpretation of (12) and (13) by stacking the left-and right-hand side variables as

⎡
⎣ YiT

(σi/λ)ri

⎤
⎦

⎡
⎣ XT

(σi/λ)Ri

⎤
⎦

12



BAYESIAN DENSITY FORECASTING 13

and applying OLS to the stacked system, yielding a mixed estimator (Theil (1963))

(14) β̂i = (X′
TXT + (

σ

λ
)2R′

iRi)
−1(X′

TYiT + (
σ

λ
)2R′

iri).

Equation-by-equation estimators like these are then collected together and used in (1) to

forecast future values of yT+1,yT+2, . . . ,yT+h. Doan, Litterman, and Sims (1984) condi-

tioned on values of the hyperparameters (e.g., overall tightness, others’ weight, and the

decay rate) and studied out-of-sample forecast performance as these quantities were varied

systematically.

Fully Bayesian analysis under the Minnesota prior is typically not carried out (though

see Kadiyala and Karlsson (1993) for an exception) because the prior cannot be written in

conjugate form. Indeed, the conjugate prior for the model in (1) is the ”Normal-Wishart”

prior (see Kadiyala and Karlsson (1993))

(15) b|Ψ ∼N(b,Ψ ⊗Ω)

Ψ ∼IW (Ψ,α)

in which case the posterior is of the same form,

b|Ψ,YT ∼N(b̄,Ψ ⊗ Ω̄)

Ψ|YT ∼IW (Ψ̄,T + α)

where the posterior parameters b̄, Ω̄, and Ψ̄ are functions of the data and the prior parame-

ters b, Ω, and Ψ. As noted by Rothenberg (1963) and detailed by Geweke and Whiteman

(2006), this prior encodes prior views that are strongly at odds with the Minnesota prior.

In particular, the Kroneker structure of the prior covariance matrix implies that the ratio of

the prior standard deviation of the own lag coefficient in the revenue equation to the prior

standard deviation of the first lag of revenue in the income equation is the same as the ratio

of the standard deviation of the coefficient on lagged income in the revenue equation to the

standard deviation of the own first lag in the income equation. This is inconsistent with the

Minnesota prior notion that more is known about own lags than about others’ lags.

To maintain the spirit of the Minnesota prior in a fully Bayesian analysis, it is necessary to

abandon the comfort of conjugate priors and instead work with the more general formulation.

13



14 K.F. LEWIS AND C.H. WHITEMAN

Even with independent Minnesota priors for each equation in the form (12) and a diffuse

prior for Ψ (as in (2.1)), the posterior for the Bj’s and Ψ is the product of the flat-prior

posterior (8) and a factor pM(θ) coming from the Minnesota prior. This product form,

pM(θ)|Ψ|−(p+1)/2L (θ;Yo
T ) is not amenable to (much) analytic work, and is not recognizable

as another density from which it is possible to sample directly.

Fortunately, it is straightforward to sample from the relevant distribution indirectly via

importance sampling (Geweke (1989)).3 We seek a sample

(16) θ(i) ∼ p(θ|YT ) ∝ pM(θ)|Ψ|−(p+1)/2L (θ;Yo
T ) .

We employ the flat-prior posterior as our importance function, I(θ) = |Ψ|−(p+1)/2L (θ;Yo
T ),

sample θ(i) from it, and assign to the drawing θ(i) a weight w(θ(i)) equal to the ratio

p(θ(i)|YT )/I(θ(i)), which in our case is just pM(θ(i)). Then under regularity conditions given

by Geweke (1989), weighted averages of the form ḡ = Σmw(θ(i))g(θ(i))/Σmw(θ(i)) will ap-

proximate expectations
∫

g(θ)p(θ|YT )dθ. The quality of the approximation is influenced

by variation in the weights w(θ(i))–many very small weights are associated with inaccurate

estimates. The quality of the approximation is assessed via Geweke’s measure of relative

numerical efficiency (RNE), the ratio of the variance of g(θ) to the asymptotic (in i) vari-

ance of the estimator ḡ. This number is unity for a random sample from the posterior itself;

when importance sampling it is typically smaller than unity, and can be interpreted as the

effective sample size as a fraction of the Monte Carlo sample.

