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Optimal information disclosure:
A linear programming approach

Anton Kolotilin
School of Economics, UNSW Business School

An uninformed sender designs a mechanism that discloses information about her
type to a privately informed receiver, who then decides whether to act. I impose
a single-crossing assumption, so that the receiver with a higher type is more will-
ing to act. Using a linear programming approach, I characterize optimal infor-
mation disclosure and provide conditions under which full and no revelation are
optimal. Assuming further that the sender’s utility depends only on the sender’s
expected type, I provide conditions under which interval revelation is optimal. Fi-
nally, I show that the expected utilities are not monotonic in the precision of the
receiver’s private information.

Keywords. Bayesian persuasion, information design, information disclosure, in-
formed receiver.

JEL classification. C72, D82, D83.

1. Introduction

In the Bayesian persuasion literature (Rayo and Segal 2010 and Kamenica and Gentzkow
2011), an uninformed sender (she) designs an information disclosure mechanism to in-
fluence the beliefs of a receiver (he) about the sender’s type. I use a linear programming
approach to study this problem.

In my model, the receiver privately knows his one-dimensional type and chooses
between two actions: to act or not to act. Before observing her type, the sender can
commit to any (stochastic) mapping from her types to messages, which I call an infor-
mation disclosure mechanism. After observing the message generated by the mecha-
nism and his type, the receiver decides whether to act. The sender’s and receiver’s types
are drawn from a continuous joint prior distribution. The sender and receiver have con-
tinuous utility functions that depend on the sender’s and receiver’s types. I impose a
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single-crossing assumption which ensures that each message of a mechanism induces
the receiver to act if and only if his type exceeds a threshold type.

It turns out that my model is equivalent to an alternative model where the receiver
is uninformed, chooses a one-dimensional action, and has utility that is single-peaked
in his action for each message of a mechanism. In my model, each message of a mecha-
nism corresponds to a threshold type above which the receiver acts. Likewise, in the al-
ternative model, each message of a mechanism corresponds to an optimal action of the
uninformed receiver. That is, the receiver’s threshold type in my model is isomorphic to
the receiver’s optimal action in the alternative model.

I characterize conditions for a candidate mechanism to be optimal, and derive com-
parative statics on the precision of the receiver’s private information. The characteri-
zation results apply directly both to my model and to the alternative model. But the
comparative statics results do not apply to the alternative model, in which the receiver
is uninformed. Hereafter, I discuss my results in the context of my model, in which the
receiver is privately informed and chooses between two actions.

For concreteness, consider a school that wishes to persuade a potential employer
to hire a student by choosing a grade disclosure policy for the student. The school can
freely choose what information about the student’s grades appears on the student’s tran-
script. Moreover, the school chooses this disclosure policy before observing anything
about the student. The employer observes the student’s transcript but also obtains pri-
vate information, for example, from conducting an employment interview with the stu-
dent and competing candidates. The single-crossing assumption requires that all possi-
ble interview outcomes can be appropriately ranked.

The sender’s problem of finding an optimal mechanism reduces to a linear program,
because a mechanism is described by the conditional probabilities of messages given
the sender’s types, and the expected utilities are linear in these probabilities. The linear
programming approach gives necessary and sufficient conditions under which a candi-
date mechanism is optimal. This enables the characterization of conditions that justify
many commonly observed grade disclosure policies, such as those reported in Ostrovsky
and Schwarz (2010). These conditions imply that to verify that a grade disclosure pol-
icy is optimal, it suffices to check that there is no simple deviation from this policy that
the school prefers. At the one extreme, some schools report all grades and class rank on
transcripts. Such a full revelation mechanism is optimal if and only if the sender prefers
to reveal any two of her types than to pool them. At the other extreme, some schools re-
lease no transcripts. Such a no revelation mechanism is optimal if and only if the sender
prefers to pool any three of her types with the uninformative message than to pool two
of them and reveal the third one.

Assume further that the sender’s utility (under the receiver’s optimal action) depends
on the message only through the posterior expectation of the sender’s type given this
message.1 Under this assumption, the sender can choose any distribution of posterior
expectations of the sender’s type, subject to the constraint that the prior distribution

1The statement of this assumption is silent about the sets of receiver’s types and actions. Consequently,
the assumption and the corresponding results apply directly both to my model and to the equivalent al-
ternative model with an uninformed receiver. Kamenica and Gentzkow (2011) refer to this assumption
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of the sender’s type is a mean-preserving spread of this distribution. As a result, the
shape of the optimal mechanism is jointly determined by the convexity properties of the
sender’s utility function and by the prior distribution of her type. I provide necessary and
sufficient conditions under which the sender optimally chooses an interval revelation
mechanism that reveals moderate types and hides extreme types.

In general, the sender’s and receiver’s expected utilities under the optimal mecha-
nism are not monotonic in the precision of the receiver’s private information. First, as
the receiver becomes more informed, his expected utility may decrease despite the fact
that he is the only player who takes an action that directly affects his utility. This hap-
pens because the optimal mechanism depends on the precision of the receiver’s private
information, and the sender may prefer to disclose significantly less information if the
receiver’s information is more precise. Returning to the school–employer example, this
suggests that low reliability of employment interview procedures (summarized by Arvey
and Campion 1982) may be beneficial for employers, as it motivates schools to design
more informative disclosure policies. Second, it may be easier for the sender to influ-
ence a more informed receiver. This happens because the sender may optimally choose
to target only the receiver with favorable private information, and it becomes easier for
the sender to persuade such a receiver as he becomes more informed.

The linear programming approach to Bayesian persuasion complements the stan-
dard concavification approach of Kamenica and Gentzkow (2011). They work with the
distribution of posterior beliefs induced by a mechanism. They define the sender’s indi-
rect utility of posterior beliefs and derive the optimal mechanism by taking the concave
closure of this indirect utility function. In contrast, the linear programming approach
solves the dual problem: it derives conditions under which a given mechanism is opti-
mal.

As Gentzkow and Kamenica (2016) point out, the concavification approach has lim-
ited applicability when the set of sender’s types is an interval, because the set of pos-
terior beliefs becomes infinite dimensional. The linear programming approach instead
works with utilities directly expressed as functions of the one-dimensional sender’s and
receiver’s types, and thus yields sharper results for the class of problems I consider.

My model is a special case of Kamenica and Gentzkow (2011), who do not restrict
either the sets of receiver types and actions or the functional form of the receiver’s utility.
In contrast, Rayo and Segal (2010) is a special case of my model. They assume that the
receiver’s type is uniformly distributed and does not affect the sender’s utility.2

Subsequent to the first version of this paper, some papers on Bayesian persuasion
have assumed that the sender’s utility depends only on the sender’s expected type.
Gentzkow and Kamenica (2016) provide an alternative characterization of the set of fea-
sible mechanisms, and use it to find optimal mechanisms in stylized examples. Kolotilin

as “[s]ender’s payoff depends only on the expected state.” Ostrovsky and Schwarz (2010) also impose this
assumption and characterize the unique equilibrium (rather than optimal) information disclosure mecha-
nism.

2In Section 4, I discuss in more detail how my paper relates to Rayo and Segal (2010), Kamenica and
Gentzkow (2011), and other papers on Bayesian persuasion.
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et al. (2017) allow the sender to condition mechanisms on the receiver’s reports, and pro-
vide simple sufficient conditions for optimality of upper censorship—a special case of
the interval revelation mechanisms characterized in this paper.3

2. School–employer example

A school chooses a grading policy to maximize the probability of an employer hiring a
student. The student is either a peach or a lemon. The school and the employer have
a common prior belief that the student is a peach with probability 0�2. The employer
hires the student if the employer believes that the student is a peach with probability at
least 0�5.

The timing of the game is as follows. First, the school chooses a grading policy �

described by a finite (ordered) set M of grades and the conditional distribution of grades
given the student’s type. Second, the student’s type is drawn and the grade is generated
according to �. Third, the employer observes the grade and conducts an employment
interview. The interview produces a two-valued signal about the student’s type with
precision p ∈ [1/2�1] in the sense that Pr(positive|peach)= Pr(negative|lemon) = p and
Pr(negative|peach) = Pr(positive|lemon) = 1 − p. The employer is positive (negative) if
the interview signal is positive (negative). Finally, the employer makes a hiring decision.

I restrict attention to grading policies that generate three possible grades, A, B, or
C, that convince both the positive and negative, only the positive, or no employer to
hire. This is without loss of generality because convincing the negative employer also
convinces the positive employer.

The school chooses � to maximize the probability of hire,

1 · Pr�(A)+ Pr�(positive|B) · Pr�(B)+ 0 · Pr�(C)�

subject to the constraint imposed by the prior distribution of the student’s ability,∑
m

Pr�(peach|m) · Pr�(m) = Pr(peach) = 0�2�

Under the optimal grading policy, grades A and B barely persuade the negative and
positive employers to hire, whereas grade C makes the employer certain that the stu-
dent is a lemon; so, after some algebra, Pr�(peach|A) = p, Pr�(peach|B) = 1 − p, and
Pr�(peach|C) = 0. Using these conditions, it is easy to show that Pr�(positive|B) =
2p(1 −p).

