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Abstract 
 
This paper develops a dynamic programming method when the one-stage deviation principle in 
the sense of mechanism design literature doesn’t hold. The commonly used dynamic 
programming method is valid only if the one-stage deviation principle in the sense of 
mechanism design literature is satisfied; it doesn't hold in every model, and the one-stage 
deviation principle in the sense of repeated games does hold but requires the equilibrium 
strategy of every player off the equilibrium path and is impractical. The dynamic programming 
method developed in this paper requires transfinite induction, and therefore one needs to specify 
the stopping times for two dimensions. 
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1 Introduction

The dynamic programming method typically used in macroeconomics is a lit-

tle bit different from the contraction mapping in Abreu, Pearce and Stacchetti

(1986, 1990) (APS in short). However, loosely speaking, both start with a

bounded set that includes all feasible payoffs, i.e., any payoff that can be an

equilibrium payoff or an expected payoff of the representative agent. Once

one starts with a bounded set and applies a contraction mapping, then the

image of the mapping is strictly smaller than the set the mapping is applied

to; as long as there are finitely many players, there exists a unique limit. The

existence of the unique limit can be shown by the dominated convergence the-

orem, and there is a difference between contraction mapping and an inclusive

mapping. Strictly speaking, one needs to distinguish functions from mappings

and correspondences as well.

When the mapping is not weakly decreasing but only strictly decreasing,

then the unique limit might be obtained in a finite time. If the mapping

is strictly decreasing as in contraction mapping, then the sequence of images

obtained by applying the contraction mapping to the initial set converges to the

limit but never reaches the limit in finite time. However, as one can see from

the description so far, and if anyone is familiar with the way these mappings

work, one only iterates the same mapping to the image of the set until the

image is sufficiently close to the limit. This is where the theoretical limit and

numerical simulations does make a difference. Theoretically, there exists a

unique limit that the sequence must converge to. Numerically, given that this

limit is never reached in finite time, one needs to decide when the image is

sufficiently close to the limit and one can take the outcome of the numerical

simulation as the set of equilibrium payoffs or payoffs one can implement in a

dynamic mechanism.

In addition to choosing bandwidths for error sizes and the stopping time,

one should note that there is just one mapping that needs to be iterated. This

is where the one-stage deviation principle in the usual sense of mechanism

design matters. When the one-stage deviation principle in the usual sense
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holds in the given model, then there exists a corresponding (weakly) decreasing

mapping one can iterate on. However, as I show in “Mechanism Design with

Moral Hazard,” (Kwon (2019) in short), the one-stage deviation principle in

the usual sense of mechanism design doesn’t hold in every model. In most

papers, this step is shown individually. When the sufficient conditions I provide

in Kwon (2019) hold, then one can apply the dynamic programming as usual.

But when they don’t apply, one needs to verify that the dynamic IC constraint

is satisfied after every private history; the usual dynamic programming doesn’t

allow for this possibility, and the dynamic programming developed in this

paper accomodates the dynamic IC constraint. When the one-stage deviation

principle in the usual sense of mechanism design holds and when the usual

dynamic programming holds, then the dynamic programming developed in this

paper reaches the limit after the first iteration along the second dimension. To

put it differently, if one were to index the iteration in my dynamic programming

by a two-dimensional vector (i, T ), then as the set converges to the limit with

i→∞ at T = 1, the dynamic programming found the limit set, and one can

stop the iteration without checking T > 1.

One should think of the iteration along T as verifying there is no profitable

T−period deviation. This is why if the one-stage deviation principle in the

usual sense holds, then there is no profitable deviation of longer lengths. The

one-stage deviation principle in the sense of repeated games checks for devia-

tions after every private history including deviations. In order to implement it

in dynamic programming, it is implicit that the agent or players go back to the

strategy the mechanism designer or other players are expecting. In macro, the

representative agent might have private information. In any model without

the informed-principal problem, the mechanism designer doesn’t have any pri-

vate information. The one-stage deviation principle in the usual sense means

that the agent takes actions or makes reports as if he didn’t deviate, i.e., as

if his private information in the period he deviated is what the mechanism

designer thinks was the agent’s private information. In repeated games, most

of the papers including APS focus on (imperfect) public monitoring. When

players have private information, possibily due to private monitoring, APS
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doesn’t generalize immediately without taking into account private histories

and multi-period deviations.

