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Uniform Inference for Conditional Factor Models with

Instrumental and Idiosyncratic Betas

Yuan Liao Xiye Yang∗

November 12, 2017

Abstract

It has been well known in financial economics that factor betas depend on observed

instruments such as firm specific characteristics and macroeconomic variables, and a

key object of interest is the effect of instruments on the factor betas. One of the key

features of our model is that we specify the factor betas as functions of time-varying

observed instruments that pick up long-run beta fluctuations, plus an orthogonal id-

iosyncratic component that captures high-frequency movements in beta. It is often

the case that researchers do not know whether or not the idiosyncratic beta exists,

or its strengths, and thus uniformity is essential for inferences. It is found that the

limiting distribution of the estimated instrument effect has a discontinuity when the

strength of the idiosyncratic beta is near zero, which makes usual inferences fail to

be valid and produce misleading results. In addition, the usual “plug-in” method us-

ing the estimated asymptotic variance is only valid pointwise. The central goal is to

make inference about the effect on the betas of firms’ instruments, and to conduct out-

of-sample forecast of integrated volatilities using estimated factors. Both procedures

should be valid uniformly over a broad class of data generating processes for idiosyn-

cratic betas with various signal strengths and degrees of time-variant. We show that

a cross-sectional bootstrap procedure is essential for the uniform inference, and our

procedure also features a bias correction for the effect of estimating unknown factors.

Key words: Large dimensions, high-frequency data, cross-sectional bootstrap
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1 Introduction

This paper studies a conditional factor model with a large number of assets and observed

instruments. Conditional factor models have been playing an important role in capturing the

time-varying sensitivities of individual assets to the risk factors, in which the factor betas

of the assets are varying over time. Extensive empirical studies have shown that assets’

individual betas can be largely explained by asset specific characteristics and instruments.

These include lagged instruments that are common to all stocks, instruments specific to

individual stocks, as well as observations of other firm characteristics. Estimated betas as

functions of the conditioning instruments represent the effects of instruments on firm specific

sensitivities to the risk factors.

Estimating the instruments’ effects on the individual betas is one of the central econo-

metric tasks in financial economics, because they pick up long-run patterns and fluctuations

in the betas. However, there are also unmeasurable high-frequency components in betas that

are more volatile. As we show in this paper, without taking into account the high-frequency

movements of betas, the inference procedures of instruments’ effects are not asymptotically

valid. Unfotunately, this is often the case in the financial econometric literature, which has

been dominated by modeling betas as fully specified functions of the observed instruments.

But as the individual factor betas demonstrate a much larger heterogeneity when the num-

ber of assets is large, it is unrealistic to require the high-dimensional factor beta matrix be

fully explained by just a few instruments. This is particularly true for high frequency factor

models, where assets’ returns are available at a very high frequency; in the contrary, the time

dynamics of observed instruments, such as the firm sizes and book-market values, often vary

more smoothly and are measured at a much lower frequency, which leave large portions of

stock betas’ dynamics unexplained. Hence allowing for unmeasurable high-frequency beta

components to be unspecified seems a natural and necessary setup. Yet, to the best of

our knowledge, the literature pays little attention on this issue. We need to be particu-

larly cautious when modeling betas. As is shown by Ghysels (1998), misspecifying beta risk

may result in serious pricing errors that might even be larger than those produced by an

unconditional asset pricing model.

The goal of this paper is to provide a uniformly valid inference of the instrumental effects

on factor betas. By “uniformly valid”, we mean the coverage probability is asymptotically

correct uniformly over a broad class of data generating processes (DGPs) that allows vari-

ous possible signal strengths of beta’s time dynamics and cross-sectional variations. These
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dynamics and variations can arise from both the observed instruments and the remaining

beta components that are unspecified. In the contrary, we show that the usual inference

procedures only produce confidence intervals that are pointwise valid for specific DGPs,

therefore potentially produce misleading inferences. In fact, benchmark methods in the

financial econometric literature, which ignore the high-frequency beta dynamics, would pro-

duce under-coveraging confidence intervals of the instrumental effects as a consequence. On

the other hand, we show that even if the unexplained beta dynamics are modeled, standard

“plug-in” procedures using the estimated asymptotic variances are not uniformly valid ei-

ther, because they require very strong signal strengths of the unexplained beta dynamics,

otherwise would lead to over-coveraging confidence intervals.

The study of the effects of instruments on betas (or called “factor loadings” in the econo-

metric literature) is an essential subject in financial economics. For instance, it is commonly

known that firm sensitivities to risk factors depend on the firm specific raw size and value

characteristics. As is noted by Daniel and Titman (1997), “It is the firms’ characteristics

(size and ratios) rather than the covariance structure of returns that appear to explain the

cross sectional variation in stock returns.” Ang and Kristensen (2012) also found that the

market risk premium is less correlated with value stocks’ beta (stocks with high book-to-

market ratio) than with growth stocks’ beta. Modeling the betas using these instruments

is thus essential to distinguish effects for firms with different levels of book-to-market ra-

tio. Firms’ momentum is also one of the commonly used instruments, whose effect on the

factor sensitivities has been found to be linearly growing with the momentum, indicating a

constant effect. In addition, Ferson and Harvey (1999) found that the lagged instruments

track variations in expected returns that is not captured by the Fama-French (Fama and

French, 1992) three-factor model, and that these instruments have explanatory power on

the factor loadings because they pick up betas’ time-variation. In addition, the effects of

common instruments such as the term spread (difference between yields on 10-year Treasury

and three-month T-bill) and default spread (yield difference between Moody’s Baa-rated

and Aaa-rated corporate bonds) demonstrate significantly different volatiles among betas of

individual stocks and portfolios, explaining the larger heterogeneity of the factor loadings

for the former. Other empirical evidence that systematic risk is related to firm characteris-

tics and business cycle variables is provided by Jagannathan and Wang (1996); Lettau and

Ludvigson (2001), among many others.

Modeling the beta dynamics as a fully specified function of a set of predetermined in-

struments goes back at least to Shanken (1990). Most of the works in the literature specify
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the factor loading matrix as a parametric function (linear functions as often the case) of

the instruments (e.g., Cochrane (1996); Ferson and Harvey (1999); Avramov and Chordia

(2006); Gagliardini et al. (2016)), with some exceptions such as Connor and Linton (2007)

and Connor et al. (2012), who modeled the loading matrix as a non-parametric function that

is fully specified by the instruments associated with the risk factors. 1

1.1 Beta Decompositions

We propose a conditional factor model in which the time-varying factor betas consist of two

components: (i) a nonparametric function of the observed instruments, glt, which we call

“instrumental betas”, and (ii) an unmeasurable time-varying and firm specific component,

γ lt, which we call “idiosyncratic betas”. Specifically, let βlt denote the K-dimensional factor

betas of the l th stock at time t. We model:

βlt = glt(xl,t−1,xl,xt−1) + γ lt. (1.1)

We allow the instruments (xl,t−1,xl,xt−1) to consist of lagged common time-varying instru-

ments and macroeconomic variables, time-invariant or change only at a lower frequency firm

specific characteristics, and instruments that are both time-varying and firm specific. Except

for being nonparametric and can be well approximated by sieve representations, we do not

make any assumption on either the cross-sectional or serial structure of glt(·). In addition,

γit is a mean-zero random vector, representing the remaining time-varying individual factor

sensitivities after conditioning on the observed instruments.

We study a continuous-time factor model, in which the factors, loadings, and idiosyncratic

errors are all driven by Brownian motions through a continuous-time stochastic process.

The instrumental beta glt(xl,t−1,xl,xt−1) as well as the remaining effects are both estimated

using the high-frequency data. In high frequency trading, modeling the beta in the absence

of γ lt is particularly restrictive. The restriction arises from both sides: (a) high frequency

trading is often subjected to limited information, as full information cannot be measured in

a frequency as high as that of the return data, leaving many effects latent. (b) Instruments

may not be updated as frequently as trading occurs. So using (xl,t−1,xl,xt−1) itself to

capture the time-varying sensitivity to the risk factors is not sufficient. The instrumental

1While Connor and Linton (2007) and Connor et al. (2012) proposed to model the instruments using
nonparametric functions, they require that the nonparametric function and instruments be time-invariant
and have an additive-structure.
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beta glt(xl,t−1,xl,xt−1) possesses less volatile than γ lt, which means it picks up long-run beta

patterns and fluctuations, while γ lt captures high frequency movements in beta.

We find that, the strength of γ lt plays a crucial role in the asymptotic behavior of esti-

mated instrument effect, and affects both the rate of convergence and limiting distributions.

In particular, the asymptotic distribution of glt has a discontinuity when the strength of

{γ lt}, measured by its cross-sectional variance, is near zero. In this case, pointwise infer-

ence under a fixed data generating process (DGP) is misleading. The issue here is similar

to the problem of estimating parameters on a boundary. As is shown in the literature,

(Andrews, 1999; Mikusheva, 2007), when a test statistic has a discontinuity in its limiting

distribution, as occurs in estimating parameters on a boundary and in moment inequality

models, pointwise asymptotics can be very misleading. The main difference, however, is

that when estimating glt in the current context, the “boundary parameter” γ lt appears to

be the nuisance parameter. We provide a uniformly valid inference procedure, that is robust

to various strengths of γ lt. Indeed, depending on the measurement and specification of the

instruments, the strengths of γ lt may vary both cross-sectionally and serially, and is often

unknown to econometricians. We do not need to pretest or pre-know the strengths of γ lt,

and provide confidence intervals that are valid uniformly over a large class of DGP. The

class of DGP allows the cross-sectional variance of γ to vary from “weak signals” (zero or

arbitrarily close to zero), all the way to variances that are bounded away from zero. In

addition, the only time-varying condition on γ lt is that it has a continuous time-path that

is driven by a realized Brownian motion, and hence can be nowhere smooth.

Due to the discontinuity of the limiting distribution of the estimated glt, we reply on

a cross-sectional bootstrap procedure to achieve the uniform inference. It is important to

note that the employed bootstrap is cross-sectional, in the sense that it resamples the cross-

sectional units and keeps all the serial observations for each sampled individual asset. The

cross-sectional bootstrap is important because the discontinuity arises due to the strength

of the cross-sectional variance of γ lt, and the cross-sectional bootstrap avoids the estimation

error for both the unobserved γ lt and its cross-sectional variance. We show that it leads to

a correct asymptotic coverage probability and is uniformly valid over a large class of DGPs.

In contrast, the usual“plug-in” method that uses the estimated asymptotic variance may

be valid only pointwise, and fails to provide a uniformly valid confidence interval. This is

because the estimation error of the cross-sectional variance of γ lt can be larger than the

estimand itself when it is near the boundary.

The strength of variations in γ lt also plays an essential role in the long-run forecast for
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the integrated volatility of a fixed asset using estimated factors. We construct out-of-sample

forecast confidence intervals for the conditional mean of the integrated volatility using a

model similar to the diffusion index forecast (Stock and Watson, 2002b). As in the diffusion

index forecast, the confidence interval depends on the effect of estimating latent financial

factors from a large amount of financial asset returns. We find that whether or not the

strength of γ lt plays a role in the forecast interval depends on whether γ lt is time-varying.

When it is indeed time-varying, ignoring it in the factor model, as is commonly treated in

the literature, continues to produce misleading forecast confidence intervals. As before, we

construct forecast intervals that are robust to the strength of γ lt, and is uniformly valid over

a large class of DGPs that allows different types of time-variations in γ lt.

A similar decomposition to (1.1) was given by Kelly et al. (2017), where beta is decom-

posed into a linear function of lagged instruments as well as a unobservable loading com-

ponent. They specifically require γt be strong, and obtained limiting distributions for the

“instrumental betas”, which are therefore, not uniformly valid. In addition, Cosemans et al.

(2009) decomposed beta into a weighted sum of firms’ characteristic beta and remainders.

Using a hierarchical Bayesian approach, they found a large increase in the cross-sectional

explanatory power of the conditional CAPM. Moreover, Fan et al. (2016) studied a model

whose betas have a similar decomposition. There are several key differences between their

works and ours. First of all, they did not allow time-varying conditional factor models. As

we show in this paper, allowing time-varying betas make a key difference for the long-run

out-of sample forecast using estimated factors. The effect of the idiosyncratic betas does play

a key role in the constructed forecast interval in the conditional model, while it does not in

unconditional models. The more important difference between Fan et al. (2016) and ours

is that they did not study the uniform inference. Our paper is also related to the recently

rapidly growing literature on continuous-time factor models, such as Aı̈t-Sahalia and Xiu

(2017) and references therein.

