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Abstract: This paper provides an example of several modeling and econometric advances used in the
panel estimation of energy demand elasticities. The paper models the demand of total, industrial, and
transport energy consumption and residential and commercial electricity consumption by analyzing
US state-based panel data. The paper employs recently developed dynamic panel methods that
address heterogeneity, nonstationarity, and cross-sectional dependence. In addition, the paper
(i) considers possible nonlinear relationships between energy consumption and income without
employing polynomial transformations of integrated income; and (ii) allows for and calculates
possible asymmetric relationships between energy consumption and price. Finally, the paper models
energy efficiency improvements by a nonlinear time trend. To our knowledge no other paper has
combined all of the econometric and modeling advances that are applied here. Most of the results
conformed to expectations; however, limited to no evidence of nonlinearities and asymmetries
were uncovered.

Keywords: disaggregated energy demand; dynamic common factor panel models; nonstationary;
heterogeneous panels; nonlinear; asymmetric relationships; US states

JEL Classification: C23; Q41

1. Introduction

This short paper models the demand of energy consumption at several different levels of
aggregation by analyzing US state-based panel data and by using methods that address heterogeneity,
nonstationarity, and cross-sectional dependence. The paper models the demand of total, industrial,
and transport energy consumption and residential and commercial electricity consumption. US state
data is rich since (i) there is diversity among the states; and (ii) the states are (mostly) geographically
connected, share institutions, and exhibit free movement of people, capital, and goods. In addition,
the paper (i) considers possible nonlinear relationships between energy consumption and income, and
(ii) allows for and calculates possible asymmetric relationships between energy consumption and price.
Finally, the paper models energy efficiency improvements by a nonlinear time trend.

Estimating income and price elasticities for energy consumption is a popular subject in applied
economics (e.g., see Graham and Glaister 2002 for a review of transport-focused studies). More recently,
several single-country studies (Holtedahl and Joutz 2004; Halicioglu 2007; Dergiades and Tsoulfidis
2008; Liddle 2009) have focused on either residential energy/electricity or gasoline consumption
and employed time-series based methods (i.e., methods that address nonstationarity/cointegration).
In addition, other recent studies have used panel methods that address both nonstationarity and
heterogeneity—but not cross-sectional dependence—e.g., Narayan et al. (2007), who considered
residential electricity consumption demand, and Liddle (2012), who focused on gasoline demand. Yet,
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we believe that no paper has combined all of the econometric and modeling advances that are applied
here, and so the present paper should be of interest to applied economic modelers.

2. Methodology and Data

2.1. Econometric Issues

The variables analyzed in energy demand studies (e.g., energy consumption, GDP) are highly
trending, stock-based variables, and thus, may be nonstationary—in other words, their mean, variance,
and/or covariance with other variables changes over time. When ordinary least squares (OLS)
regressions are performed on time-series (or on time-series cross-sectional) variables that are not
stationary, then measures like R-squared and t-statistics are unreliable, and there is a serious risk of the
estimated relationships being spurious (Kao 1999; Beck 2008).

Also, for the macro-level variables typically considered in energy demand analyses, cross-sectional
correlation/dependence is expected because of, for example, regional and macroeconomic linkages
that manifest themselves through (i) common shocks; (ii) shared institutions; and/or (iii) local spillover
effects between countries or regions. When the errors of panel regressions are cross-sectionally
correlated, standard estimation methods can produce inconsistent parameter estimates and incorrect
inferences (Kapetanios et al. 2011).

Yet, it is likely that the relationships (i.e., elasticities) will not be the same for each state—i.e., there
should be a substantial degree of heterogeneity. And if one mistakenly assumes that the parameters
are homogeneous (when the true coefficients of a dynamic panel in fact are heterogeneous), then all of
the parameter estimates of the panel will be inconsistent (Pesaran and Smith 1995).