As for examples of when one-stage deviation principle in the usual sense

doesn’t hold and one might need to worry about the dynamic IC, consider any

stochastic game with private information of players. Any repeated game with

private monitoring and a discount factor strictly bounded away from one also

requires taking care of this issue. If the agent can have private information

and also take an action privately, then dynamic mechanism design also needs

to deal with multi-period deviations in general. The two sufficient conditions

I provide in Kwon (2019) are (i) learning models with symmetric uncertainty

and (ii) agents observing the payoff-relevant state perfectly every period in

the Markovian environment. Otherwise, in any model with a fully-persistent

state that is the agent’s private information, one cannot rule out multi-period

deviations a priori.

The rest of the paper is organized as follows. Section 2 describes the model,

and section 3 presents results. Section 4 concludes.

2 Model

The current model starts with common prior for the mechanism designer and

the agent, and only the agent’s action is his private information. Results in

section 3 are developed for this model, but one can expand the dynamic pro-

gramming to allow for private signals, messages and recommendations. Given

that this already leads to transfinite induction in dynamic programming, I will

state all results for this model. But further private information just requires

modifying the transfinite induction and the sequence of weakly decreasing

mappings to be applied.

There exist one mechanism designer and one agent for t = 1, 2, · · · ,∞. The

common discount factor is δ ∈ (0, 1). Each period, there is a payoff-relevant

state ωt ∈ Ω, and neither the mechanism designer nor the agent receives

a private signal. The common prior in the beginning of the first period is

denoted by π0, and in general, π(ω) is the belief on state ω. In period t, the
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agent takes an action pt ∈ A which is his private information, and an outcome

yt ∈ Y is realized and observed by both parties. The mechanism designer

makes a payment at the end of the period. I assume a Markovian environment

with endogenous state which will be described formally in two paragraphs.

The conditions in this paragraph ensure existence of optimal mechanism;

they are automatically satisfied in any finite environment. The set of states Ω,

the set of actions A and the set of outcomes Y are non-empty compact Borel

subsets of Polish (complete, separable, metric) spaces. Pωω′(p), the probability

of going from state ω to ω′ when the agent chooses a, is a probablility measure

on ω′ given ω, p; P is jointly continuous in ω, ω′, p. The cost of action c(p) ∈ R
is continuous in p. fω(y) is the pdf of outcome y in state ω, i.e., measurable,

non-negative and
∫
Y
fω(y)dy = 1 for all ω ∈ Ω. Assume fω(y) is a continuous

function of ω, y and
∫
Y
yfω(y)dy < M for some M, all ω ∈ Ω. Also assume full

support, atomless, positive density everywhere. Lastly, assume f, P are such

that if we start with a uniformly bounded common prior π in the beginning of

first period, then resulting beliefs in all subsequent periods are also uniformly

bounded. Or more precisely, sup norm is well-defined for resulting beliefs. If

there are a finitely many states, we don’t need to worry about it.

The distribution of outcome and the transition probabilities of the state

are functions of ω, p this period. Denote the outcome distribution and the

state transition at the end of period t by ft, Pt, respectively:

ft : Ω× A→ σ(Y ),

Pt : Ω× A→ σ(Ω)

where σ(X) denotes the set of all probability measures on X. When A ⊆ R,

the cost of action for the agent is strictly increasing, strictly convex.

The mechanism designer values outcome yt with v : Y → R. I assume the

mechanism designer is risk neutral with respect to the payment wt, and the

agent values wt with vNM utility function u : R→ R. u is strictly increasing,

weakly concave. There is limited liability, but the lower bound need not be 0;

this is due to a techanical reason and any bound that is sufficiently low works.
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I will specify the agent’s private history and the public history, which co-

incides with the mechanism designer’s history, but I focus on IC constraints

of the agent’s action in this paper. With any detectable deviation, the public

history between the mechanism designer and the agent contains a deviation

as soon as the deviation occurs, and undetectable multi-period deviations are

irrelevant. With limited commitment, the mechanism designer offers a mecha-

nism at the beginning of each period, and the agent decides whether to accept

or reject; given that this is observed by both the mechanism designer and the

agent, I do not focus on any deviation at that stage.