It should be clear that the hyperparameters of the Minnesota prior will influence the

RMSE, MAE, and K − S statistics by shifting and reshaping the predictive distributions.

Indeed, Doan, Litterman, and Sims (1984) proceeding in hierarchical fashion, specified their

prior for the VAR parameters in terms of the hyperparameters and imagined integrating

the VAR parameters out, leaving a marginal distribution for the data given the hyperpa-

rameters. They then searched over values of the hyperparameters to find high values of

this marginal distribution (actually, a stand-in involving the determinant of the covariance

matrix of forecast errors). As they put it,

This looks like a process of “estimating” our “prior” from the data, a most

un-Bayesian notion. But it should be clear that in fact we mean this search

3See Kadiyala and Karlsson (1997) for an alternative based on the Gibbs sampler.

14



BAYESIAN DENSITY FORECASTING 15

as an informal numerical integration over [the hyperparameters]. Conclusions

are meant to be averaged across “priors” determined by different [hyperpa-

rameters], with weights given by [the marginal density], the measure of fit.

(p.5)

As Doan, Litterman, and Sims (1984) implemented this search, it was indirect in two ways.

First, they used the not-yet-fully Bayesian mixed estimation procedure described above.

Thus their “prior” represented a point in the VAR parameter space toward which standard

estimators would be shrunk, as well as the degree of shrinkage. Thus in place of integrating

(averaging) over VAR parameters, they focussed on the mixed estimates, which are max-

imizing values of the product of the likelihood function and the prior conditional on the

hyperparameters. Second, even if they had integrated over the VAR parameters, the effort

to improve forecast accuracy by giving large weight to those values of the hyperparame-

ters that forecast well upweights or downweights regions of the VAR parameter space only

through the conditional distribution of the VAR parameters given the hyperparameters. The

next section explores a way of searching directly in the space of θ’s to achieve the same goal.

4. Best Performing Priors Determined By Entropic Tilting

The approach that we take in this section stems from working with importance samples

from posterior distributions for the (VAR) parameters of interest. Suppose, for example, that

we have a random sample of size N from the posterior distribution, {θ(i)}N
i=1. This could

be a random sample from the flat-prior posterior |Ψ|−(p+1)/2L (θ;Yo
T ), with each drawing

having weight 1/N . To create a sample from the posterior distribution associated with the

Minnesota prior pM(θ|Λ), we simply assign each flat-prior-posterior drawing θ(i) the weight

pM(θ(i)|Λ) = πi. A search in the style of Doan, Litterman, and Sims for a prior that improves

forecast accuracy would operate on these weights by varying Λ. But with an importance

sample {θ(i)}N
i=1 and associated weights {π(i)}N

i=1 (which are normalized to sum to unity and

will generally be equal in our applications) in hand, it is natural to seek a better performing

“prior” directly by finding a new set of weights {π∗
(i)}N

i=1. Just as Doan, Litterman, and Sims

(1984), we will need to be wary of overfitting; they did this by varying only a small number

15



16 K.F. LEWIS AND C.H. WHITEMAN

of hyperparameters and operating through the hierarchical prior structure, while we will do

this by penalizing Kullback-Leibler divergence of {π∗
(i)}N

i=1 from {π(i)}N
i=1.

4

4.1. Entropic Tilting. We now wish to study how to find a set of {π∗
(i)}N

i=1 weights that

would have improved (say) RMSE’s of forecasts within the sample period. That is, just

like Doan, Litterman, and Sims (1984), after assembling the posterior via the product of

the likelihood and any–possibly diffuse–prior information about the parameters, we wish to

revisit the sample as if we were forcasting within that time frame, and study the performance

of alternative specifications. Since we wish to work with moments and quantiles of predictive

densities in performance assessment, this process will be somewhat more involved for us than

it was for Doan, Litterman, and Sims two decades ago.