The rest of this paper is organized as follows. Section 2 describes the continuous-time

conditional factor model driven by stochastic processes. Section 3 defines the estimators of

the components of betas, and the unknown factors in the case of latent factors. Section 4

informally discusses the issue of uniformity and explains why it is a challenging problem for

conditional models. Section 5 presents the asymptotic results of the estimators. Section 6

presents results of long-run forecasts using estimated factors, as long as inference of long-

run instrumental betas. Section 7 discusses extensions on testing the instrumental relevance

and estimating the factor risk premium. Section 8 presents a simple simulated example. In
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Section 9, we present real data applications on the high-frequency stock return data of firms

from S&P500. Finally, all proofs are given in the appendix.

Notation: We observe asset returns every ∆n unit of time and let ∆n go to zero in the

limit. For any process Z, let ∆n
i Z = Zi∆n − Z(i−1)∆n =

∫ i∆n

(i−1)∆n
dZt. For simplicity, we will

denote Zi∆n by Zi. We use the symbol
L-s−→ to denote stable convergence in law. We say a

constant a universe constant if it does not depend on any pointwise DGP. For a matrix A,

we use λmin(A) and λmax(A) to respectively denote its smallest and largest eigenvalues. In

addition, let ‖A‖ := λ
1/2
max(A′A), and ‖A‖∞ = maxij |(A)ij|. In addition, we shall achieve

inferences uniformly valid over a large class of data generating process P . For a random

sequence Xn, we write Xn � OP (an) if Xn = OP (an) and an/Xn = OP (1).

2 The Continuous-Time Conditional Factor Model with

Instruments

2.1 The model

Consider a financial market with p number of stocks. Let Yt = (Y1t, · · · , Ypt) be the vector

of log-prices of these stocks at time t. We assume Y = {Yt}t≥0 is a multivariate Itô semi-

martingale on a filtered probability space (Ω,F , {Ft}t≥0,P). In general, we allow jumps on

all log-price process. But as we are interested in the continuous components of log-prices

and factors, introducing jumps substantially complicates the notation and does not bring any

new economic insights. In light of these, we present our model assuming both the log-price

processes and factors are continuous, in order to keep notation simple. The jump-robust es-

timators are given in Section 3.3, where we employ a standard procedure to truncate jumps

out.

In this paper, we assume the following (continuous) factor structure:

Yt = Y0 +

∫ t

0

αsds+

∫ t

0

βsdFs + Ut (2.1)

where Y0 is the starting value of the process Y at time 0, the drift process α = {αs}s≥0 is

an optional Rp-valued process, the factor loading process β = {βs}s≥0 is an optional p×K
matrix process, the (continuous) factor Ft and the idiosyncratic continuous risk Ut can be
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represented as

Ft =

∫ t

0

αFs ds+

∫ t

0

σFs dW
F
s ,

Ut =

∫ t

0

σUs dW
U
s ,

(2.2)

where WU and WF are two multi-dimensional Brownian motions and are orthogonal (in the

martingale sense) to each other, and αF = {αFs }s≥0 is the drift process of factor F.

We are interested in the K dimensional continuous factor process F = {Ft}t≥0 and the

corresponding p × K matrix process of factor loadings β = {βt}t≥0, which is adapted to

the filtration F . At any time point t, we write βt = (β1t, ...,βpt)
′ and in general, each

βlt (l = 1, · · · , p) is a K × 1 vector of adapted stochastic processes. In the literature, this

beta is referred to as the continuous beta (Bollerslev et al. (2016) and Li et al. (2017a)), to

differentiate from the discontinuous (or jump) beta (Li et al. (2017b)).

In addition, for each firm l ≤ p, we observe a set of (possibly) time-varying instruments:

Xlt = (x′l,t,x
′
l,x
′
t)
′, l = 1, · · · , p.

We allow the instruments Xlt to consist of (1) time-varying instruments xt that are common

to stocks (such as term and default spread and macroeconomic variables); (2) firm specific

instruments xl that are time-invariant over the sampling period [0, T ] (such as size and value

which change annually); and (3) instruments xl,t that are both time-varying and firm specific.

In this paper, we consider the following decomposition of the factor loadings (continuous

betas):

βlt = glt(Xlt) + γ lt, l = 1, · · · , p. (2.3)

The effect of instruments on the factor loadings are represented by glt(Xlt), and is called

“instrumental beta”. Here glt(·) is a function of macroeconomic and firm variables, possess-

ing less volatile and picks up long run beta fluctuations. Except for being nonparametric

and can be well approximated by sieve representations, we do not make any assumption on

either the cross-sectional or serial structure on {glt}lt. On the other hand, γ lt is a mean-zero

random vector, representing the remaining time-varying individual factor risks after condi-

tioning on the observed instruments. The two components capture different aspects of beta

dynamics. For the identification purpose, we assume E(γ lt|Xlt) = 0, which well separates
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the characteristic effects and remaining effects. It captures high frequency movements in

beta and can be more volatile than Xlt.

Let Gt be the p × K matrix of {glt(Xlt)}pl=1 and Γt be the p × K matrix of {γ lt}
p
l=1.

Then we have the following representation for the continuous component of Y:

dYt = αtdt+ (Gt + Γt)dFt + dUt, ∀t ∈ [0, T ], (2.4)

or equivalently, in the integration form,

Yt = Y0 +

∫ t

0

αsds+

∫ t

0

(Gs + Γs)dFs + Ut, ∀t ∈ [0, T ]. (2.5)

We separately study two cases: known and unknown factor cases. By the “known factor

case”, we explain the returns through a set of common factors that are observed at the same

time points of the high-frequency return data. Recently, Ait-Sahalia et al. (2014) constructed

Fama-French factors using high-frequency returns. On the other hand, the unknown factor

case refers to situations in which we do not observe the high-frequency factors, but can

estimate them from a large number of assets (up to a locally time-invariant rotation matrix).

We also use the estimated factors for the long-run forecast. Consider

yd+h = µyd + ρ′Fd + vd+h, d = 1, ..., Ln, Ln →∞, (2.6)

where h > 0 is the lead time between information available and yd+h, the dependent variable

to forecast, and

Fd :=

∫ dT

(d−1)T

dFt.

Here µ and ρ are the unknown coefficients, and vd+h is the innovation. Of interest is to con-

struct the out-of-sample prediction confidence interval for the conditional mean yLn+h|Ln =

µyLn + ρ′FLn . A typical example arises from forecasting the integrated volatility:

yd = IVd, IVd :=

∫ dT

(d−1)T

σ2
t dt,

where σ2
t is the spot volatility of certain asset. Similar to the diffusion index forecast,

the common factors are extracted from the large number of assets’ high-frequency returns.
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While there is a large literature on forecasting volatilities (e.g., Engle and Bollerslev (1986);

Andersen et al. (2006); Hansen and Lunde (2011)), motivated by Stock and Watson (2002b),

we extract the latent factors from a large set of financial asset returns. But we are particularly

interested in the effect on the prediction intervals of estimating the long-run factors from

model (2.5) with time-varying Γt.

2.2 Discussion of the Condition E(Γt|Xt) = 0

One of the key conditions is E(Γt|Xt) = 0. It implies that the instrumental and idiosyncratic

beta components are orthogonal. Conditions of this type are often seen in the literature,

such as the orthogonal decomposition of risks into systematic risk and idiosyncratic risk in

financial economics, and the decomposition of payoffs into the projection on the discount

factors and the idiosyncratic part in asset pricing theories (Cochrane, 2005). This condition

serves as a central condition to achieve the identification of the instrument effect, under

which both components in the beta decomposition are well separated. We now discuss the

plausibility of this condition and possible approaches to relaxing it.

Technically, this condition can be understood as assuming glt(Xt) = E(βlt|Xt). Hence

we are estimating the instrument effects as the conditional mean of the betas. In the absence

of this condition, identification is lost, and we need further exogenous variables to identify

the effect of instruments. For simplicity, we assume glt(Xlt) = g(Xl) as a time-invariant

nonparametric function. Consider the decomposition:

βlt = g(Xlt) + γ lt, l ≤ p (2.7)

Consider the “ideal case” that βlt is completely known. Then in (2.7), Xlt is endogenous.

To identify g(·), consider an instrumental variable approach: we need to find an exogenous

multi-dimensional process Zlt so that E(γ lt|Zlt) = 0. Define the operator:

T : g→ E(g(Xlt)|Zlt).

We then have T (g) = E(βlt|Zlt). The identification of g depends on the invertibility of

T , and holds if and only if the conditional distribution of Xlt|Zlt is complete, which is an

untestable condition (see, e.g., Newey and Powell (2003)). Suppose T is indeed invertible, it

is well known that estimating g becomes an ill-posed inverse problem, and regularizations are

needed, with possibly a very slow rate of convergence. We refer to the literature for related
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estimation and identification issues: Hall and Horowitz (2005); Darolles et al. (2011); Chen

and Pouzo (2012), etc. Therefore, while relaxing the condition E(Γt|Xt) = 0 is possible using

the nonparametric instrumental variable approach, it requires a very different argument for

the identification and estimation. We do not pursue it in this paper.

3 Estimation

Since our focus is on the continuous factors, not those jump ones, we shall first assume the

underlying log-price processes and the factors are all continuous. In the general case with

the presence of jumps, we employ the standard truncation technique to remove jumps and

the corresponding estimators are given in Section 3.3. Ignoring the jumps, over the i-th

sampling interval, we have the following approximation for ∆n
i Y := Yi∆n −Y(i−1)∆n :

∆n
i Y =

∫ i∆n

(i−1)∆n

(
αtdt+ (Gt + Γt)dFt + dUt

)
= αi−1∆n + (Gi−1 + Γi−1)∆n

i F + ∆n
i U + oP (∆n),

(3.1)

To nonparametrically estimate glt(Xlt), we assume it can be well approximated on the

sieve space spanned by nonlinear transformations of Xlt. Specifically, at a representative

observation time t = i∆n, let φlt = (φ1(Xlt), ..., φJ(Xlt))
′ be a J × 1 vector of sieve basis

functions of Xlt, which can be taken as, e.g., Fourier basis, B-splines, and wavelets. Let

Φt = (φ1t, ...,φpt)
′ be the p× J basis matrix, and define the projection matrix:

Pt = Φt(Φ
′
tΦt)

−1Φ′t, p× p,

For any t ∈ [0, T ), define Int = {bt/∆nc+1, · · · , bt/∆nc+kn}, where b·c is the floor (greatest

integer) function, and kn is the number of high frequency observations within the window

Int .

We subsequently discuss the estimation procedures for known and unknown factor cases.

3.1 Known Factor Case

Here we follow the standard simplified notation in the literature: Gi−1 := G(i−1)∆n , Pi−1 :=

P(i−1)∆n and Γi−1 := Γ(i−1)∆n . In the known factor case, we also observe {∆n
i F}i∈Int in each

interval. The key component of the estimation is the projection matrix. To estimate Gt,

11



we first project the high frequency returns within the above local window onto the space of

sieve basis of the instruments, and obtain the “projected return” {Pi−1∆n
i Y}i∈Int . Then we

run OLS of the projected returns on the factors, leading to the estimated instrumental beta

Ĝt at time t. Following a similar procedure, one can estiamte Γt. These two estimators are

given by

Ĝt =
∑
i∈Int

Pi−1 ∆n
i Y ∆n

i F
′

∑
i∈Int

∆n
i F ∆n

i F
′

−1

,

Γ̂t =
∑
i∈Int

(Ip −Pi−1)∆n
i Y ∆n

i F
′

∑
i∈Int

∆n
i F ∆n

i F
′

−1

,

(3.2)

Then the l-th component of Ĝt and Γ̂t, denoted by ĝlt and γ̂ lt, respectively represent

the estimated instrumental beta and idiosyncratic beta for the l-th stock. At those discrete

observational time points (when t = i∆n), these are written as ĝl,i∆n and γ̂ l,i∆n
. But

we follow the more standard simplified notation that are commonly used literature, write

ĝl,i := ĝl,i∆n , and γ̂ l,i := γ̂ l,i∆n
for discrete time estimators. The integrated beta components,

i.e.
∫ T

0
glsds and

∫ T
0
γ lsds, are respectively estimated by, for example, using the overlapping

spot estimates2

bT/∆nc−kn∑
i=1

ĝl,i∆n,

bT/∆nc−kn∑
i=1

γ̂ l,i∆n.

We now give an intuitive explanation on the rationale of this procedure. Apply the

projection to the discretized model:

Pi−1∆n
i Y = Gi−1∆n

i F + Pi−1αi−1∆n︸ ︷︷ ︸
higher-order term

+ Pi−1Γi−1∆n
i F + Pi−1∆n

i U︸ ︷︷ ︸
projection errors

+ (Pi−1Gi−1 −Gi−1)∆n
i F︸ ︷︷ ︸

sieve approximation errors

.