If the agent doesn’t participate or if the mechanism designer doesn’t offer

a mechanism, outside options for the mechanism designer and the agent are v̄

and ū, respectively. With limited commitment, these are per-period, and with

full commitment, these are the outside options in the first period. With limited

commitment, the state transition in a period while they receive outside options

is given by P 0, and the equilibrium notion is perfect Bayesian equilibrium.

Since with full commitment, the game is over when the agent doesn’t par-

ticipate, I define histories only for the case when the mechanism designer

offers the mechanism on the equilibrium path, and the agent participates; the

mechanism and the participation decision are omitted from histories. The

mechanism consists of history-contingent payments.

The private history of the agent in period t is

ht,a = (p1, y1, w1, · · · , pt−1, yt−1, wt−1) ∈ Ht,a.

The public history in the beginning of period t is ht = (y1, w1, · · · , yt−1, wt−1) ∈
Ht. The strategy of the agent is σt,a : Ht,a → A. The allocation is σt : Ht → R.

The agent plays pure strategies, which is without loss of generality when A ⊆ R
and the cost function is strictly convex, and the mechanism designer doesn’t

randomize over allocations. The mechanism designer is allowed to randomize

over continuation contracts, and there is a public randomization device. All

strategies are measurable functions. Throughout the paper, (ht, hk) denotes

history ht followed by hk.
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3 Results

Section 3.1 summarizes the relevant results for dynamic IC from Kwon (2019),

and section 3.2 develops the dynamic programming method to find all nu-

merical solutions. The code in C is in section B in the appendix. Section

3.3 presents simulations including how to pick stopping times, bandwidths for

errors and so forth.

3.1 Quick Summary of Dynamic IC

Instead of deriving dynamic IC constraint and showing it to be necessary and

sufficient condition for all IC constraints, I will summarize the relevant results

from Kwon (2019) in this section.

The one-stage deviation IC constraints that have been commonly used in

the dynamic mechanism design literature are different from what is referred to

by the same name in the repeated games literature. In the dynamic mechanism

design literature, it typically means deviating in one period or an instant then

conforming to the mechanism designer’s expectation from the following period

or instant. When the agent reports his private information, this refers to lying

only one period or instant then reporting truthfully from the following period

or instant. If the agent takes an action which is unobserved by the mechanism

designer, then it depends on the equilibrium strategy the mechanism designer

expects. I show in Kwon (2019) that this types of one-stage deviation IC

constraints are not always sufficient for all IC constraints. In particular, if the

agent doesn’t know the payoff-relevant state and only knows his past action,

then it is in general not sufficient. When the agent privately observes the

payoff-relevant state, it is still not sufficient as long as the agent’s past actions

or the past realizations of the payoff-relevant state matters for the continuation

game.

When one-stage deviation ICs in the usual sense are no longer sufficient,

then verifying incentive compatibility typically requires the knowledge of the

agent’s off-the-equilibrium-path strategy. I characterize an alternative way of

verifying incentive compatibility only with the agent’s equilibrium strategy in
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Kwon (2019). This is the dynamic IC constraint, but it requires transfinite

induction to implement in dynamic programming. What I mean by transfi-

nite induction here is that the designer now needs to check for multi-period

deviations of length k, instead of k = 1 as usual, and one can just check for

all finite-length deviations, but this is practically not feasible.

I start with length 1 and characterize when the designer can stop check-

ing for any longer chains. In numerical simulations, even if a sequence does

converge in the limit, there is no guarantee that an element of the sequence

will be the value of the limit at any finite index. Therefore, one needs to

decide how close one wants the numerical value that comes out of dynamic

programming to the theoretical limit, and with transfinite induction, there is

an infinite sequence whose element is the limit of infinite sequence at each

finite index. Therefore, one needs to pick the bandwidth or the size of error

for each infinite sequence corresponding to an element in the main infinite se-

quence; then for the main sequence, it’s similar to the dynamic programming

that’s been already studied.