The Pesaran (2006) common correlated effects mean group (CCE) estimator accounts for the
presence of unobserved common factors by including in the regression cross-sectional averages of
the dependent and independent variables. Also, as a mean group estimator, CCE first estimates
cross-section specific regressions and then averages those estimated cross-sectional coefficients to
arrive at panel coefficients (standard errors are constructed nonparametrically as described in Pesaran
and Smith 1995). However, while the CEE estimator is robust to nonstationarity, cointegration, breaks,1

and serial correlation, the CCE estimator is not consistent in dynamic panels since the lagged dependent
variable is no longer strictly exogenous. Chudik and Pesaran (2015) demonstrated that the estimator
becomes consistent again when additional 3

√
T lags (in our case, 2)2 of the cross-sectional means are

included. Hence, we employ the Dynamic Common Correlated Effects Estimator (DCCE) of Chudik
and Pesaran (2015).3

2.2. Modeling Issues

Improvements in energy efficiency have important implications for energy demand but are
notoriously difficult to model. One approach—recently suggested by Hunt and Ryan (2015)—is to
include in the model a time trend and time trend-squared. We include a lag of the dependent variable to
capture possible autocorrelation properties. So, the dynamic, heterogeneous model that we estimate is:

Esit = β1
i Esit−1 + β2

i yit + β3
i Psit + β4

i Zsit + β5t + β6t2 + αi + εit (1)

1 As an anonymous reviewer suggested, breaks could be explicitly considered. However, only 26 time observations is likely
insufficient for a robust consideration of endogenous breaks. Furthermore, since the data begins in 1987, the two most
important energy-related events in the US—the two oil crises, dated 1973–1974 and 1979–1981—would lie outside the
sample range.

2 As outlined in the table notes, some regressions included only a single lag because allowing for two lags produced highly
insignificant results.

3 The Dynamic Common Correlated Effects Estimator of Chudik and Pesaran (2015) is implemented by STATA command
xtdcce2, which was developed by Jan Ditzen.
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where subscripts sit denote a particular end-use energy demand sector, s (i.e., total, industrial, or
transport energy or residential or commercial electricity), ith cross-section, and tth time period,
respectively. E is per capita energy/electricity consumption, P is the corresponding sector price (in
real terms), and y is real GDP per capita. A set of additional sector-specific variables is represented
by Z—specifically heating and cooling degree days for total energy and residential and commercial
electricity.4 Since the time trend, t, and the time trend-squared are included to capture energy efficiency
improvements, and because we believe such improvements should diffuse quickly throughout the US
states, the coefficients for those two terms are constrained to be the same for all cross-sections. Lastly,
α represents a state-specific intercept, and ε represents the error term.

For clarity, the cross-sectional average terms and their lags (of 1–2 periods) are not shown in
Equation (1). All variables are in natural logs; thus, the estimated coefficients can be interpreted as
elasticities. Since there is a lagged dependent variable term, those estimated elasticities are considered
short-run. The long-run elasticities are calculated from:

βn

1− β1
(2)

where n varies from 2 to 4, the beta-bar terms are the panel coefficients, i.e., the average of the
individual cross-sectional coefficients, and the corresponding standard errors are determined via the
delta method.

Several papers have decomposed price movements in order to test for asymmetric price
responses, and thus, potentially capture induced technical change in energy demand (e.g.,
Gately and Huntington 2002). Price is decomposed into the historic high price and the cumulative
price increases and cumulative price decreases in such a way that these three new price variables sum
to the original price series as shown in Equations (3)–(6):

pmax, t = max(p1, . . . , pt) (3)

pup,t =
t

∑
t=1

max{0, (pt − pt−1)− (pmax,t − pmax, t−1)} (4)

pdown,t =
t

∑
t=1

min{0, (pt − pt−1)− (pmax,t − pmax, t−1)} (5)

pt = pmax, t + pup, t + pdown, t (6)

Hence, Equation (1) is re-estimated with the respective prices decomposed (and the time trend
terms not included). Post estimation, one can test whether asymmetries exist by coefficient pairs’
difference of means tests. If the null hypothesis that the individual price elasticities are the same
is rejected, one expects that in absolute terms elasticity for the maximum price would be greater
than the elasticity for price increases, which would be greater than the elasticity for price declines
(Gately and Huntington 2002). In other words, demand is expected to decrease more when prices
rise than demand increases when prices fall, and high prices are expected to affect demand through
induced technical change. So, decomposing price can be interpreted as a way to model technical
change’s impact on demand, and thus, replace the time trend terms in Equation (1).