Denote by yi
t,t+4 draw i of the time-t pseudo-predictive density for revenue at time t + 4.

We focus on the 4-step ahead forecast for illustrative purposes only; it should be clear that

we could be working with a vector of forecasts. Here t is understood to be prior to the

end of the data sample (of length T ) used to generate the posterior drawings {θ(i)}N
i=1.

Observations subsequent to T will be used in assessing the performance of the procedure

in true out-of-sample forecasting. The drawing yi
t,t+4 is generated using the VAR, equation

(1), the drawing θ(i) from the posterior, data through t, and samples from a N(0, Ψ(i))

distribution to perform a dynamic simulation from the VAR. The predictive distribution

{yi
t,t+4}N

i=1 is the one that would have been produced at time t had the posterior sample

{θ(i)}N
i=1 been available. Now the squared error of the predictive mean under the distribution

{π∗
(i)}N

i=1 is given by (ΣN
i=1π

∗
i y

i
t,t+4 − yt+4)

2. Like Doan, Litterman, and Sims, we will look for

good performance over several periods; that is, small values of ΣT−4
t=1

1
2
(ΣN

i=1π
∗
i y

i
t,t+4 − yt+4)

2.

Generally these will not difficult to find if we have complete freedom to move the {π∗
(i)}N

i=1

distribution away from {π(i)}N
i=1. Thus we will penalize such movement (prevent overfitting)

in proportion with the Kullback-Leibler divergence ΣN
i=1π

∗
i ln(

π∗
i

πi
). Thus the choice problem

(“shrinkage for the Monte Carlo era”) is

(17) min
{π∗

(i)
}N

i=1

ΣT−4
t=1

1

2
(ΣN

i=1π
∗
i y

i
t,t+4 − yt+4)

2 + νΣN
i=1π

∗
i ln(

π∗
i

πi

) − µ(ΣN
i=1π

∗
i − 1)

4See Robertson, Tallman, and Whiteman (2005) for a related way of modifying forecasts to reflect moment
conditions not used directly in their production.
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where ν is a (prespecified) penalty factor and µ is a Lagrange multiplier ensuring that the

new weights sum to unity. Rearrangement of the first order conditions yields

(18) π∗
i =

πi exp[ν−1(ΣN
j=1π

∗
j y

j
t,t+4 − yt+4)y

i
t,t+4]

ΣN
i=1πi exp[ν−1(ΣN

j=1π
∗
j y

j
t,t+4 − yt+4)yi

t,t+4]
.

The appearance of π∗
i on both sides of this expression complicates solution. We have em-

ployed an iterative scheme that in practice convgerges so long as the penalty ν is not set too

low.

Equation (18) makes clear that the πi probabilities are exponentially or entropically tilted

to produce the π∗
i ’s. Of course, reweighting is exactly what transpires in importance sam-

pling, and indeed, the entropic tilt can be interpreted as a reweighting (“tilt”) from an initial

importance sampler given by the πi’s. It is therefore possible to assess the degree of sample

depletion associated with the tilt by examining RNE values for (say) predictive means.

As noted by Robertson, Tallman, and Whiteman (2005), there are several ways to interpret

the entropic tilt and the information associated with it. Recall that the initial weights πi

embody information from the likelihood function and any prior information regarding the

parameters θ. The new weights π∗
i comprise the product of the weights πi and a factor

reflecting the reweighting to improve forecasting performance. This additional factor can

be thought of as different, data-dependent prior, as a modification to the original likelihood

function, as an update of the posterior for the parameters, or as a modification to the

predictive distribution itself. In what follows, we adopt the first of these, and interpret

the entropic tilting as accomplishing directly the same thing–improvement of forecasts–that

Doan, Litterman, and Sims (1984) accomplished indirectly by varying the hyperparameters

of the Minnesota prior.