As for the multi-period deviation IC constraints, the k-th element of the

main infinite sequence checks for all deviation strategies of length k. Therefore,

choosing the bandwidth for the k-th element of the main infinite sequence is

the same as checking there is no k-period deviation that gives any profit beyond

the chosen bandwidth. The transfinite induction starts with the first element

of the main sequence, which coincides with the usual dynamic programming

of deviating once and conforming to the designer’s expectation afterwards.

When there can be profitable multi-period deviations, now one needs to aug-

ment the usual dynamic programming by taking it as an element of infinite

sequence; each element checks for k-period deviations. Therefore, choosing the

bandwidth or the error size for the main infinite sequence is the same as there

is no profitable deviation of any length that gives more profit than the chosen

bandwidth. Practically, this bandwidth for the main infinite sequence trans-

lates into at which k, the designer can stop the second dimension of transfinite

induction, i.e., there is no need to check for any deviation strategy of longer

length.
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I use a short-hand notation that drops the public history from the argu-

ment. For instance, w(y) refers to the payment conditional on the public

history up until that point and one more outcome realization y.

After outcome y is observed, the belief is updated from π(·) to

π0(ω) =
π(ω)fω(y)∫

Ω
π(ω′)fω′(y)dω′

,

and in the following period, the belief is

π̃(ω̂) =

∫
Ω

π(ω)fω(y)Pωω̂(p)∫
Ω
π(ω′)fω′(y)dω′

dω.

For π0 to be well defined, fω(y) needs to be measurable in ω. For π̃ to be

well defined, P given ω̂, p needs to be measurable in ω.

Since P is jointly continuous in ω, p and Ω is compact, for given ω̂ and

δ > 0, there exists ε(ω̂, δ) > 0 such that |Pωω̂(p′) − Pωω̂(p)| < δ for all |p′ −
p| < ε(ω̂, δ). Since P is also continuous in ω̂, we can find ε(ω̂, δ) continuous

in ω̂, and together with the compactness of Ω, we get ε(δ) > 0 such that

|̃πp′(ω̂)− π̃p(ω̂)| < δ for all ω̂, |p′− p| < ε(δ), and π̃ is a continuous function of

p. π̃ is a continuous function of π0. (P is jointly continuous on a compact set)

When Ω, Y are compact and fω(y) is continuous in ω, y, π0 is a continuous

function of π. Up to here, I used pointwise convergence and sup norm.

The hypothetical continuation value of the agent is

∫
Ω

∫
Y

−c(p) + u(w(y)) + δ

∫
Ω

V (y, ω̂)Pωω̂(p)dω̂fω(y)dyπ(ω)dω.

In order for u(w(y)) to be measurable in y and V (y, ω) to be measurable

in y, ω, it is enough that the mechanism designer offers w(y) as a measurable

function of y, and by our definition of V (y, ω), it should be measurable in both

y, ω. Limited liability ensures w(y) ≥ −M for some M sufficiently large.

The one-stage deviation IC in the usual sense of mechanism design is equiv-
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alent to ∫
Ω

∫
Y
−c(p) + u(w(y)) + δ

∫
Ω
V (y, ω̂)Pωω̂(p)dω̂fω(y)dyπ(ω)dω

≥
∫

Ω

∫
Y
−c(p′) + u(w(y)) + δ

∫
Ω
V (y, ω̂)Pωω̂(p′)dω̂fω(y)dyπ(ω)dω

⇔
∫

Ω

∫
Y
c(p′)− c(p) + δ

∫
Ω
V (y, ω̂)(Pωω̂(p)− Pωω̂(p′))dω̂fω(y)dyπ(ω)dω ≥ 0

If we assume Pωω̂(p) is differentiable in p, we can take the left and right

limits (after dividing by p′ − p) and get the equality constraint.

The dynamic IC is given by

∞∑
n=t

δn−t
∫ ∫

Ω

∫
Y

c(p′n(h̃n))−c(pn(ĥn))+δ

∫
Ω

Vyω̂(Pωω̂(pn(ĥn))−Pωω̂(p′n(h̃n)))dω̂fω(y)dyπ̃n(ω)dωdG ≥ 0

where G is the cdf of reaching each history given the agent’s true private

history.