2One can also use the non-overlapping spot estimates (for some j ∈ {1, · · · , kn}):

bT/(kn∆n)c−1∑
i=0

ĝl,ikn+jkn∆n,

bT/(kn∆n)c−1∑
i=0

γ̂l,ikn+jkn∆n.

In fact, the overlapping estimator is the average of kn different but highly correlated non-overlapping esti-
mators (with j = 1, · · · , kn). Hence they have the same asymptotic behavior.
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By the identification conditions E(Γt|Xt) = 0 and that E(Ut+s −Ut|Xt) = 0, the two com-

ponents of the “projection errors” are projected off, whose rate of decay (after standardized

by ∆
−1/2
n ) is of OP (p−1/2). Ignoring the higher-order drifts, we have

Pi−1∆n
i Y ≈ Gi−1∆n

i F (3.3)

is nearly “noise-free”. Hence running OLS on each local interval Int for (3.3) directly leads to

consistent estimator of spot Gt. This is the intuition that why our procedure is very robust

to the strength and variations of Γt.

Furthermore, take the difference between (3.1) and (3.3) yields:

(Ip −Pi−1)∆n
i Y = Γi−1∆n

i F + ∆n
i U + higher-order term

+ projection & sieve approx. error.
(3.4)

(3.4) shows that Γi−1 represents the sensitivity to the risk factors of the remaining compo-

nents of returns, after the instrument effect is conditioned. Hence a local OLS leads to the

estimated Γi−1.

3.2 Unknown Factor Case

When factors are unknown, we employ the principal component method to estimate the

latent factors first. But different from Stock and Watson (2002a); Bai (2003), Aı̈t-Sahalia

and Xiu (2017) and Pelger (2016), we employ the PCA on the projected returns. Applying

PCA on the projected data is still motivated by the “noise-free” model (3.3), which preserves

the factors and removes the effect of idiosyncratics. Specifically, with each local window Int ,

we can define the following p× kn matrix:

(P∆nY)t = (Pi−1∆n
i Y : i ∈ Int )

The idea is that Pi−1∆n
i Y ≈ Pi−1Gi−1∆n

i F and we choose the local window size in such

a way that the time variation of Pi−1Gi−1 is asymptotically negligible within each local

window. Hence we can apply PCA onto the “idiosyncratic-free” observations (P∆nY)t.

Define the estimated factors

∆̂nF = (∆̂n
i F : i ∈ Int )′ = ( ̂∆n

bt/∆nc+1F, ...,
̂∆n
bt/∆nc+knF)′, kn ×K,

13



whose columns equal
√

∆n times the eigenvectors of the kn×kn matrix 1
pkn∆n

(P∆nY)′t(P∆nY)t
3, corresponding to the first K eigenvalues. According to Okamoto (1973), these eigenvalues

are distinct almost surely. We then use the same method to estimate Gt and Γt, with the

estimated factors in place of {∆n
i F}i∈Int :

Ĝlatent
t =

1

kn∆n

∑
i∈Int

Pi−1(∆n
i Y)∆̂n

i F
′
,

Γ̂
latent

t =
1

kn∆n

∑
i∈Int

(IN −Pi−1)(∆n
i Y)∆̂n

i F
′

(3.5)

and note that 1
kn∆n

∑
i∈Int

∆̂n
i F ∆̂n

i F
′

= IK . The l-th components ĝlatent
lt and γ̂ latent

lt , re-

spectively estimate the instrumental beta and idiosyncratic beta for the l-th stock. The

superscript “latent” indicates that the estimators are defined for the case of latent factors.

3.3 Jump-robust estimators

In the general case with jumps, we employ the truncation method to remove those jumps.

For notation simplicity, we omit the details and simply assume the jumps are of finite vari-

ation. In the known factor case, we replace each ∆n
i Y and ∆n

i F (previously assumed to be

continuous) with their truncated versions:

Ĝt =
∑
i∈Int

Pi−1 ∆n
i YψYn

∆n
i F
′
ψFn

∑
i∈Int

∆n
i FψFn

∆n
i F
′
ψFn

−1

,

Γ̂t =
∑
i∈Int

(IN −Pi−1)∆n
i YψYn

∆n
i F
′
ψFn

∑
i∈Int

∆n
i FψFn

∆n
i F
′
ψFn

−1

,

where ∆n
i ZψZn := ∆n

i Zl 1{‖∆n
i Zl‖≤ψ

Zl
n }

denotes the usual truncated process for the process

∆n
i Z, with some random sequence ψZn that depends on certain property of Z and converges

in probability to zero as ∆n → 0 (e.g., Mancini (2001)).4

In the unknown factor case, we only need to replace each ∆n
i Y with its corresponding

truncated versions. The estimates (∆n
i YψYn

)i∈Int will converge to the true increments of the

continuous factor.

3This is different from the p× p covariance matrix studied by Zheng and Li (2011).
4The common practice is the set ψZl

n = αl∆
$
n , where $ ∈ (0, 1/2), αl = C( 1

t IV(Zl)t)
1/2 with C = 3, 4 or

5 and IV(Zl)t is the integrated volatility of Zl over [0, t].
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3.4 Selected Possible Alternative Estimation Methods

Ordinary PCA. When the factors are unknown, the ordinary PCA is a directly com-

peting method. It would estimate latent factors using the leading eigenvectors of the kn×kn
matrix (∆nY)′t(∆

nY)t where (∆nY)t denotes the p× kn matrix of the return data ∆n
t Y for

j ∈ It. Our method, using the PCA on the projected return data, has at least three advan-

tages over the ordinary PCA. First of all, the projection removes the effect of idiosyncratic

components, while the ordinary PCA does not. This potentially leads to more accurate

estimations when kn is small. Secondly, the projection removes the idiosyncratic beta com-

ponent γ lt, which is the key to the robustness to the strength of γ lt and to the uniform

inferences. Finally, when using the estimated factors for forecasting integrated volatilities,

as we shall show later, our method allows γt to be time-varying. Instead, the ordinary PCA

would require γt be time-invariant over the entire time span, which is a very restrictive

condition since it captures high-frequency movements in beta.

Time series regression. When factors are known, a seemingly competing method is

time series regressions. For instance, suppose we parametrize gli = θ′lXli, and run time series

regression on the fixed l th equation:

arg min
θl,γl

∑
j∈Int

[∆n
i Yl − ((∆nF ◦Xl)jθl + ∆n

jFγ l)]
2, (∆nF ◦Xl)j = ∆n

jFX′l,j−1.

In fact, this approach does not work because Xli is nearly time-invariant on each local

window, resulting in nearly multicollinearity in {(∆nF ◦Xl)j,∆
n
jF}j∈Int . Even if the degree

of time-variation in {Xlt} is large, the rate of convergence for the estimated glt would be

OP (k
−1/2
n ), which can be very slow when the length of the local interval is small. In fact, glt

has to be estimated using the cross-sectional information, because the majority of source of

variations on the time domain comes only from the factors, which is not sufficient to identify

glt from γ lt. In the contrary, the proposed combination of cross-sectional and time series

regressions, with p→∞, is a more appropriate method.

Generalized Method of Moments. Finally, our method is also closely related to

GMM. Fix t, we construct the GMM estimator for ({∆n
jF}j∈Int ,βt) from the following mo-

ment conditions:

Eφlt[∆n
jY − βj∆n

jF]′ = 0, j ∈ Int , l = 1, .., p.
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With the weight matrix Ω = (Φ′tΦt)
−1, the GMM optimization is given by

min
βt,∆

nF
tr {[(∆nY)′tΦt −∆nFβ′tΦt]Ω[(∆nY)′tΦt −∆nFβ′tΦt]

′} , s.t. ∆nF′∆nF = I∆nkn.

Concentrating out βt = 1
kn∆n

(∆nY)t∆
nF using the first order condition, we obtain the GMM

estimator for ∆nF, whose rows are
√

∆nkn times the eigenvectors of the kn × kn matrix

(∆nY)′tPt(∆
nY)t corresponding to the first K eigenvalues. This estimator is asymptotically

the same as the proposed ∆̂nF. But the major difference is that the GMM estimator does

not take into account the local time variations in {Pj : j ∈ Int }, while our estimator does,

although the time variation is small due to the properties of Brownian motions. So this can

be understood as an (approximate) GMM interpretation of the proposed factor estimators.

Nevertheless, we would still apply OLS on the projected return data to estimate Gt and Γt.

4 Informal Discussion of Uniformity

The estimated glt has the following asymptotic expansion. Let ∆n
i Ul denote the l-th com-

ponent of ∆n
i U. Let hi,ml = φ′i,m(1

p
Φ′iΦi)

−1φi,l and sf,t = 1
kn∆n

∑
i∈Int

∆n
i F∆n

i F
′.

ĝlt − glt = s−1
f,t

1

knp∆n

∑
i∈Int

p∑
m=1

∆n
i F∆n

i Umhi−1,ml +
1

p

p∑
m=1

γm,tht,ml︸ ︷︷ ︸
(a)

+ negligible terms

The first term on the right hand side is related to the high frequency estimation of β. As

pointed out by Mykland and Zhang (2017), it is often quite challenging to estimate the limit-

ing variance of high frequency estimators. Even so, we have another term from cross-sectional

estimation: Term (a) has a rate OP (p−1/2‖Vγ‖1/2), with Vγ = Var( 1√
p

∑p
m=1 γm,tht,ml|Xt),

where Var(·|Xt) denotes the conditional variance given Xt = {Xmt}m≤p. We shall assume

γm,t’s are cross-sectionally weakly dependent so that (a) admits a cross-sectional central

limit theorem (CLT).

If Vγ is weak, whose eigenvalues, treated as sequences, decay at rate faster than OP (k−1
n ),

then (a) is dominated by the first term, leading to√
knp(ĝlt − glt) = OP (1),

and is asymptotically normal, whose asymptotic distribution is determined by the first term
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(the “U” term). Intuitively, this occurs when the idiosyncratic betas have weak signals from

the cross-sectional variations. As a result, the observed instruments capture almost all the

beta fluctuations, leading to a fast rate of convergence on the spot level. On the other hand,

if Vγ is strong with all eigenvalues bounded away from zero, (a) becomes the dominating

term, and we simply have
√
p(ĝlt − glt) = OP (1).

In this case, the limiting distribution is determined by the cross-sectional CLT of (a). In-

tuitively, this means when the idiosyncratic betas have strong cross-sectional variations,

time-domain averaging is not helpful to remove their effect on estimating glt, and only cross-

sectional projection does the job. This leads to a slower rate of convergence.

Consequently, there is a discontinuity on the limiting distribution of ĝlt − glt when the

signals of cross-sectional variation of γml is near the “boundary”. This issue is similar to

the problems in estimating parameters that are possibly on the boundary of the parameter

space (Andrews, 1999; Andrews and Soares, 2010). The problem arises as we do not pretest

or know how strong γ’s cross-sectional variation is, which can vary in a large class of data

generating process. Most of the financial economic studies take the “weak” case as the

default assumption, while some other studies (e.g., Cosemans et al. (2009)) provide evidence

of the latter case. Above all, to our best knowledge, all the existing inferences are pointwise,

and is not robust to the strength of gamma’s variations. Pointwise inferences, therefore, can

be misleading.

Furthermore, for the long-run mean forecast, we forecast yLn+1|Ln , which is, for instance,

the conditional mean of the integrated volatility over the time span [LnT, (Ln + 1)T ], with

Ln →∞. We construct mean forecast ŷLn+1|Ln , and provide the forecast confidence interval

using the estimated factors and lagged integrated volatility. The forecast asymptotic variance

also depends on {Γt} through its cross-sectional and serial dynamics. In particular, the

asymptotic expansion of ŷLn+1|Ln − yLn+1|Ln contains, among several others, a term like:

A :=

∑
i∈SLn

1

p
∆n
i F
′Γ′i−1 −

1

Ln − 1

Ln−1∑
d=1

w′nzd
∑
j∈Sd

1

p
∆n
jF
′Γ′j−1

G
where Sd denotes the observation times on the interval [(d − 1)T, dT ]; (wn, zd,G) are low-

dimensional vectors to be defined in the subsequent sections. We find that A = 0 if and

only if Γi = Γj, for any i, j ∈ ∪dSd, otherwise this term also possesses a cross-sectional CLT

at the rate OP (p−1/2). Hence Γt plays an important role if it is time-varying. In practice,
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however, econometricians do not know the degree of variations on either the time domain or

the cross-sectional domain of Γt.