Whether there is an inverted-U relationship between GDP per capita and some environmental
impact measure per capita has become one of the most popular question in environmental
economics/social science. The so-called Environmental Kuznets Curve/Carbon Kuznets Curve

4 While several papers have found a negative relationship between urban density and transport energy consumption (e.g.,
Newman and Kenworthy 1989; Kenworthy and Laube 1999; Liddle 2013a), in earlier work on the present dataset, (state-level)
population density was not statistically significant for transport energy consumption (Liddle 2017).
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literature posits that environmental impact first rises with income and then falls after some threshold
level of income/development is reached. Of course, one might expect not to find such an inverted-U
relationship for energy consumption—a normal consumption good; indeed, we might expect a leveling
of the income elasticity (as determined for carbon dioxide emissions in Liddle 2015). (Although, some
studies have determined such an inverted-U relationship for energy consumption or the highly related
carbon dioxide emissions, e.g., Agras and Chapman 1999) Yet, it is possible that higher income states
may have less industry/manufacturing (and thus, less energy consumption in that sector); so, we test
whether the individual state income elasticity estimates vary according to the level of income for total
energy and industrial energy consumption.

Inverted-U studies typically model energy/emissions as a quadratic function of GDP per capita.
(An inverted-U relationship between emissions per capita and income is said to exist if the coefficient
for GDP per capita is statistically significant and positive, while the coefficient for its square is
statistically significant and negative.) However, it is incorrect to make a nonlinear transformation of a
nonstationary variable—GDP per capita was determined here to be nonstationary, as it often is—in
ordinary least squares (Muller-Furstenberger and Wagner 2007). Furthermore, this polynomial model
has been criticized for lacking flexibility (e.g., Lindmark 2004). Hence, we employ a method used in
Liddle (2013b) that takes advantage of the heterogeneous nature of the estimations (i.e., elasticities
are estimated for each state) by plotting those state-specific income elasticity estimates against the
individual state average income for the whole sample period.

2.3. Data

The US Energy Information Agency (EIA), as part of the State Energy Data System (SEDS), collects
state-level data of disaggregated energy consumption and the corresponding prices at those levels
of disaggregation. The Bureau of Economic Analysis (BEA) collects data on real GDP per capita and
economic structure, also at the state-level. These two data sets are combined to create a panel of
the 50 US states over 1987–2013. The following five dependent variables are analyzed: total energy
consumption per capita, industrial sector’s energy consumption per capita, transport sector’s energy
consumption per capita, and the electricity consumed per capita in the residential and commercial
sectors. Also, because electricity consumption in buildings is impacted by weather, the residential and
commercial electricity regressions include the average heating degree days and the average cooling
degree days (data from the National Oceanic and Atmospheric Administration).5 Table 1 displays
summary statistics.

Again, given the stock-based nature of the data and the fact that the US states are not independent,
we expect the data to exhibit both cross-sectional correlation and nonstationarity. Table 2, which reports
the results of the Pesaran (2004) cross-sectional dependence (CD) test and the Pesaran (2007) panel unit
root test, confirms those suspicions. The Pesaran (2004) CD test employs the correlation coefficients
between the time-series for each panel member. The null hypothesis of cross-sectional independence
was rejected for each variable considered (at the 0.1% level); furthermore, several of the absolute value
mean correlation coefficients ranged from 0.8–1.0 (first two columns of Table 2). The Pesaran (2007)
cross-sectionally augmented panel unit root test (CIPS) allows for cross-sectional dependence to be
caused by a single (unobserved) common factor; the results of that test suggest that most of the
variables are nonstationary in levels (last two columns of Table 2). These two tests—the Pesaran CD
and Pesaran CIPS test—are used as diagnostics, too, in order to assess whether the regression residuals
are independent and stationary.

5 Heating and cooling degree days’ data were not available for Alaska and Hawaii.



Economies 2017, 5, 30 5 of 11

Table 1. Summary Statistics.