3.2 Dynamic Programming

When the on-path single deviation IC is sufficient, the standard dynamic pro-

gramming can allow for adverse selection or ex-ante symmetric uncertainty

together with moral hazard. However, when the dynamic IC is necessary, i.e.,

one must account for multi-period deviations, the standard dynamic program-

ming no longer works. In order to characterize the optimal mechanism only

with the dynamic IC, one needs to make sure that the dynamic IC is also

sufficient. This happens when there is limited commitment or continuity at

infinity. I will describe the intuition for dynamic programming when the dy-

namic IC is necessary and sufficient in this section. The formal proofs are in

the appendix A.

The standard dynamic programming starts with the candidate set of pay-

offs (typically the set of all individually rational payoffs) and apply a contrac-

tion mapping until it reaches the fixed point. Existing literature has focused

on cases when on-path single deviation ICs are sufficient, and when they are

sufficient, the contraction mapping corresponds to the on-path single deviation

given the public history up to that point.
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With the dynamic IC and multi-period deviations, it is no longer sufficient

to apply one contraction mapping until it reaches the fixed point. There is

a sequence of operators, which are monotone but not necessarily contraction

mappings, and the dynamic programming requires trans-finite induction on

this sequence of operators. However, since each operator leads to a monotone

sequence of set of payoffs, one can still start with the candidate set of payoffs

and apply each operator until it reaches the fixed point. The difference from

the standard dynamic programming is that once it reaches the fixed point with

the N -th operator TN , it goes on to apply the (N + 1)-th operator TN+1 until

it reaches the next fixed point. Figure 1 shows how the trans-finite induction

works, where WN,0 is the initial set for TN and WN,k = (TN)k(WN,0).

W 0 = W 1,0

W 1,1

W 1,2

W 1,∞

T1

W 1,∞ = W 2,0

W 2,1

W 2,2

W 2,∞

T2

W 2,∞ = W 3,0

W 3,1

T3

W̄

Figure 1: Trans-finite Induction

The state variable for dynamic programming is (π, V (·, ·), V P ) which takes

into account the belief on the state, hypothetical continuation values for the

agent and the supremeum of principal’s payoffs, all on the equilibrium path.

With one agent, the dynamic IC only requires hypothetical continuation values

on the equilibrium path, and there is only one dynamic IC after every history

on the equilibrium path; it is sufficient to take the variables on the equilibrium

path. Multi-period deviations are taken care of within each dynamic IC, and

we don’t need to worry about belief disagreement off the equilibrium path for

the state variable.

In the first stage, the candidate set of payoffs isW 0 = {(π, V (·, ·), V P )||V (y, ω)| ≤
V̄ } for some V̄ . All that matters at this point is that there is a uniform upper
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bound on hypothetical continuation values of the agent, since otherwise, no

matter how many times one applies monotone mappings to the initial set, it

might never converge to a set with finite measure. With limited commitment

or continuity at infinity, the agent’s expected utility on the equilibrium path is

uniformly bounded. But we still need to show that hypothetical continuation

values are bounded; hypothetical continuation values integrate up to a finite

expected utility, but in principle, they can still diverge or even be infinite on

a set of measure zero. The proof follows from the fact that the hypothetical

continuation value is continuous in ω and a, and any continuous function on

a compact set is uniformly bounded.

Let T1 be the operator with the on-path single deviation IC. One can

find all points in W that can be generated by W , and this corresponds to

the usual mapping in the standard dynamic programming except that it is

weakly decreasing and not strictly a contraction mapping. Since T1(W ) ⊆ W ,

(T1)j(W 0) = W 1,j converges to a set-theoretic limit. We can define TN to

be the mapping with the N -period IC and use the fact that the dynamic IC

is equivalent to satisfying the N -period IC for every N . Each TN is non-

increasing, and the limit of a monotone sequence is well-defined.

For each TN , N -period deviations are taken care of as follows. First, given

πt, we know πt+1 when the agent takes action a and outcome y is realized. By

induction, we can choose Vt+2(y, ω) for each πt+1 such that from period t + 1

on, (N − 1)-period deviation ICs are satisfied. Next, choose wt+1(y) such that

Vt+1(y, ω) generated by wt+1(y), Vt+2(y, ω) satisfy IR and the promise-keeping

constraint. We know the equilibrium beliefs, actions for the next N periods,

and we need to verify the N -period deviation IC.