The school’s problem is thus a linear program: to maximize the utility function

Pr(A)+ 2p(1 −p)Pr(B)

over probabilities Pr(A), Pr(B), and Pr(C), subject to the Bayesian budget constraint

pPr(A)+ (1 −p)Pr(B) = 0�2�

3The Bayesian persuasion problem of this paper is mathematically similar to the delegation problem
initiated by Holmström (1984). Alonso and Matouschek (2008) and Amador and Bagwell (2013) characterize
necessary and sufficient conditions under which interval delegation is optimal. Their conditions resemble
my conditions under which interval revelation is optimal, but their proofs are more involved.
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The marginal utilities of grades A, B, and C are 1, 2p(1 − p), and 0; the prices of these
grades are p, (1 − p), and 0. Thus, the school faces a trade-off: choose a grading policy
that generates A with a small probability and persuades both the negative and posi-
tive employers or choose a grading policy that generates B with a high probability but
persuades only the positive employer. The school resolves this trade-off by choosing a
policy that frequently generates grades with the highest marginal utility–price ratio (1/p
for A and 2p for B).

As an aside, this argument that optimal grading policies should frequently generate
messages with high marginal utility–price ratios requires the student’s type to take only
two values, but does not rely on the cardinality of the set of receiver’s types, the utility
functional forms, or the form of the joint distribution of the sender’s and receiver’s types.

The optimal grading policy can take three forms depending on the interview pre-
cision. If the interview is imprecise (1/2 ≤ p < 1/

√
2), the marginal utility–price ratio

is higher for A than for B, so the optimal grading policy targets the negative employer
and generates grades A and C. If the interview is precise (p > 1/

√
2), the ratio is higher

for B, so the optimal policy targets the positive employer. In this case, if it is impossi-
ble to convince the positive employer with probability 1 (p < 4/5), the optimal policy
generates grades B and C; otherwise (p > 4/5), the optimal policy generates grades A

and B.
When the interview is not too precise (p < 4/5), the optimal grading policy exhibits

grade inflation: peaches and some lemons get a good grade but only lemons get a bad
grade. Moreover, when the interview is imprecise (p < 1/

√
2), grade inflation is moder-

ate and a good grade impresses all employers. When the interview is relatively precise
(1/

√
2 <p< 4/5), grade inflation is severe and a good grade convinces only the positive

employer. Finally, when the interview is too precise (p> 4/5), the optimal grading policy
is noisy: with a positive probability, a peach gets a bad grade and a lemon gets a good
grade.

Figure 1 shows that the school and employer’s expected utilities under the optimal
grading policy are not monotonic in the interview precision.4 Naive intuition may sug-
gest that (i) the school’s expected utility should decrease with p because it is harder to
influence a better informed employer and (ii) the employer’s expected utility should in-
crease with p because a better informed employer takes a more appropriate hiring deci-
sion. This naive intuition, however, ignores that the optimal mechanism changes with p

and the school may choose to disclose significantly less information when the employer
is more informed. This effect may overturn the naive intuition. In equilibrium, a more
informative interview may help the school because the employer hires more students; it
may also hurt the employer because the employer hires worse students.

In fact, the school’s expected utility strictly increases with the interview precision
for p ∈ (1/

√
2�4/5), where the optimal grading policy targets the positive employer. As

the interview precision increases, the positive employer becomes more positive, so it
becomes easier for the school to persuade the employer.

4Figure 1 normalizes the utility functions as follows. Both the school and the employer get utility 0 if the
student is not hired. The school gets utility 1 if the student is hired. The employer gets utility 1 from hiring
a peach and utility −1 from hiring a lemon.
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Figure 1. The sender’s and receiver’s expected utilities in the school–employer example.

Moreover, the employer’s expected utility drops down to 0 as the interview precision
exceeds 1/

√
2. At p around 1/

√
2, neither the positive nor the negative employer would

hire if the grading policy was completely uninformative. For p slightly above 1/
√

2, the
optimal grading policy targets the positive employer and thus extracts all rent from the
positive employer. In contrast, for p slightly below 1/

√
2, the optimal grading policy

targets the negative employer, and thus leaves some rent to the positive employer.

3. Model

3.1 Setup

Consider a communication game between a sender and a receiver. The sender chooses
an information disclosure mechanism (described below) and the receiver takes one of
two actions: to act (a= 1) or not to act (a= 0).

The set of receiver’s types is R = [r� r] and the set of sender’s types is S = [s� s]. The
pair (r� s) has some joint prior distribution. For this joint distribution, the marginal dis-
tribution F(s) of s and the conditional distribution G(r|s) of r given s admit strictly pos-
itive densities f (s) and g(r|s) that are continuous in s and continuously differentiable
in r.

The sender’s and receiver’s utilities from a = 0 are normalized to zero. The sender’s
and receiver’s utilities from a = 1 are v(r� s) and u(r� s), respectively, where functions v

and u are continuous in s and continuously differentiable in r.
Before s is realized, the sender chooses a mechanism that sends a message m ∈ R

to the receiver as a (stochastic) function of the sender’s type s. Specifically, the sender
chooses a joint distribution �(m�s) of m and s such that the marginal distribution of s
under � equals the prior marginal distribution F .

The timing of the communication game is as follows. First, the sender publicly
chooses a mechanism �. Second, a triple (m� s� r) is drawn according to distributions
� and G. Third, the receiver observes (m� r) and takes an action a. Finally, the sender’s
and receiver’s utilities are realized.
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Let P�(s|m) denote the distribution of s given m under �. The distribution of s given
m and r is then

P�(s|m�r)=

∫ s

s
g(r|s̃) dP�(s̃|m)

∫ s

s
g(r|s̃) dP�(s̃|m)

�

The receiver’s expected utility from a = 1 given m and r is

∫ s

s
u(r� s)dP�(s|m�r)=

∫ s

s
u(r� s)g(r|s)dP�(s|m)

∫ s

s
g(r|s)dP�(s|m)

�

Therefore, the receiver strictly prefers to act if
∫
S ũ(r� s)dP�(s|m) > 0 and strictly prefers

not to act if
∫
S ũ(r� s)dP�(s|m)< 0, where

ũ(r� s) ≡ u(r� s)g(r|s)�

I impose a single-crossing assumption that ensures that each message of a mecha-
nism induces the receiver to act if and only if his type exceeds a threshold type.

Assumption 1 (Single crossing). For each distribution Q on S, there exists rQ ∈ R such
that

∫
S ũ(r� s)dQ(s) � 0 if r � rQ. Moreover, there exists a strictly decreasing function r∗

that satisfies u(r∗(s)� s) = 0 for all s ∈ S.

A message m of a mechanism � induces a distribution Q of s. By Assumption 1,
after observing m, the receiver of type rQ is indifferent between the two actions, and the
receiver of type r > rQ strictly prefers to act. Without loss of generality, I restrict attention
to mechanisms � such that each message m of � induces the receiver to act if and only
if r ≥ m.5 Therefore, the set of feasible messages is the image R∗ ≡ r∗(S) of S under r∗,
and the sender’s expected utility from message m ∈R∗ is

V (m� s) ≡
∫ r

m
v(r� s)g(r|s)dr�

Remark 1. Assumption 1 is stronger than a standard single-crossing assumption,
which requires that for each distribution Q on S, inequality

∫
S ũ(r1� s)dQ(s) ≥ (>)0 im-

plies
∫
S ũ(r2� s)dQ(s) ≥ (>)0 whenever r2 > r1. This standard single-crossing assump-

tion holds if and only if, for all s1� s2 ∈ S, functions ũ(r� s1) and ũ(r� s2) of r ∈ R satisfy
signed-ratio monotonicity (Theorem 1 of Quah and Strulovici 2012). In particular, it
holds if u(r� s) increases with (r� s) and types (r� s) are affiliated.

5Although type r = m is indifferent between the two actions, I assume that he acts. This assumption is
innocuous, because, for any r ∈R, the receiver has type r with probability 0, since G admits a density.
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Section 4.3 imposes a stronger linearity assumption that ensures that the sender’s
expected utility depends only on the sender’s expected type, E�[s|m].

Assumption 2 (Linearity). For all (r� s) ∈ R × S, u(r� s) = s − r, v(r� s) = v(r), G(r|s) =
G(r), and S ⊂ R.6

Under Assumption 2, the receiver acts if and only if r ≤ E�[s|m]. Therefore, a mes-
sage m of a mechanism � satisfies m= E�[s|m], and the sender’s expected utility from a
message m is V (m)≡ ∫ m

r v(r)g(r)dr (which depends only on E�[s|m]).

Remark 2. Equivalent to Assumption 2, I could directly assume that the sender’s ex-
pected utility V depends only on E�[s|m]. Kamenica and Gentzkow (2011) refer to this
assumption as “[s]ender’s payoff depends only on the expected state.” This assump-
tion may hold even if the receiver has more than two actions. In particular, it holds if
the set of actions is compact, the sender’s and receiver’s types are independent, and the
sender’s and receiver’s utility functions are linear in the sender’s type and continuous in
the receiver’s type and action.

3.2 Equivalent alternative model

Consider an alternative model where an uninformed receiver takes an action r from set
R = [r� r]. If the receiver takes action r and the sender’s type is s, then the sender’s and
receiver’s utilities are V (r� s) and U(r� s), where V and U are continuous in s and twice
continuously differentiable in r. The set of sender’s types remains S = [s� s] and the prior
distribution of s remains F .

Parallel to Assumption 1, I impose an assumption that ensures that for each message
of a mechanism the receiver’s utility is single-peaked in his action.