We study the performance of this procedure in practice by carrying it out in pseudo-

real time by first using data through T to generate the initial (flat prior) posterior and

reweighting to lower the 4-step RMSE in sample. We then use the reweighted posterior to

predict yT+1, yT+2, . . . , yT+h and record results. Next, T is incremented by one time period

and the process is repeated; we continue in this fashion until the data are exhausted.

17



18 K.F. LEWIS AND C.H. WHITEMAN

4.2. Practical Robust Forecasting. Direct modification of the probabilities associated

with drawings from the predictive distribution is very similar to what one would do as

a robust response to a situation of ambiguity. Hansen and Sargent (2005) have argued

that decision makers (e.g., revenue forecasters) should guard against the possibility that

their model (e.g., the VAR, under whatever prior is in use) for the phenomena they face is

incorrect by imagining that they are playing a game against an evil “nature” whose objective

is to minimize the decision maker’s welfare by choosing new event probabilities subject to

the constraint that the evil probabilities not differ too much from the original ones in the

Kullback-Leibler sense. Maccheroni, Marinacci, and Rustichini (2005) provide an axiomatic

foundation for these so-called variational preferences by relaxing the independence axiom of

expected utility theory.

In the context of forecasting, the “evil agent” game can be thought of as follows. Suppose

the loss function to be used by the forecaster is quadratic, and suppose we have an initial

sample from the joint distribution for yT+h and θ,

(19) p(yT+h, θ | Yo
T ) ∝ p (θ | Yo

T , θ) p(yT+h | θ,Yo
T ).

Facing a benign nature, the forecaster chooses the forecast yF
T+h to minimize expected loss:

(20) min
yF

T+h

∫ ∫ (
yF

T+h − ỹT+h

)2
p(ỹT+h, θ | Y o

T )dθdỹT+h

but when nature is evil, she confronts the forecaster with a different probability distribution

q(ỹT+h, θ | Yo
T ) designed to maximize expected loss subject to the constraint that q not

diverge too much from p and taking the forecast itself as given:

(21) max
q(ỹT+h,θ|Yo

T )

∫ ∫ (
yF

T+h − ỹT+h

)2
q(ỹT+h, θ | Yo

T )dθdỹT+h − λKL(p : q)

where λ is the Lagrange multiplier associated with the constraint, and KL(p : q) is the

Kullback-Leibler divergence from p to q. Given the probabilities q, the forecaster minimizes

expected (quadratic) loss, and of course chooses the mean. In terms of our sample from the

predictive distribution for yT+h with weights πi, the problem of finding the Nash equilibrium

of the game can be represented as

(22) min
yF

T+h

max
{π∗

i }N
i=1

ΣN
i=1π

∗
i

(
yF

T+h − y
(i)
T+h

)2

− λΣN
i=1π

∗
i ln(

π∗
i

πi
) − µ(ΣN

i=1π
∗
i − 1)
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where the constraint with multiplier µ ensures adding up. The multiplier λ controls how

much latitude the evil agent has in altering the probabilities; when λ is very large, little

adjustment to the probabilities occurs, and when λ is small enough, the evil agent has great

freedom to manipulate the probabilities delivered to the forecaster. 5 The solution to the

problem is that the forecast is the predictive mean Σπ∗
i y

(i)
T+h and the evil agent tilts the

probabilities according to

(23) π∗
i =

πi exp[λ−1(Σjπ
∗
j y

(j)
T+h − y

(i)
T+h)

2]

Σiπi exp[λ−1(Σjπ∗
j y

(j)
T+h − y

(i)
T+h)

2]
.

As before, π∗
i ’s appear on both sides, and this is in general a difficult problem to solve. Our

experience is once again that iteration finds a solution quickly for moderate values of the

penalty factor, but that the procedure does not converge for very small values.

