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Equilibria in symmetric games: Theory and applications

Andreas Hefti
Department of Economics, University of Zurich and School of Management and Law,

Zurich University of Applied Sciences

This article presents a new approach to analyze the equilibrium set of symmetric,
differentiable games by separating multiple symmetric equilibria and asymmetric
equilibria. This separation allows the investigation of, for example, how various
parameter constellations affect the scope for multiple symmetric or asymmetric
equilibria, or how the equilibrium set depends on the nature of the strategies. The
approach is particularly helpful in applications because (i) it allows the complex-
ity of the uniqueness problem to be reduced to a two-player game, (ii) bound-
ary conditions are less critical compared to standard procedures, and (iii) best
replies need not be everywhere differentiable. The usefulness of the separation
approach is illustrated with several examples, including an application to asym-
metric games and to a two-dimensional price-information game.

Keywords. Symmetric games, uniqueness, symmetric equilibrium, oligopoly.

JEL classification. C62, C65, C72, D43, L13.

1. Introduction

When does a symmetric game with an arbitrary, finite strategy space have asymmetric
equilibria, multiple symmetric equilibria, or a unique (symmetric) equilibrium? As an
example, consider an oligopolistic firm that, confronted with N − 1 competitors, must
decide on the best way to sell its products. Such a decision may involve several critical
aspects, e.g., which price to choose, how much to advertise, or which quality level to
produce. While setting up such a situation as an N-player game with a possibly mul-
tidimensional strategy space is fairly simple, solving the model analytically to obtain
meaningful predictions about its possible outcomes—the equilibrium set—can be chal-
lenging, even in case of symmetric firms. Are there multiple outcomes or is the equilib-
rium unique? Do identical firms necessarily adopt the same actions in all equilibria or
could their behavior deviate from each other in an asymmetric equilibrium? Can spe-
cific details of the game influence whether asymmetric equilibria or multiple symmetric
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equilibria result? In the oligopoly example we could ask if and how certain aspects re-
lated to advertising and market demand (such as parameters of the advertising technol-
ogy or the degree of substitutability) could affect the type of equilibria that emerge. Do
all firms necessarily adopt the same advertising and pricing strategies, or could there be
asymmetric “specialization” equilibria, where some firms set high prices but advertise
only little and others set low prices but advertise a lot?

To analyze such questions, standard approaches such as contraction mappings, uni-
valence, or index theory can be insufficient as their applicability might be limited,1 par-
ticularly in parametric applications. While these methods, if applicable, theoretically
allow one to decide whether there is a unique equilibrium, one typically cannot learn
much more about the equilibrium set if there are multiple equilibria.2 Moreover, even if
these approaches are applicable, they might be hard to evaluate, especially in the pres-
ence of many players and a higher-dimensional strategy space, because they involve, at
the very least, the evaluation of a determinant of a potentially very large and abstract
matrix.

In this article I address the shortcomings of existing standard approaches by study-
ing separately the possible occurrence of the two types of equilibria—symmetric and
asymmetric equilibria—in these games. This approach yields separate conditions that
rule out the possibility of asymmetric equilibria and multiple symmetric equilibria, re-
spectively. These conditions are appealing, especially for applications, because of their
simplicity (reduction to a two-player problem) and their applicability (e.g., boundary
conditions are less problematic or best replies may have nondifferentiabilities). At a
more theoretical level, my separation approach allows investigation of how the scope
for multiple symmetric equilibria or asymmetric equilibria depends on the parameter
constellations in a game or on the general nature of the best replies.

The usefulness of the separation approach is demonstrated with several applica-
tions. For example, I prove that a symmetric game with a two-dimensional strategy
space (such as price and quality) can never possess strictly ordered asymmetric equi-
libria, where one player sets both a higher price and quality, if either price or quality
is nondecreasing in the opponents’ actions. Further, I show that sum-aggregative sym-
metric games with homogeneous revenues (such as contests) naturally have a unique
symmetric equilibrium. In the well studied Cournot model, the separation approach
reveals that the classical assumption c′′ − P ′ > 0 is key for uniqueness in the Cournot
model because it rules out the possibility of asymmetric equilibria. Moreover, I analyze
an oligopolistic model as suggested by this introduction, where firms compete in prices
and must decide on their advertising intensities. This game nicely illustrates the short-
comings of index theory—frequently regarded as the most general approach to unique-
ness in “nice” games (e.g., Vives 1999)—in applications, First, the index theorem cannot
be used due to violations of the respective boundary conditions, which occur naturally

1See, e.g., Theocharis (1960) for a classical application of the contraction principle to Cournot or see Hefti
(2015a) for a modern treatment of the contraction principle. See Gale and Nikaido (1965) for the univalence
approach. Vives (1999), e.g., provides a game-theoretic textbook treatment of index theory.

2This is demonstrated for the index theorem in Section S.1 of the Supplement, available as a supplemen-
tary file on the journal website, http://econtheory.org/supp/2151/supplement.pdf.

http://econtheory.org/supp/2151/supplement.pdf
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in this example.3 Second, we could not learn much about the properties of the possible
equilibria, even if the index theorem were applicable. The separation approach, alter-
natively, allows me to derive characteristic properties of equilibria both in the context of
a parametrized example and at a more abstract level.

Analyzing the equilibrium set of a symmetric game may not only be interesting in
itself, but matters also because we may learn more about the equilibrium set of asym-
metric variations of that game. As an example, uniqueness of equilibria in a symmet-
ric game is preserved under sufficiently small asymmetric variations of the symmetric
game, provided that the symmetric equilibrium is regular (Section S.4 of the Supple-
ment). Moreover, I find a strong link between the nonexistence of asymmetric equilibria
in symmetric one-dimensional games and the equilibrium properties of certain asym-
metric variations of those games (Section 4.3).

Related literature

While I am not aware of any contribution that studies existence and uniqueness of equi-
libria in general symmetric games or of a systematic separation between symmetric and
asymmetric equilibria, the literature on globally supermodular games has focused on
equilibrium existence and uniqueness in symmetric supermodular games.4 In partic-
ular, it is a known result that in the class of symmetric globally supermodular games, a
symmetric equilibrium always exists, and if the symmetric equilibrium is unique, there
cannot be any asymmetric equilibria. Moreover, globally supermodular games with a
one-dimensional strategy space can never possess asymmetric equilibria.5 While these
are powerful results,6 they depend on global strategic complementarity, while my ap-
proach also applies to games with non-monotonic best replies (such as contests). Amir
et al. (2010) study a symmetric one-dimensional two-player submodular game (decreas-
ing best replies). As the authors are interested only in asymmetric equilibria, the (single)
symmetric equilibrium that such a game naturally has (see Section 3.1) is deliberately
excluded by the assumption of a downward-jumping best reply around the diagonal.
The existence of asymmetric equilibria then is a consequence of supermodularity the-
ory, which requires reverting the order of each player’s action space. A known limitation
of this trick is that the reversion-of-axis argument does not generalize to the N-player
case (Vives 1999). In contrast, my results on the (in)existence of asymmetric equilibria
are not restricted to N = 2 (but allow the study of an N-player game as a two-player
game) and do not presume submodularity. In the special case of N = 2, I provide a
characterization of asymmetric equilibria (Section A.5). Finally, there are many articles
where the symmetric version of a game is a separate part of the analysis. I discuss some
of these contributions in the context of my applications.

The article is structured as follows. After introducing the notation, the separation
approach is developed in Section 3; Section 4 applies the approach to several examples.

3Section 4.1 contains further violating examples.
4See Vives (2005) for a survey on supermodular games.
5A result that my approach can easily replicate; see Section 3.2.
6These results hold under weaker conditions than those imposed by this article. For example, strategy

spaces need only be compact lattices (Vives 2005).
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2. Notation and assumptions

Consider a game ofN ≥ 2 players, indexed by 1� � � � �N . Let xg ≡ (xg1� � � � � xgk) ∈ S(k) de-
note a strategy of player g, where S ≡ S(k) = ×k

i=1Si with Si = [0� S̄i] ⊂ R, S̄i > 0. The
interior of Si is nonempty and denoted by Int(Si). All players have the same strat-
egy space S. I only consider pure strategies. The vector x−g ∈ SN−1 is a strategy pro-
file of player g’s opponents. The payoff of g is represented by a function �g(x) =
�g(x1� � � � � xg� � � � � xN) ≡ �(xg�x−g). Unless stated otherwise, the following properties
of �g(·) are assumed throughout this article.