Assumption 1′ (Single crossing). For each distribution Q on S, there exists rQ ∈ R such
that

∫
S[−∂U(r� s)/∂r]dQ(s)� 0 if r � rQ. Moreover, there exists a strictly decreasing func-

tion r∗ that satisfies ∂U(r∗(s)� s)/∂r = 0 for all s ∈ S.

It turns out that the sender’s problem of choosing an optimal mechanism in this
alternative model under Assumption 1′ is the same as in the original model from Sec-
tion 3.1 under Assumption 1. Given v, u, and g from the original model, set V (r� s) =∫ r
r v(r̃� s)g(r̃|s)dr̃ and U(r� s)= ∫ r

r u(r̃� s)g(r̃|s)dr̃.7 Notice that in both models, a message
m under mechanism � induces some distribution Q of s. In the original model, Q in-
duces the receiver to act if and only if r ≥ rQ, so the sender’s utility is

∫ r
rQ
v(r̃� s)g(r̃|s)dr̃ =

6Notice that if r is replaced with −r in Assumption 2, then higher types of the receiver are more willing to
act, and Assumption 1 holds. But exposition is easier without this replacement. Notice also that Assump-
tion 2 requires r to be independent of s. In the context of the school–employer example, s may correspond
to the student’s type privately known by the school, and r may correspond to the opportunity cost from
hiring privately known by the employer.

7Equivalently, given V and U from this alternative model, set v, u, and g such that v(r� s)g(r|s) =
−∂V (r� s)/∂r and u(r� s)g(r|s) = −∂U(r� s)/∂r.
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V (rQ� s); in this alternative model, Q induces the receiver to take action rQ, so the
sender’s utility is again V (rQ� s). The receiver’s threshold type rQ in the original model is
thus isomorphic to the receiver’s optimal action rQ in this alternative model.

Similar to the equivalence between Assumptions 1 and 1′, the following assumption
is equivalent to Assumption 2.

Assumption 2′ (Linearity). For all (r� s) ∈ R× S, U(r� s) = −(r − s)2, V (r� s) = V (r), and
S ⊂R.

Under Assumption 2′, the receiver takes action r = E�[s|m]. Therefore, a message m

of a mechanism satisfies m = E�[s|m], and the sender’s expected utility from a message
m is V (m), as in the original model.

To sum up, this alternative model with Assumptions 1′ and 2′ is equivalent to the
original model with Assumptions 1 and 2. Consequently, all the results in Section 4 hold
verbatim in this alternative model.

4. Optimal mechanisms

Section 4.1 sets up the sender’s problem as a linear program and presents some basic
duality results. Under Assumption 1, Section 4.2 characterizes necessary and sufficient
conditions under which the full and no revelation mechanisms are optimal. Under As-
sumption 2, Section 4.3 characterizes necessary and sufficient conditions under which
an interval revelation mechanism is optimal.

A mechanism is called an interval revelation mechanism with bounds sL and sH if
sL� sH ∈ S, sL ≤ sH , and it generates one message for all s ∈ [s� sL), another message for all
s ∈ (sH� s], and a different message for each s ∈ (sL� sH).8 In particular, the full revelation
mechanism (denoted by �full) is an interval revelation mechanism with bounds sL = s

and sH = s, and the no revelation mechanism (denoted by �no) is an interval revelation
mechanism with bounds sL = sH = s (or, equivalently, sL = sH = s).

4.1 Linear programming characterization

Under Assumption 1, an optimal mechanism is a distribution � that solves the primal
linear program

maximize
∫
R∗×S

V (r� s)d�(r� s) (P)

subject to
∫
R∗×S̃

d�(r� s)=
∫
S̃
f (s)ds for any measurable set S̃ ⊂ S� (P1)

∫
R̃×S

ũ(r� s)d�(r� s) = 0 for any measurable set R̃⊂ R∗� (P2)

8Since the distribution F of s admits a density, it is not necessary to specify what message is sent for a
finite number of types, such as sL and sH .
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The objective function is the sender’s expected utility under �. The first constraint (P1)
is the feasibility requirement that the marginal distribution of s under � is F . The second
constraint (P2) is the consistency requirement that message m = r makes the receiver r
indifferent between the two actions.

The dual problem is to find bounded measurable functions η and ν that

minimize
∫
S
η(s)f (s)ds (D)

subject to η(s)+ ũ(r� s)ν(r) ≥ V (r� s) for all (r� s) ∈ R∗ × S� (D1)

The variables η(s) and ν(r) are multipliers for constraints (P1) and (P2).
Say that � is feasible for (P) if it is a distribution that satisfies (P1) and (P2). Similarly,

say that η and ν are feasible for (D) if they are bounded measurable functions that satisfy
(D1). Feasible � and (η�ν) that solve their respective problems (P) and (D) are called
optimal solutions.

Lemma 1 gives sufficient conditions under which candidate feasible solutions � and
(η�ν) are optimal.

Lemma 1. Suppose Assumption 1 holds. If � is feasible for (P), (η�ν) is feasible for (D),
and ∫

R∗×S

(
η(s)+ ũ(r� s)ν(r)− V (r� s)

)
d�(r� s)= 0� (C)

then � and (η�ν) are optimal solutions, and the values of (P) and (D) are the same.

Lemma 2 establishes the existence of optimal solutions and shows that complemen-
tarity condition (C) is not only sufficient but also necessary for optimality of � and (η�ν).

Lemma 2. Suppose Assumption 1 holds. There exists an optimal mechanism �, an op-
timal solution to the primal problem (P). There exists an optimal solution to the dual
problem (D) in which η is continuous. Moreover, (C) holds for these optimal � and (η�ν).

Lemmas 1 and 2 yield necessary and sufficient conditions under which a given
mechanism is optimal. Specifically, a candidate mechanism � is optimal if and only
if there exists (η�ν) that satisfies feasibility condition (D1) and complementarity condi-
tion (C). Given (D1), condition (C) holds if and only if η(s) = V (r� s) − ũ(r� s)ν(r) for all
(r� s) in the support of �. For this η(s), we can find conditions on the primitives ũ, V ,
and F that are equivalent to the existence of function ν(r) that satisfies (D1).9  Lemma 1
(Lemma 2) implies that these conditions are sufficient (necessary) for � to be optimal.

4.2 Full and no revelation under single crossing

Besides their simplicity and widespread use, the full revelation mechanism �full and the
no revelation mechanism �no satisfy two important properties under Assumption 1.

9This step is known as Fourier–Motzkin elimination of ν(r).
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First, �full and �no are extremal in the following strong sense: (i) �full uniquely maxi-
mizes the receiver’s expected utility and (ii) �no uniquely minimizes the receiver’s ex-
pected utility (see Proposition 6 in the Appendix). Second, if the sender privately knew
s, did not have commitment power, and always preferred to act in that v(r� s) > 0 for
all (r� s), then (i) �full would be the unique equilibrium outcome of a persuasion game
(Milgrom 1981) in which the sender can withhold information but cannot misrepre-
sent information, and (ii) �no would be the unique equilibrium outcome of a cheap-talk
game (Crawford and Sobel 1982) in which the sender can say anything.10

The first main result derives necessary and sufficient conditions under which �full

and �no are optimal. Note that �full generates message r∗(s) for each s ∈ S, and
�no generates the same message rno for all s ∈ S, where rno is a unique r that solves∫
S ũ(r� s)f (s)ds = 0. Let sno be a unique s that solves u(rno� s)= 0.

Proposition 1. Suppose Assumption 1 holds.

(i) All mechanisms are optimal if and only if, for all s1� s2 ∈ S and r ∈ R such that
s2 > s1 and r ∈ (r∗(s2)� r

∗(s1)),

V
(
r∗(s2)� s2

) − V (r� s2)

ũ(r� s2)
= V

(
r∗(s1)� s1

) − V (r� s1)

ũ(r� s1)
� (1)

(ii) The full revelation mechanism is optimal if and only if, for all s1� s2 ∈ S and r ∈ R

such that s2 > s1 and r ∈ (r∗(s2)� r
∗(s1)),

V
(
r∗(s2)� s2

) − V (r� s2)

ũ(r� s2)
≥ V

(
r∗(s1)� s1

) − V (r� s1)

ũ(r� s1)
� (2)

(iii) The no revelation mechanism is optimal if and only if, for all s1� s2 ∈ S and r ∈ R

such that s2 > s1 and r ∈ (r∗(s2)� r
∗(s1)),

V (r� s2)− V (rno� s2)

ũ(r� s2)
+ ũ(rno� s2)

ũ(r� s2)

∂V (rno� sno)/∂r

∂ũ(rno� sno)/∂r

≤ V (r� s1)− V (rno� s1)

ũ(r� s1)
+ ũ(rno� s1)

ũ(r� s1)

∂V (rno� sno)/∂r

∂ũ(rno� sno)/∂r
�

(3)

To verify optimality of a mechanism �, one needs to check that no deviation from
� to any feasible mechanism increases the sender’s expected utility, which requires a
lot of checks. It turns out that Proposition 1 can be interpreted as follows: for optimal-
ity of �full and �no, it is necessary and sufficient to check that only certain deviations
from these mechanisms do not increase the sender’s expected utility. I now define these
deviations.