We provide a uniformly valid inference procedure. More specifically, we construct a

confidence interval CIτ,n,p for glt, so that at the nominal level 1− τ ,

lim
p,n→∞

sup
P∈P
|P (glt ∈ CIτ,n,p)− (1− τ)| = 0

and forecast interval [ŷLn+1|Ln ± qτ,n,p] for yLn+1|Ln (where qτ,n,p is the critical value), so that

lim
p,n→∞

sup
P∈P

∣∣P (yLn+1|Ln ∈ [ŷLn+1|Ln ± qτ,n,p]
)
− (1− τ)

∣∣ = 0.

Here the probability measure P is taken uniformly over a broad DGP class P , which admits

various strengths of cross-sectional variations in γ lt, glt(Xlt), as well as various dynamics on

the time-domain. Uniformity in the above sense is essential for inferences in this context,

because it makes the inference valid and robust to the unknown sources and degree of

dynamics of factor betas.

5 Formal Treatments

5.1 Assumptions

We assume that the following conditions hold uniformly over a class of DPG’s: P ∈ P .

By absolute constants, we mean constants that are given, and do not depend the specific

data generating process in P . We apply the standard assumptions to define the stochastic

processes as follows (e.g., Protter (2005) and Jacod and Protter (2011)).

Assumption 5.1. (1) The process Y is an Itô semimartingale (with its continuous com-

ponent is given by (2.1), where the continuous component of F and U are given by (2.2).

We assume the jump components of Y and F are of finite variation. Almost surely, the

processes {αlt}t≥0, {((βltσFt )′,σU
′

lt )′}t≥0, {glt}t≥0 and {γ lt}t≥0 have càdlàg (right continuous

with left limits) and locally bounded paths uniformly in l ≤ p (see Protter (2005) and Jacod

and Protter (2011) for details), where αlt,β
′
lt,σ

U ′

lt are the l th element (or row) of αt,βt,σ
U
t ,

defined in (2.1) and (2.2).

(2) Each element θmt of θt = (x′t, {x′l}, {x′lt},Γ′t,σF
′

t ,σ
U ′
t )′, is a multivariate Itô semi-
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martingale with the form

θmt =θm0 +

∫ t

0

α̃msds+

∫ t

0

σ̃msdW
m
s +

∫ t

0

σ̌lsdW̌
m
s +

∑
s≤t

∆θms

Here {αms}s≥0, {σ̃ms}s≥0 and {σ̌ms}s≥0 are optional processes and locally bounded uniformly

in m ≤ p. In general, θm = {θmt}t≥0 can be driven by {Wm
t = (WF ′

,WU
m)′t}t≥0, where WU

m

is the m-th element of WU introduced in (2.2), and another multi-dimensional Brownian

motion {W̌m
t }t≥0 orthogonal to {Wm

t }t≥0. Finally, ∆θms represents the (possible) jump of

θm at time s. 5

(3) E(γ lt|Xt) = 0 for all t ∈ [0, T ), l ≤ p.

Remark 5.1. The class of Itô semimartingale is very large and includes most stochastic

processes in the literature. Constants (or constant vector), Itô processes, Poisson processes

and Lévy processes are all Itô semimartingale. Also, discrete-time processes can be viewed

as a pure jump process with fixed jump time points.

Recall that Gt is the p×K matrix of glt(Xlt), and Pt = Φt(Φ
′
tΦt)

−1Φ′t.

Assumption 5.2. There are absolute constants c, C, η > 0, so that

(i) maxl≤p,t∈[0,T ] E ‖glt(Xlt)‖4 < C, E ‖γ lt‖4 < C.

(ii) maxt∈[0,T ],l≤p E ‖φlt‖2 ≤ CJ.

(iii) c < mint≤T λmin(1
p
Φ′tΦt) ≤ maxt≤T λmax(1

p
Φ′tΦt) < C.

(iv) maxt∈[0,T ] ‖Gt − PtGt‖∞ ≤ C1J
−η, where conditions (iii) (iv) hold almost surely. In

addition, ∆n = o(J−η).

Recall that ‖.‖∞ denotes the “max” norm of a matrix. Condition (iv) of Assumption

5.2 requires the nonparametric instrument function can be well approximated by the sieve

expansion. Furthermore, the condition ∆n = o(J−η) ensures that the sieve approximation

error is first order negligible.

We now describe the asymptotic variance of ĝlt. Let ui := ∆n
i U/
√

∆n and fi = ∆n
i F/
√

∆n.

Let cf,t (K × K) and cu,t (p × p) be the instantaneous quadratic variation process of

F = {Ft}t≥0 and U = {Ut}t≥0, respectively, that is, cf,t = d[F,F]t/dt and cu,t = d[U,U]t/dt,

∀t ∈ [0, T ]. In addition, let sf,t = 1
kn∆n

∑
i∈Int

∆n
i F∆n

i F
′ and hi,ml := φ′i,m(1

p
Φ′iΦi)

−1φi,l. The

5For any stochastic process Z and any time point s, let Zs− := limu↑s Zu be the left limit of Z at time s.
Then ∆Zs := Zs − Zs−.
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asymptotic variance of ĝlt depends on:

Vu,t = s−1
f,t

1

pkn

∑
i∈Int

sf,iφ
′
i−1,l(

1

p
Φ′i−1Φi−1)−1Φ′i−1cu,iΦi−1(

1

p
Φ′i−1Φi−1)−1φi−1,l s

−1
f,t ,

Vγ,t = Var(
1
√
p

p∑
m=1

γmtht,ml|Xt).

Assumption 5.3. (i) There are absolute constants c, C > 0, so that supt∈[0,T ] ‖cu,t‖ < C,

and inft∈[0,T ] λmin(ct,f ) > c. Almost surely, c < inft∈[0,T ] λmin(Vu,t) ≤ supt∈[0,T ] λmax(Vu,t) <

C, and λmax(Vγ,t) ≤ Cλmin(Vγ,t).

(ii) If {γmi}m≤p 6= 0, then V
−1/2
γ,t

1√
p

∑p
m=1 γmtht,ml

L-s−→ N(0, IK).

Assumption 5.3 (i) requires the conditional covariance of standardized idiosyncratic com-

ponents have bounded eigenvalues. This condition holds when the idiosyncratic components

are cross-sectionally weakly correlated, which is a typical assumption for the factor models

of large dimensions since most of the returns’ cross-sectional variations are explained by the

factors. On the other hand, Assumption 5.3 (ii) requires the cross-sectional variations of

{γmi}, if nonzero, be driven by sufficiently weakly dependent random sequences, so that the

cross-sectional central limit theorem (CLT) holds. We do not make any condition on the

lower bound of eigenvalues of Vγ,t, so the considered class of DGP’s is robust to the strength

of the cross-sectional variations of Γt.

Assumption 5.4 (For estimated factors). (i) Define ΣG,t = 1
p
G′tGt. Almost surely,

c < inft≤T λmin(ΣG,t) ≤ supt≤T λmax(ΣG,t) < C for absolute constants c, C > 0.

(ii) The eigenvalues of Σ
1/2
G,t cf,t Σ

1/2
G,t are distinct.

Assumption 5.4 is similar to the pervasive condition in the approximate factor model’s

literature, which identifies the latent factors (up to a rotation).

5.2 Asymptotic Normality and Uniform Bias Correction

We first present the estimated spot glt when factors are observable.

Theorem 5.1 (known factor case). Suppose J2 = O(p), and (kn + p)∆n = o(1). Under

Assumptions 5.1-5.3, as J, p→∞, (kn either grows or stays constant)(
1

knp
Vu,t +

1

p
Vγ,t

)−1/2 (
ĝlt − glt

) L-s−→ N(0, IK).
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When the factors are latent and estimated, ĝlt consistently estimates a rotated glt. Up to

the rotation, the asymptotic variance is identical to that of the known factor case. However,

the effect of estimating the factors gives rise to a bias term. Let V̂t be a kn × kn diagonal

matrix consisting of the first K eigenvalues of 1
pkn∆n

(P∆nY)′t(P∆nY)t. Let

Mt =
1

kn∆n
√
p

∑
i∈It

V̂−1
t ∆̂n

i F ∆n
i F
′ β′i−1Pi−1

BIASg = Mt
1

kn
√
p

∑
i∈It

Pi−1 cu,i Pi−1,l

Here Pi,l denotes the l-th column of Pi. We have the following theorem.

Theorem 5.2 (unknown factor case). Suppose J2 = O(p), and (kn + p)∆n = o(1). Under

Assumptions 5.1-5.4, there is a K ×K rotation matrix Υnt, as J, p→∞, (kn either grows

or stays constant)

Υ
′−1/2
nt

(
1

knp
Vu,t +

1

p
Vγ,t

)−1/2

Υ
−1/2
nt

(
ĝlatent
lt −Υntglt − BIASg

) L-s−→ N(0, IK).

As in the known factor case, Vγ,t directly impacts on the rate of convergence and limiting

distribution of ĝlt. We make several remarks.

Remark 5.1. If ‖Vγ,t‖ = oP (k−1
n ), then the rate of convergence is OP ((knp)

−1/2), and

V
−1/2
u,t

√
knp (ĝli − gli)

L-s−→ N(0, IK).

Intuitively, this occurs when idiosyncratic betas have weak signals from the cross-sectional

variations. As a result, the observed instruments captures almost all the beta fluctuations,

leading to a fast rate of convergence on the spot level.

Remark 5.2. If λmin(Vγ,t)� k−1
n ,

V
−1/2
γ,t

√
p (ĝlt − glt)

L-s−→ N(0, IK).

In particular, the rate of convergence is OP (p−1/2) if the eigenvalues of Vγ,t are bounded away

from zero, corresponding to the case of strong cross-sectional variations in γ. Intuitively,

this means when idiosyncratic betas have strong cross-sectional variations, time-domain

averaging is not helpful to remove their effect on estimating glt, and only cross-sectional

projection does the job. This leads to a slower rate of convergence.
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Remark 5.3. While ‖Vγ,t‖ = oP (k−1
n ) and λmin(Vγ,t) � k−1

n are two special cases, we do

not know the actual strength of Vγ,t. In fact, its eigenvalues can be any sequences in a large

range, resulting in sophisticated rate of convergence for (ĝlt − glt).

Remark 5.4. The similar phenomena is also present in the case of estimated factors. But

it is also interacting with the bias. Since the bias has an order OP (p−3/2), we actually have:

if ‖Vγ,t‖ = oP (k−1
n ),

(ΥntVu,tΥ
′
nt)
−1/2

√
knp

(
ĝlatent
lt −Υntglt − BIASd

) L-s−→ N(0, IK).

But if λmin(Vγ,t)� max{k−1
n , p−2}, then ĝlatent

lt is asymptotically unbiased :

(ΥntVγ,tΥ
′
nt)
−1/2√p

(
ĝlatent
lt −Υntglt

) L-s−→ N(0, IK).

Therefore when the signals from γ is sufficiently strong, the rate of convergence slows down,

and dominates the bias arising from the effect of estimating factors.

Remark 5.5. It is well known that (∆̂nF)t estimates (∆nF)t only up to a K × K trans-

formation, which results in the rotation Υni for the estimated spot g. Here the rotation is

time-varying so long as Gt is, but is locally time-invariant on Int . This means, for any j ∈ Int ,

Υ
′−1/2
nt

(
1

knp
Vu,t +

1

p
Vγ,t

)−1/2

Υ
−1/2
nt

(
ĝlatent
lt −Υntglj − BIASg

) L-s−→ N(0, IK).

In fact, since the effect of Γt is removed by the projection, the time variation of Υnt only

depends on that of {Gt}t≤T . This implies that in conditional factor models where only Γt

is time-varying but Gt is approximately time-invariant on the entire time span [0, T ], the

rotation is globally time-invariant. This feature is also appealing since Gt is less volatile and

picks up long-run beta patterns. It is characterized by instruments that change at a much

lower frequency than that of the return data (Cosemans et al., 2009).

We now derive a bias-corrected spot estimated glt in the case of estimated factors. The

bias correction is valid uniformly over various signal strengths. Recall that,

BIASg = Mt
1

kn
√
p

∑
i∈Int

Pi−1 cu,i−1 Pi−1,l

Here Mt can be naturally estimated by M̂t = 1√
p
V̂−1
t Ĝ′t. The major challenge arises in
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estimating the error covariance matrix cu,i−1, which is high-dimensional when p is large. We

consider three cases for the bias correction.