• Symmetry: Payoff functions are permutation-invariant (Amir et al. 2008), meaning
that for any permutation σ of {1� � � � �N} and any x ∈ SN , payoff functions satisfy

�g(x1� � � � � xN)=�σ(g)(xσ−1(1)� � � � � xσ−1(N))�

• Payoff functions verify �(xg�x−g) ∈ C2(ON�R), where O ⊃ S is open in Rk and �
is strongly quasiconcave7 in xg ∈ S for any x−g ∈ S(N−1).

Let ∇�g(x) denote the gradient (a k vector) of �(xg�x−g) with respect to xg, and let
∇F(x)≡ (∇�g(x))Ng=1 denote the pseudogradient (anNk vector, Rosen 1965). The triple

(N�S(k)N��) denotes a symmetric, differentiable k-dimensional N-player game, and
the formulation “a game” in text refers to this triple.

Player g’s best reply ϕg(x−g) solves maxxg∈S�(xg�x−g). The assumptions made
assure that best replies ϕ(x−g) ≡ ϕg(x−g) and the joint best reply φ(x1� � � � � xN) =
(ϕ(x−1)� � � � �ϕ(x−N)) are continuous functions. Moreover, ϕg is differentiable at x−g if
ϕg(x−g) ∈ Int(S). A (Nash) equilibrium is a fixed point (FP) φ(x∗)= x∗, and the equilib-
rium is symmetric if x∗

1 = · · · = x∗
N . Any symmetric equilibrium x∗ ∈ SN can be identified

by its first projection x∗
1 ∈ S.

To find symmetric equilibria, a simplified approach, called the symmetric opponents
form approach (SOFA) hereafter, is useful.8 The SOFA takes an arbitrary indicative player
(g = 1) and restricts all opponents to play the same strategies, i.e., x̄−g = (x̄� � � � � x̄),
where x̄ ∈ S. Let �̃(x1� x̄)≡�1(x1� x̄−1), with corresponding best-reply function ϕ̃(x̄)≡
ϕ(x̄−1). In this way, the SOFA reduces anN-player game to the structure of a two-player
game. The derivative of ϕ̃ at x̄ is denoted by ∂ϕ̃(x̄).9 The following result, which I include
mainly for clarity and completeness, is a consequence of the above assumptions.

Proposition 1. The strategy profile x∗ ∈ SN is a symmetric equilibrium if and only if
x∗

1 = ϕ̃(x∗
1). A symmetric game has a symmetric equilibrium and the set of symmetric

equilibria is compact.

7Strong quasiconcavity means that z ·z = 1 and z · ∂�g(x)∂xg
= 0 imply z · ∂2�g(x)

∂xg∂xg
z < 0 (Avriel et al. 1981). The

assumption of a strongly quasiconcave payoff function in own strategies is mainly for convenience, because
it is a sufficient condition for the existence of a (possibly differentiable) best-reply function. However, many
results require only differentiability of best replies (and do not otherwise hinge on quasiconcavity), and
some results do not require that best replies are everywhere differentiable.

8The SOFA has been applied, e.g., by Salop (1979), Grossman and Shapiro (1984), Dixit (1986), and Hefti
(2015b) to find symmetric equilibria in specific games.

9Note that ϕ̃ inherits continuity and differentiability at interior solutions from ϕ1.
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Proof. The first claim is obvious. Continuity and strong quasiconcavity of � jointly
with compactness and convexity of S yield continuity of ϕ̃(x̄). Existence and compact-
ness then follow from ϕ̃ ∈ C(S�S) and the Brouwer FP theorem. �

3. The separation approach

Standard approaches to verify uniqueness are (i) the contraction mapping approach,
(ii) the univalence approach, and (iii) the index theorem approach. Obviously, these
methods can be applied to symmetric games (see, e.g., Vives 1999). Their shortcom-
ings are that they may be restrictive, involve boundary conditions, or require calculating
the determinant of possibly large matrices. Furthermore, we cannot use these meth-
ods to investigate, for example, what parameter constellations might cause a game to
have multiple symmetric equilibria versus asymmetric equilibria. This observation is
the starting point of the now proposed separation approach. The main idea is to sepa-
rate the analysis between the possibilities of symmetric and asymmetric equilibria. In
both cases I am able to reduce the dimensionality of the respective problem from an
N-player to the structure of a two-player game, albeit by a different set of arguments.
Because symmetric equilibria are assured to exist, it is natural to begin with symmetric
equilibria. For symmetric equilibria the essential simplification follows from the SOFA,
where an application of index theory to SOFA provides a powerful set of tools. With
asymmetric equilibria I show, by exploiting and extending the mean value theorem, that
the symmetric geometry implied by asymmetric equilibria (they necessarily come in
permuted pairs) imposes a slope condition on the best-reply function of the indicative
player in a two-player version of the game, where the strategies of all other players are
viewed as exogenous parameters. This slope condition provides a simple test to reject
the possibility of asymmetric equilibria.

3.1 Multiple symmetric equilibria

To verify whether there are multiple symmetric equilibria, the index theorem, applied to
the SOFA, yields a powerful tool, especially because the SOFA version of the index the-
orem may still be applicable even if the unrestricted version is not. Moreover, the SOFA
index results indicate how to deal with cases where index theory cannot be applied, e.g.,
because boundary conditions fail.10 Finally, the SOFA index results allow for further ex-
ploration, e.g., about the relationship between stability and uniqueness of symmetric
equilibria (see Hefti 2016a, 2016b).

Let Crs = {x1 ∈ S : ∇�̃(x1)= 0} denote the set of critical points, where ∇�̃(x1) is the
gradient of �̃(x1� x̄) with respect to x1, evaluated at x̄ = x1. Further, ∇�̃(x1) : S → Rk,
x1 �→ ∇�̃(x1) is a C1 vector field with corresponding k × k Jacobian J̃(x1). The in-
dex I(x1) of a zero of ∇�̃ is defined as I(x1) = +1 if Det(−J̃(x1)) > 0 and I(x1) = −1
if Det(−J̃(x1)) < 0. I call a symmetric game an index game if (i) ∇�̃ has only regular
zeroes11 and (ii) ∇�̃ points inward at the boundary of S.

10See Section 4.1 for a one-dimensional application and Section 4.2 for a two-dimensional application,
where the symmetric index theorem boundary conditions naturally fail.

11The inequality Det(J̃(x1)) �= 0 exists whenever x1 is a zero of ∇�̃.
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Theorem 1. There is an odd number of symmetric equilibria in an index game and
only interior symmetric equilibria exist. Moreover, the following four statements are
equivalent: (i) Det(−J̃(x1)) > 0 if x1 ∈ Crs, (ii) Det(I − ∂ϕ̃(x1)) > 0 if x1 ∈ Crs ,
(iii)

∏k
i=1 (1 − λi) > 0 if x1 ∈ Crs, where λi is an eigenvalue of ∂ϕ̃(x1), and (iv) there is

only one symmetric equilibrium.

Proof. Oddness, x1 ∈ Int(S), and (i) ⇔ (iv) follow from the index theorem (see, e.g.,
Vives 1999). Decompose J̃ as J̃ =A+B, where

A= ∂2�̃(x1� x̄)

∂x1∂x1
� B= ∂2�̃(x1� x̄)

∂x1∂x̄
�

both evaluated at x̄ = x1. The implicit function theorem (IFT) then asserts that ∂ϕ̃ =
−A−1B, which shows that Det(−J̃(x1)) > 0 ⇔ Det(I − ∂ϕ̃(x1)) > 0; hence (i) ⇔ (ii). Fi-
nally, (iii) ⇔ (ii) because for any eigenvalue λ of ∂ϕ̃(x1), the number (1 − λ) is an eigen-
value of I − ∂ϕ̃(x1). �

From the different conditions in Theorem 1, several new conditions asserting that
only one symmetric equilibrium exists can be derived (see Section S.2). Note that the
dimensionality of the objects involved in Theorem 1 is k rather thanNk. Moreover, reg-
ularity and the symmetric boundary conditions invoked in the definition of a symmetric
index game are weaker than the corresponding regularity and boundary conditions of
the unrestricted vector field induced by ∇F . Thus, the index conditions may be satis-
fied under ∇�̃ even if they are violated under ∇F . For example, the conventional index
theorem cannot be applied to the two-player game with first order conditions (FOCs)
∇�i = −xi − xj and S = [−1�1], as there are no regular points. But as ∇�̃(x1) = −2x1

and J̃(x1) = −2, the symmetric index theorem (Theorem 1) immediately tells us that
x= 0 is the only symmetric equilibrium. If k= 1 then, by (ii) of Theorem 1, there is ex-
actly one symmetric equilibrium if and only if ϕ̃(x̄) crosses the 45◦ line from above. This
simple geometric insight provides a constructive way to show that only one symmet-
ric equilibrium exists even if Theorem 1 cannot be applied (see Sections 4.1 and 4.2 for
examples).