Variables Observations Mean Std. Dev. Min Max

Total energy pc 1350 374.1 171.3 171 1196
Transport energy pc 1350 100.7 39.7 48 403
Industrial energy pc 1350 140.4 125.0 18 706

Residential electricity pc 1350 4.4 1.2 1.9 7.4
Commercial electricity pc 1350 3.9 0.9 1.2 8.1

GDP pc 1350 41,059 9,600 20,511 75,694
Cooling degree days 1296 1,068 798 42 3,827
Heating degree days 1296 5,270 2,083 430 10,810

Total energy price 1350 12.7 5.8 5.1 40.3
Transport energy price 1350 13.8 7.3 5.3 31.0
Industry energy price 1350 8.8 5.3 2.1 56.3

Commercial electricity price 1350 27.2 9.5 12.2 109.4
Residential electricity price 1350 23.6 8.4 10.9 102.2

pc: per capita; Std. Dev.: standard deviation.

Table 2. Cross-sectional and time-series properties of the data.

Pesaran (2004) CD Test Pesaran (2007) CIPS Test

Variables Statistic Abs. Corr. Coeff. Specification W/O Trend Specification W/Trend

Log total energy pc 59.3 * 0.52 I(1) I(1)
Log transport energy pc 56.2 * 0.44 I(1) I(1)
Log industrial energy pc 58.6 * 0.61 I(1) I(1)

Log residential electricity pc 119.7 * 0.77 I(0) I(1)
Log commercial electricity pc 124.5 * 0.77 I(0) I(1)

Log GDP pc 163.2 * 0.94 I(1) I(1)
Log cooling degree days 78.2 * 0.51 I(0) I(0)
Log heating degree days 89.9 * 0.57 I(0) I(0)

Log total energy price 180.5 * 0.99 I(0) I(1)
Log transport energy price 181.4 * 0.997 I(0) I(1)
Log industry energy price 174.5 * 0.96 I(0) I(1)

Log commercial electricity price 147.4 * 0.81 I(1) I(1)
Log residential electricity price 156.2 * 0.86 I(1) I(1)

pc: per capita; Abs. corr. coeff.: Absolute value mean correlation coefficient; I(0): stationary; I(1): integrated order
one, nonstationary; Statistical significance level of 0.1% denoted by *.

3. Results and Discussion

3.1. Initial Results

The results of the initial five regressions are shown in Table 3. For all but commercial electricity,
GDP per capita is statistically significant and well below unity—a saturation effect is expected for
energy consumption in highly developed states. Prices are significant and negative for all five
dependent variables—suggesting taxes could be used to reduce energy consumption (although none
of the price elasticities are particularly large). Both heating and cooling degree days are positive
and significant for the building electricity consumption regressions. For total energy and industry
energy the time-squared term is significant and negative—as would be expected for energy efficiency
improvements. However, both time terms are insignificant for transport energy and commercial
electricity. Surprisingly, the linear time trend is significant and positive for residential electricity
(more below).

In addition, the regression diagnostics are good—all of the residuals were stationary (according
to the Pesaran CIPS test, results not shown), and cross-sectional independence in residuals cannot
be rejected for all but the transport energy and residential electricity regressions. The coefficient on
the lagged dependent variable is always significant and rather small—indicating a limited amount of
persistence in energy consumption. The lagged dependent variable is negative for residential electricity
(but only marginally significant)—suggesting that residential consumption is falling over time, which
is not the case. However, as mentioned above, the time trend is significant and positive—the opposite
of what one would expect for efficiency improvements. Hence for residential electricity, the lagged
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dependent variable and time trend seem to be compensating for one another in a manner that is not
consistent with the proposed model.

Table 3. Disaggregated energy demand equations with dynamic common correlated effects estimator
(DCCE) by Chudik and Pesaran (2015). Panel 48/50 US states, 1987–2013.