CASE I: cross-sectionally uncorrelated

When {∆n
i U1, · · · ,∆n

i Up} are cross-sectionally uncorrelated, the Fi−1 conditional vari-

ance cu,i−1 is a diagonal matrix. Let ∆̂n
i U = ∆n

i Y − (Ĝi−1 + Γ̂i−1)∆n
i F. Apply White

(1980)’s covariance estimator using the residuals:

B̂IASg = M̂t
1

kn∆n
√
p

∑
i∈Int

Pi−1 diag{∆̂n
i U∆̂n

i U
′
}Pi−1,l

CASE II: cross-sectionally weakly correlated (sparse)

In this case cu,i−1 is no longer diagonal. We shall assume it is a sparse covariance matrix,

in the sense that many of its off-diagonal entries are zero or nearly so. Then the “thresholding

estimator” in the recent statistical literature (e.g., Bickel and Levina (2008); Fan et al. (2013))

can be applied, yielding a nearly min{kn, p}1/2- consistent sparse covariance estimator ĉu,i−1.

More specifically, let sdl be the (d, l) th element of 1
∆nkn

∑
i∈Int

∆̂n
i U∆̂n

i U
′
. Let the (d, l)-th

entry of the estimated covariance be:

(ĉu,t)dl =

sdd, if d = l,

th(sdl)1{|sdl|>%dl} if d 6= l,

where th(·) is a thresholding function, whose typical choices are the hard-thresholding and

soft-thresholding. Here the threshold value %dl = C̄(sddsll)
1/2ωnp, with ωnp =

√
J
p

+
√

log p
kn

.6

B̂IASg = M̂t
1

kn
√
p

∑
i∈Int

Pi−1 ĉu,t Pi−1,l.

CASE III: cross-sectionally weakly correlated but not sparse

When the cross-sectional correlation is not as weak as being “sparse”, it is hard to

directly estimate a high-dimensional conditional covariance matrix. But note that the co-

variance appears in the bias through the covariance of projected error Pj∆
n
jU, which can

be directly estimated using the projection procedure: let ̂Pi−1∆n
i U = Pi−1∆n

i Y− Ĝi−1∆̂n
i F

6Hard-threholding takes th(sdl) = sdl, while soft-thresholding takes th(sdl) = sgn(sdl)(|sdl| − %dl). In
addition, the choice of the constant C̄ can be either guided using cross-validation, or simply a constant near
one. For returns of S&P 500, the rule of thumb choice C̄ = 0.5 empirically works very well.
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and ̂(Pi−1∆n
i U)l

′
denotes the transposed l-th row of ̂Pi−1∆n

i U.

B̂IASg = M̂t
1

kn∆n
√
p

∑
i∈Int

̂Pi−1∆n
i U

̂(Pi−1∆n
i U)l

′
.

This procedure avoids directly estimating the residuals ∆n
jU, and is advantageous since Gi

can be estimated at a potentially much faster convergence rate than the betas.

Formally, we focus on CASE I and CASE II for the bias correction in the following

theorem.

Theorem 5.3 (Bias correction). Suppose Jkn = o(p3). Consider CASE I and CASE II

for estimated factors. In particular, assume that for maxi∈Int ‖ĉu,i − cu,i‖ = oP (
√

p
Jkn

∆n)7

in CASE II. Define the bias-corrected instrumental beta estimator g̃latent
lt = ĝlatent

lt − B̂IASg.

Under Assumptions 5.1-5.4, we have

Υ
′−1/2
nt

(
1

knp
Vu,t +

1

p
Vγ,t

)−1/2

Υ
−1/2
nt

(
g̃latent
lt −Υntglt

) L-s−→ N(0, IK).

The limiting distribution of γ lt has a similar behavior, and features a similar bias-

correction procedure in the estimated factor case. We omit the formal results for brevity.

5.3 Uniform Confidence Intervals Using Cross-Sectional Bootstrap

5.3.1 Why Bootstrap?

A seemingly natural inference procedure is to plug-in the estimated asymptotic covariances

for Vut and Vγ,t using their sample analogues. This procedure, however, works only pointwise

in the current context, and does not provide a uniformly valid confidence interval. To

understand the issue, consider the estimation of Vγ,t. We focus on the case when {γmt}m≤p
are cross-sectionally uncorrelated, conditionally on Xt. Then

Vγ,t =
1

p

p∑
m=1

h2
t,ml Var(γmt|Xt).

If γmt were known, White (1980)’s heteroskedastic covariance estimator can be applied:

Ṽγ,t = 1
p

∑p
m=1 h

2
i,mlγmtγ

′
mt. Replacing γmt with its consistent estimator γ̂mt, we obtain

7We shall verify this condition in Lemma D.1 for sparse covariance estimators.
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V̂γ,t = 1
p

∑p
m=1 h

2
t,mlγ̂mtγ̂

′
mt. Then V̂γ,t −Vγ,t has a decomposition

1

p

p∑
m=1

h2
t,ml

[
γ̂mtγ̂

′
mt − γmtγ ′mt

]
︸ ︷︷ ︸

γ-estimation error

+
1

p

p∑
m=1

h2
t,ml [γmtγ

′
mt − Var(γmt|Xt)]︸ ︷︷ ︸

LLN error

where “LLN error” refers to the error associated with the law of large number. The main

issue is that the γ-estimation error cannot be uniformly controlled. One of the leading terms

in the expansion of γ̂mt − γmt is rm := s−1
f,t

1
∆nkn

∑
i∈Int

∆n
i F∆n

i Um, which leads to

γ-estimation error ≥ 1

p

p∑
m=1

h2
t,mlrmr′m � OP (k−1

n ).

This results in an estimation error ‖Vγ,t − V̂γ,t‖ being lower bounded by an order OP (k−1
n ),

which is negligible only if it is dominated by the asymptotic variance:

‖1

p
(Vγ,t − V̂γ,t)‖ = oP (1)λmin[

1

knp
Vu,t +

1

p
Vγ,t]

This is however, not the case whenever λmin(Vγ,t) = OP (k−1
n ) (corresponding to the case of

weak γ-signal). Hence estimating Vγ,t introduces an estimation error that is non-negligible

when {γml} is weak. Consequently, the usual plug-in covariance estimator using V̂γ,t would

lead to over-coverage probabilities. But ignoring Vγ,t would result in under-coverage proba-

bilities when {γml} is strong. Hence it is is not uniformly valid.

The cross-sectional bootstrap, as we shall describe in the next subsection, resolves the

uniformity issue. It directly mimics the cross-sectional variations in {γmi}. The bootstrap

asymptotic variance is analogously 1
knp

Vu,t + 1
p
Ṽγ,t, and hence the only approximation error

for the Vγ,t part is:

Ṽγ,t −Vγ,t =
1

p

p∑
m=1

h2
t,ml [γmtγ

′
mt − Var(γmt|Xt)]︸ ︷︷ ︸

LLN error

.

Consequently, the γ-estimation error component is avoided. The LLN error is of a higher

order than Vγ,t. For instance, suppose γmt = anγ̄mt, where an ≥ 0 is a non-random arbi-

trary sequence, and c1 < λmin(Var(γ̄ml|Xt)) ≤ λmax(Var(γ̄ml|Xt)) < C2. Then LLN error

= OP (p−1/2)Vγ,t so long as 1
p

∑p
m=1 h

4
t,ml E(‖γ̄mt‖4|Xt) ≤ Cλ2

min[1
p

∑p
m=1 h

2
t,ml Var(γ̄mi|Xt)]

25



almost surely.

Remark 5.6. A possible alternative approach is to employ the thresholding: estimate Vγ,t

using V̂γ,t1{‖V̂γ,t‖<cn logn} for some sequence cn � min{kn,
√
p}−1, so that cn log n “just dom-

inates” ‖Vγ,t− V̂γ,t‖. The similar approach has been employed to deal with the distribution

discontinuity in Andrews (1999); Andrews and Soares (2010). But in the current context, it

has a few drawbacks. One is that it is hard to cover the entire space of all possible sequences

for the eigenvalues of Vγ,t. It also leaves a question of choosing the constant in cn. So we

do not pursue it in this paper.

5.3.2 Cross-Sectional Bootstrap and its Uniform Validity

We propose a cross-sectional bootstrap to mimic the cross-sectional CLT as in Assumption

5.3. For this purpose, we need to assume cross-sectional independence of {∆n
i Um}m≤p and

{γmt}m≤p. Let Tn = bT/∆nc. Independently resample cross-sectional time series {∆n
i Y
∗
m, i ∈

{1, · · · , Tn}}m=1,...,p and
{
X∗mi : i ∈ Int

}
m=1,...,p

, where

{∆n
i Y
∗
m, i ∈ {1, · · · , Tn}}m=1,...,p =

{
{∆n

i Ym1 , i ∈ {1, · · · , Tn}}, ..., {∆n
i Ymp , i ∈ {1, · · · , Tn}}

}
{
X∗mi : i ∈ Int

}
m=1,...,p

=
{{

Xm1,i : i ∈ {1, · · · , Tn}
}
, · · · ,

{
Xmp,i : i ∈ {1, · · · , Tn}

}}
.

Here {m1, ...,mp} is a simple random sample with replacement from {1, ..., p}. Since we are

interested in the instrumental beta for the l-th specific stock, we always fix m1 = l in the

resampled data. We do not need to mimic the time series variations, so for each sampled

index md, the entire time series {∆n
i Ymd , i ∈ {1, · · · , Tn}} and {Xmd,i, i ∈ {1, · · · , Tn}} are

kept. In addition, we keep the entire time series {∆n
i F : i ∈ {1, · · · , Tn}} in the case of

known factors, and {∆̂n
i F : i ∈ {1, · · · , Tn}} in the case of unknown factors.8

We then let Φ∗i = (φm1,i, ...,φmp,i)
′ and P∗i = Φ∗i (Φ

∗′
i Φ∗i )

−1Φ∗
′

i . Let P∗i,l be the l th

column of P∗i . Let ∆n
i Y
∗ = (∆n

i Y
∗

1 , ...,∆
n
i Y
∗
p )′ and G∗i = (gm1,i, ...,gmp,i)

′. Define

ĝ∗lt =

∑
i∈Int

∆n
i F∆n

i F
′

−1∑
i∈Int

∆n
i F∆n

i Y
∗′P∗i−1,l

8The effect of estimating ∆n
i F does not play a role in the cross-sectional variations. Hence we do not

re-estimate the factors in each bootstrapped sample. Even if we did, its effect would be first-order negligible.
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in the case of known factors, and

ĝ∗ latent
lt =

1

kn∆n

∑
i∈Int

∆̂n
i F ∆n

i Y
∗′P∗i−1,l

in the estimated factor case. We repeat the bootstrap sampling and estimation for B times,

and obtain either {ĝ∗blt }b≤B or {ĝ∗ latent,b
lt }b≤B, depending on whether factors are observable.

When glt is multidimensional, it is easier to present the confidence interval for a linear

transformation v′glt. For any predetermined confidence level 1− τ , let qτ (or qlatent
τ ) be the

1 − τ th bootstrap quantile of {|v′ĝ∗blt − v′ĝlt|}b≤B (or {|v′ĝ∗ latent,b
lt − v′ĝlatent

lt |}b≤B). The

confidence interval for v′glt (or v′Υntglt in the estimated factor case) is given by

CInt,τ = [v′ĝlt − qτ ,v′ĝlt + qτ ],

(or CI latent
nt,τ = [v′ĝlatent

lt − v′B̂IASg − qlatent
τ ,v′ĝlatent

lt − v′B̂IASg + qlatent
τ ] ).

We need the following conditions for the bootstrap validity.

Assumption 5.5. (i) Conditionally on {Xt}, {{∆n
i Um}i∈Int , {γmi}i∈Int }m≤p are cross-sectionally

uncorrelated.

(ii) Almost surely in the bootstrap sampling space, supt∈[0,T ] ‖G∗t − P∗tG
∗
t‖∞ ≤ CJ−η for

absolute constants C, η > 0.

Remark 5.7. The bootstrap takes independent samples from the cross-sectional units.

Hence Assumption 5.5 (i) is required for the bootstrap to mimic the cross-sectional vari-

ations. One of the potential ways to allow for cross-sectional correlations is to normalize the

cross-sectional units using the estimated estimated error covariance matrix c
−1/2
u,t , which can

be well estimated if it is a sparse covariance matrix. By assuming that Γ and the increments

of U have similar cross-sectional dependence structure, i.e., c
−1/2
u,t Var(Γt|Xt)c

−1/2
u,t is nearly

diagonal for t ∈ [0, T ], we can bootstrap the transformed data and the transformed {Γi−1}
and {∆n

i U} would be nearly cross-sectional uncorrelated. However, we do not pursue this

approach in this paper.

