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Abstract 
 
Multicollinearity, especially in combination with errors-in-variables, can increase the likelihood 
of a Type-I error by inflating the value of the estimated coefficients by more than it magnifies 
their standard errors, thereby increasing the likelihood of obtaining statistically significant 
results. This anomalous result may be due to an interaction effect between errors-in-variables 
and multicollinearity. 
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It is common knowledge that in the context of regression analysis collinearity (or 

multicollinearity) can have severe consequences that include “unreliable” estimates 

(Draper and Smith, 1998); put another way, that it “leads to imprecise estimates of β” 

(Faraway, 2015, p. 106). In addition to “unstable” estimates, the most frequently 

expressed concern in textbooks is that it inflates the standard errors of the estimated 

coefficients and thereby increases the likelihood of a Type-II error (Kennedy, 1998, 184, 

190; Asteriou and Hall, 2011, p. 174). However, there are a number of recent iconoclastic 

studies which emphasize just the opposite, namely, that it can also increase the 

probability of a Type-I error (false positives) under certain circumstances (Spanos and 

McGuirk, 2002; Chatelain, 2010; Chatelain and Ralf, 2014; Atems and Bergtold, 2016).1 

In fact, Kalnins goes as far as to conclude that “multicollinearity causes Type-I errors as 

well as Type-II errors” (Kalnins, 2018). This note reports such a case in the presence of 

errors-in-variables. 

The substantive issues associated with the case at hand can be found elsewhere, 

and need not be reiterated here (Komlos and A’Hearn, 2016; 2019). Instead, we focus on 

the technical aspects of estimation in the presence of misspecification associated with 

multicollinearity in the presence of errors-in-variables.2 Suffice it to say merely that the 

original analysis pertains to estimating the trend in the height of soldiers who enlisted 

during the American Civil War. The baseline model used most often in the literature is: 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛼𝛼 + ∑ 𝛽𝛽𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏1842
𝑏𝑏=1832 + ∑ 𝛾𝛾𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏1865

𝑏𝑏=1862 + 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏                                 (1) 

where ℎ𝑏𝑏𝑏𝑏𝑏𝑏 is the height of soldier i, born in year b, and enlisting in year e, 𝑑𝑑𝑏𝑏𝑏𝑏 is a 

dummy variable for birth years, 𝑑𝑑𝑏𝑏𝑏𝑏 is a dummy variable for the  years of enlistment that 

allow the level of heights to differ by enlistment year, 𝛼𝛼 is a constant, 𝛽𝛽𝑏𝑏, 𝛾𝛾𝑏𝑏 are 

coefficients to be estimated, and 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏 is a random disturbance term.3 The reason it is 

important to control for the enlistment year is that the height of recruits decreased over 

the course of the conflict, as its bloody and prolonged nature became increasingly 

obvious, poorer, hence shorter, men were more likely to enter the military.  

However, Bodenhorn, Guinnane, and Mroz recently questioned the usefulness of the 

above model arguing that selection on unobservables might bias the results (2017, pp. 

177, 194). In order to test that hypothesis, BGM introduced 24 interaction dummy 
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variables between birth-years and enlistment-years to the basic model4 (BGM, 2017, 

Table 5, Model 4): 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛼𝛼 + ∑ 𝛽𝛽𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏1842
𝑏𝑏=1832 + ∑ 𝛾𝛾𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏1865

𝑏𝑏=1862 + ∑ ∑ 𝛿𝛿𝑏𝑏𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏    (2) 

where the (𝑑𝑑𝑏𝑏𝑏𝑏 ∙ 𝑑𝑑𝑏𝑏𝑏𝑏) interactions allow height trends to differ by enlistment year. In the 

absence of varying selection effects, they argue, the interaction between enlistment-year 

and birth-year should not be statistically significant because only adults are included in 

the sample (between the ages of 23 and 30) and their height should not vary after 

controlling for both birth year and enlistment year insofar as humans stop growing in 

adulthood.5  

In order to test their hypothesis, BGM ran the regression specified in Equation 2 on a 

data set of 7,458 records originally collected by Robert Fogel (Fogel et al., 1990). These 

include all the native-born white soldiers within the above age range in the original 

sample. BGM find that the interaction variables’ Χ2 (Chi-square) statistic’s p-value is 

0.17, i.e., they are jointly not statistically significant (BGM, 2017, p. 196). In other 

words, they do not find the hypothetical selection effects on unobservables and therefore 

should have rejected their hypothesis (BGM, 2017, Table 5, Model 4, Column 1). 