Dependent
Variable

Total
Energy

Industrial
Energy

Transport
Energy

Residential
Electricity

Commercial
Electricity

Short-Run Elasticities

LDV 0.204 **** 0.205 **** 0.141 **** −0.152 * 0.280 ****
GDP pc 0.177 *** 0.560 *** 0.255 *** 0.290 *** 0.178

Price −0.156 **** −0.118 **** −0.241 **** −0.129 **** −0.162 **
HDD 0.173 **** 0.180 **** 0.137 ***
CDD 0.040 **** 0.118 **** 0.054 ***

Long-Run Elasticities

GDP pc 0.222 *** 0.705 *** 0.297 *** 0.252 *** 0.247
Price −0.196 **** −0.148 **** −0.280 **** −0.112 **** −0.224 **
HDD 0.217 **** 0.156 **** 0.190 ***
CDD 0.050 **** 0.103 **** 0.075 ***

Pooled Coefficients

Time −0.000 0.005 0.001 0.006 **** 0.001
Time-squared −0.0001 ** −0.0002 * 0.000 −0.000 0.000
Observations 1202 1150 1250 1108 1202

x-sections 48 50 50 48 48
CD (p) −0.8 (0.43) −0.6 (0.55) −2.1 (0.04) 2.8 (0.00) 1.5 (0.14)

LDV: lagged dependent variable; pc: per capita; HDD: heating degree days; CDD: cooling degree days. All variables
logged. All dependent variables in per capita. Statistical significance level of 10%, 5%, 1% and 0.1% denoted by *, **,
***, and ****, respectively. CD: test statistic from Pesaran (2004) CD test, corresponding p-value in parentheses. The
null hypothesis is cross-sectional independence. Industry energy and residential electricity regressions include two
lags of the cross-sectional average terms; all other regressions include one such lag.

Comparing the estimations across dependent variables, residential electricity has the lowest
(long-run) price elasticity. Low price elasticities for electricity use in buildings is not surprising given
how electricity is typically billed—high fixed costs and rather underutilized marginal/peak pricing.
It is somewhat surprising for residential and commercial electricity that the heating degree days’
elasticity is greater than the cooling degree days’ elasticity. This difference is surprising since air
conditioning may be more energy intensive than heating, and air conditioning is very likely more
electricity intensive than heating since not all heating uses electricity. However, the difference between
the heating and cooling degree days’ elasticities was only statistically significant for commercial
electricity, and only then at the 10% level of significance.

Perhaps, this surprising relationship suggests that for the geography/climate of the US, heating
buildings is more important than cooling them in determining electricity consumption; alternatively, it
may reflect differences in occupancy intensity, i.e., people may be at home more during the winter.
To examine this issue further, we re-run the residential and commercial electricity regressions using
only southern states. The results for commercial electricity are the same (i.e., the heating degree
day elasticity is greater than the cooling degree day one); however, for residential electricity, the
cooling degree day elasticity is statistically significantly larger than the heating degree day elasticity
for southern states (results not shown).

Appendix A Table A1 displays the results of the regressions shown in Table 3 when a
cross-sectional fixed effects estimator is used instead of the DCCE estimator. This fixed effects estimator
uses the dynamic panel bias correction proposed by Kiviet (1995).6 We include and discuss this
estimator because fixed effects is a commonly used—but flawed—estimator in time-series, panel

6 This estimator is implemented by STATA command xtlsdvc, which was developed by Giovanni Bruno.
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analysis. While the table results demonstrate that some estimates are similar to and others are different
from those in Table 3, we focus the discussion on the diagnostics. Including a lagged dependent
variable does result in stationary residuals for all of the regressions in Appendix A Table A1; however,
the coefficient on that lagged dependent variable is very large (although, likely, less than unity). That
large coefficient for the lagged dependent variable implies that despite stationary residuals, time
series issues remain (by contrast, Kapetanios et al. 2011 argued that cross-sectional average terms
account for nonstationarity). Moreover, the CD test statistics are particularly large, and cross-sectional
independence is very strongly rejected for each regression. Still, the fixed effects estimator does not
fully account for heterogeneity since the elasticities are constrained to be equal for all cross-sections.
Hence, we argue that the results in Appendix A Table A1 are likely biased, and the DCCE estimator is
preferred for the nonstationary, cross-sectionally correlated, and heterogeneous data we consider here.

3.2. Price Asymmetry

Table 4 displays the results for the price asymmetry regressions. For total energy and transport
energy all three price terms have significant and negative elasticities. However, the elasticities
are never significantly different, i.e., no price asymmetries—high prices, upward movements in
prices, and downward movements in prices all impact demand similarly. For industrial energy and
residential and commercial electricity only one price has a significant (negative) elasticity—downward
price movements for both industrial energy and commercial electricity and high price for residential
electricity. (As before, the regression residuals are always stationary).