10In the persuasion game, if the sender sent the same message r for two or more different s in equilib-
rium, then there would exist s̃ such that the sender s̃ sent r but u(r� s̃) > 0, which leads to a contradiction
because the sender s̃ would strictly prefer to reveal her type. In the cheap-talk game, if the sender sent two
different messages r1 and r2 in equilibrium, then she would strictly prefer to send min{r1� r2} regardless of s,
which leads to a contradiction.
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For any s1� s2 ∈ S and r ∈ R such that s2 > s1 and r ∈ (r∗(s2)� r
∗(s1)), say that the

sender prefers to reveal s1 and s2 than to pool them at r if, for the prior distribution that
assigns probabilities p1 and p2 = 1 − p1 on states s1 and s2 that make type r indifferent
between the two actions,

∑2
i=1 piũ(r� si)= 0, the sender’s expected utility is higher under

the full revelation mechanism than under the no revelation mechanism,

2∑
i=1

piV
(
r∗(si)� si

) ≥
2∑

i=1

piV (r� si)� (4)

Similarly, say that the sender is indifferent between revealing s1 and s2, and pooling them
at r if (4) holds with equality.

For any s1� s2� s3 ∈ S and r ∈ R such that s2 > s1, r ∈ (r∗(s2)� r
∗(s1)), and sgn(rno − r) =

sgn(r∗(s3) − rno), say that the sender prefers to pool s1, s2, and s3 at rno than to pool s1
and s2 at r, and to reveal s3 if, for the prior distribution that assigns probabilities p1, p2,
and p3 = 1 − p1 − p2 on states s1, s2, and s3 that make type rno indifferent between the
two actions,

∑3
i=1 piũ(rno� si) = 0, and make type r indifferent between the two actions

given that s 
= s3,
∑2

i=1 piũ(r� si) = 0, the sender’s expected utility is higher under the no
revelation mechanism than under the mechanism that generates message r for s1 and s2
and message r∗(s3) for s3,

3∑
i=1

piV (rno� si)≥
2∑

i=1

piV (r� si)+p3V
(
r∗(s3)� s3

)
� (5)

Finally, say that the sender prefers to pool s1, s2, and s3 at rno than to pool s1 and s2 at r,
and to reveal s3 for s3 approaching sno if (5) holds in the limit as s3 → sno. Using these
definitions, I can now restate Proposition 1 as follows.

Corollary 1. Suppose Assumption 1 holds.

(i) All mechanisms are optimal if and only if, for all s1� s2 ∈ S and r ∈ R such that
s2 > s1 and r ∈ (r∗(s2)� r

∗(s1)), the sender is indifferent between revealing s1 and s2
and pooling them at r.

(ii) The full revelation mechanism is optimal if and only if, for all s1� s2 ∈ S and r ∈ R

such that s2 > s1 and r ∈ (r∗(s2)� r
∗(s1)), the sender prefers to reveal s1 and s2 than

to pool them at r.

(iii) The no revelation mechanism is optimal if and only if, for all s1� s2 ∈ S and r ∈ R

such that s2 > s1 and r ∈ (r∗(s2)� r
∗(s1)), the sender prefers to pool s1, s2, and s3 at

rno than to pool s1 and s2 at r and to reveal s3 for s3 approaching sno.

Conditions (1)–(3) in Proposition 1 are weaker than the corresponding conditions
in (a)–(c) below from Kamenica and Gentzkow (2011).11 Following the notation of As-
sumption 1, suppose a message m of a mechanism � generates posterior distribution

11Rayo and Segal (2010) study a special case of my model with u(r� s) = s − r, v(r� s) = v(s), and g(r|s) =
(r − r)−1 for all (r� s) ∈ R × S. Proposition 1 can be used to establish their key lemma (Lemma 1), which
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Q(s) = P�(s|m) of s, and let rQ be the receiver’s type who is indifferent between the
two actions. The sender’s indirect expected utility under Q is V̂ (Q) = ∫

S V (rQ� s)dQ(s).
Kamenica and Gentzkow (2011) obtain the following results:

(a) All mechanisms are optimal if V̂ (Q) is linear in Q, so that the sender is indifferent
between separating posteriors Q1 and Q2 and pooling them at αQ1 + (1 − α)Q2.

(b) The full revelation mechanism is optimal if V̂ (Q) is convex in Q, so that the
sender prefers to separate Q1 and Q2 than to pool them at αQ1 + (1 − α)Q2.

(c) The no revelation mechanism is optimal if the concave closure of V̂ evaluated at
the prior F is equal to V̂ (F),12 so that (after a moment of reflection), for QF whose
mean is arbitrarily close to EF [s], the sender prefers to pool Q and QF at F than
to separate them.

Proposition 1 shows that it is sufficient to check (a) and (b) only for degenerate distri-
butions Q1 and Q2 whose supports are s1 and s2, respectively, and to check (c) only for
discrete Q whose support is {s1� s2} and degenerate QF whose support is s3, where s3 is
arbitrarily close to sno.

Conditions (1)–(3) are necessary because, for optimality of a candidate mechanism,
one needs to check all deviations from the mechanism, including those described in
(1)–(3).

The proof of sufficiency of conditions (1)–(3) relies on Lemmas 1 and 2, but we can
build the intuition by focusing on decomposed mechanisms in which each message is
sent by at most two types of the sender. To justify this focus, I construct a decomposed
version of �no for the case in which u(r� s) is linear in s, s is uniformly distributed on
S = [−1�1], and r is independent of s. Consider a mechanism that sends a message m0

for s = 0 and a different message me for each pair {−e� e} of S, where e ∈ (0�1]. Noting
that E[s|me] = E[s] = 0 for all e ∈ [0�1] implies that this (decomposed) mechanism in-
duces the same mapping from (r� s) to the receiver’s action as �no. This argument can
be generalized to show that any mechanism can be decomposed in this way.

I now discuss the intuition for sufficiency conditions of Proposition 1, starting from
part (i). Consider any nontrivial message of a decomposed mechanism. This message is
sent by some two types of the sender. By (1), the sender is indifferent between reveal-
ing these two types and pooling them, so the sender is indifferent between the origi-
nal mechanism and the mechanism that differs only in that it reveals these two types.
Continuously modifying the original mechanism for each message until all types are re-
vealed implies that the sender is indifferent between the original mechanism and �full,
so part (i) follows.

shows that pooling two types s2 > s1 yields a higher (lower) expected utility to the sender than separating
them if v(s2) ≤ v(s1) (if v(s2) ≥ v(s1)). If, in addition, v(s) = bs + c for all s, then Assumption 2 holds and
Proposition 1 implies that (i) all mechanisms are optimal if b= 0, (ii) �full is optimal if b > 0, and (iii) �no is
optimal if b < 0 (see Corollary 2 below).

12Intuitively, a concave closure of a function (defined on a convex set) is the smallest concave function
that is everywhere greater than the original function.
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I now turn to part (ii) of Proposition 1. Again, consider any nontrivial message of
a decomposed mechanism. This message is sent by some two types of the sender. By
(2), the sender prefers to reveal these two types than to pool them, so the sender prefers
the mechanism that differs from the original one only in that it reveals these two types.
Continuously modifying the original mechanism for each message until all types are re-
vealed implies that the sender prefers �full to the original mechanism, so part (ii) follows.

Finally, I provide the intuition for a weaker version of part (iii) of Proposition 1.
Namely, if the sender prefers to pool s1, s′1, s2, s′2 at rno than to pool s1, s′1 at r1 and to
pool s2, s′2 at r2 for all feasible s1, s′1, s2, s′2, r1, r2, then �no is optimal. Consider two
nontrivial messages of a decomposed mechanism. Suppose that the first message m1 is
sent by s1 and s′1 and makes the receiver r1 ≤ rno indifferent. Similarly, suppose that the
second message m2 is sent by s2 and s′2 and makes the receiver r2 ≥ rno indifferent. The
sender prefers the mechanism that differs only in that it sends one message that makes
the receiver rno indifferent instead of sending both m1 and m2. Continuously applying
this argument for pairs of messages until all types are pooled implies that the sender
prefers �no to the original mechanism, so this weaker version of part (iii) follows.

4.3 Interval revelation under linearity

Under Assumption 2, Proposition 2 simplifies the sender’s problem of finding an optimal
mechanism to a problem of finding an optimal distribution of messages.

Proposition 2. Suppose Assumption 2 holds. Let H denote the marginal distribution of
m under the optimal mechanism. Then

H maximizes
∫ s

s
V (m)dH(m)

(6)
subject to F is a mean-preserving spread of H�

The objective function in (6) represents the sender’s expected utility; the constraint
in (6) describes the set of feasible distributions of m.13 The intuition for the constraint is
as follows. If F is a mean-preserving spread of H, then F is more informative about
the sender’s type than H in the sense of Blackwell (1953). A mechanism can garble
the sender’s information to achieve any less informative distribution H of m than the
prior F . Conversely, because a mechanism can only garble the sender’s information, F
must be a mean-preserving spread of H for any feasible mechanism.

By Proposition 2, the curvature of V determines the form of the optimal mechanism.

Corollary 2. Suppose Assumption 2 holds and let rno = EF [s].
(i) All mechanisms are optimal if and only if V is linear on S.

13Kamenica and Gentzkow (2011) note that all feasible H have the same mean as F , but that not all
such H are feasible. Proposition 2 shows that H is feasible if and only if F is a mean-preserving spread of
H. Using Proposition 2, Gentzkow and Kamenica (2016) provide an alternative characterization of feasible
mechanisms.
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(ii) The full revelation mechanism is optimal if and only if V is convex on S.