3.2 Asymmetric equilibria

If (x1� � � � � xN) is an asymmetric equilibrium, then a permutation (xσ(1)� � � � � xσ(N)) gives
a similar asymmetric equilibrium.12 The main result of this section exploits this sym-
metry property. I first consider the case of a one-dimensional game, derive a sufficient
condition (Theorem 2) for the inexistence of asymmetric equilibria under weak assump-
tions, and graphically illustrate the main idea behind the theorem. Theorem 3 gener-
alizes this idea to the higher-dimensional case for everywhere differentiable best-reply
functions. Theorem 4 further extends the result to best replies with nondifferentiabilities

12The set of asymmetric equilibria that are permutations of each other forms an equivalence class within
the set of all asymmetric equilibria.
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for k= 2, and Corollary 2 highlights some central implications of Theorem 4 for the na-
ture of asymmetric equilibria in two-dimensional games.

One-dimensional case Since asymmetric equilibria come in permutations of each
other, we can restrict attention to the strategies of two (arbitrary) players and treat
the strategies of all other players as an exogenous parameter vector.13 Let ϕ(x2;X) ≡
ϕ1(x2;X), whereX ≡ (x3� � � � � xN) ∈ SN−2. The derivative of ϕ(·;X) with respect to x2 is
denoted by ∂ϕ(x2;X). For givenX ∈ SN−2, let

T ≡ {
x2 ∈ S : ϕ(x2;X) ∈ Int(S)�ϕ(x2;X) not differentiable in x2

}
�

We concentrate on one-dimensional symmetric games where every x2 ∈ T is locally iso-
lated, which trivially includes T = ∅. Note that if� satisfies the assumptions of Section 2
and additionally it is known that ϕ(SN−1)⊂ Int(S), then T = ∅.

Theorem 2. Suppose that a one-dimensional symmetric game satisfies ϕ(x−1) ∈
C(SN−1� S) and every x2 ∈ T is locally isolated for any given X ∈ SN−2. This game has
no asymmetric equilibria if

x2 ∈ Int(S) \ T�ϕ(x2;X) ∈ Int(S) ⇒ ∂ϕ(x2;X) >−1� (1)

All proofs not provided in the text are given in the Appendix.
The geometric intuition behind Theorem 2 can be depicted graphically for the case

where N = 2 and ϕ−1(S) ⊂ Int(S). In its essence, it is an application of the mean value
theorem; the idea is illustrated in Figure 1. Suppose that the point A = (xa1�x

a
2) cor-

responds to an asymmetric equilibrium. By symmetry, its reflection, the point A′ =
(xa2�x

a
1), also is an asymmetric equilibrium. Hence the line that connectsA andA′ must

have a slope of −1. As ϕ(x2) remains in Int(S), ϕ is differentiable on Int(S). Accord-
ing to the mean value theorem, there is a point x̃2 ∈ (xa2�xa1) with ∂ϕ(x̃2) = −1. Hence
if in such a game ∂ϕ(x̃2) > −1 for all x2 ∈ Int(S), then there cannot be any asymmetric
equilibria.14

Theorem 2 applies, but is not limited, to games that satisfy the assumptions of Sec-
tion 2. For example, if condition (1) holds for a game with an only piecewise differ-
entiable best-reply function, then this game has no asymmetric equilibria. Further, it
should be noted that (1) also rules out asymmetric boundary equilibria, despite that
we only need to evaluate the slope of ϕ at interior points. Moreover, the theorem im-
poses no restrictions on the shape of the best-reply function (up to condition (1)). For
example, Theorem 2 can be applied to games with non-monotonic behavior (such as

13Note that it makes little sense to use the SOFA in the context of asymmetric equilibria because, by
its construction, the SOFA could at best exclude asymmetric equilibria of the type where player 1 adopts
strategyA and all other players adopt strategy B �=A.

14The general proof (see the Appendix) is complicated by the fact that ϕ(x2) is allowed to be on the
boundary or not differentiable everywhere, which requires extending the mean value theorem appropri-
ately (see Lemmata 1 and 2, Appendix A.1). The “>” in (1) (rather than “ �=”) comes from the fact that I allow
for nondifferentiabilities and boundary equilibria (see the proof of Theorem 2 for details).
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Figure 1. Theorem 2.

contests; see Section 4.1). Condition (1) is comparably simple because it only needs in-
formation about the behavior of the reply function in a two-player game (for various
given values of X), while, e.g., the index theorem requires evaluating an N ×N matrix.
Finally, it should be mentioned that if additional information about ϕ(x−1) is available,
this can further restrict the relevant x2 range in Theorem 2. For example, it suffices to
verify condition (1) only at points x2 ∈ Int(S)∩ϕ(SN−1).

In applications, one typically calculates the slope of a best-reply function using the
IFT. In particular, if ϕ(x2;X) ∈ Int(S) and x2 ∈ Int(S) \ T , then

∂ϕ(x2;X)= −�12(x1�x2;X)
�11(x1�x2;X)� X ∈ SN−2�

Therefore, (1) can be expressed in terms of the second partial derivatives of �.

Corollary 1. In a one-dimensional symmetric game for all x1�x2 ∈ Int(S) and any
givenX ∈ SN−2, if the condition

�1(x1�x2;X)= 0�x2 /∈ T ⇒ �11(x1�x2;X)<�12(x1�x2;X) (2)

is satisfied, then no asymmetric equilibria exist.

Higher-dimensional case I now generalize Theorem 2 to the higher-dimensional
case. For k ≥ 1, the best reply generally is a vector-valued function ϕ(x2;X) =
(ϕ1(·)� � � � �ϕk(·)).
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Theorem 3. Let k ≥ 1 and suppose that ϕ(x−1) is everywhere differentiable. For any k
points x1

2� � � � � x
k
2 ∈ S and any givenX ∈ SN−2, if the k× kmatrix

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ∂ϕ1
(
x1

2;X
)

∂x21

∂ϕ1
(
x1

2;X
)

∂x22
· · · ∂ϕ1

(
x1

2;X
)

∂x2k

∂ϕ2
(
x2

2;X
)

∂x21
1 + ∂ϕ2

(
x2

2;X
)

∂x22
· · · ∂ϕ2

(
x2

2;X
)

∂x2k
���

���
� � �

���

∂ϕk
(
xk2 ;X)
∂x21

· · · · · · 1 + ∂ϕk
(
xk2 ;X)
∂x2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

is nonsingular (Det(A) �= 0), then no asymmetric equilibria exist.

It is easy to see that for k= 1 and with the differentiability assumption, condition (1)
implies the determinant condition (3) in Theorem 3.

To obtain a better understanding of Theorem 3 if k > 1, I discuss the case k = 2 in
detail. Additionally, I show that the differentiability assumption can be weakened in the
spirit of Theorem 2. Let

(α�β�γ�δ)≡
(
∂ϕ1

∂x21
�
∂ϕ1

∂x22
�
∂ϕ2

∂x21
�
∂ϕ2

∂x22

)
�

where all partial derivatives are evaluated at (x2;X).

Theorem 4. Let k= 2 and suppose that ϕ ∈ C(SN−1� S), ϕ(SN−1)⊂ Int(S), and ϕ(x−1) is
differentiable, except possibly for a set of isolated points. If, for all x2�x

′
2 ∈ S and any given

X ∈ SN−2, the condition

α(x2)�δ
(
x′

2
)
>−1�

(
1 + α(x2)

)(
1 + δ(x′

2
))
>β(x2)γ

(
x′

2
)

(4)

holds, then no asymmetric equilibria exist.

Comparing Theorems 3 and 4 one easily sees that the second inequality of (4) im-
plies the determinant condition in Theorem 3. The additional slope conditions (first
two inequalities in (4)) follow from the weakening of the differentiability assumption,
similar to (1) in the one-dimensional case.

Condition (4) sheds light on the nature of asymmetric equilibria in symmetric two-
dimensional games. The first two inequalities in (4) state that ϕi(x2;X) may not de-
crease too quickly in the ith component strategy of player two, which is not surprising
in light of (1), so suppose that α�δ > −1 everywhere. Then the last inequality in (4) re-
veals that the cross-partial derivativesβ and γ crucially influence whether and what type
of asymmetric equilibria may occur in the game. Suppose that xa = (xa1�x

a
2� � � � � x

a
N) is

an asymmetric equilibrium. I refer to xa as a strictly ordered equilibrium if xag > x
a
h,

g �= h, for any pair of strategies in xa. I call an equilibrium with xagi > x
a
hi but xagi′ < x

a
hi′ ,

i� i′ ∈ {1�2} with i �= i′ strictly unordered.
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Corollary 2. The following facts are satisfied under the presumptions of Theorem 4:

(i) If β(x2)≥ 0, α(x2) >−1 or γ(x2)≥ 0, δ(x2) >−1 for any x2 ∈ S and anyX ∈ SN−2,
then there cannot be any strictly ordered equilibria.

