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Abstract 
 
We propose one of the first dynamic models of the optimal transition from fossil fuels to 
renewables in electricity generation that takes into account the variability and intermittency of 
renewable energy as well as storage. This work sheds light on the extent to which variability and 
intermittency constitute a serious obstacle to energy transition and, given these constraints, the 
value of storage. The results of this model provide useful insight into the complexity of 
transitioning to a clean energy mix, as well as the role climate policy can play in facilitating 
both the growth of renewables and storage. 
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Energy transition with variable and intermittent

renewable electricity generation∗

1 Introduction

In the short/medium term, renewables cannot be deployed at a large scale to replace coal

and other fossil fuels in electricity generation. Indeed, on the one hand they are still more

costly on average than fossil fuels, and, on the other hand, they are non-dispatchable and

are not continuously available. But in the future the production of electricity has to be

decarbonized, and producing energy by renewable sources seems to be the best option to

do so,1 before nuclear fusion becomes eventually available.

The production of electricity by renewable sources has grown rapidly in recent years. At

the end of 2017, the estimated renewable energy share in global electricity production is

26.5%, of which 16.4% is hydropower, 5.6% wind power, and 1.9% solar PV (REN21, 2018).

Hydropower has limited expansion possibilities, and the combined shares of solar and wind

power is still very small. It is a long way to the total elimination of the 73.5 % share of

non-renewable electricity that is left.

Contrary to what was the dominant view a few years ago, the cost is not the main obstacle to

a larger penetration of renewable sources in the electric mix. The investment cost for wind

and solar plants has already been widely reduced, due to technical progress and learning

effects in production and installation, and the decrease is expected to continue, until a limit

lower bound is reached. For instance, according to the International Energy Agency (2011),

solar PV costs have been reduced by 20% for each doubling of the cumulative installed

capacity.

∗The authors thank Baris Vardar for his invaluable help with the simulations. They also thank parti-
cipants at SURED 2018, WCERE 2018, FAERE Conference 2018, CESIfo Area Conference in Energy and
Climate Economics 2018 and the CREST-Ecole Polytechnique seminar for their comments.

1Carbon Capture and Storage (CCS) is another option, but it is still expensive and can only offer a
partial solution as potential carbon sinks are of limited capacity. CCS has already been extensively studied.
See for instance Lafforgue, Magne and Moreaux (2008). Examining the nuclear option would require to
write another, very different paper.
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The serious problem is posed by the fact that wind and solar energy are not continuously

available: they are both variable and intermittent. Variability is predictable, it follows a

natural pattern such as the alternation of day and night, or of seasons. Intermittency is

stochastic, as it is due to unpredictable weather events like cloud formation. Sinn (2017),

discussing the German energy transition (die Energiewende), stresses that in Germany in

2014 the installed wind power production capacity was 35.92 GW and the average production

5.85 GW, that is 16.3% of the capacity; for solar the corresponding figures are 37.34 GW of

capacity, and a production of 3.7 GW, that is 9.9% of the capacity. The need for solutions

to handle variability and intermittency is obvious; without solutions, intermittent sources

cannot be considered as good substitutes for conventional fossil sources (Joskow, 2011,

Laskano et al., 2017). However, at the moment, issues posed by variability and intermittency

are not satisfactorily solved. Practical solutions are the backup of renewables by fossil fuel-

fired power plants (the German double structure strategy, see Sinn, 2017), the diversification

of sources associated to a dense transmission network, storage—from the classic hydro-

pumped storage to new solutions like modern batteries, compressed air storage, flywheels

etc., and demand side management. Heal (2016) offers an overview of these solutions and

possible lines of modelling.

The literature considering the penetration of renewables in the energy mix consists so far

in two separate trends.

There is first a very abundant literature of macro-dynamic models à la Hotelling considering

renewable energy as a ”backstop technology”. It consists in an abundant and steady flow

available with certainty, at a unit cost higher than the unit extraction cost of fossil energy.2

In the simplest version of this representation of the energy transition, the unit extraction cost

of fossil fuels rises over time by a Hotelling effect, and the switch to clean renewable energy

occurs when this cost reaches the cost of the backstop. Useful as it may have been, this

representation is not accurate for the actual energy transition problem. First, it overlooks

the fact that the relevant cost to be taken into account as far as renewables are concerned

is the investment cost, rather than the variable operating cost, which is very low. Second,

the standard literature ignores the variable and intermittent nature of renewable sources,

which is to our point of view the main obstacle to their penetration in the electric mix.

Another strand of literature is composed of models that are not directly interested in energy

transition, but focus on the design of the electric mix when intermittency is taken into ac-

count, with or without storage devices. Ambec and Crampes (2012, 2015) are representative

of this literature. They study in a static framework the optimal electric mix with intermit-

tent renewable sources, and contrast it with the mix chosen by agents in a decentralized

economy where the retailing price of electricity does not vary with its availability. They ex-

amine the properties of different public policies and their impacts on renewable penetration

in the electric mix: carbon tax, feed-in tariffs, renewable portfolio standards, demand-side

2See, for early path-breaking papers, Hoel and Kverndokk (1996), and Tahvonen (1997).
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management policies. Helm and Mier (2018) build a dynamic model with a fossil fuel, a

variable renewable source and a storage technology. Their aim is to study the optimal sub-

sidies for the renewables and the storage capacity when a carbon tax cannot be put into

place. They do not account for intermittency.

A recent survey on the economics of solar electricity (Baker et al., 2013) emphasizes the

lack of economic analysis of clean energy provision through renewable sources. We intend

to contribute to fill this lack by putting together the two strands of the literature mentioned

above, in order to make macro-dynamic models more relevant for the study of the energy

transition. Indeed we believe that the energy transition is by essence a dynamic problem,

which cannot be fully understood through static models. On the other hand, dynamic

models are so far unable to take into account properly some crucial features of renewables,

namely investment in capacity and, above all, variability and intermittency, with the need

for storage they create. Our aim is to propose a simple and tractable dynamic model

incorporating these features, to be able to study the extent to which they actually constitute

a serious obstacle to energy transition.

In a first step we tackle the variability issue alone. We build a stylized deterministic dynamic

model of the optimal choice of the electric mix (fossil and renewable), where the fossil

energy, let us say coal for the purpose of illustration, is abundant but CO2-emitting, and

the renewable energy, let us say solar, is variable and clean. The originality of the model is

that electricity produced when the renewable source of energy is available, and electricity

produced when it is not, are considered two different goods: day-electricity and night-

electricity in the case of solar energy that we use for illustration. These two goods are

produced by potentially different technologies: day-electricity can be produced with coal

and/or solar, whereas night-electricity can be produced with coal, or by the release of day-

electricity that has been stored to that effect. Storage is costly due to the loss of energy

during the restoration process. These two goods are also potentially valued differently by

consumers, who, at each period of time, derive utility from the consumption of the two

goods: consumers may prefer to consume electricity at day, in which case solar is at peak,

or at night, in which case solar is off-peak. Considering that there are two different goods

allows us to take into account intra-day variability. We consider that coal and solar are

available at zero variable costs, in order to focus on the variability and intermittency issues.

We also make the assumption that at the beginning of the planning horizon coal-fired power

plants already exist so that there is no capacity constraint on the production of electricity

by the fossil source, but that the existing solar capacity is small so that investments are to

be made in order to build up a sizable capacity.

We solve the centralized program under the constraint of a carbon budget that cannot be

exceeded, and derive an optimal succession of regimes. We show that with a low initial

solar capacity it is optimal to first use fossil fuels during night and day, then use fossil

fuels during night only and finally go for no fossil fuels at all, when the carbon budget
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is exhausted. The optimal dynamics for the capacity of solar power plants is derived, as

well as the optimal amount of electricity stored in time. We show that investment in solar

panels is not necessarily monotonous, and that storage begins when fossil fuels have been

abandoned at day and the solar capacity is large enough. We characterize the long term of

this economy, and especially the determinants of long run solar capacity and storage rate.

Finally, we analyze the consequences of a more stringent climate policy, a lower investment

cost in solar panels, and improvements in the storage and solar power generation technologies

on the optimal investment decisions and energy mix.