However, they did not stop there. 

Instead, they repeated the regression on a subset of this data set with N=3,245. (We 

shall refer these as the large and the small data sets.) While the large data set uses the age 

recorded at the time of enlistment (age1), the small data set uses an alternative age 

variable that was recorded decades later, derived from pension applications. It is 

noteworthy that the small data set is not a random sample from the large data set because 

the small data set is comprised of those records on which there is another age variable 

available on the soldiers (age2). However, age2 is less accurate than age1, because the 

former was recorded decades after the war, when the veteran applied for a pension and 

the petitioner had an incentive to misreport his age in order to qualify. In addition, the 

smaller sample also suffers from survival bias insofar as it pertains only to those veterans 

who not only survived the war but survived into the 1890s as well (Costa, 1995, p. 301).6 

Thus, the small data set is not a random sample of the soldiers and is also plagued by 

errors-in-variables. Nonetheless, they do run the regression on the small data set and 
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report jointly statistically significant interaction effects of Equation 2 (BGM, 2017, Table 

5, Model 4, Column 2).  

However, they fail to address the obvious inconsistency between the two results; 

these are anomalous, because with a smaller number of observations combined with 

errors-in-variables one would expect that the estimates would be more likely to be less 

significant rather than more so (Goodhue, Lewis and Thompson, 2018). Hence, this 

anomaly is sufficiently puzzling to warrant further exploration. Upon some analysis of 

this mystery we find that their results reported in their Table 5, row 4, bring to light an 

unusual and often overlooked aspect of multicollinearity. As it turns out, the interaction 

terms of Equation 2 introduce severe multicollinearity into the regressions that was 

exacerbated by the use of the less accurate age2 variable.  

A common way to measure multicollinearity is with the variance inflation factor 

(calculated for each of the independent variables). It is defined as VIFi = 1
1−𝑅𝑅𝑖𝑖

2, where  𝑅𝑅𝑏𝑏2 

is the coefficient of determination obtained from the auxiliary regression of each of the xi 

on all the other regressors.7 The VIFs multiply the standard estimator of the variance of 

the least-squares coefficients. Clearly, VIFi increases as 𝑅𝑅𝑏𝑏2 → 1 thereby increasing the 

variance of the estimated coefficient of the i’th variable. VIF values less than 5 are 

considered within the normal range while those above 5 is taken as evidence of some 

degree of multicollinearity. VIF values above 10 are considered indicative of extreme 

multicollinearity. 

We first report the VIF values of the enlistment year variables. Those of the baseline 

model (Eq. 1) are all well below 5, indicating that multicollinearity is not present (Table 

1, column 2). Their average value is just 1.59. In contrast, the VIF values of the same 

enlistment year variables in Equation 2 (with the interaction terms) are extremely large 

for both small and large data sets with values as high as 56.1 (Table 1, Columns 5 and 6). 

Their average value is much greater than 10: (VIFs ≈ 28) indicating the presence of 

severe multicollinearity. Thus, there is a substantial difference between the VIF values of 

Equation 1 and Equation 2.8 
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Note: “No interaction” refers to Equation 1 whereas “With Interaction” refers to Equation 2.  
Calculations are based on data in Fogel et al., (1990). 
 

We next consider the effect of multicollinearity on the size of the estimated 

enlistment-year coefficients themselves (γ̂e). Those from the regression Equation (1) 

without interaction terms are of reasonable size (Table 1, Column 1). (It is common 

knowledge that as the war progressed, poorer, less well-nourished, and hence somewhat 

shorter men were recruited into the Union Army.) However, the inclusion of the 

interaction terms (Equation 2) multicollinearity magnifies these coefficients. Their 

average values are between -1.17 and -1.81 compared to -0.39 without the interaction 

terms (Table 1, Columns 1, 3, and 4).9 From a Bayesian perspective, the enlistment-year 

coefficients of Equation 2 are well outside of the realistic range (Leamer, 1994). Such 

large coefficient estimates are not unheard of in case of multicollinearity. As Greene 

suggests, in the presence of multicollinearity “coefficients may have… implausible 

magnitudes” (Greene, 2003, 57). In fact, the coefficients are magnified relative to the 

baseline values in Column 1 on average by a factor of 2.98 (= -1.17/-0.39) and 4.6 (= -

1.81/-0.39) (Table 1, Columns 7 and 8).10 Thus, the coefficients (γ̂e) from the small data 

set are magnified on average by a factor of 1.52 (= 4.6/2.98) times as much as those of 

the large data set (Table 1, Column 9).  