(ii) If β(x2)≤ 0, α(x2) >−1 or γ(x2)≤ 0, δ(x2) >−1 for any x2 ∈ S and anyX ∈ SN−2,
then there cannot be any strictly unordered equilibria.

(iii) Suppose that α(x2)�δ(x2) > −1 for all x2 ∈ S and any X ∈ SN−2. Additionally, if
β(x2)≥ 0 or γ(x2)≥ 0 for any x2 ∈ S and any X ∈ SN−2, then there cannot be any
asymmetric equilibria with xag ≥ xah. If insteadβ(x2)≤ 0 or γ(x2)≤ 0, there cannot
be any asymmetric equilibria with xagi > x

a
hi but xgi′ ≤ xahi′ .

Corollary 2(iii) implies that two-dimensional games with weakly increasing best
replies can only have strictly unordered asymmetric equilibria, while games with weakly
decreasing best replies (and α�δ >−1) can only have strictly ordered asymmetric equi-
libria. Finally, a game with α�δ >−1 and both partially increasing and decreasing replies
(e.g., β≥ 0 and γ ≤ 0) can never have any asymmetric equilibria.

Theorem 4 is useful for applications because the IFT allows the expression of (4)
in terms of the second partial derivatives of �, similarly to Corollary 1 in the one-
dimensional case. If ϕ(x2;X) ∈ Int(S), then ∂ϕ(x2;X)= −H−1B, where

H = ∂2�(x1�x2;X)
∂x1∂x1

� B= ∂2�(x1�x2;X)
∂x1∂x2

�

Moreover, it is possible to adapt Theorem 4 to the case where ϕ(x−1) ∈ ∂S may occur,
which is shown in Section S.3. While the IFT remains the essential tool to calculate the
slopes in applications with boundary solutions, it must be applied to an extended sys-
tem of equations.15

From condition (4) one can derive further conditions to rule out asymmetric equi-
libria that may be useful for specific games. A compact way to express (4) is to say that,
for any givenX ∈ SN−2, the matrix(

1 + α(x2) β(x2)

γ
(
x2

′) 1 + δ(x2
′)
)

= I +
(
∂ϕ1(x2)

∂ϕ2
(
x2

′)
)

︸ ︷︷ ︸
≡A(x2�x2

′)

has only positive principal minors for x2�x
′
2 ∈ S. If, for any (x2�x

′
2), we have

α(x2)�δ(x
′
2) > −1 and there is a matrix norm ‖ · ‖ such that ‖A(x2�x

′
2)‖ < 1 (the spec-

tral radius of A(x2�x
′
2) is less than 1), then there cannot be any asymmetric equilibria.

For example, if for any x1�x2 ∈ S and any givenX ∈ SN−2, the local diagonal dominance
condition

�1(x1�x2;X)= 0 or�2(x1�x2;X)= 0 ⇒ |�ii|>
∑

j �=i�j≤4

|�ij|� i= 1�2

holds, then the game cannot have any asymmetric equilibria.

15Despite this complication, the central insights about the possibility of asymmetric equilibria as con-
veyed by Theorem 4 and Corollary 2 remain valid.
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3.3 Summary

If the conditions of Theorem 1 and of Theorem 2 (for k= 1) or Theorem 3 (for k≥ 1) are
satisfied, then the game has a unique equilibrium: the symmetric equilibrium. Com-
pared to the necessity of evaluating the determinant of an Nk×Nk matrix as required
by the univalence or index theorem, the separation approach enables us to reduce the
dimensionality of the problem from Nk to k, and allows us to learn more about the
nature of equilibria in particular games. This is generally not possible with standard
approaches to uniqueness. For example, even if ∇F satisfies the index conditions and
if critical symmetric points have an algebraic index sum of +1, we may not conclude
that there are no asymmetric equilibria, because there still could be an even number
of asymmetric equilibria. Similarly, an index sum of −1 from critical symmetric points
does not necessarily imply the existence of multiple symmetric equilibria.16 The sep-
aration approach provides use with a manageable set of tools that can be applied to
non-index games, which is demonstrated by several examples in the next section. In
particular, Theorems 2 and 4 can be used in non-index games to rule out asymmetric
equilibria, and even if ∇�̃ does not satisfy the index conditions, we may still use the
SOFA to rule out multiple symmetric equilibria.

4. Applications

The main objective of this section is to demonstrate the usefulness of the separation
approach in various well known examples. In Section 4.1, I consider the important class
of one-dimensional games with sum-aggregative payoffs, such as Cournot competition
or contests. Section 4.2 applies the separation approach to a two-dimensional price-
information game. Section 4.3 reveals that there is a strong link between the inexistence
of asymmetric equilibria in a symmetric game and certain properties of the equilibrium
set of asymmetric variations of the symmetric game. This yields an additional reason
why having a specific set of tools to analyze the equilibrium set of symmetric games is
useful.

4.1 One-dimensional sum-aggregative games

Several interesting games have the property that the strategies enter the payoff func-
tions as a sum.17 Payoff functions of such sum-aggregative games can be represented as
�(xg�x−g)= �̂(xg�Q), withQ= ∑N

j=1 xj .
18

Proposition 2. Consider a sum-aggregative symmetric one-dimensional game.

16See Section S.1 for what possibly could be inferred from index theory.
17See, e.g., Corchon (1994), Cornes and Hartley (2005), or Jensen (2010) and the references therein. Re-

cently, Martimort and Stole (2012) developed a method to study equilibrium aggregates, which also yields
a proof of equilibrium existence.

18Note that, e.g., a game with payoff �(xg�
∑
f (xj)), where f ∈ C2(S�R) is strictly increasing, can be

equivalently represented as a sum-aggregative game using the change of variable ej = f (xj).
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(i) If, for (x1�Q) ∈ Int(S)× (0� S̄N), condition

�̂1(x1�Q)+ �̂2(x1�Q)= 0 ⇒ �̂11(x1�Q)+ �̂12(x1�Q) < 0 (5)

is satisfied, then no asymmetric equilibrium exists.

(ii) A sum-aggregative symmetric index game has only one symmetric equilibrium if
and only if the following condition holds on Crs :

�̂11(x1�Nx1)+ (N + 1)�̂12(x1�Nx1)+N�̂22(x1�Nx1) < 0� (6)

Proof. (i) Use (2) of Corollary 1 to obtain (5).
(ii) Apply (i) of Theorem 1 to obtain (6). �

Example 1: Cournot The symmetric Cournot model has �̂(x1�Q) = P(Q)x1 − c(x1),
where Q is the aggregate quantity supplied, P(Q) is inverse market demand, and c(x1)

are quantity costs. Presuming that the symmetric index conditions are satisfied, there is
exactly one symmetric Cournot equilibrium if and only if

P(Nx1)+ P ′(Nx1)x1 − c′(x1)= 0

⇒ N
(
P ′(Nx1)+ P ′′(Nx1)x1

)
< c′′(x1)− P ′(Nx1)�

(7)

Moreover, from (5) we deduce that if P ′ < c′′ is satisfied (whenever P(Q) − c′(x1) +
P ′(Q)x1 = 0), then the Cournot game has no asymmetric equilibria. Kolstad and Math-
iesen (1987) derive general conditions of uniqueness for the (nonsymmetric) Cournot
game, imposing P ′ < c′′ as an exogenous assumption. We learn from the separation ap-
proach that exactly this assumption rules out the possibility of asymmetric equilibria
and, therefore, is a natural precondition for uniqueness. It follows that non-uniqueness
of equilibria in the symmetric Cournot model mainly arises from the possibility of multi-
ple symmetric equilibria, and not from asymmetric equilibria. Notably, P ′ < c′′ also rules
out the possibility of asymmetric equilibria even if ϕ(x−1) ∈ ∂S or ϕ(x−1) has kinks,19

which is not unrealistic for a Cournot model with heterogeneous consumers. Similarly,
the symmetric index theorem can be applied to rule out multiple symmetric equilib-
ria even if ϕ̃ has kinks, provided that the index conditions are satisfied (i.e., symmetric
kinks are not symmetric equilibria). If the uniqueness condition20 of Kolstad and Math-
iesen (1987) is evaluated for the symmetric case under the assumption that P ′ < c′′, we
obtain exactly condition (7), ruling out multiple symmetric equilibria, which besides
the simplicity of obtaining the result, nicely illustrates the generality of the separation
approach.