(iii) The no revelation mechanism is optimal if and only if, for all r ∈ S, V (r)≤ V (rno)+
V ′(rno)(r − rno).

All three parts of Corollary 2 are straightforward implications of (6).14 First, if V is
linear, then the sender is risk neutral, so all mechanisms are optimal. Second, if V is
convex, then the sender is risk loving, so the full revelation mechanism is optimal. Third,
if V is concave, then the sender is risk averse, so the no revelation mechanism is optimal.
More precisely, part (iii) requires that the concave closure V of V on S is equal to V at rno.

The second main result derives necessary and sufficient conditions under which
an interval revelation mechanism with bounds sL and sH is optimal. This mechanism
generates message rL = EF [s|s < sL] for all s ∈ [s� sL), message rH = EF [s|s > sH] for all
s ∈ (sH� s], and message s for each s ∈ (sL� sH). In a special case of sL = sH , the revelation
interval (sL� sH) is empty, so the mechanism generates only two messages, rL and rH .

Proposition 3. Suppose Assumption 2 holds.

(i) An interval revelation mechanism with bounds sL < sH is optimal if and only if

V (r)≤ V (rL)+ V ′(rL)(r − rL) for all r ∈ [s� sL] with equality at sL�

V (r)≤ V (rH)+ V ′(rH)(r − rH) for all r ∈ [sH� s] with equality at sH�

V (r) is convex for all r ∈ (sL� sH)�

(ii) An interval revelation mechanism with bounds sL = sH is optimal if and only if

V (r)≤ V (rL)+ V ′(rL)(r − rL) for all r ∈ [s� sL]�
V (r)≤ V (rH)+ V ′(rH)(r − rH) for all r ∈ [sH� s]�

V (rL)+ V ′(rL)(sL − rL) = V (rH)+ V ′(rH)(sH − rH)�

V ′(rL) ≤ V ′(rH)�

I now discuss implications of Proposition 3 for the case when the derivative V ′(r)
of the sender’s expected utility is either unimodal or bimodal. The derivative V ′ is uni-
modal if it has a unique local (and therefore global) maximum at rm ∈ R; the maximum
point rm is called a mode. Consider the case of unimodal V ′ in which rm ∈ S and rno < rt ,
where rt is the point of tangency illustrated in Figure 2(a).15 If F were to assign strictly
positive probabilities only on s and s, then the optimal mechanism would send two mes-
sages s and rt and the sender’s expected utility would achieve the concave closure V(rno).
This mechanism, however, is not feasible when F admits a density, because s is equal to
s with probability 0. By part (i) of Proposition 3, sL = s and sH ∈ (s� s), so the optimal
mechanism reveals s for s < sH and sends the same message rH for all s > sH , where the

14Rayo and Segal (2010) and Kamenica and Gentzkow (2011) also obtain versions of Corollary 2.
15In the remaining cases of unimodal V ′, either �full or �no is optimal by Corollary 2.
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Figure 2. Sender’s utility V and concave closure V when derivative V ′ is (a) unimodal and (b),
(c) bimodal.

bound sH is determined by the condition that the sender is indifferent between revealing
sH and pooling it with rH .16

The derivative V ′ is bimodal if it has two local maxima at rm� rm′ ∈ R. If rm < s <

rt ′ < rno < s < rm′ , where rt ′ is the point of tangency illustrated in Figure 2(b), then, by
part (i) of Proposition 3, sH = s and sL ∈ (s� s), so the optimal mechanism reveals s for
s > sL and sends the same message rL for all s < sL. If rm < s < rt ′ < rno < rm′ < rt < s,
where rt and rt ′ are the points of tangency illustrated in Figure 2(c), then the optimal
mechanism takes one of the following three forms. The first two forms correspond to
the interval revelation mechanisms (with interior bounds sL� sH ∈ (s� s)) from parts (i)
and (ii) of Proposition 3. The third form corresponds to the mechanism that sends the
two messages rt and rt ′ , so that the sender’s expected utility achieves the concave closure
V(rno).17

5. Comparative statics

This section studies the value of the receiver’s information. I depart from the assump-
tions of Section 3 and instead impose the following three assumptions.

Assumption 3. The utilities u and v are increasing in s.

16In an extreme case, when V is a step function with V (r) = 0 for r < rt and V (r) = 1 for r ≥ rt , the optimal
mechanism reveals s for s < sH and sends the same message rt for s > sH , where sH is a unique solution to
EF [s|s > sH ] = rt . This is the case of an uninformed receiver (r = rt with probability 1) studied in Kolotilin
(2015).

17This mechanism does not generally belong to the class of interval revelation mechanisms, so this case
is not considered in Proposition 3.
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Assumption 4. For all (r� s) ∈R× S, v(r� s)= v(s) and u(r� s) = u(s) .

Assumption 5. Suppose v(s) > 0, u(s) > 0, and EF [u(s)|s : v(s) > 0]< 0.

Assumption 3 requires that the sender and receiver are more willing to act for higher
types s. Assumption 4 requires that the receiver’s type affects the receiver’s belief but
does not directly affect the sender’s and receiver’s utilities. Assumption 5 requires that
the sender can influence the receiver’s action but cannot achieve her first-best outcome
if the receiver is uninformed. Assumption 3 is mainly for ease of presentation, Assump-
tion 4 is crucial for Proposition 4, and Assumption 5 is crucial for Proposition 5.

Let the set of receiver’s types R be finite, so the receiver’s information structure G can
be described by conditional probabilities q(r|s) of r given s, where q(r|s) is a measur-
able function of s for each r ∈R. For each G, the sender’s and receiver’s expected utilities
under the optimal mechanism are denoted by VG and UG , respectively. I use Blackwell’s
(1953) ordering of information structures: G is more informative than G ′ if there exists
a stochastic matrix D such that q′(r′|s) = ∑

r∈RD(r′|r)q(r|s) for all (r′� s) ∈ R′ × S. An
information structure G is public if q(r|s) is either 0 or 1 for all (r� s) ∈ R × S; that is,
the receiver’s type is deterministically determined by the sender’s type if G is public. Let
Gfull and Gno represent fully informative and completely uninformative (public) infor-
mation structures. That is, Rfull = S and qfull(s|s) = 1 for all s ∈ S, and Rno = {rno} and
qno(rno|s) = 1 for all s ∈ S. Although Rfull is not finite, it is clear that any information
structure G is less informative than Gfull and more informative than Gno.

Before discussing non-monotone comparative statics, I present a benchmark result
(also found in Kolotilin 2015) that provides sufficient conditions for monotone compar-
ative statics.18 The receiver’s expected utility increases and the sender’s expected utility
decreases with the precision of the receiver’s private information if this precision is ei-
ther very low or very high. Moreover, this monotonicity holds for all levels of precision if
the receiver’s information is public.

Proposition 4. Suppose Assumptions 3–5 hold and distribution F admits a strictly pos-
itive density f on S.

(i) For any information structure G, we have UGfull
≥UG ≥UGno and VGno ≥ VG ≥ VGfull

.

(ii) For any two public information structures G and G′ such that G is more informative
than G′, we have UG ≥UG′ and VG′ ≥ VG .

Intuitively, if G and G′ are public, and G is more informative than G′, then, under G′,
the sender can first make public information more precise, from G ′ to G, and then im-
plement any mechanism � available under G, implying VG′ ≥ VG . To get the intuition for
the receiver’s part of Proposition 4, suppose that the sender’s utility is type-independent,

18In a related article, Bergemann and Morris (2016a) show that the set of implementable outcomes de-
creases as the information structure becomes more informative, which implies the sender’s part of Propo-
sition 4.
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so that v(s)= 1 for all s. In this case, under public G, the optimal mechanism and the no
revelation mechanism give the same expected utility to the receiver, implying UG ≥UG′ .

In light of Proposition 4, the utility non-monotonicity presented in Section 2 can
only arise when the receiver’s information is private and its precision is intermediate.
The next proposition shows that if the sender’s type can take only two values, it is always
possible to increase the precision of the receiver’s private information in such a way that
the sender’s and receiver’s expected utilities change non-monotonically.19

Proposition 5. Suppose Assumptions 3–5 hold and the support of F is {s� s}. There exist
two binary information structures G and G′, such that G is more informative than G′, yet
UG′ >UG and VG > VG′ .

The intuition for Proposition 5 is similar to that in the school–employer example.
Since the sender’s type can take only two values, without loss of generality, I assume that
r = Pr(s|r) for all r ∈ R. By Assumption 5, the sender wants to persuade the receiver to
act, but the receiver prefers not to act if he has no information beyond the prior. By
continuity, we can find the receiver’s type r > Pr(s) who would still prefer not to act un-
der the no revelation mechanism. A binary information structure of the receiver with
r < r becomes more informative if r decreases and r stays constant. As r decreases, the
probability of r increases, because Pr(r)r + Pr(r)r = Pr(s), so it becomes relatively more
attractive for the sender to target r than r. There exists a critical value r at which the
sender is exactly indifferent between which of the two types of the receiver to target.
Above this value, the sender targets r and the receiver’s expected utility is strictly posi-
tive, because r strictly prefers to act whenever r acts. Below this value, the sender targets
r, the receiver’s expected utility is zero, and the sender’s expected utility increases as the
receiver’s private information becomes more precise (r decreases), because the proba-
bility of r increases.