In a second step, we introduce intermittency in addition to variability, and study the de-

sign of the power system enabling to accommodate it. With intermittency, day-electricity

generation by solar power plants becomes uncertain. We consider that there is only par-

tial generation if solar radiations are too weak due for instance to the cloud system, which

occurs with a given probability. We exhibit two very different situations. If the cloud pro-

blem is not too severe, we show that intermittency does not matter so much, rejoining the

empirical result of Gowrisankaran et al. (2016). The energy transition follows the same

succession of phases as under variability only. On the contrary, if there may be very few

sun during the day, the transition is very different as fossil fuels are abandoned later while

storage starts earlier. In both cases, ignoring intermittency leads to underinvest in solar

capacity in the long run. Finally, we show that renewable electricity generation and storage

are complement: absent storage devices, the long run renewable capacity is smaller, and so

is electricity consumption.

The structure of the paper is the following. Section 2 sets up the framework, solves the model

and studies the sensitivity of the solution to the main parameters in the case where variability

only is taken into account. In Section 3, we introduce intermittency, examine under what

circumstances it qualitatively changes the previous solution, and wonder whether in the

presence of intermittency renewable capacity and storage are substitute or complements.

Section 4 concludes.

2 Optimal energy transition with a variable renewable

source

As explained above, our solution to handle the variability issue is very simple. It is based

on the fact that the concept of variability supposes the existence of a predictable pattern.

Consider for the purpose of illustration that the renewable energy we are talking about is

solar energy. It can be harnessed at day but not at night, and this is clearly predictable:

we have a pattern here.3 Then, we consider that at each point in time the representative

3there is no such general pattern for wind energy, but specific patterns can be found depending on the
location.
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household wants to consume two different goods, day and night-electricity. They are different

because they are not produced with the same technology and also because the consumer

may value them differently, since they are not available at the same time.

Energy requirements may be satisfied by fossil sources, let’s say coal, at day and night. Coal

is abundant4 and carbon-emitting: the issue with coal extraction and consumption is not

scarcity but climate change. To focus on the variability issue, we neglect extraction costs

and suppose that a large fossil capacity exists at the beginning of the planning horizon, so

there is no need of investing to build new fossil-fired power plants. Climate policy takes

the form of a carbon budget that society decides not to exceed, to have a good chance to

maintain the temperature increase at an acceptable level -typically 2◦C. This carbon budget

is consumed when coal is burned. It is also possible to use a renewable source of energy,

namely solar, abundant and clean, provided that a production capacity is built but with no

variable cost. Costly investment allows to increase solar capacity. Coal and solar are perfect

substitutes in electricity generation. There exists a storage technology that allows to store

imperfectly electricity from day to night at no monetary cost but with a physical loss.

Our objective is to determine the optimal electric mix, the path of investment in renewable

capacity, and the optimal storage policy.

2.1 Objective and constraints

The social planner seeks to maximize the discounted sum of the net surplus of the economy.

Instantaneous net surplus is the difference between the utility of consuming day and night-

electricity and the cost of the investment in solar capacity. Day-electricity can be produced

by coal-fired power plants and/or solar plants. A fraction of solar electricity can be stored

to be released at night.5 In addition to fossil electricity, night-electricity can be produced

by the release of solar electricity stored during the day, with a loss.6

4Coal reserves and, overall, resources are so large that coal, although non-renewable, can safely be
considered as not scarce. See for instance IPCC (2014), Chapter 7, Table 7.2.

5It does not make sense to store coal electricity since coal-fired power plants can be operated at night as
well and there is no capacity constraint.

6For instance, according to Yang (2016), the efficiency of pumped hydroelectric storage (defined as the
electricity generated divided by the electricity used to pump water) is lower than 60% for old systems, but
over 80% for state-of-the-art ones.
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The social planner’s programme reads:

max
xd,xn,a,I

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt (1)

ed(t) = xd(t) + (1− a(t))φY (t)

en(t) = xn(t) + ka(t)φY (t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

0 ≤ a(t) ≤ 1

X(t) ≤ X

xd(t) ≥ 0, xn(t) ≥ 0

X0 ≥ 0, Y0 ≥ 0 given

ed and en are respectively day and night-electricity consumption. u(ed, en) is the instanta-

neous utility function, supposed to have the standard properties and to be separable in day

and night-electricity. This assumption may be justified by a temporal separability argument:

temporal separability holds at the intra-day level as it holds across days. Then the marginal

utility ud only depends on ed, and the marginal utility un only on en. Moreover, we suppose

that marginal utilities become infinite when consumption tends to zero: limed→0 ud(ed) = 0

and limen→0 un(en) = 0.

xd and xn are fossil-generated electricity consumed respectively at day and night. X is

the stock of carbon accumulated into the atmosphere due to fossil fuel combustion. X is

the carbon budget, that is the ceiling on the atmospheric carbon concentration imposed by

climate policy.

Y is solar capacity. φ measures the efficiency of solar electricity generation. I is the in-

vestment in solar capacity. C(I) is the investment cost function, increasing and strictly

convex to reflect adjustment costs. a is the share of solar electricity produced at day that

is stored to be released at night. The efficiency of the storage technology is represented by

the parameter k ∈ [0, 1] . Conversely, 1 − k is the leakage rate of this technology. ρ is the

discount rate, strictly positive.

2.2 General results

The current value Hamiltonian associated to the social planner’s programme (1) reads,

dropping the time index:

H = u
(
xd + (1− a)φY, xn + kaφY

)
− C(I)− λ (xd + xn) + µI
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where λ is the shadow price of carbon, that is the carbon value, and µ is the shadow price of

the solar capacity. Introducing Lagrange multipliers for the different inequality constraints

allows us to write the Lagrange function as:

L = H + ωaa+ ωa(1− a) + ωdxd + ωnxn + ωX
(
X −X

)
with obvious notations.

The first order optimality conditions are:

ud = λ− ωd (2)

un = λ− ωn (3)

Y (ud − kun) = ωa − ωa (4)

C ′(I) = µ (5)

λ̇− ρλ = −ωX (6)

µ̇− ρµ = −(1− a)φud − kaφun (7)

where ud and un denote respectively the marginal utilities of consumption of day and night-

electricity. The complementarity slackness conditions read:

ωaa = 0, ωa ≥ 0, a ≥ 0

ωa(1− a) = 0, ωa ≥ 0, 1− a ≥ 0

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (6) reads λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (8)

The carbon value follows a Hotelling rule before the ceiling, as long as fossil fuel is used.

Eq. (5), together with Ẏ = I, yields:

Ẏ (t) = I(t) = C ′−1(µ(t)) (9)

According to the properties of the investment cost function (C ′ is strictly increasing), this

equation shows that investment in solar panels, that is the accumulation of solar capacity,

is an increasing function of the shadow price of solar capacity.

Remember that we have supposed that the initial solar capacity is low, which is the most

relevant assumption from an empirical point of view. It ensures that fossil fuel is going to
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be used night and day at the beginning of the planning horizon, and allows us to avoid the

multiplication of different cases that do not bring much to our purpose.

Phase (1)

The first phase is then a phase where fossil fuel is used night and day. Then, ωd = ωn = 0.

FOC (2), (3), (4) and (7) may be written as:

ud(ed) = λ (10)

un(en) = λ (11)

Y (1− k)λ = ωa − ωa (12)

µ̇− ρµ = − ((1− a) + ka)φλ (13)

The marginal utilities of consumption of day and night-electricity are the same in this phase,

and equal to the carbon value. It implies that ed = u−1d (λ) and en = u−1n (λ). We will say that

sun is ”at peak” if u−1d (λ) > u−1n (λ), meaning that for a given price λ demand is higher at

day, when sun shines, than at night, when it does not. Sun will be ”off-peak” in the opposite

case. Whether sun is at peak or off-peak will prove to have important consequences on the

design of the transition to solar energy.

The left-hand side member of Eq. (12) is positive. Hence the case ωa = 0 and ωa > 0, i.e.

a = 1 (full storage) is excluded. The interior case ωa = 0 and ωa = 0, i.e. 0 < a < 1, is

possible if and only if Y = 0. But it does not make sense to store absent any intermittent

source of energy. This case is also excluded. The only possibility is thus ωa > 0 and ωa = 0,

i.e. a = 0. It is never optimal to store electricity when coal is used night and day.

With no storage, Eq. (13) simplifies into:

µ̇− ρµ = −φλ (14)

Integrating this equation, we obtain:

µ(t) = eρt
(
µ(0)− φλ(0)t

)
(15)

Then

µ̇(t) = eρt
(
ρµ(0)− φλ(0)(1 + ρt)

)
implying that µ̇(t) is strictly positive if and only if t < T I , defined by:

T I =
µ(0)

φλ(0)
− 1

ρ
(16)

As according to Eq. (9) İ(t) has the same sign as µ̇(t), we may conclude that in this first

phase investment in solar panels increases during a time interval all the longer since the
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initial shadow value of solar capacity is high, reflecting a small capacity, the initial carbon

value is small, reflecting a lenient climate constraint, and the discount rate is high, reflecting

an impatient society. It could be the case that T I is either negative or higher than the date

at which this first phase will come to an end (denoted T ). We will show below that T I > T

is impossible. Hence investment in solar capacity either decreases or is bell-shaped during

the first phase.