Example 2: Contests Consider a sum-aggregative contest

�= p
(
g(y1)�

N∑
j=1

g(yj)

)
V − h(y1)�

19In such cases, the index theorem obviously is not applicable.
20Corollary 3.1, p. 687.
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where V �g′ > 0 and p(·) ∈ [0�1] is a contest success function (Konrad 2009). Note that,
by a change of variables, such a contest may be represented as �̂ = p(x1�Q)V − c(x1),
where c(x1)= h(g−1(x1)) ∈ C2. Using (5) and (6), and assuming that the symmetric in-
dex conditions are satisfied, we may conclude that such a contest has a unique symmet-
ric equilibrium if, at corresponding critical points,(

p11(x1�Q)+p12(x1�Q)
)
V − c′′(x1) < 0� (5′)(

p11(x1�Nx1)+ (N + 1)p12(x1�Nx1)+Np22(x1�Nx1)
)
V − c′′(x1) < 0� (6′)

Suppose that c(0)= c′(0)= 0 and

p(x1�Q)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
N + r � x1 = · · · = xN = 0�

1
1 + r � x1 > 0�x2 = · · · = xN = 0�

f

(
x1

Q+ r
)

else�

where r ≥ 0 is a noise parameter, f ∈ C2 is strictly increasing, is concave, and f ′(0) > 0.
The best reply ϕ(x−1) ∈ (0� S̄] is continuous, and differentiable if ϕ(x−1) ∈ Int(S) when-
ever x2 > 0. It can be verified that (5′) is satisfied, meaning that there cannot be any
asymmetric contest equilibria. Turning to symmetric equilibria, we note that x1 = 0 can
never be a best reply to any x−1 ∈ SN−1. While we cannot use the (symmetric) index the-
orem because � is not differentiable at the origin, it is straightforward to verify that this
example satisfies (6′) for respective interior points. As (6′) implies that ϕ̃(x̄) can cross
the 45◦ line at most once on (0� S̄], we conclude that there is a unique symmetric equi-
librium x∗

1 ∈ (0� S̄]. If f (z)= z, then the previous example collapses to the often invoked
Tullock success function. Hence uniqueness of equilibrium in Tullock contests (with
noise) is easily and directly established by the separation approach.21

Example 3: Homogeneous revenue The Tullock contest with r = 0 is an important
example, where revenues are homogeneous functions. Applying the separation ap-
proach to sum-aggregative games with general homogeneous revenues and strictly con-
vex costs reveals that such games naturally have only one symmetric equilibrium, which
also very likely is the unique equilibrium of the game. To see this, consider �(x) =
π(x1�

∑
xj)− c(x1), where π(x1�

∑
xj) is homogeneous of degree z < 1 in (x1� � � � � xN)

or, equivalently, π(x1�Q) is z-homogeneous in (x1�Q).

Proposition 3. Suppose that π(x1�Q) is homogeneous of degree z < 1 in (x1�Q) and
c′� c′′ > 0. Then there is only one symmetric equilibrium. If additionally π1 ≥ 0 and
π11 ≤ 0 for x1 > 0, the symmetric equilibrium is unique.

21Cornes and Hartley (2005) prove uniqueness of equilibrium in linear Tullock contests (without noise)
with the help of share functions. The separation approach yields the same conclusion, but in a very sim-
ple way. Moreover, it follows that uniqueness of equilibrium in such contests is robust to noise or to a
“concavication” of the success function.
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Proof. We start with the second claim. As π1(x1�Q) ≥ 0 is z − 1-homogeneous, the
Euler theorem and the sum-aggregative structure imply that π11 + Q

x1
π12 ≤ 0 for x1 > 0,

which if π11 ≤ 0 necessarily implies that π11 + π12 ≤ 0. As c′′(x1) > 0 for x1 > 0, there
cannot be any asymmetric equilibria by (5). Turning to symmetric equilibria, as

∂�
(
x1�

∑
xj

)
∂x1

∣∣∣∣∣
xj=x1

is (z−1)-homogeneous in x1, we must have that ∇�̃(x1)=ωxz−1
1 −c′(x1), whereω> 0 is

a constant. Hence J̃(x1)=ω(z−1)xz−2
1 −c′′(x1) < 0 whenever x1 > 0, which implies that

ϕ̃(x̄) can intersect the 45◦ line at most once. Thus there cannot be multiple symmetric
equilibria. �

4.2 A two-dimensional information-pricing game

In this section, I apply the separation approach to the two-dimensional information-
pricing game as introduced by Grossman and Shapiro (1984). Each of two firms chooses
its price p and the fraction a of consumers to be made aware of its product, taking (p̄� ā)
of its opponent as given. There is a measure of δ consumers who are ex ante unaware
of both firms. Information (advertisement) is distributed randomly over the population,
firms cannot discriminate between consumers, and products are imperfect substitutes.
A firm’s demand from consumers not aware of the other firm is x(p), and is x(p� p̄) for
consumers who receive ads from both firms. Assuming constant unit costs of produc-
tion, the firm’s expected profit is

�(p�a)= a[(1 − ā) (p− c)x(p)︸ ︷︷ ︸
≡V (p)

+ ā (p− c)x(p� p̄)︸ ︷︷ ︸
≡V (p�p̄)

]
δ−C(a)≡ aV (p� p̄� ā)δ−C(a)� (8)

where C(a) are information costs. I assume that x(p) ≥ x(p� p̄), i.e., for given prices
p� p̄, firm demand is never lower if a consumer is not aware of the competitor. Similarly,
demand reacts more sensitively toward a unilateral price change in the case of perfectly
informed consumers (xp(p� p̄)≤ x′(p)), and (marginal) demand never decreases in the
opponents price (xp̄�xp�p̄ ≥ 0). Intuitively, these facts can be justified under free trade,
as perfectly informed consumers have two outside options (not to consume or to con-
sume at the competitor’s location) whereas unilaterally informed consumers just have
one (not to consume).

To be precise, the following formal assumptions are imposed: The function
V (p� p̄� ā) ∈ C2(S2�R), where S = [c� p̂]×[0�1], is strongly quasiconcave inp, Vā�Vpā ≤ 0,
Vp̄�Vpp̄ ≥ 0, and p̂ > c is the monopoly price. The cost function satisfiesC(0)= C ′(0)= 0
and C ′(a)�C ′′(a) > 0 for a > 0. Moreover, it is assumed that (p�a)= ϕ(p̄� ā) ∈ Int(S) for
any (p̄� ā) ∈ [c� p̂] × (0�1], and that there exists p ∈ [c� p̂]: V (p� c�1) > 0. The last as-
sumption means that even under perfect information and pricing at marginal costs by
the opponent, the firm can retain a strictly positive market demand for a price slightly



Theoretical Economics 12 (2017) Equilibria in symmetric games 993

above marginal costs, which is a typical feature of competition with imperfect substi-
tutes.22 A simple example for V is linear demand, e.g., derived from quadratic utility
(LaFrance 1985), where x(p)= 1 −p and

x(p� p̄)= 1 −p+ γ(p̄− 1)

1 − γ2 �

The parameter γ ∈ [0�1/2] controls the degree of substitutability, and I set c = 0 for sim-
plicity (hence Sp = [0�1/2]). It is easy to see that this example verifies the above assump-
tions on V .

Because � is continuous, V is strongly quasiconcave in p and C ′′ > 0, the best reply
ϕ = (p�a) is a continuous function of (p̄� ā), and it follows that at least one symmetric
equilibrium exists.23 Despite that (8) may look innocent, investigating the set of equilib-
ria is not trivial. For example, the index theorem cannot be used because the boundary
conditions are naturally violated in this model.24 Moreover, even if it were applicable,
we would have to evaluate the determinant of a largely abstract 4 × 4 matrix.

I now use the separation approach to investigate the equilibrium set of this two-
dimensional game. I first analyze the scope of asymmetric equilibria and then turn to
the possibility of multiple symmetric equilibria.