5. Results

The forecasting procedures of the previous section are assessed in Table 3 and Figures

6 through 11. All results in this section are based on quarterly 1-8 step-ahead out-of-

sample forecast performance over the period 1995:III-2005:III.6 The specification search for

the Minnesota prior was based on an initial estimate (in the mixed estimation case) or

posterior analysis (for the fully Bayesian implementation) using data for the period 1982:III-

1990:II. To choose the hyperparameter specification on which to focus, we fixed the decay

rate at unity, and for a grid of values for overall tightness and others’ weight, we made 1-8

step forecasts beginning in 1990:III, updated the data and repeated the process for forecasts

beginning in 1990:IV, and so on until 1995:II data had been used. The fully Bayesian

implementation of the Minnesota prior, and the entropically tilted and robust forecasts are

based on importance samples from the flat prior posterior using data through 1995:II for the

first forecast, through 1995:III for the second, and so on.

5In the setup of Hansen and Sargent (2005), there is a lower bound on λ, the “point of utter psychotic
despair” (a term Hansen and Sargent attribute to Whittle) at which the evil agent’s objective ceases to be
concave, and the “forecaster” agent could be made unboundedly miserable. In our setup, the second order
conditions do not change sign, so there does not seem to be a breakdown point.
6Recall that the forecast record reported for the real-time forecasts was for annual revenue growth. We used
quarterly figures here to ensure a reasonably-sized sample of forecast errors. Predicting quarterly revenues
is more difficult than predicting annual sums, so we expect the forecast error statistics to be larger for the
quarterly predictions.
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20 K.F. LEWIS AND C.H. WHITEMAN

The best performing mixed-estimation Minnesota prior over this period involved overall

tightness 0.3 and others’ weight 1.0, while the best performing fully Bayesian implementa-

tion of the Minnesota prior involved overall tightness 0.8 and others’ weight 1.0. Figure 4

represents the search for four horizons in the mixed estimation case. The vertical axes in

each case are given by −1 × RMSE (so that higher is better). The base axes are settings

of the hyperparameter values. Across the four horizons considered, local variation in the

hyperparameters around the values selected for further analysis is relatively unimportant.

Figures 5 and 8 summarize the hyperparameter search for the fully Bayesian procedure. For

both the RMSE and the Kolmogorov-Smirnov statistics, the best others’ weight is about

the same as for the mixed estimates forecasts, but overall tightness is somewhat higher. We

believe this reflects the contrast between the single-equation focus of the mixed estimates

and the system focus of the fully Bayesian approach: overall tightness applies simulaneously

to all equations in the latter.

Once the hyperparameter settings were chosen in the holdout sample, they were not

changed. At each date in the assessment period, as much data as were available at that

date were used either in producing mixed estimates, fully Bayesian posterior distributions,

or entropically reweighted predictives. The entropic reweighting used the previous 20 quar-

ters of data at each forecast date. No “peeking” was allowed.

Table 3 reports results for the flat- and Minnesota-prior mixed estimation forecasts, as

well as density forecasts from the flat and Minnesota priors, and the robust and “evil agent”

forecasts. For the latter two, we used penalty factors that permitted as much freedom to

tilt as we could allow and still obtain convergence of our iterative computational scheme.

For each of the density forecast procedures, we report RMSE’s and MAE’s of forecasts

based on the predictive mean, median, and 25% quantile (the “LR” column, for (3-1) “loss

ratio”). We also report Kolmogorov-Smirnov statistics at each horizon, and an example

of RNE values of the predictive means at each horizon computed from the forecast made

2001:III. The empirical distributions of quantile realizations underlying the Kolmogorov-

Smirnov statistics are detailed in Figures 7 through 10. The latter figures indicate that the

quarterly pseudo-real-time experiments from 1995:III-2005:III yielded the same phenomenon

that characterizes the real-time record: too many left tail values were realized for revenue

predictions relative to the predictive densities.
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The results in Table 3 are for predicting log revenue; the root mean squared error and

mean absolute error entries can be interpreted (roughly) as percentage errors. Thus the

3-step RMSE for the mixed-estimate Minnesota prior was just under 4.4% of the level of

revenue. The statistics in the Table tend to confirm two long-standing suspicions and suggest

two new ones.