At the end of this phase, xd(T ) = 0. Indeed, xn = 0 is impossible: according to the properties

of the utility function, it would require λ → +∞. Therefore this first phase is followed by

a second phase where fossil fuel has been dropped for the production of day-electricity, and

is only used in the production of night-electricity.

Phase (2)

In this phase, solar is used at day, fossil fuel at night, and, by continuity with the previous

phase, there is no storage.7

FOC (2), (3), (4) and (7) may be written as:

ud(φY ) ≤ λ (17)

un(xn) = λ (18)

ud(φY ) ≥ kλ (19)

µ̇− ρµ = −φud(φY ) (20)

Eqs. (9) and (20) yield a saddle-path dynamic system in (µ, Y ). At the steady state of the

system, the shadow price of solar capacity and solar capacity itself are:

µ∗ = C ′(0), Y ∗∗ =
1

φ
u−1d

(
ρµ∗

φ

)
(21)

In the presence of storage possibilities, this steady state where fossil fuel use is strictly

positive at night will never be reached because of the carbon budget constraint, which

imposes that this phase comes to an end in finite time.8 As solar capacity cannot decrease,

we necessarily have Y (T ) < Y ∗∗. Therefore, along the saddle path, investment in solar panels

and the shadow price of solar capacity are decreasing, while solar capacity is increasing (see

Figure 1).

According to Eqs. (17) and (19), we must have kλ ≤ ud(φY ) ≤ λ, which gives the boundaries

7Of course, the continuity argument only holds in T+. It may be the case that this phase is reduced to
one date, if storage begins immediately. We are going to show that this is not what happens, as soon as
k < 1.

8It would be different absent storage possibilities: then fossil fuel use at day might tend to zero asymp-
totically and this steady state would be reached.
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Y (t)

µ(t)

Ẏ (t) = 0

µ∗

Y ∗∗

µ̇(t) = 0Y (T )

Figure 1: Phase diagram for phase (2)

of this phase: it begins at date T characterized by:

u−1d (λ(T )) = φY (T ) (22)

and ends at date Ti defined by:

u−1d (kλ(Ti)) = φY (Ti) (23)

As the demand function u−1d is decreasing, Eqs. (22) and (23) show that as soon as k < 1,

Ti > T : this phase is not reduced to a single date. If on the contrary k = 1, this phase does

not exist.

We finally come back to the shape of the investment function. As I(t) = C ′−1(µ(t)) in

phases (1) and (2), we have in these two phases İ(t) = µ̇(t)/C ′′(C ′−1(µ(t))). According to

Eq. (14) and (20), we have in phase (1) µ̇(t) = ρµ(t) − φλ(t), and in phase (2) µ̇(t) =

ρµ(t) − φud(φY (t)). At the date of the switch between the two phases µ, λ and Y are

continuous, and Eq. (22) shows that λ(T ) = ud(φY (T )). Therefore µ̇ is continuous at

T , which implies that İ is continuous as well. As in phase (2) the shadow price of solar

capacity µ is strictly decreasing over time and so is investment, we conclude that investment

is decreasing in phase (1) when t approaches T . Therefore T I > T is impossible.

Phase (3)
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In this phase, solar is used at day, fossil fuel at night, and storage is introduced (0 < a < 1).

FOC (2), (3), (4) and (7) now read:

ud((1− a)φY ) ≤ λ (24)

un(xn + kaφY ) = λ (25)

ud((1− a)φY ) = kλ (26)

µ̇− ρµ = −kφλ (27)

Eq. (26) yields:

a(t) = 1− 1

φY (t)
u−1d (kλ(t)) (28)

As λ and Y are increasing during this phase, a is increasing as well, from a(Ti) = 0 to

a(T ) > 0.

Eq. (25) yields:

xn(t) = u−1n (λ(t)) + ku−1d (kλ(t))− kφY (t) (29)

This phase ends when xn = 0, that is at date T defined by:

u−1d (kλ(T )) +
1

k
u−1n (λ(T )) = φY (T ) (30)

Using this equation it is possible to compute a(T ) = 1
kφY (T )

u−1n (λ(T )).

A comparison of Eqs. (23) and (30) shows that T > Ti.
9

At T the carbon budget is exhausted. Indeed, it cannot be optimal not to have exhausted

it, since fossil fuel will never be used anymore.

As in phase (1), integrating Eq. (27) yields:

µ(t) = eρ(t−Ti)
(
µ(Ti)− kφλ(Ti)(t− Ti)

)
(31)

Then

µ̇(t) = eρ(t−Ti)
(
ρµ(Ti) + ρkφλ(Ti)Ti − kφλ(Ti)(1 + ρt)

)
implying that µ̇(t) is strictly positive if and only if t < T I , with:

T I = Ti +
µ(Ti)

kφλ(Ti)
− 1

ρ
(32)

If T I < Ti investment in solar panels is decreasing; it is bell-shaped if Ti < T I < T, and

increasing if T < T I . With the same continuity argument as for T I , it is possible to show

9Proof: Suppose that T < Ti; then λ(T ) < λ(Ti), implying that u−1
d (kλ(T )) > u−1

d (kλ(Ti)), implying in
turn, by Eqs. (23) and (30), that Y (T ) > Y (Ti), a contradiction.

11



that the only possible case is the first one. Investment in solar panels is decreasing during

this phase.

Phase (4)

This is a clean phase where no fossil fuel is used. It begins at date T . FOC (2), (3), (4) and

(7) now read:

ud((1− a)φY ) ≤ λ (33)

un(kaφY ) ≤ λ (34)

ud((1− a)φY ) = kun(kaφY ) (35)

µ̇− ρµ = −kφud((1− a)φY ) (36)

Eq. (35) implicitly gives the storage rate a(t) as a function of solar capacity Y (t). The solu-

tion exists and is unique as soon as the marginal utilities tend to infinity when consumption

tends to zero.10 Then, Eqs. (9) and (36) yield a saddle-path dynamic system in (µ, Y ). At

the steady state, the shadow price of solar capacity and solar capacity itself are defined by:

µ∗ = C ′(0), (1− a(Y ∗))Y ∗ =
1

φ
u−1d

(
ρµ∗

kφ

)
(37)

Along the saddle path, investment in solar panels and the shadow price of solar capacity are

decreasing, while solar capacity is increasing (the argument is the same as in phase (2)).

The model is completed by specifying that the total quantity of fossil fuel burned is equal

to the carbon budget:∫ T

0

(xn(t) + xd(t))dt+

∫ Ti

T

xn(t)dt+

∫ T

Ti

xn(t)dt = X (38)

The global phase diagram is represented on Figure 2, for a given λ(0) that reflects the

stringency of the climate constraint. The last phase is a saddle path leading to the steady

state (µ∗, Y ∗). Moving backward from the steady state along the stable branch, date T is

reached. The relevant path then corresponds to phase (3) where the dynamics of Y and

µ are independent and the evolution of µ is driven by λ, until date Ti is reached. From

Ti on, the saddle path of phase (2), corresponding to the steady state (µ∗, Y ∗∗) is followed

until date T .11 Before T the path followed corresponds to phase (1) where Y and µ are

independent, until date 0. We have chosen to represent the case where µ is bell-shaped in

this phase. The initial shadow value of solar panels, µ(0) that we obtain (as a function of

λ(0)) matches the initial condition Y (0) = Y0.

10Proof: ud((1− a)φY ) is a strictly increasing function of a ∈ (0, 1), from ud(φY ) to +∞, and un(kaφY )
is a strictly decreasing function of a, from +∞ to un(kφY ).

11Phases (1), (2) and (3) coalesce if there is no loss in the storage technology (k = 1).
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For a given value of λ(0), the joint evolutions of λ and Y trigger the phase switchings, i.e.

give dates T , Ti and T (see Eqs. (22), (23) and (30)).

The climate constraint then pins down λ(0).

Y (t)

Y0
µ(t)

Ẏ (t) = 0

µ∗

Y ∗

Y ∗∗

µ̇(t) = 0 in phase (4)

µ̇(t) = 0 in phase (2)

Y (T )

Y (Ti)
Y (T )

µ(0)

Figure 2: Global phase diagram

The previous results are summarized in the following propositions.