Asymmetric equilibria The assumptions made imply that p′(p̄) ≥ 0, p′(ā) ≤ 0, and
a′(p̄) ≥ 0.25 Hence, by Corollary 2(ii), we conclude that if asymmetric equilibria exist,
these equilibria cannot be strictly unordered. Moreover, if additionally a′(ā) >−1, it fol-
lows from Corollary 2(iii) that there cannot by any asymmetric equilibria, showing that
a′(ā) > −1 is the crucial requirement to rule out asymmetric equilibria in this model.
The condition a′(ā) >−1 holds if for a� ā ∈ (0�1), we have that26

V (p)− V (p� p̄)
(1 − ā)V (p)+ āV (p� p̄) <

C ′′(a)
C ′(a)

� (9)

The left-hand side of (9) is maximal (for given p) if (p̄� ā) = (c�1). Hence if V (p)/
V (p� c) < C ′′(a)/C ′(a) + 1, then (9) is satisfied. As illustrated below, we may possibly
exploit the FOC pertaining to (8) to obtain a better estimate.

So far, the analysis has revealed two things about the scope of asymmetric equilibria.
First, the fact that only (weakly) ordered asymmetric equilibria may exist (if any at all)
is independent of scale effects. This can be seen because none of the above derivatives
depends on the market size parameter δ, or on unit production costs c, or on multiplica-
tive information cost parameters (if C(a)= θc(a), then θ > 0 plays no role). Second, (9)
shows that asymmetric “specialization” equilibria could exist only if marginal costs are
highly inelastic or monopoly rents exceed the duopoly rents by a relatively large amount

22Because V (p� p̄� ā) > 0 for some p> c is always feasible, a= 0 cannot be a part of a firm’s best reply.
23See the proof of Proposition 1.
24For example,�a(c�0)= V (c� p̄� ā)δ−C ′(0)= 0, i.e., ∇F does not point inward at (c�0� p̄� ā) ∈ ∂S2.
25These are standard IFT results.
26Apply the IFT to the FOC pertaining to (8).
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(e.g., because products are strong substitutes). In such an equilibrium, one firm could
specialize on advertising (high (p�a)), earning quasi-monopoly rents from unilaterally
informed consumers but incurring high advertising costs, whereas the other firm spe-
cializes in competition (low (p�a)), and thereby wins the fully informed consumers, but
faces only little overall demand because of a small advertising campaign.

What is the scope for such asymmetric equilibria in our parametric example? Ex-
ploiting the linearity of the problem, it can be shown that

p(p̄� ā)= 1 − γ2 − γ(1 − p̄− γ)ā
2 − 2γ2(1 − ā) ∈

(
1 − γ

2
�

1
2

)

for γ� p̄ ∈ [0�1/2] and ā ∈ (0�1]. Using p̄ = (1 − γ)/2 and ā = 1 in the left-hand side of
(9) reveals that the left-hand side of (9) is smaller than γ/(1 − γ− γ2) ≤ 2. Hence, if
C ′′(a)/C ′(a) ≥ 2, we can conclude that no asymmetric equilibrium exists. More specif-
ically, for C(a)= θaη, η≥ 2, no asymmetric equilibrium exists if competition is not too
intense (if γ ≤ √

2 − 1) or if η ≥ 3. In their analysis, Grossman and Shapiro (1984) use
the “constant reach independent readership” (CRIR) advertising technology withC(a)=
Ln(1 − a)/Ln(1 − r), r ∈ (0�1). This cost function implies that C ′′(a)/C ′(a)= 1/1 − a≥ 1.
Hence if γ ≤ √

2 − 1 and advertising technology follows the CRIR technology, there can-
not be any asymmetric equilibria.

Symmetric equilibria Turning to symmetric equilibria, we calculate

∇�̃(p�a)=
(

aV1(p�p�a)δ

V (p�p�a)δ−C ′(a)

)
� (10)

Equation (10) shows that the index theorem is not applicable, even if we restrict atten-
tion to symmetric equilibria, because ∇�̃ vanishes, e.g., at the corner point (p�a) =
(c�0). Whereas (c�0) is a zero of (10), i.e., an equilibrium candidate, it obviously can-
not constitute a symmetric equilibrium. While we cannot rely on the index theorem to
discuss the scope of multiple symmetric equilibria, (10) provides us with a guideline to
prove uniqueness in a constructive way.

If ∇�̃(p�a) = 0 at an interior point (p�a), we have Det(J̃(p�a)) > 0 if and only if
V1p(Vaδ− C ′′)− V1aVpδ > 0. If the index theorem were applicable, we could now con-
clude that if (i) V1(p�p�a) = 0 ⇒ V1p(p�p�a) < 0 and (ii) V (p�p�a)δ − C ′(a) = 0 ⇒
Vp(p�p�a) > 0, then there is exactly one symmetric equilibrium (p�a). I now show that
these conditions imply this result without invoking the index theorem. To see this, con-
sider the pure symmetric pricing game where each firm solves maxpi∈[c�p̂]aV (pi�pj�a)δ
for given a > 0. Then (i) assures the existence of a single symmetric equilibrium p =
p(a) ∈ (c� p̂], because p̃(p̄;a) can reach the 45◦ line just once.27 Moreover, p(0)= p̂, p is
continuous in a and if p(a) ∈ (c� p̂), then p′(a)= −V1a/V1p ≤ 0. Next, consider the pure
symmetric information game where each firm solves maxai∈[0�1]aiV (p�p�aj)δ − C(ai).

27This holds because p = c cannot be an equilibrium by the assumptions made and V1p(p�p�a) =
V11(p� p̄�a)+ V12(p� p̄�a) at p̄= p. Hence V1p < 0 implies that p̃′(p;a) < 1 whenever p̃(p�a)= p ∈ (c� p̂).
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Figure 2. Inexistence of multiple symmetric equilibria.

Then (ii) implies the existence of a single symmetric equilibrium a= a(p) ∈ [0�1], where
a(c)= 0 and a is continuous in p. If a(p) ∈ (0�1), then a′(p)= Vpδ/Vaδ−C ′′ > 0.

A symmetric equilibrium of the original information-pricing game is a FP of the
mapping (p(a)�a(p)), and because p′(a)≤ 0 but a′(p) > 0 hold at all respective interior
points, the above analysis shows that there is exactly one such FP (see Figure 2).

It is straightforward to check that the parametric example satisfies p′(a) ≤ 0 and
a′(p) > 0 at interior points, and therefore has only one symmetric equilibrium.

Proposition 4. In the information-pricing game with linear demand, there is a single
symmetric equilibrium. For C(a)= θaη, η≥ 2, the symmetric equilibrium is even unique
if information costs are sufficiently elastic (η≥ 3) or products are not too strong substitutes
(γ ≤ √

2 − 1).

4.3 Equilibria in asymmetric games

Let cg ∈ P denote player g’s parameter vector, where P ⊂ Rm is a compact param-
eter space. Let �(c) ≡ (N�SN� {�g(x� cg)}Ng=1), c ∈ PN , be a game28 with parameters
c1� � � � � cN . If c1 = c2 = · · · = cN , the game is symmetric. For now, we concentrate on
one-dimensional games where the heterogeneity of the payoff functions is restricted
to the distribution of a single parameter. The following proposition shows that, for a
game where best-replies are increasing in the parameter c ∈ [¯c� c̄], if any underlying two-
person symmetric game does not have an asymmetric equilibrium, then the strategies
in every equilibrium of the asymmetric game are ordered exactly in the same way as the
parameters ci.

28In this section, I assume that �j(x� c) is twice continuously differentiable in (x� c) and strongly quasi-
concave in xj for any c ∈ P .
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Proposition 5. Suppose that ϕ(x−1� c) is increasing in c on [¯c� c̄] and c̄ ≥ c1 > c2 > · · ·>
cN ≥ ¯c. If, for any given X ∈ SN−2 and any c ∈ [¯c� c̄], the symmetric two-player game with
payoffs �j(x1�x2;X�c), j = 1�2, has no asymmetric equilibria, then every equilibrium of
the asymmetric game �(c1� � � � � cN) satisfies x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

N . Moreover, x∗
1 > x

∗
2 > · · ·>

x∗
N results if ϕ(x−1� c) is strictly increasing in c on [¯c� c̄].

The proof builds on a characterization result for asymmetric equilibria in two-player
games (see Appendix A.5). If the game is decreasing in c, the inequalities of the equilib-
rium strategies are reverted. Proposition 5 tells us, e.g., that asymmetric games never
possess symmetric equilibria if ϕj is strictly monotonic in c on [¯c� c̄]. Notably, we can
use the simple slope condition of Theorem 2 to exclude the possibility of equilibria that
do not reflect the order of the parameters in c-monotonic asymmetric games.