N -period deviation IC is satisfied by backward induction. Let Ṽt+k+1 be the

agent’s maximum deviation payoff from any deviation between period t+k+1

and t+N − 1; the agent conforms to the principal’s expectation from period

t + N onwards. In period t + N − 1, given the agent’s private belief π̃t+N−1

and his hypothetical continuation values Vt+N(y, ω), the agent has the optimal

action. In period t+k, given the agent’s private belief π̃t+k and the maximum

deviation payoff from t+k+1 on, Ṽt+k+1, the agent has the optimal action. We
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can continue doing the backward induction, and in period t, we have π̃t = πt

and the equilibrium payoff has to be weakly better than the most profitable

deviation payoff. The rest of the argument follows from the agent’s deviation

payoff being a continuous function of his private belief and action; the set of

beliefs and the set of actions are compact sets.

Since I take care of all private beliefs the agent might have in period t+ k

when I verify the N -period deviation IC, there is no need to keep track of the

agent’s private belief as the state variable.

We want the expected utility of the agent to be a bounded upper semi-

continuous function of his belief and his action. Hypothetical continuation

values V (y, ω) can be thought of as a bounded function V : Y × Ω → R.

It is bounded because the principal has no commitment power and the ex-

pected outcome in each state is uniformly bounded. If the principal has full-

commitment power, I need to show that the expected utility is bounded. (this

is necessary both for the agent’s optimal action to be well-defined and also for

continuity at infinity) I’ll use the fact that the dynamic IC (which implies the

local IC) is equivalent to satisfying any N -period IC for all N .

Lemma 1. Hypothetical continuation values on the equilibrium path are uni-

formly bounded.

Theorem 1. The dynamic programming is well-defined, i.e., there exists a

sequence of set operations such that the set-theoretic limit is the largest self-

generating set. The agent’s optimal actions for any N-period IC in the largest

self-generating set is well-defined. The supremum of the principal’s payoff is

well-defined.

3.3 Simulations

This section will be included in the submitted version.
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4 Conclusion

I develop a dynamic programming method to implement the dynamic IC con-

straint from Kwon (2019). Kwon (2019) characterizes a necessary and suffi-

cient condition for all IC constraints when the one-stage deviation principle

in the usual sense of mechanism design doesn’t hold in a given model. The

dynamic IC becomes necessary in many environments when the agent doesn’t

observe the payoff-relevant state every period and can take an action privately.

Most of dynamic programming methods implemented in the literature

works under the one-stage deviation principle in the usual sense of mecha-

nism design. When the agent deviates, he only deviates once and goes back

to the strategy the mechanism designer “expects” given the public history. In

repeated-games literature, issues I point out in Kwon (2019) are irrelevant as

long as the monitoring technology is (imperfect) public monitoring.

Once the underlying environment one wants to study doesn’t satisfy the

one-stage deviation principle in the usual sense of mechanism design, then

there is a need for dynamic programming to accomodate undetectable multi-

period deviations. The method I develop in this paper involves transfinite

induction, and as long as one can verify there is no profitable and unde-

tectable multi-period deviations, the dynamic programming method need not

be unique.
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A Proofs

Proof of Lemma 1. We know that the equilibrium payoffs are uniformly bounded,

but a priori, we cannot rule out having unbounded hypothetical continuation

values on a set of measure zero; I restrict attention to equivalent classes that

coincide on a set of measure one. I’ll show that V (yt−1, ωt) is a continuous

function of ωt and pt. Given V (yt−1, ωt), we have w(yt), Vt+1(yt, ωt+1) such that

V (yt−1, ωt) =
∫
Y
−c(pt) +u(w(yt)) + δ

∫
Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1fωt(yt)dyt.

I’ll first show that
∫

Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1 is continuous in ωt, pt. De-

fine g(ω, p) =
∫

Ω
V (y, ω′)Pωω′(p)dω′ and consider a sequence ωn → ω. Since P

is jointly continuous, V (y, ω′)Pωnω′(p) → V (y, ω′)Pωω′(p) almost everywhere.