The first of these suspicions was that there is much to be gained by implementing a fully

Bayesian procedure that enables production of density forecasts, even if these are used to

produce a natural point forecast under a reasonable loss function. For example, at horizons

up to a year, the point forecasts produced from the fully Bayesian predictives under quadratic

loss (the mean), 1-1 loss ratio (the median), and even the 3-1 loss ratio (the 25% point of

the predictive) have lower RMSE and MAE statistics than the forecasts produced with

point estimates – whether shrinkage to the Minnesota prior is pursued or not. To the extent

that overfitting drives poor out-of-sample forecasting performance, careful treatment of the

uncertainty in the parametric specification as embodied in the fully Bayesian predictive

distribution may compensate somewhat.

The second of these was that there not much was to be gained by adding shrinkage to

a fully Bayesian flat prior forecast. Improvements of the best-performing Minnesota prior

over the flat prior are modest at best, at least in terms of RMSE and MAE. Comparing

the quality of the entire density forecast via Kolmogorov-Smirnov statistics suggests that

there may be some improvement in matching quantiles, but the p-values of these statistics

generally exceed 20%, and in any case p-values do not represent strength of evidence.

The first new suggestion is that entropic tilting does not seem to improve out of sample

forecasts. That is, despite the freedom to tinker with the prior permitted by the reweighting

scheme, and despite the average 50% reduction in the in-sample RMSE values, the out of

sample forecasts from 1995:III on are little changed. It turns out that the tilt is accomplished

with surprisingly little reweighting, and this is apparent in the “Lorenz” curve of weights

in Figure 11. The figure depicts the cumulative fraction of the importance sample weight

accounted for by draw i (sorted in ascending order); the 45-degree line characterizes the

weights from a random sample; tilting and the importance-sampled Minnesota prior are

associated with unequal weights, and this is represented by curves lying below the 45-degree

line. The entropic tilt produces less inequality in the weights than does the Minnesota prior.
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Put another way, the Minnesota prior adds more information than does the entropic tilt. Of

course the Minnesota prior is doing something other than achieving a reduction in forecast

error in sample, and this is reflected in the weight inequality.

The second new suggestion is that the spread in the forecast distribution accomplished by

robustifying the predictions did not much improve out of sample forecast performance. The

robust forecast does a little better than the flat-prior forecast, as is to be expected given that

the latter produced too many left-tail values, and robustifying thickens both tails, thereby

ensuring at least a slight increase in the quantiles of realized forecasts. But the effect of the

tail thickening was slight.

Figures 12 and 13 provide some further insight into what the Minnesota prior and the

tilt are doing. Figure 12 shows the posterior density of the own lag coefficient in the rev-

enue equation (where “posterior” under the robust procedure and the entropic tilt means

“reweighted flat-prior posterior”). As expected, the Minnesota prior pulls the own-lag coeffi-

cient distribution toward the prior mean value of unity, though this effect is not too dramatic.

Robustification and entropic tilting spread the distribution a little, but not too much.

Figure 12 is typical, and shows the effect on the three-step-ahead prediction made at the

end of the third quarter of 2001. The robust prediction is clearly a spread, though a small

one. The other three predictives are very similar to each other; the flat prior is a little more

concentrated about the mode than the other two, but the effect is minimal. That there

is relatively little effect visible after reweighting suggests that at least the predictions are

relatively insensitive to quite different prior views. Yet this is actually of some comfort, just

as it was to Doan, Litterman, and Sims (1984):

While our explorations are in some ways like fitting the parameters of a con-

ventional model–we examine various points in a parameter space and check

how well the resulting models fit the data–the motivation and implications of

the results are different in important respects. Our ideal conclusion would be

that the parameters are “ill determined”–that the fit is similar across a wide

range of parameter settings having similar implications. (p.4)