Proposition 1 In the case where only variability of renewable energy is taken into account

and the initial solar capacity is low, the optimal solution consists in 4 phases:

(1) production of day and night-electricity with fossil fuel-fired power plants complemented

at day by solar plants, no storage, investment in solar panels to increase solar capacity (from

0 to T );

(2) production of day-electricity with solar plants only, use of fossil fuel-fired power plants

at night while proceeding with the building up of solar capacity, no storage (from T to Ti);

(3) production of day-electricity with solar plants only, use of fossil fuel-fired power plants at

night while proceeding with the building up of solar capacity, progressive increase of storage

(from Ti to T );

(4) production of day and night-electricity with solar plants only, storage of electricity at day

to be released at night, and investment in solar panels to increase capacity, up to a steady

state (from T to ∞). This last phase begins when the carbon budget is exhausted.
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Proposition 2 Investment in solar panels may be always decreasing, or may exhibit a bell

shape in the first phase and be decreasing elsewhere, depending on the discount rate, the

initial solar capacity, the stringency of climate policy and the efficiency of solar panels.

Proposition 1 shows that it is always optimal to begin installing solar panels immediately

and to use them to complement fossil energy at daytime. There is simultaneous use of fossil

fuel and renewable energy from the beginning of the planning horizon.12 However, it is never

optimal to begin storage immediately. Storage would allow saving fossil energy at night,

but at the expense of more fossil at day to compensate for the solar electricity stored; it

would also cause a physical loss of electricity. Even if the storage technology is available, as

it is the case in the model, storage must only begin after fossil has been abandoned at day

because the installed solar capacity has become high enough and solar energy accounts for a

significant fraction of electricity generation.Then, storing electricity becomes optimal, and

storage increases to accompany the penetration of solar in the electric mix. Notice that this

timing implies that there is overcapacity of fossil generation during daytime, in the sense

that fossil-fuel power plants are maintained for night use only.

The result of Proposition 2 may seem counter-intuitive. It states that whereas solar capacity

has to be accumulated from the beginning of the planning horizon, the bulk of the effort

of solar capacity building is not necessarily to be made right away. Two forces are at play,

explaining the bell shape: discounting, that makes society willing to postpone the effort,

and adjustment costs, that makes it willing to smooth the effort over time.

2.3 More results with isoelastic utility and quadratic investment

cost

To go further in the characterization of the optimal solution, we proceed by specifying the

utility and investment cost functions. These specifications will be used in the remainder of

the paper.

For the instantaneous utility function, day and night-electricity consumption are in a first

step aggregated with a CES function. Then, in a second step, the utility derived from this

consumption bundle is supposed to be isoelastic. Finally, we make the assumption that

the intertemporal elasticity of substitution of consumption and the elasticity of substitution

between day and night-electricity are the same, and we denote this elasticity σ. Under these

assumptions, the instantaneous utility reads:

u(ed, en) =
1

1− 1
σ

(
αe

1− 1
σ

d + (1− α)e
1− 1

σ
n

)
, 0 < α < 1, σ > 0, σ 6= 1 (39)

12This is very different from what happens in energy transition models where renewable energy is modeled
as a backstop technology.
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or

u(ed, en) = α ln ed + (1− α) ln en, 0 < α < 1 (40)

The investment cost function is classically supposed to be quadratic:

C(I) = c1I +
c2
2
I2, c1, c2 > 0 (41)

We are then able to obtain explicitly from Eqs. (26) and (35) the storage rate in phases (3)

and (4):

Phase (3) a(t) = 1−
(

α

kλ(t)

)σ
1

φY (t)
(42)

Phase (4) a(t) = a∗ = a(T ) =
(1− α)σ

k1−σασ + (1− α)σ
(43)

The storage rate increases in phase (3), from 0 to its maximal value a∗. It is constant in

phase (4) at the level a∗.

Eq. (9) reads:

Ẏ (t) =
1

c2
(µ(t)− c1) (44)

and the evolution of the shadow value of solar panels in the four phases is (see Eqs. (14),

(20), (27), (36) and (51)):

Phase (1) µ̇(t) = ρµ(t)− φλ(t)

Phase (2) µ̇(t) = ρµ(t)− αφ1− 1
σY (t)−

1
σ

Phase (3) µ̇(t) = ρµ(t)− kφλ(t) (45)

Phase (4) µ̇(t) = ρµ(t)− (kφ)1−
1
σ

(
k1−σασ + (1− α)σ

) 1
σ Y (t)−

1
σ

Dates T , Ti and T are given by:

λ(T ) =
α(

φY (T )
) 1
σ

(46)

λ(Ti) =
α

k(φY (Ti))
1
σ

(47)

λ(T ) =

(
k1−σασ + (1− α)σ

kφY (T )

) 1
σ

(48)
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pd(t), pn(t)

t

ed(t), en(t)

t

e∗d

e∗n

ed(t)

en(t)

T Ti T

p∗d

p∗n pd(t)

pn(t)

Figure 3: Day and night consumptions and prices, sun at peak
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Phase (1) xd(t) =
(

α
λ(t)

)σ
− φY (t) xn(t) =

(
1−α
λ(t)

)σ
a(t) = 0

ed(t) =
(

α
λ(t)

)σ
en(t) =

(
1−α
λ(t)

)σ
pd(t) = λ(t) pn(t) = λ(t)

Phase (2) xd(t) = 0 xn(t) =
(

1−α
λ(t)

)σ
a(t) = 0

ed(t) = φY (t) en(t) =
(

1−α
λ(t)

)σ
pd(t) = α

(φY (t))
1
σ

pn(t) = λ(t)

Phase (3) xd(t) = 0 xn(t) = k1−σασ+(1−α)σ
λ(t)σ

− kφY (t) a(t) = 1−
(

α
kλ(t)

)σ
1

φY (t)

ed(t) =
(

α
kλ(t)

)σ
en(t) =

(
1−α
λ(t)

)σ
pd(t) = kλ(t) pn(t) = λ(t)

Phase (4) xd(t) = 0 xn(t) = 0 a∗ = (1−α)σ
k1−σασ+(1−α)σ

ed(t) = (1− a∗)φY (t) en(t) = a∗kφY (t)
pd(t) = α

((1−a∗)φY (t))
1
σ

pn(t) = 1−α
(a∗kφY (t))

1
σ

Table 1: Day and night consumptions, prices and storage rate in the variability case

Finally, fossil fuel use, storage, total electricity consumption and prices13 in each phase are

given in Table 1. Using these results, it is possible to compute the share of solar electricity

in the electric mix that triggers storage:

φY (Ti)

ed(Ti) + en(Ti)
=

φY (Ti)

φY (Ti) + xn(Ti)
=

ασ

ασ + ((1− α)k)σ
(49)

It is all the higher since the preference for day-electricity is high and the storage technology

inefficient.

In phase (1), day and night-electricity consumptions and prices are only driven by the

carbon value, that is by climate policy. The reason is that we have assumed away variable

costs, of extraction for coal, of production for solar. The only cost that remains is the

social cost of carbon. Consumptions decrease whereas the electricity price, the same at day

and night, increases over time, following the Hotelling rule. In phase (2), night-electricity

consumption is still driven by the carbon value only, and its price increases, but during

daytime, electricity consumption, of solar origin, only depends on installed solar capacity.

Then day-electricity consumption increases and its price decreases over time. In this phase,

day and night-electricity consumptions and prices are decoupled. Things are very different

in phase (3). Now, storage creates a link between day and night-electricity consumptions,

which are not decoupled anymore. The storage rate increases in this phase from 0 to its

maximum value a∗. Due to storage, it is again only the climate constraint that determines

electricity consumption and price at each period. The price at day is only a fraction k

13”Price” is used here as a shortcut for marginal utility of consumption.
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of the price at night. Both increase, following the Hotelling rule. In phase (4), when

electricity production is totally carbon-free, electricity consumptions and prices only depend

on installed solar capacity, and prices decrease. The storage rate is constant. To sum up,

day-electricity consumption is W-shaped, and its price inverted W-shaped, whereas night-

electricity consumption first decreases and then increases, while its price follows the opposite

pattern (see Figure 3).

We now examine more precisely the long term of this economy, when the transition to clean

energy has been achieved.