Table 4. Disaggregated energy demand equations and price asymmetry with dynamic common
correlated effects estimator (DCCE) by Chudik and Pesaran (2015). Panel 48/50 US states, 1987–2013.

Dependent
Variable

Total
Energy

Industrial
Energy

Transport
Energy

Residential
Electricity

Commercial
Electricity

LDV -0.018 0.172 0.009 −0.026 0.150 *
GDP pc 0.097 0.581 0.414 **** 0.112 0.020
Price up −0.437 **** −0.310 −0.385 ** -0.013 0.214

Price down −0.304 * −0.544 *** −0.699 **** 7608 −0.900 **
Price high −0.478 **** 0.106 −0.447 **** −0.191 *** 0.060

HDD 0.220 **** 0.227 **** 0.010
CDD 0.032 * 0.113 **** 0.062 **

Observations 1202 1150 1250 1202 1202
x-sections 48 50 50 48 48

CD (p) −1.1 (0.28) −1.8 (0.07) 0.9 (0.89) 5.1 (0.00) 2.1 (0.04)

LDV: lagged dependent variable; pc: per capita; HDD: heating degree days; CDD: cooling degree days. All variables
logged. All dependent variables in per capita. Statistical significance level of 10%, 5%, 1% and 0.1% denoted by *, **,
***, and ****, respectively. CD: test statistic from Pesaran (2004) CD test, corresponding p-value in parentheses. The
null hypothesis is cross-sectional independence. Industry energy and residential electricity regressions include two
lags of the cross-sectional average terms; all other regressions include one such lag.

So, the price decomposition results for industry and commercial electricity particularly fail to
correspond with expectations. However, when price is decomposed as in Equations (3)–(6), the
series have much less time variance (e.g., the high price series would change continuously only
during periods of sustained price increases); and thus, the series are possibly less appropriate for
heterogeneous estimation. Hence, we re-run the price decomposition regressions to constrain all of the
price elasticities to be equal across states, i.e., similar to the time trend terms in Equation (1).7 (The
other variable elasticities are still allowed to vary by cross-section.) These new results are displayed in
Table 5. All of the price elasticities for transport are now insignificant—so those results are not shown.
However, for the other demand equations, some price asymmetry emerges.

7 This specification is estimated by using the pooled option in STATA command xtdcce2.
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Table 5. Disaggregated energy demand equations and pooled/homogeneous price asymmetry with
dynamic common correlated effects estimator (DCCE) by Chudik and Pesaran (2015). Panel 48/50 US
states, 1987–2013.

Dependent Variable Total
Energy

Industrial
Energy

Residential
Electricity

Commercial
Electricity

Heterogeneous Elasticities

LDV 0.369 **** 0.367 **** 0.091 ** 0.334 ****
GDP pc 0.178 *** 0.281 0.140 *** 0.101

HDD 0.163 **** 0.242 **** 0.098 *
CDD 0.030 *** 0.133 **** 0.052 **

Pooled Elasticities

Price up −0.067 *** −0.397 **** −0.039 −0.002
Price down 0.039 −0.126 ** −0.130 **** −0.292 ****
Price high −0.031 **** −0.164 **** −0.037 *** 0.061 *

Observations 1202 1150 1108 1202
x-sections 48 50 48 48

CD (p) −0.7(0.48) 14.5(0.00) 11.1(0.00) 6.3(0.00)

LDV: lagged dependent variable; pc: per capita; HDD: heating degree days; CDD: cooling degree days. All variables
logged. All dependent variables in per capita. Statistical significance level of 10%, 5%, 1% and 0.1% denoted by *, **,
***, and ****, respectively. CD: test statistic from Pesaran (2004) CD test, corresponding p-value in parentheses. The
null hypothesis is cross-sectional independence. Industry energy and residential electricity regressions include two
lags of the cross-sectional average terms; all other regressions include one such lag.