Finally, we require the following moment conditions on Γt:

Assumption 5.6. There is an absolute constant C > 0, almost surely,

λ
1/2
max(1

p

∑p
m=1 h

4
i,mlE(‖γmi‖4|Xi))

λmin(1
p

∑p
m=1 h

2
i,ml Var(γmi|Xi))

< C,
λmax(1

p

∑p
m=1 ht,mmht,ll Var(γmt))

λmin(1
p

∑p
m=1 h

2
i,ml Var(γmi|Xi))

< C
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If Var(γmi|Xi) = 0 for m = 1, ..., p, then the above ratios are defined to be zero.

Theorem 5.4 (Uniformly valid confidence intervals). Let P be the collection of all data

generating processes P for which Assumptions 5.5, 5.6 and assumptions of Theorems 5.1

and 5.2 hold. Then for any fixed vector v ∈ RK\{0} such that ‖v‖ > c > 0, for each fixed

l ≤ p, t ∈ [0, T ]

known factor case: sup
P∈P
|P(v′glt ∈ CInt,τ )− (1− τ)| → 0

unknown factor case: sup
P∈P

∣∣P(v′Υntglt ∈ CI latent
nt,τ )− (1− τ)

∣∣→ 0.

We close this section by presenting a uniform confidence interval for the long-run in-

ference. Consider estimating v′
∫ T

0
gltdt in the case of known factors. It is estimated by

̂∫ T
0

gltdt :=
∑[T/∆n]−kn

t=1 ĝlt∆n. Denote by
̂∫ T
0

gltdt
∗b

=
∑[T/∆n]−kn

t=1 ĝ∗blt ∆n as the bootstrap

estimator in the b th generated sample. Let q̃τ be the 1 − τ th bootstrap quantile of

{|v′ ̂
∫ T

0
gltdt

∗b
− v′

̂∫ T
0

gltdt|}b≤B. The confidence interval for v′
∫ T

0
gltdt is given by

C̃In,τ =

[
v′

̂∫ T

0

gltdt− q̃τ ,v′
̂∫ T

0

gltdt+ q̃τ

]
.

Theorem 5.5 (long-run g). Consider the known factor case9. Let P be the collection of all

data generating processes P for which Assumption 5.5 and assumptions of Theorem 5.1 hold.

Then for any fixed vector v ∈ RK\{0} such that ‖v‖ > c > 0, for each fixed l ≤ p,

sup
P∈P

∣∣∣∣P(v′
∫ T

0

gltdt ∈ C̃In,τ
)
− (1− τ)

∣∣∣∣→ 0.

6 Uniform Confidence Intervals for Long-Run Forecast

The object of interest is to forecast the conditional mean yLn+h|Ln of model (2.6):

yd+h = µyd + ρ′Fd + vd+h, d = 1, ..., Ln, Ln →∞, (6.1)

9Due to the rotation discrepancy, estimating the long-run g in the presence of time-varying beta is a much
harder problem, and we shall leave it for the future research.
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where h > 0 is the lead time between information available and the dependent variable. Here

d represents the d th “day”, and we observe in total Ln days. On the d th day, we have the

integrated factor:

Fd :=

∫ dT

(d−1)T

dFt.

Of particular interest is yd = IVd, the integrated volatility a single asset. Note that {IVd}d≤Ln
is not directly observable, and has to be nonparametrically estimated. Then we have two

types of estimated regressors : estimated integrated volatility {ÎVd}d≤Ln , and the estimated

integrated factors {F̂d}d≤Ln . Note that model (6.1) and its associated forecasts are in

low-frequency discrete time, but we shall use the high-frequency return data to estimate

{IVd,Fd}d≤Ln .

We now describe the construction of {ÎVd}d≤Ln and {F̂d}d≤Ln . Consider a long-run

forecast, where the integrated latent factors are estimated from discrete-time return data

{∆n
i Y}i≤Mn , with Mn = nLn, realized from: dYt = αdt+(Gt+Γt)dFt+dUt, ∀t ∈ [0, LnT ].

Importantly, we require Gt and the drift part α be time-invariant over the entire interval

[0, LnT ]. On the other hand, we still allow Γt to be time-varying with a realized trajectory

driven by the Brownian motion. 10

Let (P∆nY) = [P0∆n
1Y, ...,PMn−1∆n

Mn
Y] be the p×Mn matrix. Let ∆̃nF be an Mn ×

K matrix of estimated factors, whose columns equal
√

∆nMn times the eigenvectors of

(P∆nY)′(P∆nY) corresponding to its first K eigenvalues. But for long-time estimations,

the effect of accumulated drifts would introduce a biased factor estimation. Hence we use

a simple de-biased integrated factor estimator: let Sd be the index of observations in the

interval [(d− 1)T, dT ]. Define

F̂d := F̃d −
1

Ln

Ln∑
d=1

F̃d, where F̃d =
∑
i∈Sd

∆̃n
i F, d = 1, ..., Ln.

As for the integrated volatility, we estimate the integrated volatility over [(d − 1)T, dT ]

10Requiring Gt be time-invariant is due to the fact that F̂d is estimating a rotated integrated factors,
whose rotation matrix depends on Gt. To remove the rotation discrepancy of in the estimated ρ′Fd, it is
essential to require the rotation matrix be time-invariant in the long-run interval. This gives rise to our
restriction to the time-invariant instrumental beta.
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by using truncated Bi-power variation (TBPV) as follows

ÎVd :=
∑
i∈Sd

(∆n
i Yl)

2 1{‖∆n
i Yl‖≤φln}.

According to Theorem 13.2.4 in Jacod and Protter (2011), the asymptotic property of ÎVd

is given as follows:

1√
∆n

ÎVd − IVd√
2
∫ dT

(d−1)T

(
cll,t
)2
dt

L-s−→ N(0, 1),

where ct = cf,t + cu,t (see the paragraph preceding Assumption 5.3) is the instantaneous

quadratic variation matrix of Y at time t and cll,t is its (l, l) element.

Finally, we estimated (µ,ρ) by:

(µ̂, ρ̂) = arg min
µ,ρ

Ln−h∑
d=1

[ÎVd+h − (µ̂ÎVd + ρ̂′F̂d)]
2.

Then the forecasted conditional mean of IVLn+h|Ln := µIVLn + ρ′FLn is

ÎVLn+h|Ln = µ̂ÎVLn + ρ̂′F̂Ln .

6.1 Effect of Time-Varying Gammas on Forecast Intervals

To describe the asymptotic property of IVLn+h|Ln − ÎVLn+h|Ln , we introduce some notation:

let zd = (IVd, (HnFd)
′)′, and write w′n = (w1,w

′
2) := z′Ln( 1

Ln−h
∑Ln−h

d=1 zdz
′
d)
−1, where w1

denotes the first element of wn. Here Hn is the rotation matrix so that F̂d consistently

estimates HnFd, whose definition is given in the Appendix.

Let G = GLn

(
1
p
G′LnGLn

)−1

ρ. Then we have

IVLn+h|Ln − ÎVLn+h|Ln = r̄1 + ...r̄5 + negligible terms

where

r̄1 = w′n
1

Ln − h

Ln−h∑
d=1

zdvd+1,
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r̄2 =
∑
i∈SLn

1

p
∆n
i U
′GLn

r̄3 = µ(ÎVLn − IVLn) (effect of nonparametrically estimate the integrated volatility)

r̄4 =

[
w1

1

Ln − h

Ln−h∑
d=1

IVd − 1

]
(

1

Ln

Ln∑
d=1

Fd)
′ρ (effect of bias correction for estimated factors)

r̄5 =
1

p

∑
i∈SLn

∆n
i F
′Γ′i −

1

Ln − h

Ln−h∑
d=1

w′nzd
∑
j∈Sd

∆n
jF
′Γ′j

G. (6.2)

All these terms contribute to the limiting distribution. In addition to the first two terms

similar to those of the diffusion index forecast model (Bai and Ng (2006)), we also have three

new leading terms, each representing a new feature of our forecast model.

Among these terms, we would like to pay a special attention to r̄5, which is due to the

effect of idiosyncratic betas in the time-varying factor loadings. It is an interesting matter

of fact that r̄5 equals zero if Γt is time-invariant, but is not so in general. 11 In the presence

of high-frequency movements in Γt, this term is not negligible. Therefore, the forecast

procedure based on estimated factors would be misleading when either (i) ignore the Γt

component in the betas, or (ii) treat Γt as time-invariant. The forecast interval we present

below is uniformly valid across models with various strengths and degrees of time-varying in

Γt.

The above expansion leads to the asymptotic variance of IVLn+h|Ln − ÎVLn+h|Ln :

1

Ln
V1 +

1

p
V2 + ∆nV3 +

1

Ln
V4 +

1

p
V5

where, for Gl as the l th element of G,

V1 =
1

Ln − h

Ln−h∑
d=1

(w′nzd)
2 Var(vd+1|{IVd,F

c
d}d≤Ln)

V2 =
1

p

∑
i∈SLn

G ′Var(∆n
i U|Fi−1)G

V3 = 2

∫ dT

(d−1)T

(
cll,t
)2
dt

11When Γt = Γ for all t ∈ [0, LnT ], it can be directly shown that r̄5 = 0 by verifying

( 1
Ln−h

∑Ln−h
d=1 zdz

′
d)−1 1

Ln−h
∑Ln−h

d=1 zd
∑

j∈Sd
∆n

j F′ = (0, IK)′.
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V4 =

[
w1

1

Ln − h

Ln−h∑
d=1

IVd − 1

]2

ρ′Var(Fc
d)ρ

V5 =
1

p

p∑
l=1

G2
l E
[
Ω2
l |{IVd}d≤Ln , {Xt,∆

n
t F}t∈[0,LnT ]

]
Ωl =

∑
i∈SLn

∆n
i F
′γil −

1

Ln − h

Ln−h∑
d=1

w′nzd
∑
j∈Sd

∆n
jF
′γjl.

The asymptotic variance can be estimated by the plug-in method using the sample

analogues. 12 The following covariance estimators are robust to heteroskedasticity: let

∆̂n
i F = ∆̃n

i F− 1
Ln

∑Ln
d=1 F̃d, Ĝ = 1

∆nMn

∑Ln
d=1

∑
j∈Sd Pj∆Yj∆̂n

i F
′
, Ĝ = Ĝ(1

p
Ĝ′Ĝ)−1ρ̂, and Ĝl

denotes the l th element of Ĝ, Γ̂t = 1
kn∆n

∑
j∈Int

(I−Pj)∆
n
jY∆̂n

i F
′
. Let

V̂1 =
1

Ln − h

Ln−h∑
d=1

(ŵ′nẑd)
2v̂2
d+h, v̂d+h = ÎVLn+h|Ln − µ̂ÎVLn + ρ̂′F̂Ln

V̂2 =
1

p∆n

Ĝ ′diag

∑
i∈SLn

∆̂n
i U∆̂n

i U
′

 Ĝ, ∆̂n
i U = ∆n

i Y − (Ĝ + Γ̂i)∆̂n
i F

V̂3 = ∆n

(
1− 2

kn

)∑
i∈Sd

ĉ2
i,l,where ci,l = (σYl

i )2

V̂4 =

[
ŵ1

1

Ln − h

Ln−h∑
d=1

ÎVd − 1

]2

ρ̂′
1

Ln

Ln∑
m=1

F̂dF̂
′
dρ̂

V̂5 =
1

p

p∑
l=1

Ĝ2
l Ω̂

2
l

for ẑd = (ÎVd, F̂
′
d)
′, ŵn = ( 1

Ln−h
∑Ln−h

d=1 ẑdẑ
′
d)
−1ẑLn , and

Ω̂l =
∑
i∈SLn

∆̂n
i F
′
γ̂il +

1

Ln − h

Ln−h∑
d=1

ŵ′nẑd
∑
j∈Sd

∆̂n
i F
′
γ̂jl.

Assumption 6.1. (i) Suppose V−1/2
5

√
pr̄5

L-s−→ N(0, 1) if r̄5 6= 0.

(ii) The eigenvalues of V1 and V2 are bounded below by an absolute constant c > 0

(iii) {∆n
t Ul}l≤p are cross-sectionally independent, given Ft−1.

12Unlike estimating the asymptotic variance for gil, the plug-in method here produces a uniformly valid
forecast interval due to the fact that the estimation error for V5 is dominated by V2 uniformly over various
strengths of Γt.
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(iv) Let mn denote the number of observations in time on the interval Sd = [(d − 1)T, dT ].