Appendix: Proofs

Proof of Lemma 1. The lemma can be proved by applying Theorem 2.1 of Anderson
and Nash (1987) to my model. But, to make the paper self-contained, I prove this lemma
here.

Since η is bounded and measurable on set S, (P1) implies∫
S
η(s)f (s)ds =

∫
R∗×S

η(s)d�(r� s)�

19Bergemann and Morris (2016b) consider an example with v(s) = v(s) = 1, u(s) = 9/10, u(s) = −1,
Pr(s) = 1/2, and a binary information structure with the restriction that q(r|s) = q(r|s) = p. They show
that the set of implementable outcomes (and, thus, the sender’s expected utility) decreases with the preci-
sion of the receiver’s private information p. This monotonicity does not hold without the restriction that
q(r|s) = q(r|s) = p. Since their example satisfies Assumptions 3–5, Proposition 5 implies that there exist two
binary information structures G and G′ such that G is more informative than G′, yet the sender is strictly
better off under G.
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Since ν is bounded and measurable on set R, (P2) implies∫
R∗×S

ũ(r� s)ν(r)d�(r� s)= 0�

Summing these two equalities gives∫
S
η(s)f (s)ds =

∫
R∗×S

(
η(s)+ ũ(r� s)ν(r)

)
d�(r� s)� (7)

Integrating (D1) over R∗ × S gives∫
R∗×S

V (r� s)d�(r� s)≤
∫
R∗×S

(
η(s)+ ũ(r� s)ν(r)

)
d�(r� s)� (8)

Suppose that (C) holds for some feasible (η�ν) and �. Conditions (7) and (8) yield∫
R∗×S

V (r� s)d�(r� s) =
∫
S
η(s)f (s)ds� (9)

Consider any other feasible �̃. Conditions (7) and (8) imply∫
R∗×S

V (r� s)d�̃(r� s)≤
∫
S
η(s)f (s)ds�

Combining this inequality with (9) gives∫
R∗×S

V (r� s)d�̃(r� s) ≤
∫
R∗×S

V (r� s)d�(r� s)�

showing that � is an optimal solution to the primal problem (P). An analogous argument
proves that (η�ν) is an optimal solution to (D). Finally, (9) shows that the values of (P)
and (D) are the same. �

Proof of Lemma 2. The proof of this lemma is a modification of the proof of Theo-
rem 5.2 in Anderson and Nash (1987), whose notation I closely follow.

Conventions. The primal variable � is in Mr(R
∗ × S), the space of finite signed mea-

sures on R∗ × S with the total variation norm. The mechanism � is chosen from the
positive closed convex cone P of finite positive measures on R∗ × S. The dual constraint
function V (r� s) is in C(R∗ ×S), the space of continuous measurable functions on R∗ ×S

with the uniform norm. The dual variables (η�ν) are in L∞(S) × L∞(R∗), the space of
bounded measurable functions with the uniform norm. The primal constraint function
(f�θ) is in L1(S)×L1(R

∗), the space of absolutely integrable functions with the 1-norm,
where θ is a zero function on the right hand side of (P2).

Optimal solution to (P). One feasible � for the primal problem (P) is the full reve-
lation mechanism. The feasible set of the primal problem is bounded because the total
variation of any probability measure � is equal to 1. The constraint map in (P1) is con-
tinuous because it is a projection; the constraint map in (P2) is continuous because ũ is
continuous. The space Mr is the dual of C by Corollary 14.15 of Aliprantis and Border
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(2006). Therefore, there exists an optimal solution � by Theorem 3.20 in Anderson and
Nash (1987).

Optimal solution to (D). Since V is continuous on the compact set R∗ ×S, there exists
a finite value V = maxr�s V (r� s). Functions η(s)= V and ν(r) = 0 are feasible for the dual
problem, and the set of feasible (η�ν) can be bounded without affecting the value of the
dual problem. The constraint map in (D1) is continuous because ũ is continuous. The
space L∞ is the dual of L1 by Theorem 13.28 of Aliprantis and Border (2006). Therefore,
there exists an optimal solution (η�ν) by Theorem 3.20 in Anderson and Nash (1987).

Equality (C) under optimal solutions. As can be seen from above, the dual problem
has a finite value, and functions η(s) = 2V and ν(r) = 0 are in the interior of the con-
straint set (D1). Therefore, there is no duality gap by Theorem 3.13 in Anderson and
Nash (1987).

Continuity of η. Observe that if (η�ν) is optimal, then (η∗� ν) is also optimal, where

η∗(s) = sup r
{
V (r� s)− ũ(r� s)ν(r)

}
�

Indeed, η∗ is feasible and η∗ ≤ η, because η satisfies (D1) for all r, so the objective in (D)
is smaller under η∗. I now show that η∗ is continuous. Since R∗ × S is compact, V and
ũ are uniformly continuous. Thus, since ν is bounded, for any ε > 0, there exists δ > 0
such that ∣∣(V (r� s)− ũ(r� s)ν(r)

) − (
V

(
r� s′

) − ũ
(
r� s′

)
ν(r)

)∣∣ < ε (10)

for all r ∈R∗ and s� s′ ∈ S such that |s − s′| < δ. By definition of η∗, for any s there exists r
such that

η∗(s) < V (r� s)− ũ(r� s)ν(r)+ ε� (11)

Thus,

η∗(s′) ≥ V
(
r� s′

) − ũ
(
r� s′

)
ν(r)

> V (r� s)− ũ(r� s)ν(r)− ε

> η∗(s)− 2ε�

where the first inequality holds by definition of η∗, the second holds by (10), and the
third holds by (11). Analogously, η∗(s) > η∗(s′) − 2ε, so |η∗(s) − η∗(s′)| < 2ε whenever
|s − s′| < δ, implying that η∗ is continuous. �

Proof of Proposition 1. The “if” part of part (i). Consider any mechanism �. Note
that condition (1) holds if and only if there exists a function b(r) such that, for all s ∈
S and all r ∈ (r∗(s)� r∗(s)), we have V (r∗(s)� s) − V (r� s) = b(r)ũ(r� s). Substituting this
equation into (P2) gives∫

R∗×S
V (r� s)d�(r� s)=

∫
R∗×S

V
(
r∗(s)� s

)
d�(r� s)�
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Taking into account (P1) gives∫
R∗×S

V (r� s)d�(r� s) =
∫
S
V

(
r∗(s)� s

)
f (s)ds�

which implies that the sender’s expected utility is the same under all mechanisms.
The “only if” part of part (i). Suppose, to get a contradiction, that there exist s2 > s1,

and r ∈ (r∗(s2)� r
∗(s1)) such that

V
(
r∗(s2)� s2

) − V (r� s2)

ũ(r� s2)
>

V
(
r∗(s1)� s1

) − V (r� s1)

ũ(r� s1)
� (12)

(The case in which the left hand side of (12) is strictly smaller than the right hand side
is analogous.) Let w1(x) = ∫ x

s1
ũ(r� s)f (s)ds and w2(x) = ∫ s2

x ũ(r� s)f (s)ds. There exists
ε1 > 0 such that the function w1 is continuously differentiable, strictly decreasing on
[s1� s1 + ε1], and vanishing at s1. Likewise, there exists ε2 > 0 such that the function w2
is continuously differentiable, strictly decreasing on [s2 − ε2� s2], and vanishing at s2.
Thus, on [s2 − ε2� s2], we can define a continuously differentiable and strictly decreasing
function s∗1(x) that satisfies w1(s

∗
1(x))+w2(x) = 0. By the implicit function theorem,

ds∗1(x)
dx

= ũ(r�x)f (x)

ũ
(
r� s∗1(x)

)
f
(
s∗1(x)

) � (13)

By continuity, there exists x2 < s2 such that (12) holds for all (s1� s2) ∈ [s1� s
∗
1(x2)] ×

[x2� s2]. Consider two mechanisms that differ only in that one reveals s for all s ∈ [s1�

s∗1(x2)] ∪ [x2� s2] and the other sends the same message for all s ∈ [s1� s
∗
1(x2)] ∪ [x2� s2].

That is, the former mechanism sends r∗(s) and the latter sends r, because w1(s
∗
1(x)) +

w2(x) = 0. The sender strictly prefers the former mechanism, because the difference in
the sender’s expected utility between the former and latter mechanisms is∫

[s1�s
∗
1(x2)]∪[x2�s2]

(
V

(
r∗(s)� s

) − V (r� s)
)
f (s)ds

>

∫ s∗1(x2)

s1

(
V

(
r∗(s)� s

) − V (r� s)
)
f (s)ds

+
∫ s2

x2

ũ(r� s)

ũ
(
r� s∗1(s)

) (
V

(
r∗

(
s∗1(s)

)
� s∗1(s)

) − V
(
r� s∗1(s)

))
f (s)ds = 0�

where the inequality holds by (12) and the equality holds by (13) and the change of vari-
ables formula. This concludes the proof of the “only if” part of part (i).