While the enlistment-year coefficients (γ̂e) are magnified greatly in the negative 

direction, the estimated interaction coefficients (δ̂be) are similarly magnified but with the 

opposite sign (Table 2, Columns 1 and 4). The 24 estimated interaction coefficients are 

reported in Table A1 and their mean values by enlistment year are reported in Table 2 

(Columns 1 and 4). Note that the mean of the δ̂be’s are all large and positive whereas 

Table 1. A Comparison of Three Sets of Estimates of the Enlistment-Year Coefficents (γ), Union Army Soldiers
___No Interaction__
Coefficient VIF

γ N= Small N=Large N= Small N=Large N= Small N=Large Ratio (7/8)
1 2 3 4 5 6 7 8 9

1862 0.01  1.66 -1.22 -0.90 56.13 52.64 -174.8 -128.7 1.36
1863 -0.46  1.23 -1.61 -1.20 13.45 15.16 3.50 2.62 1.34
1864 -0.50  1.84 -2.46 -1.32 36.01 34.58 4.90 2.62 1.87
1865 -0.62  1.64 -1.93 -1.26 8.62 8.56 3.13 2.05 1.53

Mean -0.39 1.59 -1.81 -1.17 28.55 27.74 4.60 2.98 1.52

__________With Interaction___________ ____________Magnification_____________
Coefficient (γ) VIF
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those of the  γ̂e’s are all large (in absolute value) and negative (Table 2, Columns 2 and 

5). Hence, the δbe‘s are also unrealistically large especially those of the small data set: 19 

out of the 24 coefficients exceed 1 inch (Table A1, Column 1). It is unreasonable to 

suppose that soldiers born in 1832 and recruited in 1862 were 1.8 inches taller than those 

born and recruited a year earlier after controlling for enlistment year effects. Hence, 

because of multicollinearity, both the δ̂be’s and the γ̂e’s are unreasonably large (in 

absolute value), but they offset each other remarkably. Their sums (Table 2, Columns 3 

and 6) are practically identical to the coefficients obtained with the baseline regression 

without the interaction terms (Table 2, Columns 7, 8 and 9). They differ from the baseline 

on average merely by between -0.16 and +0.09 inches (Table 2, Columns 8 and 9). 

 

 
Note: The average values of the δ’s are from Table A1. 

 

While the VIF values are not very different for the small and for the large data 

sets (9.9 vs. 9.4), the smaller data set has the additional problem of using the less accurate 

age variable. Presumably this is why the statistical tests are less reliable with the small 

data set. It is known that measurement errors increase the problems associated with 

multicollinearity: “the fit becomes very sensitive to measurement errors where small 

changes in y can lead to large changes in �̂�𝛽” (Faraway, 2015, p. 106). So, the less 

accurate age variable in the small regression compounds the problem of multicollinearity 

and thus has a larger impact on the estimates. Such results are possible in the presence of 

multicollinearity with misspecified models: “some estimates may be nonsensical… [and] 

may be highly sensitive to the model specification… [and] can create problems…when 

Table 2. Interaction Coefficient Estimates (δ), Summary Statistics
Baseline (Eq. 1)

Regression 
Mean of Enlistment Sum (δ+γ) Mean of Enlistment Sum (δ+γ) Enlistment N=Small N=Large

δ's γ 1+2 δ's γ 4+5 γ 7-3 7-6
1 2 3 4 5 6 7 8 9

1862 1.35 -1.22 0.13 0.90 -0.90 0.00 0.01 -0.12 0.01
1863 1.32 -1.61 -0.29 0.59 -1.20 -0.61 -0.46 -0.17 0.15
1864 1.89 -2.46 -0.57 0.59 -1.32 -0.73 -0.50 0.07 0.22
1865 1.72 -1.93 -0.21 0.68 -1.26 -0.58 -0.62 -0.41 -0.03

Grand Mean 1.57 -1.81 -0.24 0.69 -1.17 -0.48 -0.39 -0.16 0.09

Regressions with Interactions Eq. 2
N=Small N=Large Difference
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the model is misspecified… [and] can enormously magnify the effects of model 

misspecification” (Winship and Western, 2016, pp. 628-629). Equation 2 with the 

interaction terms correspond to such a misspecification and the less accurate age variable 

exacerbates the problem of multicollinearity.  