Proposition 3 With our specifications, solar capacity at the steady state is:

Y ∗ =
1

ρc1
, σ = 1, or Y ∗ =

k1−σασ + (1− α)σ

(kφ)1−σ(ρc1)σ
, σ < 1 (50)

The storage rate at the steady state is:

a∗ = 1− α, σ = 1, or a∗ =
(1− α)σ

k1−σασ + (1− α)σ
σ < 1 (51)

Day and night-electricity consumptions are respectively e∗d =
(
αφ
ρc1

)σ
and e∗n =

(
(1−α)kφ
ρc1

)σ
.

The price of day-electricity is p∗d = ρc1/φ, and the price of night-electricity is p∗n = p∗d/k.

Proof. These long term values are easily deduced from Table (1).

The long term solar capacity is all the higher since the discount rate and the marginal

investment cost are low and, for σ < 1, since the efficiency of the solar panels and storage

technologies are poor. The impatience and cost effects are conform to intuition. The effect

of the efficiency of the technology is a compensation effect: more capacity is needed to

obtain the same amount of day and night-electricity with less efficient technologies. The

role played by the preference parameter is less straightforward. It is necessary to consider

simultaneously the effect of a change in this parameter on long run electricity consumption,

storage and solar capacity. We see easily that e∗d is an increasing function of α, e∗n a decreasing

function of α, and e∗d > e∗n ⇐⇒ α > (1 − α)k, that is if and only if the preference for

day-electricity is higher than the preference for night-electricity corrected for the loss due

to storage. On the other hand, a∗ is always a decreasing function of α. Then, when α

increases, less solar capacity is required to ensure that consumption increases at day; but on

the other hand more solar capacity may be necessary to ensure that consumption does not

decrease too much at night. Overall, solar capacity decreases (resp. increases) if and only

if α > (resp. <) (1 − α)k, that is solar capacity decreases if consumption at day is higher

than consumption at night. It is in particular the case when sun is at peak (α > 1/2).
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On the contrary, when sun is off-peak and the storage technology efficient enough, a higher

preference for day-electricity leads to increase long run solar capacity.

The link between the long run storage rate and the preference parameter deserves some

additional comments. If α > 1/2, consumers prefer consuming at day, when there is sun.

This means that peak time consumption coincides with the availability of solar electricity.

This is obviously the most favorable case for solar penetration, and in this case the storage

rate is smaller than 1/(1 + k1−σ). If on the contrary α < 1/2, sun is shining at off-peak

time, which requires to store in the long run more than half the electricity produced at day.

This would correspond to the case that gives rise to the Californian duck documented by

CAISO14 and recently analyzed by Fowlie15 and Wolfram:16 in California, there has been

more and more solar generation during day in the recent years, while consumption is mainly

in the evening, meaning that sun shines off-peak. These dynamics generate a daily net

generation (i.e. electricity generation net of electricity consumption) profile that evolves to

look like a duck. What we show here is that in addition off-peak sun implies the need of

large storage capacities, corresponding to more than half the daily production of electricity.

2.4 Comparative statics

We now perform some comparative statics exercises to complete our analysis of the energy

transition under variability of solar generation. Whereas the model is too complex to allow

for a full analytical analysis, some results may be obtained by direct inspection of the

equations in Table 1. In addition, we will provide some conjectures that will need to be

checked numerically.

Let us first examine the effect of a more stringent climate policy.

Our first conjecture is that strengthening climate policy translates in a higher initial carbon

value λ(0).17 Then, fossil and total energy consumptions at day and night are smaller, and

prices are higher. Fossil is dropped at day earlier.18 Storage occurs earlier, and the switch

to clean energy is brought forward.19

14”What the duck curve tells us about managing a green grid”, https://www.caiso.com/Documents/
FlexibleResourcesHelpRenewables\_FastFacts.pdf

15See ”The duck has landed”, the Energy Institute Blog, https://energyathaas.wordpress.com/2016/
05/02/the-duck-has-landed/

16See ”What’s the Point of an Electricity Storage Mandate?” https://energyathaas.wordpress.com/

2013/07/29/whats-the-point-of-an-electricity-storage-mandate/
17Even if we are unable to compute analytically λ(0) to make sure that this conjecture is true, the very

meaning of the carbon value, that is the shadow price of the climate constraint, indicates that it is the case.
18Proof: According to Eq. (46), Y (T )

1
σ eρT = α/(φλ(0)); as the left-hand side member of this equation is

an increasing function of T , a larger λ(0) translates in a smaller T .
19Proof along the same line as above, using Eqs. (47) and (48).
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Our second conjecture is that the shadow value of solar panels µ(0) increases as well. Indeed,

with a smaller carbon budget, solar capacity becomes more valuable. If this conjecture is

correct, investment in solar panels is higher and solar capacity is higher in the short/medium

run. But long term solar capacity as well as storage are unaffected by climate policy, as

soon as there actually exists a climate policy (Proposition 3). We may conclude that climate

policy has a timing effect on solar capacity accumulation, but not a permanent effect.

Let us now turn to the effect of a decrease in the investment cost. We have seen (Proposition

3) that it leads to higher long run solar capacity and day and night-electricity consumptions,

at lower prices. Contrary to a direct climate policy, the effects of a subsidy to solar are

permanent. The relevant question now is: is there a Green Paradox? Answering this

question analytically is out of reach because it is not possible to compute λ(0). Intuition

has little to offer either. The question remains open.

Finally, let us examine the effects of technological improvements. With more efficient solar

panels, the abandonment of coal at day is brought forward, as well as the beginning of

storage and the switch to clean energy. The long term solar capacity is smaller because of

the compensation effect. The effects are similar with a more efficient storage technology,

except that the date at which fossil is abandoned at day is unchanged.

3 Accounting for intermittency

3.1 Variability, intermittency and storage

We now account for the fact that solar electricity generation is not only variable but in-

termittent as well, i.e. some of its variations are not predictable. During the day, solar

radiations can be fully harnessed if there is sun, but can only be partially harnessed if there

are clouds. Very simply, we suppose that during the day the weather is sunny with a pro-

bability q and solar panels are then producing electricity at full capacity Y, and that with a

probability (1 − q) the weather is cloudy and solar panel only produce φY electricity with

0 < φ < 1.20 With intermittency, the sequences of storage, solar panel accumulation and

electricity consumptions are decided at the beginning of the program, accounting for the fact

that weather will be uncertain. eu denotes electricity consumption when the sun is shining,

20To ensure that comparisons can be made between this model and the one with variability only, we
impose in the variability only case φ = q+ (1− q)φ : the efficiency of solar panel in the variability only case
is equal to their expected efficiency in the case where intermittency is taken into account.
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while it is noted el when there are clouds. The social planner’s programme becomes:

max

∫ ∞
0

e−ρt
[
qu (eud(t), e

u
n(t)) + (1− q)u

(
eld(t), e

l
n(t)

)
− C(I(t))

]
dt (52)

eud(t) = xd(t) + (1− a(t))Y (t), eld(t) = xd(t) + (1− a(t))φY (t)

eun(t) = xn(t) + ka(t)Y (t), eln(t) = xn(t) + ka(t)φY (t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

0 ≤ a(t) ≤ 1

X(t) ≤ X

xd(t) ≥ 0, xn ≥ 0,

X0 ≥ 0, Y0 ≥ 0 given

Obtaining a complete analytical solution of the model is now beyond reach. Nevertheless,

we were able to obtain a number of analytical results with an isoelastic utility function and a

quadratic investment cost. They are gathered in Proposition 4, Corollary 5 and Proposition

6.

Let us define φ̃ as the real positive and smaller than 1 root of the following equation:

φ1+ 1
σ − 1− kq

k(1− q)
φ

1
σ − 1− k(1− q)

kq
φ+ 1 = 0 (53)

The characteristics of the optimal solution are then the following.

Proposition 4 When the intermittency of renewable energy is taken into account and the

initial solar capacity is low, there exist two different types of optimal solution:

(1) For φ > φ̃ defined in equation (53), the optimal solution under intermittency and vari-

ability exhibits the same succession of phases as under variability only;

(2) For φ < φ̃, the optimal solution under intermittency and variability significantly differs

from the one under variability only: storage optimally begins before fossil has been abandoned

at day.

Proof. See Appendix A.

Proposition 4 shows that two very different solutions are possible.

If φ is high enough, the optimal solution when intermittency is taken into account is quali-

tatively the same as when it is not. The planner does not make a big mistake by ignoring
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intermittency. At the limit, when φ→ 1, we obtain exactly the variability-only solution for

φ = 1.

If φ is small we get a very different solution, characterized by a reluctance of the planner to

abandon fossil at day in case of the occurrence of the bad event, which is here actually very

bad.