In our case, it has indeed turned out that the result are insensitive, not just to hyperpa-

rameters of a Minnesota prior, but even to direct manipulation of prior probabilities in an

unabashed attempt to improve forecast performance.
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6. Denouement and Conclusion

This paper has reported on an attempt to improve forecast performance in a pragmatic,

locally important setting–the prediction of state tax revenues in Iowa. Over a sixteen year

period including two national recessions and a stock market boom, the record, as measured

by root mean squared errors, is within the 3% error bounds set by the State Comptroller at

the beginning of the period. More importantly, the production of density forecasts has helped

educate state officials of the uncertainties of economic forecasting. Yet on occasion even this

effort fell short: two forecasts made around the time of the most recent recession predicted

that what actually happened over the ensuing nine months was essentially impossible. Thus

it seems reasonable to expect that some improvement could be had by using alternative

specifications of variables, lag lengths employed in VARs, prior specifications, etc. But we

have found little, despite introducing two new tools for modifying prior distributions in direct

attempts to improve forecast performance.

Ex-post, it is even difficult to reproduce the most serious overprediction. Figure 13 actu-

ally depicts the forecast made at about the time the largest real-time forecast error (four

predictive standard deviations from the mean) was made. Yet the subsequently realized rev-

enue value is not far from the mean of the predictive density in the figure. How can this be?

We believe the answer lies in the quality of the data. We have carried out our improvement

search using a fixed data set, the most recent one available to us. Because income data are

revised periodically, and these revisions can be quite large in an agricultural state like Iowa,

it would be useful to undertake a serious real-time-data study of the issues taken up in this

paper. But the cost would be enormous, as such data archiving that did take place crossed

multiple generations of media, from 5.25” floppy discs through tape backups, ZIP disks, etc.

to external hard drives.

In place of a real-time analysis, we examined the minutiae of forecasts made around the

time the largest forecast errors were made. One of the problems that characterized the

time was that sales tax revenue data were “contaminated” by phantom revenues that were

collected by the state and subsequently reverted to its constituent counties (subjurisdictions.)

The amount of phantom revenues and other adjustments (e.g., for differences in the number

of revenue processing days in successive years) were estimated by the Department of Revenue

and removed from the data prior to the production of the forecasts. This turned out to be

23



24 K.F. LEWIS AND C.H. WHITEMAN

bad practice, as the Department’s estimates were quite wide of the mark. For example,

adjustments to revenues for July, August, and September revenues estimated at the time

the November 2001 forecast overstated revenues by about 1.5% of annual revenues for the

year. This much data error in a VAR, whose forecasts are heavily influenced by the most

recent observations, has dramatic effect on the short-term forecasts it produces. Had the

adjustments not been made, the realized value would have been within the interquartile

range of the predictive distribution.

This anecdotal experience, and the work for the paper, serve as reminders that there is no

substitute for better data or a better model. We’re still looking for both.
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Figure 1. Density Forecast, Revenue Growth in Fiscal Year 2006
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Figure 2. Realized Komolgorov-Smirnov Statistics
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Figure 3. Time Series of Realized Quantiles
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Figure 4. Negative RMSE and the MN Hyperparameters – Mixed Estimation.
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Figure 5. Negative RMSE and the MN Hyperparameters – Fully Bayesian.
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Figure 6. KS Surface for MN Prior Hyperparameters.
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Figure 7. KS Plot for the Flat Prior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Kolmogorov−Smirnov Test −− Iowa Revenue, F: 4

 Max: 0.1990

Figure 8. KS Plot for the MN Prior.
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Figure 9. KS Plot for Robust Model.
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Figure 10. KS Plot for the Entropic Reweighting Algorithm.
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Figure 11. Comparison of Weights in Various Models
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Figure 12. Comparison of the Density of the First Lag of Revenue in the
Revenue Equation
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