Hence, the joint significance of the Χ2 statistic of the interaction terms in the smaller 

data set is due to misspecification of the model caused by multicollinearity. “[A] serious 

consequence of multicollinearity is that a slight modification of the data might induce 

substantial changes in the results of the regression analysis…” (Tu and Gilthorpe, 2016, 

81). Another reason for the above result might be that standard errors can actually 

decrease because of multicollinearity: “collinearity can reduce parameter variance 

estimates” (Mela and Kopalle, 2002).  

To be sure, the standard error does not decrease in this case. However, 

multicollinearity in the small sample increases the coefficient estimate by more than it 

increases its estimated standard errors. The coefficients δ� ′𝑠𝑠 are on average 2.23 

(=1.54/0.69) times larger in the small data set than in the large one, but their standard 

errors are only 1.52 (=0.78/0.51) times as large (Table A1 columns 7 and 8). This implies 

that the Wald z-tests (coefficient/se) in Table A1 are on average 1.50 (=2.08/1.37) times 

as large in the small sample than in the large one (Table A1 Column 9). No wonder that 

the Χ2 statistic is significant in the small subsample even though it is insignificant in the 

large one. The less accurate age variable magnifies the instability due to multicollinearity. 

Johnston actually mentions such a possibility: “It is also possible to find… highly 

significant t values on individual coefficients, even though multicollinearity is serious. 

This can arise if individual coefficients happen to be numerically well in excess of the 

true value, so that the effect still shows up in spite of the inflated standard error” 

(Johnston, 1984, 249).11 Kalnins also reports that multicollinearity can inflate a 

coefficient by more than it increases its standard error (Kalnins, 2018). 

In fact, three experiments support the view that the less accurate age variable 

magnifies the impact of multicollinearity. First we substituted the more accurate age 

value (age1) into the small data set (with 3,245 observations) instead of the less accurate 

age value (age2). We found that the Χ2 (Chi-square) statistic’s p-value becomes 0.8, i.e. 

the interaction terms are no longer jointly significant although the average of the VIF 
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values is still large (=9.4). This points to the variable age2 causing the interaction terms 

to become significant.  

Next, we drew 20 random samples of 3,245 observations each from the large data set 

(N=7,458) and used the more accurate age variable (age1) in these regressions. We obtained just 

one case in which the interaction terms were jointly statistically significant at the 5% level.12 In 

other words, we obtained false positives in just 5% of the cases, as we would expect with the 

significance level set at 5%. The statistical significance is not enhanced due to the small size of 

the data set.  

Finally, we ran 100 regressions with the large data set (N=7,458) but this time used the less 

accurate age variable (age2) if it was available (in roughly 43% of the cases) but used the more 

accurate age1 variable for the missing cases (in roughly 57% of the cases). The results indicate 

that in six out of the 100 cases the interaction terms were jointly statistically significant. This is 

one more than the number one would expect when testing 100 hypotheses at the 5% significance 

level. Hence, the use of the less accurate age variable in about 43% of the cases did not suffice to 

increase the probability of Type-I error excessively but it did increase it slightly. In sum, errors-

in-variables do magnify the likelihood of a Type-1 error in regressions plagued with 

multicollinearity. 

Carl Mela, professor of marketing at Duke University, suggested that one can gain 

some intuition why multicollinearity can inflate the coefficient estimates with opposite 

signs by considering the following example. Suppose the correct model is:  

    y = β0 + β3x1 + ε        (3) 

but instead we estimate a misspecified model (Asteriou and Hall, 2011, p. 173):  

y = β0 + β1x1 + β2x2 + ε         (4) 

and suppose furthermore that x1 and x2 are perfectly collinear so that x1 = x2. Then  

y = β0 + (β1 + β2)x1 + ε        (5) 

and thus β 3 = β̂1 +  β̂2. Of course, the coefficient β3 remains constant for infinitely many 

estimated combinations of β̂1 and β̂2. So, if β̂1 increases with sampling variation, β̂2 must 

decrease by the same amount so that their sums remain constant and equal to the true 

value of β3. Thus, the changes in β̂1 and β̂2 will be of similar magnitude (in absolute 

value) but have opposite signs (See also Schneeweiss, 134).13 Schneeweiss also shows 
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that a positive correlation between x1 and x2 leads to a covariance between β̂1 and β̂2 of 

the same magnitude (in absolute value) but with the opposite sign14 (Schneeweiss, 1990, 