Intuition runs as follows. There are two different methods to satisfy night-electricity demand

under a climate constraint that prevents to use as much fossil as desired. The first one is to

abandon fossil at day to ”save” fossil for night when solar capacity is high enough to ensure

that day-electricity needs are satisfied. The second one is to transfer electricity from day to

night through storage, at the expense of a loss. With variability only, and with intermittency

characterized by a small cloud problem (φ is high, corresponding to case (1) in Proposition

4), it is optimal to use the first method first, that is to begin storage after fossil has been

abandoned at day, to avoid incurring the loss. With intermittency characterized by a severe

cloud problem (φ is low, corresponding to case (2) in Proposition 4), the second method is

used first, in spite of the loss. Fossil is abandoned at day later, to make sure that, in the

case of no or few sun, day-electricity consumption can be satisfied. To compensate for the

smaller quantity of fossil left available for night, a part of day-electricity production by solar

panels is stored.

It is possible to study more precisely the determinants of the cutoff value φ̃.

Corollary 5 φ̃ is an increasing function of k, meaning that the more efficient the storage

technology is, the smaller is the range of φs for which intermittency may be safely ignored.

φ̃ is a symmetric and concave function of q, the no-clouds probability, tending to zero when

q tends to 0 or 1, and reaching its maximum value for q = 1/2.

Proof. See Appendix A.

The interpretation of the first result is the following: the more efficient the storage techno-

logy is, the less costly it is to take intermittency into account, therefore the larger the range

of φs for which the planner will adapt its decisions accordingly. The intuition for the second

result is that when q is very close to 0 or to 1, there is actually little uncertainty; then

intermittency does not matter a lot, and the range of φs for which the planner can ignore

it is large.

Finally, the following proposition characterizes the long run of the economy.

Proposition 6 Solar capacity at the steady state is:

Y ∗i =

(
q + (1− q)φ1− 1

σ

)σ
((1− α)σ + k1−σασ)

k1−σ(ρc1)σ
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for φ > 0. When σ = 1, it is the same as when intermittency is ignored. When σ < 1, it is

higher: the planner ignoring intermittency underinvests in solar capacity in the long run.

In the extreme case where φ = 0, it becomes:

Y ∗i,0 =
qσ ((1− α)σ + k1−σασ)

k1−σ(ρc1)σ
< Y ∗i

Proof. See Appendix A, and B for the case φ = 0.

Taking into account intermittency leads to invest more in solar capacity in the long run

(Y ∗i ≥ Y ∗), except in the limit case where there is no sun at all at day with a strictly

positive probability. Indeed, we have Y ∗i,0 = qσk1−σY ∗ < Y ∗. Then, the optimal long run

solar capacity is all the smallest since this probability is large. The intuition supporting

this result is that in this case, it is not possible to abandon fossil at day completely –fossil

consumption tends to zero asymptotically, and less solar capacity is required.

3.2 Dealing with intermittency without storage

As storage is suspected to play a major role in tackling variability and intermittency, we

appraise its importance by comparing the general model with variability, intermittency

and storage analyzed above with a model with variability, intermittency but no storage

possibilities.

In the case with variability, intermittency but no storage, the social planner program reads:

max

∫ ∞
0

e−ρt
[
qu (eud(t), en(t)) + (1− q)u

(
eld(t), en(t)

)
− C(I(t))

]
dt

eud(t) = xd(t) + Y (t)

eld(t) = xd(t) + φY (t)

en(t) = xn(t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

X(t) ≤ X

xd(t) ≥ 0, xn(t) ≥ 0

X0 ≥ 0, Y0 ≥ 0 given

We show in Appendix C that only two phases appear when 0 < φ < 1. In phase (1), coal

is used night and day, whereas it is used only during night in phase (2). The equations

characterizing these two phases are formally the same as the equations characterizing the
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phases with fossil night and day, no storage, and fossil night only, no storage in the general

model with a storage technology. But now phase (2) lasts forever: it is never possible

to abandon fossil completely at night as there exists no mean to transfer daytime solar

generation towards the night. Therefore electricity generation is never carbon-free and

night consumption (that is equal to fossil fuels use) asymptotically tends towards zero as it

is driven by the climate constraint.

Phase (2) is a saddle path leading to a steady state characterized in the following proposition:

Proposition 7 Absent storage possibilities, solar capacity at the steady state is:

Y ∗ns =

(
α(q + (1− q)φ1− 1

σ

ρc1

)σ

We have:
Y ∗i
Y ∗ns

= 1 +
(1− α)σ

k1−σασ
> 1

Solar capacity at the steady state is higher with storage: solar electricity generation and

storage are complements.

Proof. See Appendix C.

Thanks to storage, it is possible to transfer electricity generated at day using solar capacity

towards the night. Benefits from solar generation are therefore higher with storage, which

explains that long run solar capacity is higher. It is all the higher since the preference for

night electricity (1−α) is high and, when σ < 1, the storage technology inefficient (k small),

to compensate for this inefficiency. Notice that having a very inefficient storage technology

is drastically different from having no storage technology at all.

The complementarity of solar capacity and storage is not a totally intuitive result. Indeed,

without storage, it could have been optimal to invest more in solar to produce more rene-

wable electricity and be able to save coal for the night-electricity generation. In this case,

solar capacity and storage would have been substitutes. It may be the case that this effect

appears in the short run, but this is impossible to check analytically.

4 Conclusion

This work can be considered as a first step in the study of the energy transition under

variability and intermittency of the clean renewable sources. We build a stylized dynamic

model allowing to account for important characteristics of the energy transition that have

been neglected in the literature so far. In the case where the renewable energy is only
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variable, we are able to obtain an almost complete analytical resolution of the model —

almost in the sense that it is not possible to compute the initial carbon value. The optimal

dynamics for the capacity of solar power plants is derived, as well as the optimal amount

of electricity stored in time and the timing of the energy transition. In the general case

with intermittency, an analytical solution of the model is not possible. Nevertheless, we are

able to determine when the solution is very different from the one with variability only, and

when it is not, that is when the planner makes a big mistake if he ignores intermittency and

when he does not, and to show that solar capacity and storage technology are complements.

The next step should concern numerical simulations, applying the model to real country

cases. In addition, a decentralized version of the model would be interesting and challenging

as the energy market exhibits several peculiar features, and it would allow designing policy

instruments.
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APPENDICES

A Variability and intermittency

The current value Hamiltonian associated to the social planner’s programme reads:

H =qu (xd + (1− a)Y, xn + kaY ) + (1− q)u (xd + (1− a)φY, xn + kaφY )

− C(I)− λ (xd + xn) + µI

and the Lagrangian is:

L = H + ωaa+ ωa(1− a) + ωdxd + ωnxn + ωX
(
X −X

)
The first order conditions are:

qud(xd + (1− a)Y ) + (1− q)ud(xd + (1− a)φY ) = λ− ωd (A.1)

qun(xn + kaY ) + (1− q)un(xn + kaφY ) = λ− ωn (A.2)

qY [ud(xd + (1− a)Y )− kun(xn + kaY )]

+ (1− q)φY [ud(xd + (1− a)φY )− kun(xn + kaφY )] = ωa − ωa (A.3)

C ′(I) = µ (A.4)

λ̇− ρλ = −ωX (A.5)

µ̇− ρµ = −q [(1− a)ud(xd + (1− a)Y ) + kaun(xn + kaY )]

− (1− q)φ [(1− a)ud(xd + (1− a)φY ) + kaun(xn + kaφY )] (A.6)

The complementarity slackness conditions read:

ωaa = 0, ωa ≥ 0, a ≥ 0

ωa(1− a) = 0, ωa ≥ 0, 1− a ≥ 0

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (A.5) reads λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (A.7)
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Moreover, Eq. (A.4) yields:

Ẏ = I = C ′−1(µ) (A.8)

A.1 Fossil night and day

We have xd > 0, xn > 0, ωd = 0, ωn = 0. FOC (A.1) and (A.2) then read:

qud(xd + (1− a)Y ) + (1− q)ud(xd + (1− a)φY ) = λ (A.9)

qun(xn + kaY ) + (1− q)un(xn + kaφY ) = λ (A.10)

A.1.1 No storage

We have ωa > 0, ωa = 0, a = 0. Eqs. (A.9) and (A.10) then read:

qud(xd + Y ) + (1− q)ud(xd + φY ) = λ (A.11)

un(xn) = λ (A.12)

Eq. (A.11) gives implicitly xd as a function of Y and λ, and Eq. (A.12) yields xn = u−1n (λ).