Part (ii). By Lemmas 1 and 2, �full is optimal if and only if there exists feasible (η�ν)

that satisfies ∫
R∗×S

(
η(s)+ ũ(r� s)ν(r)− V (r� s)

)
d�full(r� s)= 0� (14)

By (D1), the integrand is nonnegative, so (14) holds if and only if

η(s)+ ũ
(
r∗(s)� s

)
ν
(
r∗(s)

) = V
(
r∗(s)� s

)
almost everywhere.
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Since ũ(r∗(s)� s) = 0, we have η(s) = V (r∗(s)� s) almost everywhere. Since η is continu-
ous by Lemma 2, and V and r∗ are continuous by assumption, η(s) = V (r∗(s)� s) holds
for all s ∈ S. Therefore, �full is optimal if and only if there exists ν that satisfies (D1),

V
(
r∗(s)� s

) + ũ(r� s)ν(r) ≥ V (r� s) for all (r� s) ∈ R∗ × S� (15)

which is equivalent to

V (r� s2)− V
(
r∗(s2)� s2

)
ũ(r� s2)

≤ ν(r) ≤ V
(
r∗(s1)� s1

) − V (r� s1)

−ũ(r� s1)

for all r ∈ (r∗(s)� r∗(s)) and s1, s2 such that r ∈ (r∗(s2)� r
∗(s1)). (For r ∈ {r∗(s)� r∗(s)}, the

existence of ν is obvious because (15) bounds ν only from one side.) There exists such ν

if and only if (2) holds.
Part (iii). Analogously to part (ii), �no is optimal if and only if there exists feasible

(η�ν) that satisfies

η(s)+ ũ(rno� s)ν(rno) = V (rno� s) for all s ∈ S�

Therefore, �no is optimal if and only if there exists ν that satisfies (D1),

V (rno� s)− ũ(rno� s)ν(rno)+ ũ(r� s)ν(r) ≥ V (r� s) for all (r� s) ∈ R∗ × S� (16)

which is equivalent to

V (r� s2)− (
V (rno� s2)− ũ(rno� s2)ν(rno)

)
ũ(r� s2)

≤ ν(r)

≤
(
V (rno� s1)− ũ(rno� s1)ν(rno)

) − V (r� s1)

−ũ(r� s1)

(17)

for all r ∈ (r∗(s)� r∗(s)), and s1� s2 ∈ S such that r ∈ (r∗(s2)� r
∗(s1)). (For r ∈ {r∗(s)� r∗(s)},

the existence of ν is obvious because (16) bounds ν only from one side.)
At r = rno, both sides of (17) become ν(rno). Thus, for (17) to be satisfied everywhere,

the derivatives of both sides of (17) with respect to r evaluated at r = rno must coincide,
which gives

ν(rno)=
∂V (rno� s1)/∂r

ũ(rno� s1)
− ∂V (rno� s2)/∂r

ũ(rno� s2)
∂ũ(rno� s1)/∂r

ũ(rno� s1)
− ∂ũ(rno� s2)/∂r

ũ(rno� s2)

� (18)

Taking the limit of (18) as s2 ↓ sno gives

ν(rno) = ∂V (rno� sno)/∂r

∂ũ(rno� sno)/∂r
� (19)

Substituting ν(rno) from (19) into (17) completes the proof of Proposition 1. �
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Proof of Corollary 1. Parts (i) and (ii). Since p2 = 1 −p1 and
∑2

i=1 piũ(r� si) = 0,

p1 = ũ(r� s2)

ũ(r� s2)− ũ(r� s1)
and p2 = − ũ(r� s1)

ũ(r� s2)− ũ(r� s1)
�

By Assumption 1, ũ(r� s1) < 0 < ũ(r� s2) because r ∈ (r∗(s2)� r
∗(s1)); so p1�p2 ∈ (0�1). Sub-

stituting p1 and p2 in (4) gives (2). Finally, (4) with equality is equivalent to (1).
Part (iii). Since sgn(rno − r) = sgn(r∗(s3) − rno), either rno ∈ (r� r∗(s3)) or rno ∈

(r∗(s3)� r). Suppose that rno ∈ (r� r∗(s3)) (the other case is analogous). By Assumption 1,
ũ(rno� s3) < 0 because rno < r∗(s3), ũ(r� s1) < 0 < ũ(r� s2) because r ∈ (r∗(s2)� r

∗(s1)), and∑2
i=1 piũ(rno� si) > 0 because rno > r and

∑2
i=1 piũ(r� si) = 0. Therefore, the system of

equations p1 + p2 + p3 = 1,
∑3

i=1 piũ(rno� si) = 0, and
∑2

i=1 piũ(r� si) = 0 has a unique
solution p1�p2�p3 ∈ (0�1). Substituting these p1, p2, and p3 into (5) and rearranging
gives

V (r� s2)− V (rno� s2)

ũ(r� s2)
+ ũ(rno� s2)

ũ(rno� s3)

V (rno� s3)− V
(
r∗(s3)� s3

)
ũ(r� s2)

≤ V (r� s1)− V (rno� s1)

ũ(r� s1)
+ ũ(rno� s1)

ũ(rno� s3)

V (rno� s3)− V
(
r∗(s3)� s3

)
ũ(r� s1)

�

Taking the limit of this inequality as s3 → sno gives (3), because

lim
s3→sno

V (rno� s3)− V
(
r∗(s3)� s3

)
ũ(rno� s3)

= −∂V (rno� sno)/∂r

∂ũ(rno� sno)/∂s

dr∗(sno)

ds
= ∂V (rno� sno)/∂r

∂ũ(rno� sno)/∂r
�

where the first equality holds by L’Hospital’s rule and the second holds by the implicit
function theorem applied to ũ(r∗(s)� s)= 0. �

Proof of Proposition 2. Any mechanism �, whose messages m satisfy m = E�[s|m],
generates messages with a distribution H having the property that distribution F is a
mean-preserving spread of H. It remains to verify that any distribution H having this
property can be generated by a feasible mechanism. If F is a mean-preserving spread
of H, then, by definition, s has the same distribution as m + z for some z such that
E[z|m] = 0. Define �(m̃� s̃) = Pr(m ≤ m̃�m + z ≤ s̃) for all (m̃� s̃) ∈ S × S. For this �, the
marginal distribution of s is F and E�[s|m] = E�[m+ z|m] = m. Therefore, � is a feasible
mechanism whose messages are distributed according to H. �

Proof of Corollary 2. Assumption 1 and Proposition 1 hold after replacing r with
−r. With this change of variables, r∗(s) = s, V (r� s)= V (r), and ũ(r� s)= (s − r)g(r).

By part (i) of Proposition 1, all mechanisms are optimal if and only if (1) holds,

V (r)= s2 − r

s2 − s1
V (s1)+ r − s1

s2 − s1
V (s2) for all s1� s2� r ∈ S�

By part (ii) of Proposition 1, �full is optimal if and only if (2) holds,

V (r)≤ s2 − r

s2 − s1
V (s1)+ r − s1

s2 − s1
V (s2) for all s1� s2� r ∈ S�
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By part (iii) of Proposition 1, �no is optimal if and only if (3) holds, which simplifies
to the condition of part (iii) of Corollary 2. �

Proof of Proposition 3. The “only if” part of part (i). By Lemma 2, if the described
mechanism � is optimal, then there exists feasible (η�ν) that satisfies∫

R×S

(
η(s)+ (s − r)ν(r)− V (r)

)
d�(r� s)= 0�

By the feasibility condition (D1), the integrand is nonnegative. Moreover, by Lemma 2,
η is continuous, so

η(s) =

⎧⎪⎪⎨
⎪⎪⎩
V (rL)− (s − rL)ν(rL) for all s ∈ [s� sL]�
V (s) for all s ∈ (sL� sH)�

V (rH)− (s − rH)ν(rH) for all s ∈ [sH� s]�

The feasibility condition (D1) implies

V (s)+ (s − r)ν(r) ≥ V (r) for all s� r ∈ (sL� sH)�

Taking the limits s ↑ r and s ↓ r yields ν(r) = −V ′(r) for all r ∈ (sL� sH). Substituting
back gives

V (s) ≥ V (r)+ V ′(r)(s − r) for all s� r ∈ (sL� sH)�

which implies that V (r) is convex for all r ∈ (sL� sH).
The feasibility condition (D1) also implies

V (rL)− (s − rL)ν(rL)+ (s − r)ν(r) ≥ V (r) for all s� r ∈ [s� sL]�

Writing these inequalities for s = sL and s = s gives

V (rL)− (sL − rL)ν(rL)+ (sL − r)ν(r) ≥ V (r)�

V (rL)− (s − rL)ν(rL)+ (s − r)ν(r) ≥ V (r)�

Multiplying the first inequality by (r − s), the second by (sL − r), and adding up yields

(sL − s)
(
V (rL)+ (rL − r)ν(rL)− V (r)

) ≥ 0�

Taking the limits r ↑ rL and r ↓ rL yields ν(rL) = −V ′(rL). Substituting back gives

V (r)≤ V (rL)+ V ′(rL)(r − rL) for all r ∈ [s� sL] with equality at sL�

where the equality holds by continuity of η.
To complete the proof, we can use the same argument to get ν(rH) = −V ′(rH) and

V (r)≤ V (rH)+ V ′(rH)(r − rH) for all r ∈ [sH� s] with equality at sH�
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The “if” part of part (i). Consider the described mechanism � and the constructed
pair (η�ν):

η(s) =

⎧⎪⎪⎨
⎪⎪⎩
V (rL)+ V ′(rL)(s − rL) for s ∈ [s� sL]�
V (s) for s ∈ (sL� sH)�

V (rH)+ V ′(rH)(s − rH) for s ∈ [sH� s]�

ν(r) =

⎧⎪⎪⎨
⎪⎪⎩

−V ′(rL) for r ∈ [s� sL]�
−V ′(r) for r ∈ (sL� sH)�

−V ′(rH) for r ∈ [sH� s]�

The complementarity condition (C) holds by construction. Moreover, (η�ν) is feasible
for (D), because, for all (r� s) ∈ S × S, we have

η(s)+ (s − r)ν(r) ≥ η(r)≥ V (r)�

where the first inequality holds because η(s) is convex for all s ∈ S and −ν(r) is a sub-
derivative of η(r) for all r ∈ S. Therefore, by Lemma 1, � is optimal.