139). This is why both the enlistment year parameters and the interaction-term variables 

in the above example are magnified almost identically in absolute value but with the 

opposite sign so that they move in the opposite direction and essentially offset each other. 

Their combined effect is within -0.16 to +0.09 inches of the enlistment-year coefficients 

estimated with the baseline model without the interaction terms (Table 2, Columns 8 and 

9). In other words, the two collinear variables repel each other as the same poles of two 

magnets.15 

Hence, we came across an oft-overlooked property of multicollinearity, namely, 

that it can actually induce some variables to become statistically significant by inflating 

the estimated coefficients by more than it magnifies their standard errors. In such cases 

multicollinearity “may be associated with large and false t-statistics” (Kalnins, 2018), or 

“excessive false positives” especially in the presence of errors-in-variables (Goodhue, 

Lewis and Thompson, 2018), thereby revealing a “statistical blind spot” in multiple 

regression analysis (Goodhue, Lewis, and Thompson, 2017, 668). Thus, multicollinearity 

is a more serious issue then is currently commonly acknowledged: “Because of a lack of 

awareness about the M+ME [multicollinearity + measurement error] blind spot, it 

appears that too often we may have mislead ourselves into believing we had support for 

hypotheses, when actually we did not” (Goodhue, Lewis and Thompson, 2017, 682). 

 

References 

Asteriou, Dimitrios and Stephen G. Hall, 2011. Applied Econometrics, 2nd ed., (New 

York: Palgrave Macmillan). 

Atems, Bebonchu and Jason Bergtold, 2016. “Revisiting the statistical specification 

nof ner-multicollinearity in the logistic regression model,” Studies in Nonlinear 

Dynamics and Econometrics 20, 2: 199-210. 

Baltagi, Badi, H. 2008. Econometrics (4th ed. Berlin: Springer). 

Bodenhorn, Howard, Timothy Guinnane, and Thomas Mroz. 2017. “Sample-

Selection Biases and the “Industrialization Puzzle,” The Journal of Economic History 77, 

1: 171-207.  



10 
 

Chatelain, Jean-Bernard and Ralf, Kirsten. 2014. “Spurious regressions and near-

multicollinearity, with an application to aid, policies and growth,” Journal of 

macroeconomics 39, Iss. A: 85-96. 

Chatelain, Jean-Bernard, 2010. “Can Statistics Do without Artefacts?” Unpublished 

Manuscript,  https://hal.archives-ouvertes.fr/hal-00750495/document  

Costa, Dora, L. “Pensions and Retirement: Evidence from Union Army Veterans.” 

Quarterly Journal of Economics 110, no. 2 (1995): 297-319. 

Draper, Norman R. and Harry Smith, 1998. Applied Regression Analysis (3rd ed., 

John Wiley & Sons).   

Faraway, Julian J. 2015. Linear Models with R (2nd ed. Boca Raton: Chapman 

&Hall, CRC Press). 

Fogel, Robert W., Stanley L. Engerman, Clayne Pope, et al. “Union Army Recruits 

in White Regimens in the United States, 1861-1865.” [Computer file]. (ICPSR 9425-v2). 

Chicago: University of Chicago, Center for Population Economics [producer], Ann 

Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 

1990. 

Goldberger, Arthur, 1991. A course in Econometrics (Cambridge, MA: Harvard 

University Press). 

Goodhue, Dale, Will Lewis and Ron Thompson, 2017. “A Multicollinearity and 

Measurement Error Statistical Blind Spot: Correcting False Positives in Regression and 

PLS,” MIS Quarterly, 41, 3: 667-684. 

Goodhue, Dale, Will Lewis and Ron Thompson, 2018. “What Do You Mean, My 

Results are Incorrect? The Impact of Multicollinearity and Measurement Error in Tests of 

Statistical Significance,” advances in Management Information Systems Research, 

August.  