Assume {Xt,Gt} be nearly time-invariant. Specifically, define Pt = Φt(Φ
′
tΦt)

−1Φ′t, and

%2
1n :=

1

Ln

Ln∑
d=1

‖P̄d −
1

Ln

Ln∑
q=1

P̄q‖2, P̄d =
1

mn

∑
i∈Sd

Pi−1

%2
2n := max

d≤Ln

1

mn

∑
i∈Sd

‖[Pi−1 −PLn ]‖2

%2
3n := max

d≤Ln−h

1

mn

∑
i∈Sd

‖ 1
√
p

(GLn −Gi−1)‖2

%2
4n := max

i
‖Pi−1 −

1

Ln

Ln∑
q=1

P̄q‖2.

Then (%2
1n + %2

4n + %2
3nmn + %2

2nmnJ) min{p, Ln} = o(1).

Condition (i) is a CLT applied to the cross-sectional units of Γt. Condition (ii) requires

‖ρ‖ > 0 so that the factors should contain forecast information. When ρ = 0 the problem

reduces to the regular autoregressive forecast with estimated lagged integrated volatilities.

Condition (iii) ensures a cross-sectional CLT for r̄2, as well as a simple diagonal error co-

variance estimator in V̂2. Sparse covariance estimator can be used in the presence of cross-

sectional dependence. Condition (iv) requires that the instruments and the corresponding

betas should be nearly constant over the entire range [0, LnT ]. But note that we still allow

time-varying betas, thanks to the time-varying {Γt}. This is still a plausible condition since

the instruments mainly capture the long-run changes in beta.

Let zτ/2 be the standard normal’s 1− τ/2 th quantile.

Theorem 6.1. Suppose Assumptions 5.1-5.2, 5.4, and 6.1 hold uniformly over all data

generating processes P ∈ P. Define ŝn := ( 1
Ln
V̂1 + 1

p
V̂2 + ∆nV̂3 + 1

Ln
V̂4 + 1

p
V̂5)1/2. Then

sup
P∈P

∣∣∣P(IVLn+h|Ln ∈ [ÎVLn+h|Ln ± zτ/2ŝn]
)
− (1− τ)

∣∣∣→ 0.

Remark 6.1. Though we study the long-time out-of-sample forecast in this section, the

result provided can be also used as the basis of testing economic hypothesis that involves

estimated factors from conditional factor models with large dimensions, with h set to zero. It

also sheds lights on the distribution of estimated factors in the presence of both instrumental

and idiosyncratic betas. The asymptotic distribution of the estimated factors would be
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determined by that of two orthogonal components:

r̄2 =
∑
i∈SLn

1

p
∆n
i U
′GLn

r̄5 =
1

p

∑
i∈SLn

∆n
i F
′Γ′i −

1

Ln − h

Ln−h∑
d=1

w′nzd
∑
j∈Sd

∆n
jF
′Γ′j

G. (6.3)

While the term r̄2 is similar to the regular principal components estimators (Bai (2003)),

in the presence of time-varying idiosyncratic betas, r̄5 is present as a new term, and also

contributes to the asymptotic distribution.

7 Extensions

7.1 Testing the relevance of instruments

Our framework of uniform inference is also useful for testing the relevance of included in-

struments. For this purpose, we consider a linear case,

βlt = X′ltθt + γ lt, l = 1, ..., p. (7.1)

Note that θt is a d × K matrix, whose k th column, denoted by θt,k, represents the effect

of the instruments on the betas of the k th risk factor. Inferencing about the time-varying

coefficient θt allows us to explain the dynamic importance of each of the instruments and

that whether any instrument is relevant. Note that although (7.1) specifies a linear function

glt(Xlt), Xlt could include nonlinear (sieve) transformations of each individual instruments.

Most importantly, the inferences procedure should be uniformly valid over a broad DGPs

that generate γ lt, as we did earlier.

To describe the estimator of θt, we use the linear sieve Φt = (X1t, ...,Xpt)
′ and Pt =

Φt(Φ
′
tΦt)

−1Φ′t. Then Ĝt can be defined as before: (3.2) in the known factor case, and (3.5)

in the unknown factor case. Then we run a cross-sectional regression to estimate θt:

θ̂t = (Φ′tΦt)
−1

Φ′tĜt.

As for the asymptotic analysis, the predescribed uniformity issue is still present. For instance,
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in the known factor case, it can be shown that

θ̂t − θt = (Φ′tΦt)
−1

Φ′tΓt +
1

kn∆n

Φ′t
∑
i∈Int

∆n
i U∆n

i F
′
is
−1
f,t

+ negligible terms.

The strength of the cross-sectional variations in Φ′tΓt is still unknown and may potentially

vary in a large range, leading to a discontinuity in the limiting distribution of θ̂t − θt, and

various possible rates of convergence. In addition, the same problem as we described earlier is

still present, namely, the estimation error for Γt may stochastically dominate the strength of

the asymptotic variance from Φ′tΓt, hence simply plugging-in estimators of the asymptotic

variance for θ̂t would still not be uniformly valid. Hence we rely on the cross-sectional

bootstrap.

We independently resample cross-sectional time series {∆n
i Y
∗
m, i ∈ Int }m=1,...,p and

{
X∗mi :

i ∈ Int
}
m=1,...,p

. Then let Φ∗i = (X∗1,i, ...,X
∗
p,i)
′, P∗i = Φ∗i (Φ

∗′
i Φ∗i )

−1Φ∗
′

i and ∆n
i Y
∗ =

(∆n
i Y
∗

1 , ...,∆
n
i Y
∗
p )′. Let the bootstrap estimator be θ̂

∗
t =

(
Φ∗

′

t Φ∗t

)−1

Φ∗
′

t Ĝ∗t , where

Ĝ∗t =


∑

i∈Int
P∗i−1∆n

i Y
∗∆n

i F
′
(∑

i∈Int
∆n
i F ∆n

i F
′
)−1

, known factor case

1
kn∆n

∑
i∈Int

P∗i−1(∆n
i Y
∗)∆̂n

i F
′
, unknown factor case.

Repeat the bootstrap sampling and estimation for B times, and obtain {θ̂
∗b
t }b≤B. Let

(θ̂
∗b
t,k, θ̂t,k) respectively denote the k th column of θ̂

∗b
t and θ̂t. For any unit vector v ∈ Rd, let

qτ be the 1− τ th bootstrap quantile of {|v′θ̂
∗b
t,k − v′θ̂t,k|}b≤B. In the case of known factors,

the confidence interval for v′θt,k is given by

CIθt,k,τ = [v′θ̂t,k − qτ ,v′θ̂t,k + qτ ].

In the unknown factor case, due to the effect of estimating the unknown factors, θ̂t needs to

be debiased, but all the technical arguments would be very similar to those of treating the

estimated Ĝlatent
t , we omit the formal treatment of the unknown factor case for brevity.

Theorem 7.1. Suppose the factors are known. Let P be the collection of all data generating

processes P for which Assumptions 5.5, 5.6 and assumptions of Theorem 5.1 hold. Then for
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any unit vector v ∈ Rd, for each fixed t ∈ [0, T ], and k ≤ K,

sup
P∈P

∣∣P(v′θt,k ∈ CIθt,k,τ )− (1− τ)
∣∣→ 0.

7.2 Estimating Factor Risk Premia using Instrumental Betas

The estimated instrumental betas, due to potentially faster rates of convergence than the

regular betas, have the potential of improving the estimation of factor risk premium for

nontradable factors. Consider the following model for estimating the factor risk premium:

on a specific day d,

Rld = β′ldλd + εld, l = 1, ..., p,Eεid = 0.13

where Rld is the daily return of asset l on day d, and λd is the factor risk premium. The

matrix form is given by Rd = βdλd + εd, where βd = (β1d, ...,βpd)
′, and the betas have the

similar decomposition:

βd = Gd + Γd,

respectively represent the instrumental and idiosyncratic betas on day d. The standard

Fama-MacBeth procedure (Fama and MacBeth, 1973) runs a cross-sectional regression of

Rld onto the estimated betas βld. This procedure has been known to be sensitive to the

accuracy of the estimated beta, and may perform poorly as the estimated betas require a

relatively large panel and is not applicable if βd changes in high-frequency. In contrast, the

instrumental betas as being considered in the current context, is much less volatile on the

time domain, and can be estimated with a much better accuracy.

Here we heuristically show that one can apply the Fama-MacBeth regression using the

instrumental betas. Applying the sieve-projection matrix on the matrix form, we obtain

PdRd = Gdλd + Pdεd + PdΓdλd︸ ︷︷ ︸
projection error

+ (PdGd −Gd)λd︸ ︷︷ ︸
sieve approximation error

≈ Gdλd.

Hence we can modify the Fama-MacBeth procedure by running the cross-sectional regression

of the “projected return” PdRd on day d onto the estimated instrumental beta Ĝd, and

estimate the risk premium λd by:

λ̂d = (Ĝ′dĜd)
−1Ĝ′dRd

13One can also include a common intercept term and have Rid = ad + β′idλd + εid.
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Importantly, in the “projection error” as shown above, the high-frequency beta components

Γd is “projected off”, and converges fast as p → ∞. As we have shown that Gd can

be estimated much more accurately even under time-varying factor models, this modified

procedure would produce a much higher-quality estimation of the factor risk premium. Due

to the space limit, we do not formally pursue theoretical property of this procedure.

8 Simulations

We conduct a simple simulation study on the estimated spot instrumental beta, to illustrate

the issue of uniformity and the under/over coverages of the usual plug-in methods. The

locally constant betas are generated from the following discrete time DGP:

∆n
jY = α+ (G + Γ)∆n

jF + ∆n
jU, j = 1, ..., kn

where G = 3X + 1, and Γ =
√
wγΓ0. Here ∆n

jU ∼ N(0, I)
√

∆n, ∆n
jF ∼ N(0, 1)

√
∆n, and

αm = ∆n for each m ≤ p. The number of factors K = 1. The cross-sectional components

of X are generated independently from N(0, 1), and the components of Γ0 are generated

independently from N(0, 1), Here wγ is taken as a scalar value in the range [0.001, 0.3],

which determines the strength of Γ. The goal is to study the coverage properties of g1, the

first component of G, with various values of wγ. We set ∆n = (pkn)−1. As described in the

paper, we use the cross-sectional bootstrap to generate critical values for the estimated g1,

and construct confidence intervals. The number of bootstrap replications is B = 5000.

We construct the confidence interval using three methods and compare the coverage

probabilities:

(i) the bootstrap confidence interval: ĝ1 ± qτ,bootstrap
(ii) the “over-coverage” confidence interval: ĝ1 ± 1.96

√
1
knp

V̂u + 1
p
V̂γ

(iii) the “under-coverage” confidence interval: ĝ1 ± 1.96
√

1
knp

V̂u, where

V̂u = s−1
f,t

1

pkn

kn∑
i=1

φ′i,l(
1

p
Φ′iΦi)

−1Φ′i diag{ 1

kn∆n

kn∑
j=1

∆̂n
jU∆̂n

jU
′
}Φi(

1

p
Φ′iΦi)

−1φi,l

V̂γ =
1

p

p∑
m=1

h2
mlγ̂mγ̂

′
m, l = 1, hml = φ′i,l(

1

p
Φ′iΦi)

−1φ′i,m.

Note that the “over-coverage” uses the naive plug-in method to estimate the asymptotic
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variance. This method can lead to over-coverage probabilities when wγ is near zero. In

addition, the “under-coverage” is the benchmark method because it ignores the variance

component coming from Γ, which is the common practice in the literature. Consequently, it

is expected to produce substantial under-coverage probabilities when Vγ is non-negligible.

Table 1: Coverage probabilities for the spot g1, nominal probability= 95%

wγ
kn p 0.001 0.1 1 3
10 100 bootstrap 0.951 0.947 0.937 0.942

over 0.995 0.990 0.950 0.943
under 0.946 0.926 0.430 0.279

10 300 bootstrap 0.946 0.947 0.950 0.948
over 0.993 0.990 0.962 0.953

under 0.931 0.923 0.437 0.294

100 100 bootstrap 0.945 0.946 0.944 0.942
over 0.993 0.982 0.944 0.941

under 0.928 0.822 0.151 0.106

100 300 bootstrap 0.947 0.948 0.954 0.948
over 0.994 0.986 0.946 0.950

under 0.939 0.841 0.156 0.089

200 100 bootstrap 0.941 0.944 0.945 0.942
over 0.990 0.968 0.943 0.943

under 0.923 0.754 0.121 0.059

200 300 bootstrap 0.948 0.946 0.949 0.953
over 0.991 0.973 0.948 0.953

under 0.929 0.756 0.111 0.069

Table 1 summarizes the coverage probabilities using 2000 replications under the 95%

nominal coverage. The numerical findings are consistent with what our theory predicts: (1)

The bootstrap confidence interval has good coverage probabilities, uniformly over wγ. (2)

The “over-coverage” method is significantly conservative when wγ is small, and becomes

better as wγ increases. (3) The “under-coverage” method has a fine coverage (but still with

noticeable size distortions) when wγ is near zero, but quickly has substantial under coverages
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as wγ increases. (iv) The coverage probabilities for the bootstrap is satisfactory even if kn

is small.