Together with the compactness of Ω, the joint continuity of P implies that for

given ω, there exists a neighborhood Nω such that Pωnω′(p) ≤ κPωω′(p) for

some κ > 0 and all ω′, p and ωn ∈ Nω. We already know that V (y, ω′)Pωω′(p)

is integrable, and limited liability implies that hypothetical continuation val-

ues are bounded from below. Then there exists a neighborhood N ′ω ⊆ Nω

such that |V (y, ω′)| is also integrable on N ′ω. By the dominated convergence

theorem, g(ωn, p) → g(ω, p). The proof for continuity in pt is similar. The

proof of continuity of V (yt−1, ωt) in ωt, pt is similar, and we use the fact that

−c(pt)+u(w(yt))+δ
∫

Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1fωt(yt) is bounded from be-

low. Therefore, the hypothetical continuation value is a continuous function

on a compact set and is bounded.

Proof of Theorem 1. I will set up the dynamic programming problem and show

that at each iteration, the most profitable deviation for the agent is well-

defined. The sequence of sets we get after each iteration is non-increasing and

has a well-defined limit in the set-theoretic sense. The largest self-generating

set is non-empty because the agent choosing the cheapest action and the prin-

cipal making no payment is an equilibrium. With the compact action set and

the continuous cost function, the cheapest action exists. With no commit-

ment, the relevant constraints for the dynamic programming are (i) the prin-

cipal offers the equilibrium contract (ii) the agent accepts/rejects according to

the equilibrium strategy (iii) the agent’s dynamic IC (iv) the principal makes
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the payment (v) the promise-keeping constraint. With within-period commit-

ment, the relevant constraints for the dynamic programming are (i) the prin-

cipal offers the equilibrium contract (ii) the agent accepts/rejects according to

the equilibrium strategy (iii) the agent’s dynamic IC (iv) the promise-keeping

constraint. Whether the principal has no commitment power or within-period

commitment power matters for the minmax NE. I’m not going to specify the

minmax NE here, but if either the principal or the agent prefers his outside

option over the minmax NE, then they’ll take their outside options. This pins

down the lower bound on payoffs for the IR constraints. For the rest of the

proof, I assume within-period commitment power and ignore the principal’s

incentives to make payments he promised; with no commitment power, this

will put an upper bound on the payment the principal can make (the continu-

ation payoff minus the minmax NE or the outside option). Computationally,

I can just impose the outside options and see the minmax NE from the largest

self-generating set. If the minmax NE is better than the outside option for

both the principal and the agent, then I need to use the minmax NE instead

of the outside options. I could also just assume that the minmax NE we get by

imposing IR with outside options is worse than taking their outside options.

I will construct a sequence of operations so that the limit is the largest

self-generating set we want. I don’t think I need the agent’s optimal action to

be unique, but I still need the agent to play a pure strategy. The state space

for the dynamic programming is (π, V (·, ·), V P where V P is the principal’s

expected payoff. The argument I’m going to use for non-local ICs should work

as long as there is continuity at infinity. If there is continuity at infinity, there

must be a profitable N -period deviation for N sufficiently large, and we can

do backward induction.

I need to specify the sequence of operations: I start with the local IC,

and for each N, I iterate the operation for the N -period deviation IC until

I reach the limit. Once I have the limit for N -period deviations, I continue

with (N + 1)-period deviations. And I take the limit as N → ∞. Let’s start

with W 0where V (·, ·) are just assumed to be bounded by the uniform bound

on the hypothetical continuation values. The iteration for the N -period de-

17



viation IC is TN , and the limit of TN starting with WN−1 is WN . Also de-

fine TN(WN,i−1) = WN,i, WN,0 = WN−1. T1 is just the standard largest self-

generating set with the local IC constraint. Among the constraints, (i) and (ii)

just mean that the payoffs are weakly greater than the outside options (or min-

max NE). (iv) can be taken care of as follows: Suppose we have Vt+2. When

we choose wt+1(y) for each y, we can pin down Vt+1 that is consistent with the

promise-keeping constraint. First find the largest self-generating set subject

to (ii), (iv) and the local IC (without worrying about the principal’s payoff).