Greene, William H., 2003. Econometric Analysis (5th ed. Upper Saddle River, NJ: 

Prentice Hall). 

Johnston, John, 1984. Econometric Methods (3rd edition, New York: McGraw-Hill). 

Kalnins, Arturs, 2018. “Multicollinearity: How common factors cause Type 1 errors 

in multivariate regression,” Strategic Management Journal 22, issue 10, May. 

Kennedy, Peter, 1998. A Guide to Econometrics (Cambridge, MA: The MIT Press). 

https://hal.archives-ouvertes.fr/hal-00750495/document


11 
 

Komlos, John and Brian A’Hearn. 2016. The Decline in the Nutritional Status of the 

U.S. Antebellum Population at the Onset of Modern Economic Growth. Cambridge, MA. 

NBER Working Paper 21845, January. 

Komlos, John and Brian A’Hearn. 2019. “Clarifications of a Puzzle: the Decline in 

Nutritional Status at the Onset of Modern Economic Growth in the U.S.A.” with Brian 

A’Hearn, Journal of Economic History, forthcoming, September. 

Leamer, Edward E. 1994. Sturdy Econometrics (Hants, England: Edward Elgar). 

Mela, Carl F. and Praveen K. Kopalle. 2002. "The impact of collinearity on 

regression analysis: the asymmetric effect of negative and positive correlations." Applied 

Economics 34: 667-677. 

Schneeweiss, Hans. 1990. Ökonometrie (Heidelberg: Physica-Verlag), 4th edition.  

Tu, Yu-Kang and Mark S. Gilthorpe, 2016. Statistical Thinking in Epidemiology 

(Boca Raton: CRC Press)  

Winship, Christopher and Bruce Western. 2016. “Multicollinearity and Model 

Misspecification,” Sociological Science 3: 627-649.  



12 
 

Appendix 
 

 
 

Endnotes 
                                                           
1 Atems and Bergtold conclude in the context of logistic regression that in the presence of near-

multicollinearity “the parameters and their associated variances and t-ratios may be different than 

the traditional account implies” (Atems and Bergtold, 2016, 210). Similarly, Spanos and 

McGuirk “demonstrate that increasing the correlation among the regressors does not 

necessarily… worsen the significance of the coefficients” (Spanos and McGuirk, 2002, 366). 

Table A1. The 24 Estimated Interaction Coefficients (δ) of Equation 2
Enlistment Birth

δ s.e. Wald z δ se Wald z δ s.e. Wald z
1 2 3 4 5 6 7 8 9

1862 1832 1.82 0.79 2.31 0.91 0.50 1.8 2.0 1.6 1.3
1833 0.90 0.76 1.19 0.96 0.50 1.95 0.9 1.5 0.6
1834 1.03 0.74 1.38 0.88 0.49 1.81 1.2 1.5 0.8
1835 1.57 0.74 2.12 0.70 0.48 1.46 2.2 1.5 1.5
1836 1.75 0.72 2.43 1.18 0.47 2.49 1.5 1.5 1.0
1837 1.43 0.71 2.01 0.80 0.47 1.72 1.8 1.5 1.2
1838 0.93 0.66 1.41 0.85 0.42 2.01 1.1 1.5 0.7

Mean 1.35 0.90
1863 1833 0.72 1.17 0.61 0.93 0.67 1.39 0.8 1.7 0.4

1834 2.09 1.02 2.04 0.70 0.68 1.04 3.0 1.5 2.0
1835 2.08 0.89 2.33 0.40 0.60 0.67 5.2 1.5 3.5
1836 0.72 1.01 0.72 1.10 0.62 1.78 0.7 1.6 0.4
1837 1.47 0.89 1.65 0.96 0.60 1.6 1.5 1.5 1.0
1838 0.95 0.88 1.08 0.27 0.62 0.44 3.5 1.4 2.5
1839 1.22 0.93 1.31 -0.21 0.59 -0.36 5.7 1.6 -3.6