For total energy, both upward price movements and high price are significantly larger (in absolute
terms) than downward price movements (which are insignificant); however, upward prices and
high price are not significantly different from each other. For industry, as expected—and as for total
energy—the elasticity for upward price movements is significantly larger than that for downward price
movements (which is statistically significant). But contrary to expectations for industry, the elasticity
for upward movements is significantly greater than that of high price, too. Whereas, for buildings
electricity there is evidence of price asymmetry—such asymmetry being opposite to expectations.
For both residential and commercial electricity, upward price movements are insignificant, and the
elasticity for downward price movements is statistically significantly the largest (in absolute terms) of
the three price terms.

3.3. Nonlinear Income Elasticities

Figure 1a,b plot the state-specific income elasticity estimates for both total energy and industrial
energy against the individual state average income for the whole sample period. Those plots
suggest some evidence that the GDP per capita elasticity for both total energy and industrial energy
consumption rises and then falls with average GDP per capita (thus forming an inverted-U); however,
the R-squares for both simple trend lines were very small.
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Figure 1. Individual state income elasticity estimates for total energy and industrial energy and the
state average GDP per capita (in real US$) for the sample period. Trend line and R-squared also shown.
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4. Summary

This paper modeled the demand of total, industrial, and transport energy consumption and
residential and commercial electricity consumption by analyzing US state-based panel data and by
using methods that address heterogeneity, nonstationarity, and cross-sectional dependence. Most
of the results conformed to expectations. Residential electricity had the smallest price elasticity and
among the smallest income elasticities. Both heating and cooling degree days were important for
building electricity demand.

Lastly, limited to no evidence of nonlinearities and asymmetries were uncovered. The three
decomposed price elasticities—the historical high price, cumulative price drops, and cumulative price
increases—were rarely statistically significantly different. Again, price decomposition was proposed
as a way to model technical change and has been demonstrated to produce significant differences
among the decomposed prices (e.g., Gately and Huntington 2002). Unfortunately, the present dataset
does not allow us to capture the price increases of the two oil crises. Indeed, by 1987 (the first year of
data) the international oil price had fallen to a level that was lower, in real terms, than it was before the
first oil crises in 1974 (and, capturing the effects of these crises was an important motivation for Gately
and Huntington). Also, the nature of the price decomposition constrains/reduces time observations,
and thus, places degrees of freedom restrictions on mean-group type estimations. Hence, perhaps, if
more time observations were available, the price decomposition results might have produced stronger
evidence of asymmetries.
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Appendix A

Table A1. Disaggregated energy demand equations with fixed effects estimator (with the Kiviet 1995
dynamic panel bias correction). Panel 48/50 US states, 1987–2013.

Dependent
Variable

Total
Energy

Industrial
Energy

Transport
Energy

Residential
Electricity

Commercial
Electricity

Short Run

LDV 0.870 **** 0.863 **** 0.800 **** 0.721 **** 0.914 ****
GDP pc 0.126 **** 0.201 *** 0.139 *** 0.028 0.060

Price −0.021 **** −0.029 *** −0.029 **** −0.060 **** −0.035 ***
HDD 0.127 **** 0.157 **** 0.049 **
CDD 0.023 **** 0.072 **** 0.051 ****

Long Run

GDP pc 0.971 **** 1.466 *** 0.699 **** 0.102 0.692 *
Price -0.159 *** −0.214 ** −0.148 **** −0.215 **** −0.410 ***
HDD 0.980 **** 0.564 **** 0.569 *
CDD 0.174 *** 0.259 **** 0.585 ***

Time Trends

Time −0.002 **** −0.005 *** −0.001 0.002 *** 0.001
Time-squared 0.00005 **** 0.0001 *** 0.00004 * 0.000 −0.000
Observations 1248 1300 1300 1248 1248

x-sections 48 50 50 48 48
CD (p) 44.8 (0.00) 31.8 (0.00) 28.0 (0.00) 47.0 (0.00) 20.8 (0.00)

Notes: LDV: lagged dependent variable; HDD: heating degree days; CDD: cooling degree days. All variables
logged. All dependent variables in per capita. Statistical significance level of 10%, 5%, 1% and 0.1% denoted by *,
**, ***, and ****, respectively. CD: test statistic from Pesaran (2004) CD test, corresponding p-value in parentheses.
The null hypothesis is cross-sectional independence. Pesaran (2007) CIPS test confirmed that all regression residuals
are I(0).
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