Once we have W 1, we know V P for each pair of (π, V (·, ·)) and can keep only

those that satisfy (i). If there are multiple V P s corresponding to (π, V (·, ·))
then choose the supremum of V P (following the principle of optimality). At

this point, we haven’t shown that whether the supremum can be obtained as

the maximum. But we also know that once we have V P we can generate any

V̂ P < V P as long as it’s weakly greater than the principal’s outside option.

For T1, we can show that the agent’s optimal action is well-defined because the

agent’s expected utility is bounded and is a continuous function of his action.

Generally speaking, to show that the most profitable N -period deviation is

well-defined, I need to show a version of selection theorem, and I need Ω to

be a Borel subset of a Polish space, A to be a compact metric space and the

agent’s expected utility from an N -period deviation to be bounded and upper

semi-continuous.

TN for N ≥ 2 are defined as follows: Fix πt and an action p, and we can

find the beliefs πt+1 that are consistent with πt, p. Choose Vt+2(y, ω) from

WN,i and wt+1(y) for each πt+1 such that Vt+1, V
P
t+1 given by the promise-

keeping constraint also satisfies (i), (ii) and the local IC constraint for period

t is satisfied at p. By construction, there are no profitable (N − 1)-period

deviations starting with Vt+2(y, ω), and we can find optimal actions for the

next N − 1 periods and Vt+N(y, ω) from period t+N on. We should have the

payments after each history from period t + 1 to period t + N − 1. We also

know the equilibrium belief after each history. Fix ˜πt+N−1 for each history

and we can find the most profitable deviation for the agent in t + N − 1 and

therefore assign the agent’s maximum deviation payoff from period t+N − 1
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on as a function of ˜πt+N−1 given the continuation game from t+N − 1 on the

equilibrium path. Fix ˜πt+N−2 then conditional on the agent’s action p′t+N−2

we know the agent’s beliefs ˜πt+N−1and his maximum deviation payoff. We

can find the most profitable deviation for the agent in period t + N − 2 and

assign the agent’s deviation payoff from t+N − 2 on as a function of ˜πt+N−2

and the continuation game from t + N − 2 on the equilibrium path. We can

repeat this until we reach π̃t. To show that the most profitable deviation is

well-defined, suppose we are in period t+n with π ˜t+n, pt+n, wt+n(·), Ṽt+n+1(·, ·)
where Ṽt+n+1 is the agent’s maximum deviation payoff from period t + n + 1

on. (in period t+N−1, these will just be the hypothetical continuation values

from period t+N on) In period t+n, the agent’s expected utility from period

t+ n on is a continuous function of π ˜t+n, pt+n and we know that it is finite for
˜πt+n = πt+n and the equilibrium action pt+n. The proof follows the proof of

Lemma 1 closely, and we know from limited liability that Ṽt+n+1 is bounded

from below. Since there is no profitable (N − 1)-period deviation, if the agent

starts with πt+n and chooses pt+n, his maximum deviation payoffs from the

next period on coincides with his equilibrium payoffs; it follows that the agent’s

expected utility from period t + n on is bounded. Since the set of priors and

the set of actions is compact, we know that the product of the two is compact

(Tychonoff’s Theorem). Therefore, the agent’s deviation payoff from period

t+n on is a continuous function on a compact set and is bounded. Therefore,

for given ˜πt+n, there exists the maximum deviation payoff for the agent, and

the agent has the most profitable deviation. But in period t, the principal and

the agent share the same prior π̃t = πt. Keep Vt+1(y, ω) for πt if and only if

it is incentive compatible with respect to the maximum deviation payoff. (I

use backward induction to find the most profitable N -period deviation for the

agent, but I also use backward induction to show that the maximum deviation

payoff for the agent is a continuous function of his belief and his action in

the given period. This needs a proof because the agent’s maximum deviation

payoff from the next period on depends on his belief in the next period)

Since each operation TN : WN,i−1 → WN,i satisfies WN,i = T (WN,i−1) ⊆
WN,i−1, we have a monotone sequence, and the limit is well-defined in the set-
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theoretic sense. By construction, it is the largest self-generating set satisfying

all four conditions. It also follows from the previous paragraph that the agent’s

optimal actions for any N -period IC is well-defined. The supremum of the

principal’s payoff for any given π is well-defined.

B Dynamic Programming Code in C

This will be included in the submitted version.
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