Mean 1.32 0.59
1864 1834 2.05 0.72 2.85 0.95 0.49 1.94 2.2 1.5 1.5

1835 1.85 0.73 2.54 0.83 0.50 1.68 2.2 1.5 1.5
1836 2.49 0.73 3.42 0.97 0.48 2.03 2.6 1.5 1.7
1837 2.08 0.70 2.97 0.79 0.47 1.67 2.6 1.5 1.8
1838 2.16 0.65 3.34 1.09 0.44 2.5 2.0 1.5 1.3
1839 1.22 0.67 1.82 -0.44 0.44 -1.01 2.8 1.5 -1.8
1840 1.35 0.59 2.27 -0.06 0.42 -0.14 23.5 1.4 -16.2

Mean 1.89 0.59
1865 1835 1.61 0.73 2.21 0.85 0.46 1.85 1.9 1.6 1.2

1836 1.90 0.65 2.94 1.36 0.45 3.04 1.4 1.4 1.0
1837 1.65 0.66 2.50 -0.16 0.44 -0.38 10.0 1.5 -6.6

Mean 1.72 0.68
Grand Mean 1.54 0.78 2.06 0.69 0.51 1.37 2.23 1.52 1.50

________N=Small_________ __________N=large___________________Magnification_________
Year
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2 A “consequence of multicollinearity is that it can easily lead to specification errors” (Kennedy, 

1998, 185). Others warn about spurious inference in the presence of multicollinearity and 

suppressor variables (Chatelain and Ralf, 2014). (Suppressor variables are correlated with the 

independent variable(s) but not with the dependent variable, yet they improve the R2 of the 

regression.) 
3 Because of minimum height requirements, the model is estimated by reduced-sample maximum 

likelihood truncated regression using STATA (Komlos, and A’Hearn, 2016). 
4 There are 40 possible interaction terms between birth-years and enlistment-years observed in 

the sample (5 enlistment years times 8 ages from 23 to 30). However, Equation 2 has eleven 

birth-years (b) and four enlistment-years (e) with the 1831 birth year and the 1861 enlistment 

year omitted as the reference groups. Including the constant, that makes sixteen parameters to 

be estimated in addition to the interaction terms. This implies that only 24 of the possible 40 

(b x e) interaction effects can be estimated and 16 have to be omitted. 
5 In other words, after controlling for enlistment-year effects, a 23-year-old born in 1840 and 

enlisting in 1863 should be as tall on average as a 24-year-old born in 1840 and enlisting in 

1964. 
6 Dora Costa, who oversees the Union Army Data website, confirmed that age1 is more accurate 

than age2. 
7 The VIF’s are a property of the independent variable and are therefore not affected by the fact 

that the dependent variable (height) is truncated. 
8 Similarly, the average VIFs for all the variables for the baseline regression (including the 

birth cohorts) are 4.39 and 4.96, whereas the introduction of the interaction terms increases 

the average VIF values for all the variables to 9.4 for the large data set and 9.9 for the small 

one. 
9 However, the birth-year effects estimated with Equation 2 (that include the interaction effects) 

are identical to the ones estimated with Equation 1. There is no difference between them to two 

decimal places. 
10 Note that the magnification values for enlistment year 1862 are extremely large on account of 

the tiny baseline estimate. 
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11 Goldberger quotes this statement from Johnston and Baltagi and confirms that the t-statistic of 

an estimated coefficient can be significant in the presence of multicollinearity (Goldberger, 1991, 

247; Baltagi, 2008, 76). 
12 The mean of the VIF values of the 20 draws was 9.5 with a range between 8.6 and 11.0. The 

VIF value of the regression with the significant interaction terms were close to the mean values. 
13 To be sure, this does not explain why the estimated coefficients are inflated by more than their 

standard errors. 
14 Similarly, Johnston writes, “a positive covariance for the X’s gives a negative covariance for 

the b’s, and vice versa… if b2 is below β2, b3 is most likely to exceed b2, β3, and vice versa 

(provided the X’s are positively correlated)” (Johnston, 1984, 240). This property explains the 

findings reported in Table 2. 
15 Schneeweiss states that while it is true that the estimated coefficients remain unbiased with 

multicollinearity, “this does not preclude that in particular cases the estimated value can differ 

considerably from the true parameter value. This is especially true under multicollinearity. There 

the parameter estimate may hugely deviate in either direction, and it is of no help to know that 

the estimate is unbiased…. So, the problem of multicollinearity is not bias but the extreme 

variance of the parameter estimates, making them completely unreliable (personal 

communication). 
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