As a simple illustration, reconsider the symmetric Cournot or contest model (Exam-
ples 1 and 2 in Section 4.1) with a cost function of the form c(xi�α), where α ∈ [¯α� ᾱ]
is a parameter. Suppose that cxα(x�α) < 0 for any x > 0, such that ϕ(x−1� ·) is strictly
increasing. Because we know from Section 4.1 that both symmetric games verify con-
dition (5), there cannot be asymmetric equilibria in any symmetric two-player version
of these games. Proposition 5 then assures that any asymmetric version of these games
with ᾱ = α1 > · · · > αN = ¯α can only have ordered equilibria x∗

1 > · · · > x∗
N , where the

“cheapest technology does most.”29

Proposition 5 extends to the case where cj is a parameter vector in the natural way.
If c1� � � � � cN are parameter vectors such that ϕ(x−1� cg)≥ ϕ(x−1� cj) and if the respective
symmetric two-player games have no asymmetric equilibria for any of these parameter
vectors, then x1 ≥ x2 ≥ · · · ≥ xN holds in any equilibrium of the asymmetric game.

5. Conclusion

Many strategic choices are of a multidimensional nature, and having a systematic
methodology to get an analytical grasp on such problems is very useful. The separa-
tion approach developed in this article yields a comparably simple but powerful set
of tools to examine the equilibrium set of symmetric games with a potentially higher-
dimensional strategy space and many players, that may have eluded an analytical as-
sessment so far, e.g., by the sheer formal complexity of the problem. The practical and
theoretical usefulness of these tools was documented with several examples. The sep-
aration approach allows the study of how the parameters of a game could possibly in-
fluence whether there are asymmetric equilibria or multiple symmetric equilibria. An-
alyzing the equilibrium set of a symmetric game may also shed light on the equilibria
of certain asymmetric versions of the game, which was illustrated by means of a one-
dimensional example. All in all, this article can provide valuable guidelines for a thor-
ough equilibrium analysis of complex symmetric games in applied research in game
theory, industrial economics, and related fields.

29See Hefti and Grossmann (2015) for a direct application of Proposition 5 in the case of a dynamic con-
test with heterogeneous participants.
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Appendix

A.1 Proving Theorem 2

The proofs of Theorems 2 and 4 build on the following lemmata.

Lemma 1. Let ψ ∈ C([t0� t1]� [a�b]) with ψ(t0) �=ψ(t1). Suppose that the points in (t0� t1),
where ψ(t) is not differentiable, are locally isolated. Then

(i) if ψ(t0) > ψ(t1) ∃t ′ ∈ (t0� t1) such that ψ′(t ′) ≤ ψ(t1)−ψ(t0)
t1 − t0 �

(ii) if ψ(t0) < ψ(t1) ∃t ′′ ∈ (t0� t1) such that ψ′(t ′′) ≥ ψ(t1)−ψ(t0)
t1 − t0 �

(11)

Proof. The inclusion Ã ⊂ (t0� t1) is the set of nondifferentiable points of ψ and A =
Ã∪ {t0� t1}. Let ψ(t0) > ψ(t1). Define

g(t)≡ ψ(t0)−ψ(t1)
t0 − t1 (t − t0)+ψ(t0)

and k(t)≡ ψ(t)− g(t) for t ∈ [t0� t1]. Hence k(t0)= k(t1)= 0, k is continuous on [t0� t1],
and is differentiable at t if t /∈A. Suppose that

ψ′(t) > ψ(t1)−ψ(t0)
t1 − t0

holds whenever ψ(t) is differentiable. If Ã = ∅, then k is strictly increasing on [t0� t1]
by the mean value theorem (MVT), which contradicts k(t0)= k(t1). Hence suppose that
Ã �= ∅. Then, by local isolation, ∀t ∈ Ã there is an interval It = (t− ε1� t+ ε2) such that k
is differentiable on It \{t}. One can choose ε2 > 0 such that t+ε2 ∈A. Then the MVT and
continuity of k at t imply k to be strictly increasing over It . As for any t ∈ Ã, ∃q(t) ∈Q∩It ,
the mapping q : Ã→ Q is well defined and injective, which shows that Ã is countable.
Hence there is a sequence (qn) with qn ∈ Q ∩ (t0� t1) such that qn → t1 and k(qn+1) >

k(qn), which implies that k(t1) > k(q0) by the continuity of k. As k(t1)= 0, we conclude
that k(q0) < 0. By the same reasoning there is a strictly decreasing sequence q̃n, where
q̃0 = q0, q̃n → t0, and k(q̃n+1) < k(q̃n). Then continuity and k(q̃0) < 0 imply k(t0) < 0, a
contradiction. This proves (i), and (ii) follows from (i) by setting ρ(t)≡ψ(t0 + t1 − t). �

Lemma 2. Letψ ∈ C([t0� t1]� [a�b])withψ(t0) �=ψ(t1) andψ differentiable onψ−1((a�b))

except possibly at a set of isolated points. Then (11) is satisfied.

Proof. By the proof of Lemma 1, it suffices to consider the case ψ(t0) > ψ(t1). Hence
ψ(t0) > a and ψ(t1) < b. Let T ≡ ψ−1({a�b}) ⊂ [t0� t1]. If T = ∅, then the claim follows
from Lemma 1, so suppose that T �=∅. Note that T is a compact subset of R, and let the
min and max of T be denoted by ¯t and t̄. The proof now is case-by-case.

Case I : ψ(¯t) = a. Then ψ is continuous on [t0�¯t] and differentiable on (t0�¯t) except
possibly for a set of isolated points. Then, because of Lemma 1, ∃t ∈ (t0�¯t) such that

ψ′(t)≤ a−ψ(t0)
¯t − t0

≤ ψ(t1)−ψ(t0)
t1 − t0 �
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Case II : ψ(t̄)= b. Then ψ is continuous on [t̄� t1] and differentiable on (t̄� t1) except
possibly for a set of isolated points. Thus, by Lemma 1, ∃t ∈ (t̄� t1) such that

ψ′(t)≤ ψ(t1)− b
t1 − t̄ ≤ ψ(t1)−ψ(t0)

t1 − t0 �

Case III : ψ(¯t)= b and ψ(t̄)= a. DefineA≡ψ−1({b}), which is a nonempty and com-
pact set. Hence t̂ = maxA exists. Similarly, B ≡ [t̂� t1] ∩ ψ−1({a}) also is nonempty and
compact. Let ť = minB. Henceψ is continuous on [t̂� ť] and differentiable on (t̂� ť) except
possibly for a set of isolated points. Thus, by Lemma 1, ∃t ∈ (t̂� ť) such that

ψ′(t)≤ a− b
t̂ − ť ≤ ψ(t1)−ψ(t0)

t1 − t0 � �

Proof of Theorem 2. Step 1: N = 2. Suppose that (xa1�x
a
2) is an asymmetric equi-

librium. Then (xa2�x
a
1) is a different asymmetric equilibrium, and ϕ(xa2) = xa1 and

ϕ(xa1) = xa2 . Let ψ(t) ≡ ϕ(xa1 + t(xa2 − xa1)) for t ∈ [0�1]. Then ψ(0) = xa2 and ψ(1) = xa1 .
Hence ψ ∈ C([0�1]� S), ψ(0) �= ψ(1) and ψ(t) is differentiable whenever ψ(t) ∈ Int(S)
except possibly for a set of isolated points. If ψ(0) > ψ(1), then Lemma 2 and the
chain rule imply that ∃x2 ∈ Int(S) such that ϕ(x2) ∈ Int(S), ϕ is differentiable at x2, and
∂ϕ(x2)≤ −1. For ψ(1)−ψ(0) > 0, an identical conclusion follows.

Step 2: N > 2. Suppose (xa1� � � � � x
a
N) is an asymmetric equilibrium, where we can as-

sume xa1 �= xa2 without loss of generality. TakeX = (xa3� � � � � xaN) ∈ SN−2 as an exogenously
fixed parameter vector and suppose players g = 1�2 play a two-player game, treating X
as fixed. Then (xa1�x

a
2) as well as (xa2�x

a
1) must be asymmetric equilibria of this sym-

metric, parametrized two-player game. Thus, by Step 1, if the N-player game has an
asymmetric equilibrium, ∃X ∈ SN−2 and x2 ∈ Int(S) such that ∂ϕ(x2;X) ≤ −1, which
completes the proof. �

A.2 Proof of Theorem 3

I prove the theorem forN = 2; the extension to N > 2 follows the same logic as in Step 2
of the proof of Theorem 2. Consider the two asymmetric equilibria (xa1�x

a
2) and (xa2�x

a
1).