Eq. (A.6) simplifies into:

µ̇− ρµ = −qud(xd + Y )− (1− q)φud(xd + φY ) (A.13)

Eq. (A.3) reads:

qY [ud(xd + Y )− kun(xn)] + (1− q)φY [ud(xd + φY )− kun(xn)] ≥ 0

i.e., using Eq. (A.12):

qud(xd + Y ) + (1− q)φud(xd + φY ) ≥ kφλ

with φ = q + (1− q)φ. Using Eq. (A.11) to replace λ in this last equation we obtain:

(1− kφ)qud(xd + Y ) ≥ (kφ− φ)(1− q)ud(xd + φY ) (A.14)

Let us now determine the boundaries of this phase. First, with our assumption that initial

solar capacity is nil, this phase is necessarily the first one and starts at date 0. Then, at

the end of this phase, either xd = 0 (xn = 0 is impossible, since it would require λ→ +∞)

or Eq. (A.14) is satisfied as an equality, meaning that the next phase will be a phase with
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positive storage. Therefore the end of this phase is T or T a respectively defined by:

λ(T ) = qud(Y (T )) + (1− q)ud(φY (T )) and xd(T ) = 0 (A.15)

and

(1− kφ)qud(xd(T a) + Y (T a)) = (kφ− φ)(1− q)ud(xd(T a) + φY (T a))) (A.16)

A necessary condition for the existence of T a is:

kφ− φ > 0⇐⇒ φ <
1

1 + 1−k
qk

= φ̃0 (A.17)

meaning that when φ is small enough, reflecting a serious cloud problem, storage must begin

before fossil is abandoned at day. See Figure 4.

If this condition is not satisfied the relevant date of end of this phase is T . It is T as well if this

condition is satisfied but T < T a. Comparing directly T and T a is out of reach. Nevertheless,

we will obtain later on an argument allowing us to determine when the relevant date of end

of this phase is T and when it is T a.

φ

1

1

φ

q

φ

kq

k

kφF (φ)

φ̃ φ̃0

Figure 4: Boundaries of the two possible solutions in the fossil night and day and no storage
case
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A.1.2 Interior storage

If it exists, this phase starts at T a. We have ωd = ωn = ωa = ωa = 0, xd > 0, xn > 0 and

0 < a < 1. FOC (A.3) reads:

qY [ud(xd + (1− a)Y )− kun(xn + kaY )]

+ (1− q)φY [ud(xd + (1− a)φY )− kun(xn + kaφY )] = 0 (A.18)

Eqs. (A.1), (A.2) and (A.18) allow us to obtain implicitly xd, xn and a as functions of Y

and λ. Notice that algebraic expressions of these variables are impossible to obtain, even if

we specify the utility function as an isoelastic function.

Turning to the boundaries of this phase, we have seen that if it exists it begins with no storage

at date T a defined in Eq. (A.16). At the end of this phase (date T b) fossil consumption at

day stops. From Eq. (A.1), date T b is characterized by:

λ(T b) = qud((1− a(T b))Y (T b)) + (1− q)ud((1− a(T b))φY (T b)) (A.19)

A.1.3 Full storage

This case with full storage cannot appear under our assumption that initial solar capacity is

nil (note that it is true as well in the variability only case). Indeed, intuitively, full storage

is likely to occur if on the one hand the preference for night-electricity is higher that the

preference for day electricity that is if agents prefer consuming electricity off-peak, and if

on the other hand initial solar capacity is large, so that solar electricity is produced at day

in excess of the consumption needs. But it will never be optimal to build solar capacity

to obtain this kind of solution at a date other than the initial one, because of the loss of

electricity attached to the storage technology.

Relying on these arguments, we exclude in the following the case of full storage.
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A.2 Fossil at night only

This or these phases are intermediate. We have here xd = 0, xn > 0, ωd > 0, ωn = 0 and

the FOC read:

ud((1− a)φY ) = λ− ωd (A.20)

qun(xn + kaY ) + (1− q)un(xn + kaφY ) = λ (A.21)

qY [ud((1− a)Y )− kun(xn + kaY )]

+ (1− q)φY [ud((1− a)φY )− kun(xn + kaφY )] = ωa − ωa (A.22)

µ̇− ρµ = −q [(1− a)ud((1− a)Y ) + kaun(xn + kaY )]

− (1− q)φ [(1− a)ud((1− a)φY ) + kaun(xn + kaφY )] (A.23)

to which we add Eqs. (A.7) and (C).

A.2.1 No storage

In the case of no storage, the FOC become:

ud(φY ) ≤ λ (A.24)

un(xn) = λ (A.25)

qud(Y ) + (1− q)φud(φY ) ≥ kφλ (A.26)

µ̇− ρµ = −qud(Y )− (1− q)φud(φY ) (A.27)

Eqs. (C) and (A.27) yield a saddle-path dynamic system in (µ, Y ). The steady state values

of µ and Y are given by:

µ∗ = C ′(0) (A.28)

qud(Y
∗∗
i )− (1− q)φud(φY ∗∗i ) = ρC ′(0) (A.29)

According to (A.24) and (A.26), we must have qud(Y ) + (1− q)ud(φY ) ≤ λ ≤ 1
kφ

[qud(Y ) +

(1 − q)φud(φY )]. Hence this phase begins at T (see Eq. (A.15)), and it ends at Ti defined

by:

λ(Ti) =
1

kφ
[qud(Y (Ti)) + (1− q)φud(φY (Ti))] (A.30)

The existence of this phase requires that qud(Y ) + (1 − q)ud(φY ) ≤ 1
kφ

[qud(Y ) + (1 −
q)φud(φY )], which simplifies into:

qud(Y )

(1− q)ud(φY )
≥ kφ− φ

1− kφ
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It seems difficult to go further without specifying the utility function. However, with an

isoelastic utility function, the terms in Y cancel out and the above condition simplifies into:

q

1− q
φ

1
σ ≥ kφ− φ

1− kφ

This condition is equivalent to the following:

kφ ≤ (1− q)φ+ qφ
1
σ

(1− q) + qφ
1
σ

= F (φ) (A.31)

F (.) is a function of φ on the interval (0, 1), with F (0) = 0 and F (1) = 1. It is increasing:

we have F ′(φ) = (1−q)
[
1
σ
qφ

1
σ

(
1
φ
− 1
)

+ qφ
1
σ + (1− q)

]
/[(1−q)+qφ

1
σ ]2 > 0. It is concave:

we easily see that F (φ) ≥ φ ∀φ ∈ (0, 1). See Figure 4. Denoting by φ̃ the value of φ for

which the condition is satisfied as an equality, it may simply be written as φ > φ̃ : φ must

be high enough, meaning that the cloud problem is not too severe. If this condition is not

satisfied this phase does not exist. It implies that the phase with fossil night and day and no

storage necessarily ends at date T a. This solves the problem of the validity of the boundaries

T and T a.

Let us come back to Eq. (A.31) taken as an equality and study how φ̃ depends on k and q.

φ̃ is solution of:

G(φ) = kq(1− q)φ
1
σ
+1 − q(1− kq)φ

1
σ − (1− q)(1− k(1− q))φ+ kq(1− q) = 0

We have G(0) = 0, G(1) = k − 1 < 0, and

G′(φ) =

(
1

σ
+ 1

)
kq(1− q)φ

1
σ − 1

σ
q(1− kq)φ

1
σ
−1 − (1− q)(1− k(1− q))

<(1− q)
[

1

σ
qφ

1
σ
−1(kφ− 1) + kq(φ

1
σ − 1)− (1− k)

]
< 0

Therefore, φ̃ is clearly an increasing function of k: a higher k makes the whole G(φ̃) curve

shift to the right. It is an increasing (resp. decreasing) function of q when q < (resp. >)1
2
:

∂G(0)
∂q

= k(1− 2q) > 0 for q < 1
2
, < 0 otherwise.

A.2.2 Interior storage

In the case of an interior solution on a, Eq. (A.22) yields:

k [qun(xn + kaY ) + (1− q)φun(xn + kaφY )] = qud((1−a)Y )+(1−q)φud((1−a)φY ) (A.32)
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Eqs. (A.21) and (A.32) implicitly give a and xn as functions of Y and λ.

Eq. (A.23) reads:

µ̇− ρµ = − [qud((1− a)Y ) + (1− q)φud((1− a)φY )] (A.33)

This phase may follow either a phase where fossil fuel is used at night only and there is no

storage, or a phase where fossil fuel is used night and day and there is positive storage. In

the first case, Eqs. (A.25) and (A.32) show that this phase begins at Ti defined in Eq (A.30).