The “only if” part of part (ii). The proof of the first three conditions is the same as
in part (i). To prove V ′(rL) ≤ V ′(rH), write the feasibility condition (D1) for s ≥ sH and
r = rL,

V (rH)+ V ′(rH)(s − rH)≥ V (rL)+ V ′(rL)(s − rL)�

and notice that both sides are equal at s = sH = sL and linear in s for s ≥ sH .
The “if” part of part (ii). Consider the described mechanism � and the pair (η�ν)

from part (i). By the same argument as in part (i), � is optimal. �

Proof of Proposition 4. Although this proposition follows almost immediately from
Kolotilin (2015), below I provide a simpler proof adapted to this setting.

Part (i). We have VG ≥ VGfull
, because the sender can always achieve VGfull

by choosing
the full revelation mechanism. Similarly, VGno ≥ VG , because an outcome produced un-
der G by � can also be achieved under Gno by a mechanism �′ that generates r according
to q and m according to �. Trivially, UGfull

≥UG , because the receiver is best off when he
knows the sender’s type.

Finally, UG ≥ UGno , because the optimal mechanism under Gno gives the same
expected utility to the receiver as the no revelation mechanism; that is, UGno =
max{EF [u(s)]�0}. Indeed, since EF [u(s)|s : v(s) > 0] < 0 by Assumption 5, the optimal
mechanism induces the receiver to act if and only if s ≥ s∗, where s∗ is the unique solu-
tion to EF [u(s)|s ≥ s∗] = 0 (Kolotilin 2015).

Part (ii). Public G partitions S into disjoint subsets Sr = {s : q(r|s) = 1}. Moreover,
since public G is more informative than public G′, G is a refinement of G′; that is, for each
r ∈ R, there exists r ′ ∈ R′ such that Sr ⊂ Sr′ . Therefore, an outcome produced under G by
� can also be achieved under G′ by a mechanism �′ that refines G′ to G and generates m
according to �, which implies that VG′ ≥ VG .
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Under public G, r is deterministically determined by s, so we can allow mechanisms
to be conditioned on r. By Kolotilin (2015), the optimal mechanism induces the receiver
to act if and only if s ≥ s∗(r), where s∗(r) is the minimum s̃ ∈ S such that v(̃s) ≥ 0 and
EF [u(s)|s ∈ Sr : s ≥ s̃] ≥ 0. Therefore,

UG =
∑
r∈R

max
{∫

s∈Sr
u(s)f (s)ds�

∫
s∈Sr :v(s)≥0

u(s)f (s)ds�0
}
�

which implies that UG ≥UG′ , because G is a refinement of G′. �

Proof of Proposition 5. If s can take only two values, Assumption 5 implies that
u(s) < 0 < v(s). Therefore, EF [u(s)|s : v(s) > 0] < 0 simplifies to EF [u(s)] < 0, which
holds if and only if μ = Pr(s) < 1/(1 + x), where x = −u(s)/u(s).

For any r1 and r2 such that 0 < r1 < μ < r2 < 1/(1 + x), there exists a binary infor-
mation structure of the receiver with R = {r1� r2}, where r1 = Pr(s|r1) and r2 = Pr(s|r2).
Similarly to the school–employer example, we can restrict attention to mechanisms that
generate only three messages m2, m1, and m0, where m2 makes the receiver r2 indiffer-
ent, m1 makes the receiver r1 indifferent, and m0 convinces both types of the receiver
that s = s.

Since r2 < 1/(1 + x), neither type of the receiver would act if the sender chose the no
revelation mechanism. It is easy to show then that the optimal mechanism is either �1
that generates m1 and m0 or �2 that generates m2 and m0.

Without loss of generality, assume that m = Pr(s|m) for all m. After receiving mi,
where i ∈ {1�2}, the receiver ri holds the posterior:

Pr(s|mi� ri)=
miri
μ

miri
μ

+ (1 −mi)(1 − ri)

(1 −μ)

�

Since mi makes ri indifferent, we have Pr(s|mi� ri) = 1/(1 + x), which is equivalent to

mi = μ(1 − ri)

μ(1 − ri)+ (1 −μ)rix
�

Since the posteriors Pr(s|m) must average out to the prior Pr(s), the mechanism �i gen-
erates mi with probability μ/mi. Therefore, the sender’s expected utility under �1 is

V1 = μ

m1

(
(1 −m1)v(s)+m1v(s)

)
= (1 −μ)r1xv(s)+μ(1 − r1)v(s)

1 − r1
�

Similarly, the sender’s expected utility under �2 is

V2 = μ

m2

(
(1 −m2)Pr(r2|s)v(s)+m2 Pr(r2|s)v(s)

)

= (μ− r1)r2
(
xv(s)+ v(s)

)
r2 − r1

�
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In the limit r1 ↓ 0, we have V2 = μ(xv(s) + v(s)) > μv(s) = V1, but in the limit r1 ↑ μ,
we have V1 = μ(xv(s)+v(s)) > 0 = V2. Since both V1 and V2 are continuous in r1, for each
r∗2 ∈ (μ�1/(1 + x)), there exists an r∗1 ∈ (0�μ) at which V1 = V2.

Let G and G′ be the two information structures with R = {r∗1/2� r∗2 } and R′ = {r∗1 � r∗2 },
respectively. Because r1 ≤ r′1 and r2 ≥ r′2, G is more informative than G′. Under G′, the
sender is indifferent between �1 and �2, so �1 is an optimal mechanism. Since V1 in-
creases with r1 and V2 decreases with r1, the sender’s optimal mechanism under G is �2.
The receiver’s expected utility is 0 under �2 and is strictly positive under �1, so UG′ >UG .
Since V2 decreases with r1, the sender is strictly better off under G, so VG > VG′ . �

Proposition 6. Suppose Assumption 1 holds.

(i) The receiver’s expected utility under �full is strictly higher than under any other �.

(ii) The receiver’s expected utility under �no is strictly lower than under any other �.

Proof. The receiver’s expected utility under �, �full, and �no is

E�[u] =
∫
R∗×S

(∫ r

r
ũ(̃r� s) d̃r

)
d�(r� s)� (20)

E�full
[u] =

∫
S

(∫ r

r∗(s)
ũ(̃r� s) d̃r

)
f (s)ds =

∫
R∗×S

(∫ r

r∗(s)
ũ(̃r� s) d̃r

)
d�(r� s)� (21)

E�no[u] =
∫
S

(∫ r

rno

ũ(̃r� s) d̃r

)
f (s)ds =

∫
R∗×S

(∫ r

rno

ũ(̃r� s) d̃r

)
d�(r� s)� (22)

Equation (20) holds because a message m induces the receiver r to act if and only if
r ≥ m. The first equality in (21) holds because �full generates message r∗(s) for each
s ∈ S. Similarly, the first equality in (22) holds because �no generates rno for all s ∈ S. The
second equality in (21) and (22) holds because the marginal distribution of s under any
mechanism � coincides with the prior distribution of s.

Part (i). Fubini’s theorem together with the condition ũ(r∗(s)� s)= 0 gives

E�full
[u] −E�[u] =

∫
S

∫
r>r∗(s)

(∫ r

r∗(s)
ũ(̃r� s) d̃r

)
d�(r� s)

−
∫
S

∫
r<r∗(s)

(∫ r∗(s)

r
ũ(̃r� s) d̃r

)
d�(r� s)�

(23)

By Assumption 1, we have ũ(̃r� s) > 0 for r̃ > r∗(s), so
∫ r
r∗(s) ũ(̃r� s) d̃r > 0 for r > r∗(s). Any

� that differs from �full puts strictly positive probability on the event r > r∗(s); otherwise∫
R∗×S ũ(r� s)d�(r� s) would be strictly negative rather than zero. Therefore, the first inte-

gral in (23) is strictly positive. The analogous argument shows that the second integral
in (23) is strictly negative, so E�full

[u] −E�[u]> 0 for any � that differs from �full.
Part (ii). For a mechanism �, denote the conditional distribution of s given a mes-

sage r by P�(s|r) and the marginal distribution of message r by P�(r). Fubini’s theorem
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gives

E�[u] −E�no [u] =
∫ rno

r

[∫ rno

r

(∫
S
ũ(̃r� s)dP�(s|r)

)
d̃r

]
dP�(r)

−
∫ r

rno

[∫ r

rno

(∫
S
ũ(̃r� s)dP�(s|r)

)
d̃r

]
dP�(r)�

(24)

By Assumption 1, we have
∫
S ũ(̃r� s)dP�(s|r) > 0 for r̃ > r. Therefore,∫ rno

r

(∫
S
ũ(̃r� s)dP�(s|r)

)
d̃r > 0 for r < rno�

Since P�(r) of any mechanism � that differs from �no puts strictly positive probability
on messages in [r� rno), the first integral in (24) is strictly positive. The analogous argu-
ment shows that the second integral in (24) is strictly negative, so E�[u]−E�no[u]> 0 for
any � that differs from �no. �
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