By the differentiability assumption made, ψi(t)≡ ϕi(xa1 + t(xa2 − xa1)), 1 ≤ i≤ k, is differ-
entiable on (0�1). Let �i ≡ ϕi(xa1)−ϕi(xa2) and �≡ (�1� � � � ��k). Then the MVT, applied
separately to each ψi, asserts the existence of k points xi2 ∈ Int(S), 1 ≤ i ≤ k, such that

Ã ·�= −�, where Ã is a k× k matrix with entries aij = ∂ϕi(x
i
2)

∂x2j
, 1 ≤ i� j ≤ k. Equivalently,

we get that (I+ Ã) ·�=A ·�= 0, whereA is the matrix (3). Consequently, if Det(A) �= 0
at any points x1

2� � � � � x
k
2 ∈ Int(S), we may conclude that there cannot be any asymmetric

equilibria. �

A.3 Proof of Theorem 4

As before it suffices to let N = 2. Suppose (xa1�x
a
2) is an asymmetric equilibrium. Then

(xa2�x
a
1) also is an asymmetric equilibrium, and ϕ(xa2) = xa1 and ϕ(xa1) = xa2 . Define
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ψi(ti) ≡ ϕi(x
a
1 + ti(x

a
2 − xa1)), where i = 1�2 and ti ∈ [0�1]. Then ψi(0) = ϕi(x

a
1) and

ψi(1)= ϕi(xa2). Note thatψi(0) �=ψi(1) for at least one i. Moreover,ψi ∈ C([0�1]� Si) and,
according to the chain rule, ifψi(ti) ∈ Int(Si), the functionψi is differentiable except pos-
sibly for a set of isolated points by presupposition. Hence if ϕi(xa1 + ti(xa2 − xa1)) ∈ Int(Si)
and ϕi is differentiable at the point xa1 + ti(xa2 − xa1), then the chain rule implies

ψi
′(ti)= ∂ϕi

(
xa1 + ti

(
xa2 − xa1

)) ·
(
ψ1(0)−ψ1(1)
ψ2(0)−ψ2(1)

)
� (12)

The proof now is case-by-case.
Case I : ψi(0)=ψi(1) for one i. Suppose that ψ1(0)=ψ1(1) and hence ψ2(0) �=ψ2(1).

Then, similar to Step 1 of the proof of Theorem 2, Lemma 2 and (12) imply that ∃x′
2 ∈

S1 × Int(S2) such that δ(x′
2)≤ −1 is satisfied. Similarly, if ψ2(0)=ψ2(1), then α(x2)≤ −1

for some x2 ∈ Int(S1)× S2. Consequently, α(x2)�δ(x2) >−1 for any x2 ∈ S where the re-
spective derivative exists, rules out the possibility of asymmetric equilibria with a similar
ith projection; henceforth assume this condition to be satisfied. Further, suppose that
ψi(0) �=ψi(1) for i= 1�2 and definem≡ (ψ2(0)−ψ2(1))/(ψ1(0)−ψ1(1)).

Case II : ψi(0) > ψi(1) or ψi(0) < ψi(1), i = 1�2; hence m > 0. Suppose that
ψi(0) > ψi(1). Then Lemma 2 and (12) assert the existence of x2�x

′
2 ∈ S such that

α(x2) + mβ(x2) ≤ −1 and γ(x′
2)

1
m + δ(x′

2) ≤ −1. Eliminating m gives β(x2)γ(x2
′) ≥

(1 + α(x2))(1 + δ(x2
′)). The same conclusion holds if ψi(0) < ψi(1).

Case III : ψ1(0) < ψ1(1) and ψ2(0) > ψ2(1) (or opposite inequalities); hence m < 0.
Then proceed as in Case II to obtain the same conclusion as in Case II. The above deriva-
tion implies that whenever (4) is satisfied, there cannot be any asymmetric equilibria. �

A.4 Proof of Corollary 2

Suppose that there is an asymmetric equilibrium xa = (xa1�xa2� � � � � xaN)with xa1 > x
a
2 , but,

e.g., β≥ 0 and α >−1. Then by Case II of the the proof of Theorem 4, ∃x̃2 ∈ S such that
α(x̃2)+mβ(x̃2)≤ −1 for some X . As m> 0, this implies that β(x̃2) < 0, a contradiction.
Hence, there cannot be any strictly ordered equilibria, which proves (i); (ii) is proved in
the same way. If α�δ >−1, Case I of the the proof of Theorem 4 shows that there cannot
be asymmetric equilibria, where two players choose the same component strategies,
which proves (iii). �

A.5 Proving Proposition 5

The proof of Proposition 5 requires the following lemma.

Lemma 3 (Characterization of asymmetric equilibria). In a symmetric one-dimensional
two-player game with ϕ ∈ C(S�S), no asymmetric equilibria exist if and only if

ϕ
(
ϕ(x)

)
< x ∀x ∈ S : ϕ(x) < x (13)

or, equivalently,

ϕ
(
ϕ(x)

)
> x ∀x ∈ S : ϕ(x) > x� (13′)
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Figure 3. Existence of an asymmetric equilibrium.

Proof. I only prove the claim for (13), the claim for (13′) is proved in the same way.
“⇒” Suppose that (x1�x2) is an asymmetric equilibrium. By symmetry, we can as-

sume that x1 < x2, i.e., ϕ(x2) < x2, but ϕ(ϕ(x2))= x2, contradicting (13).
“⇐” The proof of this direction naturally is more involved. Let G1 ≡ {(x1�x2) ∈ S2 :

ϕ1(x2) = x1} and G2 ≡ {(x1�x2) ∈ S2 : ϕ2(x1)= x2} denote the graphs of the best-
response functions of the two players. Further, G1(x2) ≡ (ϕ1(x2)�x2) and G2(x1) ≡
(x1�ϕ

2(x1)) denote specific points on the graphs. The proof is by contraposition. Sup-
pose ∃x̂2 such that ϕ1(x̂2) < x̂2 but ϕ2(ϕ1(x̂2)) ≥ x̂2. If ϕ2(ϕ1(x̂2)) = x̂2, then there is
nothing to prove as (ϕ1(x̂2)� x̂2) obviously is an asymmetric equilibrium, so suppose that
ϕ2(ϕ1(x̂2)) > x̂2. Such a situation is illustrated in Figure 3 with points A=G1(x̂2) ∈G1

and B = G2(ϕ
1(x̂2)) ∈ G2. First note that G2(0) ∈ {0} × S, as indicated by the point C.

Next note that, by symmetry, G2 must pass through a point A′ =G2(x̂2). By continuity
of the best-response function, there must be at least one symmetric equilibrium in the
interval (ϕ1(x̂2)�ϕ

2(ϕ1(x̂2))). Let xs = min{x2 : ϕ1(x̂2) ≤ x2 ≤ x̂2�ϕ
1(x2)= x2}. Consider

the rectangle [0�xs]× [xs� S̄]. By construction, (xs�xs) is the only symmetric equilibrium
in this rectangle. Moreover, G2 partitions this rectangle (because G2 is continuous) and
G1(x̂2) must lie in the lower partition (“beneath” G2). But as G1(S̄) ∈ S × {S̄} (indicated
withD) andG1 is continuous, there must be an x2 ∈ (x̂2� S̄] such thatG1(x2) ∈G2. Hence
an asymmetric equilibrium exists. �

In words, Lemma 3 says that if player 1’s reaction function lies below the graph of
player 2’s reaction function and ϕ1(x2) < x2, then an asymmetric equilibrium must nec-
essarily exist.
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Proof of Proposition 5. By contradiction, suppose that the asymmetric game has
an equilibrium with xj > xg, where g < j (and thus cg > cj). Consequently, there ex-
ists X such that ϕj(xg;X�cj) > xg and ϕg(ϕj(xg;X�cj);X�cg) = xg. As best replies are
increasing on [¯c� c̄] this implies that

ϕg
(
ϕj(xg;X�cj);X�cg

) ≥ ϕg(ϕj(xg;X�cj);X�cj)�
Hence there exists xg such thatϕj(xg;X�cj) > xg but xg ≥ ϕg(ϕj(xg;X�cj);X�cj), which
in turn by (13′) of Lemma 3 implies that the symmetric two-player game with best-
reply functionϕ(x;X�cj)must have an asymmetric equilibrium, a contradiction. Hence
xg ≥ xj and the result follows by induction. To prove the version for strictly increas-
ing replies, suppose that the asymmetric game has an equilibrium with xg = xj = x.
Thus there exists X such that ϕg(x;X�cg) = ϕj(x;X�cj) = ϕg(x;X�cj), contradicting
ϕg(x;X�cg) > ϕg(x;X�cj) as implied by strict monotonicity. �
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