In the second case, Eqs. (A.10) and (A.32) show that this phase begins at T b defined in Eq.

(A.19).

The date at which this phase ends is given by the fact that fossil fuel consumption at night

becomes nil. Then Eq. (A.32) shows, in the isoelastic case, that a = (1−α)σ
k1−σασ+(1−α)σ at the

end of this phase, and Eq. (A.21) shows that this date is T given by:

λ(T ) =
(
q + (1− q)φ−

1
σ

)(k1−σασ + (1− α)σ

kY (T )

) 1
σ

(A.34)

A.3 Fossil at day only

Quite intuitively, this case could occur if initial solar capacity was very large, so that it is

optimal to start with full storage at the beginning of the planning horizon, and make storage

decrease in time. It cannot occur under our assumption of nil initial solar capacity.

A.4 No fossil

This phase is necessarily the last one, and it always exists. More precisely, it exists as such

as soon as φ > 0. For φ = 0 fossil consumption asymptotically decreases towards zero.

Moreover, storage is always positive in this phase.

We have xd = 0, xn = 0, ωd > 0, ωn > 0, 0 < a < 1, ωa = ωa = 0 ∀t ≥ T .

The FOC then read:

qud((1− a)Y ) + (1− q)qud((1− a)φY ) ≤ λ (A.35)

qun(kaY ) + (1− q)un(kaφY ) ≤ λ (A.36)

qud(1− a)Y ) + (1− q)φud((1− a)φY ) = k (qun(kaY ) + (1− q)φun(kaφY )) (A.37)

µ̇− ρµ = −q [(1− a)ud((1− a)Y ) + kaun(kaY )]− (1− q)φ [(1− a)ud((1− a)φY ) + kaun(kaφY )]

(A.38)

to which we add Eqs. (A.7) and (C).
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In the isoelastic case, Eq. (A.37) yields:

a∗ =
(1− α)σ

k1−σασ + (1− α)σ
(A.39)

There is a constant rate of storage all along this phase, the same as in the variability only

model.

In the isoelastic case again, Eq. (A.38) reads, after some computations:

µ̇− ρµ = −
(
q + (1− q)φ1− 1

σ

) (
(1− α)σ + k1−σασ

) 1
σ k−

1−σ
σ Y −

1
σ (A.40)

Eqs. (C) and (A.40) yield a saddle-path dynamic system in (µ, Y ). The values of µ and Y

at the steady state are:

µ∗ = c1 (A.41)

Y ∗i =

(
q + (1− q)φ1− 1

σ

)σ
((1− α)σ + k1−σασ)

k1−σ(ρc1)σ
(A.42)

The shadow value of solar panels at the steady state is the same whether intermittency is

taken into account or not. If σ = 1 (logarithmic utility function), solar capacity at the

steady state is the same as well: Y ∗i = Y ∗ (see Eq. (50)). If σ < 1, we have:

Y ∗i
Y ∗

=
(q + (1− q)φ)1−σ(
q + (1− q)φ1− 1

σ

)−σ
This ratio is strictly greater than 1 for all q ∈ (0, 1), φ ∈ (0, 1). Indeed, we have:(

Y ∗i
Y ∗

)− 1
σ

=
(q + (1− q)φ)1−

1
σ

q + (1− q)φ1− 1
σ

≤ 1

because the function x→ x1−
1
σ is convex.

Finally, Eqs. (A.35) and (A.36) imply 1
φY
≤ λ and 1

kφY
≤ λ. The second condition is more

stringent than the first one. It shows that this phase begins at date T , which is also the

date at which the ceiling is reached.
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A.5 Respect of the carbon budget

The model is completed by specifying that the total quantity of fossil fuel burned cannot

exceed the carbon budget. The constraint reads:

X =

∫ T

0

(xn(t) + xd(t))dt+

∫ Ti

T

xn(t)dt+

∫ T

Ti

xn(t)dt (A.43)

in the case φ > φ̃, and

X =

∫ Ta

0

(xn(t) + xd(t))dt+

∫ Tb

Ta

(xn(t) + xd(t))dt+

∫ T

Tb

xn(t)dt (A.44)

in the case φ < φ̃.

B A polar case: intermittency with no sun at all in

the bad case φ = 0

Note that this case is very specific. It does not constitute the limit when φ tends to 0 of

the 0 < φ < φ̃ case. It is the only case where fossil fuels use never stops, because there is a

chance that solar panels will not be able to produce electricity some days.

B.1 No storage, fossil night and day

With isoelastic utility, Eq. (A.11) reads:

q
α

(xd + Y )
1
σ

+ (1− q) α

x
1
σ
d

= λ (B.1)

which gives implicitly xd as a function of Y and λ. Eq. (A.16) yields:

λ(T a) =
1

k

α

(xd(T a) + Y (T a))
1
σ

(B.2)

and Eq. (A.13) reads:

µ̇− ρµ = −q α

(xd + Y )
1
σ

(B.3)
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B.2 Interior storage, fossil night and day

Eqs. (A.18) and (A.6) respectively read:

α

(xd + (1− a)Y )
1
σ

= k
1− α

(xn + kaY )
1
σ

(B.4)

and

µ̇− ρµ = −q

[
(1− a)

α

(xd + (1− a)Y )
1
σ

+ ka
1− α

(xn + kaY )
1
σ

]
(B.5)

This phase starts with no storage at date T a. It never ends: in the long run, xd and xn tend

asymptotically to zero, and, as shown by Eq. (B.4), a tends asymptotically to a∗.

The asymptotic steady state is characterized by µ∗ = c1 and, according to Eq. (B.5):

Y ∗i,0 =
qσ ((1− α)σ + k1−σασ)

k1−σ(ρc1)σ
(B.6)

The long run value of solar panels is the same as when φ > 0, but the long run value of

solar capacity is smaller, because solar capacity is less useful when there is a chance that it

cannot produce electricity at all and the transition to clean energy lasts forever. Indeed, we

have:
Y ∗i
Y ∗i,0

=

(
1 +

1− q
q

φ1− 1
σ

)σ
> 1

C Variability and intermittency without storage

The current value Hamiltonian associated to the social planner’s programme reads:

H = qu (xd + Y, xn) + (1− q)u (xd + φY, xn)− C(I)− λ (xd + xn) + µI

and the Lagrangian is:

L = H + ωaa+ ωdxd + ωnxn + ωX
(
X −X

)
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The first order conditions are:

qud(xd + Y ) + (1− q)ud(xd + φY ) = λ− ωd (C.1)

un(xn) = λ− ωn (C.2)

C ′(I) = µ (C.3)

λ̇− ρλ = −ωX (C.4)

µ̇− ρµ = −qud(xd + Y )− (1− q)φud(xd + φY ) (C.5)

The complementarity slackness conditions read:

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (C.4) reads λ̇/λ = ρ, as in the general

model. Eq. (C.3) yields:

Ẏ = I = C ′−1(µ)

also as in the general model.

C.1 Fossil night and day

We have xd > 0, xn > 0, ωd = 0, ωn = 0. FOC (C.1) and (C.2) then read:

qud(xd + Y ) + (1− q)ud(xd + φY ) = λ (C.6)

un(xn) = λ (C.7)

Eq. (C.6) gives implicitly xd as a function of Y and λ, and Eq. (C.7) yields xn = u−1n (λ).

Let us now determine the boundaries of this phase. First, with our assumption that initial

solar capacity is nil, this phase is necessarily the first one and starts at date 0. Then, at

the end of this phase, fossil stops being used at day. Therefore the end of this phase is date

T defined by xd(T ) = 0. Notice that this equation is formally the same as the equation

giving the boundary of the first phase in the case with intermittency and storage (see Eq.

(A.15)), but of course the solar capacity is not necessarily the same, so that the dates may

be different.
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C.2 Fossil at night only

In this second case, the first order conditions reduce to:

qud(Y ) + (1− q)ud(φY ) ≤ λ (C.8)

un(xn) = λ (C.9)

µ̇− ρµ = −qud(Y )− (1− q)φud(φY ) (C.10)

This phase lasts forever: it is not possible to abandon fossil at night absent storage possibi-

lities. It is a saddle-path.

With our specification of the utility and investment cost functions, the steady state is

characterized by µ∗ = c1, and:

Y ∗ns =

(
α(q + (1− q)φ1− 1

σ

ρc1

)σ
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