9 Empirical Studies

9.1 The data

We use the price data of stocks from the S&P 500 index constituents for the period from

July 2006 through June 2013. We collect intraday transactions data of each stock from the

TAQ database and construct returns every five minutes. We drop each stock’s abnormal

prices that are out of the middle seventy percent range, and replace them with the previous

five-minute price, which makes the abnormal return to zero. Moreover, we drop the overnight

returns for excluding stock splits and dividend issuances. Stocks with missing price data are

also dropped. Therefore there are in total 380 stocks in our dataset. In addition, we construct

the Fama-French four factors with five-minute frequency by first generating the five-minute

returns of each common stocks on the NYSE, the AMEX, and the NASDAQ in the CRSP

database and then following the method described in Fama and French (1992). These factors

are: the market factor (Mkt), the small-minus-big market capitalization (SMB) factor, high-

minus-low book to market ratio (HML) factor, and the profitability factor (RMW), the

difference between the returns of firms with high and low operating profitability.

We also collect fundamentals of those stocks from the Compustat database over the

same period to construct firm instruments. We consider four instruments for each stock:

size, value, momentum, and volatility as in Connor et al. (2012). The annual size and

value characteristic of each stock is the logarithm of the market value and the ratio of the

market value to the book value in the previous June respectively. The monthly momentum

and volatility characteristic of each stock is the cumulative returns of the last twelve months

including the previous month, and the standard deviation of the last twelve months, including

previous month respectively.

9.2 Data analysis

Our estimation is based on the 5-minute frequency, and naturally the intervals are taken

as daily windows. Hence there are kn = 78 observations for each stock each day. We use

the linear sieve basis, which are simply the standardized values of the four instruments, and

estimate the spot instrumental and idiosyncratic beta for each company on each trading day.
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14 We divide the assets into three categories: large, medium, and low, based on either the

firms’ size or the volatility characteristics. Figures 1 and 2 plot the cross-sectional average of

the instrumental betas corresponding to each of the four factors, classified by either the size

or the volatility. Both size and volatility have noticeable effects on at least one of the factor

betas. As shown in Figure 1, the cross-sectional averaged instrumental betas for the SMB

factor are noticeably different across three size groups, and in the long run, companies with

larger size (market value) tend to be less sensitive to the SMB factor than companies with

smaller size. As shown in the first panel of Figure 2, companies with smaller volatilities tend

to be less sensitive to the market factor than companies with larger volatilities. While both

phenomena have been documented in the literature, the instrumental betas, however, capture

long-run movements in beta driven by structural changes in the economic environment and

in firm- or industry-specific conditions, so demonstrate long-run patterns in betas from these

figures.
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Figure 1: Cross-sectional means of instrumental beta, grouped by size. The instrumental betas are esti-
mated on a daily basis, and this figure plots eight days’ estimations for each month.

Next, we compare the standard deviations of the estimated two components in beta. The

cross-sectional standard deviation is the sample standard deviation of the estimated glt and

14We also tried B-splines with degree 3 (Eilers and Marx, 1996), and obtain similar results.
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Figure 2: Cross-sectional means of instrumental beta, grouped by volatility. The instrumental betas are
estimated on a daily basis, and this figure plots eight days’ estimations for each month.

γ lt among firms in each group for each fixed day. Then averaging these standard deviations

over all days leads to the “averaged cross-sectional standard deviations”. On the other hand,

the time-series standard deviation is the sample standard deviation of the estimated glt

and γ lt over time for each fixed firm. Then averaging these time-series standard deviation

across firms in each group leads to the “averaged time-series standard deviations”. Here

groups (small, medium, large) are determined by either the size or the volatility of the firms.

So they respectively measure the cross-sectional and time-series variations of the two beta

components. The results are given in Table 2 below, and show several interesting patterns:

(1) The instrumental beta always possess significantly smaller standard deviations, in both

cross-sectional and time-series, than the idiosyncratic beta. It demonstrates that there are

relatively smaller cross-sectional variations in the instrumental betas among S&P500 firms.

In addition, instrumental betas, as they capture long-run beta movements, are much less

volatile in the time domain. (2) On average, firms with larger size and smaller volatilities

tend to have smaller cross-sectional and time series variations in both components of beta.

These firms have larger market values, whose betas are often more stable than the others.
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(3) Even for firms with larger size and smaller volatilities, the time series standard deviations

of the instrumental betas are noticeably different from zero, showing a significant degree of

time-variations in betas.

Table 2: Averaged cross-sectional and time-series standard deviations of G and Γ

Mkt HML SMB RMW
G Γ G Γ G Γ G Γ

Averaged (over time) cross-sectional std
grouped by size

small 0.221 0.499 0.409 1.140 0.144 0.613 0.336 1.405
medium 0.179 0.446 0.352 1.063 0.112 0.524 0.281 1.290

large 0.165 0.411 0.333 0.994 0.142 0.466 0.260 1.245
grouped by volatility

small 0.082 0.352 0.267 0.799 0.182 0.407 0.186 0.949
medium 0.085 0.425 0.271 1.018 0.178 0.503 0.206 1.219

large 0.178 0.550 0.412 1.310 0.204 0.668 0.325 1.670

Averaged (over firms) times-series std
grouped by size

small 0.195 0.471 0.407 1.095 0.175 0.590 0.431 1.332
medium 0.152 0.416 0.324 0.993 0.140 0.511 0.353 1.214

large 0.148 0.389 0.315 0.908 0.133 0.460 0.336 1.124
grouped by volatility

small 0.142 0.368 0.294 0.861 0.131 0.447 0.324 1.042
medium 0.155 0.403 0.324 0.946 0.139 0.490 0.347 1.158

large 0.194 0.503 0.426 1.187 0.177 0.622 0.445 1.467

9.3 Confidence Intervals

We construct 95% construct confidence intervals for each of the firms’ instrumental betas on

a daily base, and report and compare them among three groups (by either size or volatility).

On each trading day we construct the confidence intervals and calculate the proportion of

positive/negative significances among firms in each group. Then we average these (cross-

sectional) proportions over all days within a fixed year, leading to the “averaged proportion

of significance” for each group.

When the groups are formed by size, Table 3 reports the results of 2006, and we find

that results of other years (2007 through 2012) demonstrate similar patterns: (1) All stocks
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have significantly positive instrumental betas loading on the market factor. In fact, most of

the instrumental betas for the market factor are larger than one. (2) There is a substantial

difference in the instrumental betas on the SMB factor between firms of small/medium size

and firms of large size. Only 4.7% of firms of large size have positive significance, but this

proportion is as high as 87% for firms of small size. On the other hand, more than fifty percent

of firms of large size have negative significance, but there are less than one percent of firms

of small size. This shows that the in-firm conditions and characteristics produce a long-run

mechanism making small firms positively exposed and large firms negatively exposed to the

SMB systematic risk. It becomes more interesting when we compare the results with the

proportions of Γ and β. We find that for SMB, the proportion of positive β is 37% for large

firms, and 71% for small firms, while the proportion of negative β is 62% for large firms,

and 28% for small firms. In contrast, these proportions respectively become 51% and 48%

for positive Γ, and 52% for negative Γ, so the difference among firms of large and small sizes

in Γ is much less noticeable. This suggests that the instrumental beta is the main driving

horse to determine the sign of β, while the idiosyncratic beta is more related to beta’s cross-

sectional variations. (3) As the size becomes larger, there is also a decreasing pattern on the

negative significance of the HML betas, though the pattern is not as noticeable as on the

SMB betas.

Table 3: Proportion of significant G of groups by size, 2006

positive significance negative significance
size Mkt HML SMB RMW Mkt HML SMB RMW

small 1 0.261 0.870 0.134 0 0.177 0.004 0.184
medium 1 0.234 0.450 0.162 0 0.215 0.039 0.150

large 1 0.133 0.047 0.154 0 0.229 0.544 0.062

When we group firms by the volatility, however, the pattern demonstrates noticeable

variations over years. The results are given in Table 4. Note that results of 2010 are similar

to 2011, and results in 2007 are similar to 2006. Firms with larger volatility tend to be

more positively exposed to the HML factors than firms with smaller volatility, who are more

negatively exposed to HML. This pattern appears in 2006, 2007, 2010 and 2011, but is

reversed during the crisis period in 2008-2009, and European debt crisis 2012.

We now focus on two individual stocks’ confidence intervals. We take the two firms that

have the highest frequency to be respectively classified in the “large group” and the “small
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Table 4: Proportion of significant G of groups by volatility

positive significance negative significance
volatility Mkt HML SMB RMW Mkt HML SMB RMW

2006
small 1 0.409 0.313 0.158 0 0.055 0.307 0.168

medium 1 0.187 0.473 0.151 0 0.159 0.214 0.153
large 1 0.034 0.583 0.142 0 0.403 0.068 0.075

2008
small 1 0.180 0.320 0.313 0 0.400 0.318 0.049

medium 1 0.378 0.511 0.280 0 0.170 0.178 0.092
large 1 0.644 0.565 0.195 0 0.079 0.090 0.138

2009
small 1 0.234 0.202 0.131 0 0.333 0.387 0.242

medium 1 0.286 0.341 0.152 0 0.296 0.230 0.223
large 1 0.346 0.506 0.184 0 0.198 0.086 0.171

2011
small 1 0.397 0.285 0.521 0 0.164 0.295 0.050

medium 1 0.284 0.340 0.144 0 0.315 0.273 0.232
large 1 0.175 0.278 0.017 0 0.445 0.224 0.621

2012
small 1 0.234 0.202 0.131 0 0.333 0.387 0.242

medium 1 0.286 0.341 0.152 0 0.296 0.230 0.223
large 1 0.346 0.506 0.184 0 0.198 0.086 0.171

group” by size, and call them “large” and “small”. Figure 3 plots the estimated instrumental

betas and the associated confidence intervals of the two firms over time. As for the beta

associated with the market factor, while both are positively significant, the instrumental

betas of the firm with smaller size are constantly larger than one, making it more sensitive

to the changes of market risks than the firm with the larger size. In addition, the pattern

shown by the instrumental beta of the SMB factor is similar to Table 3: in the long run,

the smaller firm is positively exposed and the larger firm is negatively exposed to the SMB

systematic risk.

We now examine the dependence of the instrumental beta on the characteristics more

explicitly. First, we consider the linear specification git = x′itθt, and test the relevance of

each of the four instruments xit = (size, value, momentum and volatility). We construct the

bootstrap confidence intervals for each component of the estimated θt on each trading day,
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Figure 3: Two individual stocks’ confidence intervals: the two firms with the largest and smallest sizes in
the dataset.

and calculate the proportion of positive (and negative) significance each year. These results

are reported in Table 5. For most of the period, the volatility has a significantly positive

effect on the market factor, the value characteristic has a significantly positive effect on the

HML factor, and the size characteristic has a significantly negative effect on the SMB factor.

These results are consistent with the fitted G functions in Figures 4-7. Also note that size

has insignificant effects on the market beta. We explain this from two aspects: on one hand,

the market beta is mostly affected by the volatility instrument, and once it is conditioned,

the size is no longer significant. On the other hand, we focus on firms that constitute to the

S%P 500 index, whose sizes are relatively large, and are therefore not essential in explaining

the market betas.
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Table 5: Proportion of significant instruments

positive significance negative significance
Instruments Mkt HML SMB RMW Mkt HML SMB RMW

2008
size 0.024 0.036 0.000 0.048 0.000 0.215 0.984 0.128

value 0.008 0.892 0.008 0.048 0.000 0.000 0.219 0.076
momentum 0.004 0.044 0.159 0.315 0.139 0.450 0.187 0.060
volatility 0.534 0.598 0.295 0.092 0.000 0.048 0.040 0.167

2011
size 0.000 0.052 0.000 0.088 0.000 0.139 0.976 0.052

value 0.028 0.984 0.020 0.016 0.000 0.000 0.235 0.211
momentum 0.000 0.032 0.175 0.191 0.008 0.371 0.072 0.064
volatility 0.956 0.004 0.147 0.000 0.000 0.741 0.195 0.821

2012
size 0.000 0.048 0.000 0.155 0.000 0.171 0.920 0.044

value 0.008 0.996 0.016 0.104 0.000 0.000 0.235 0.108
momentum 0.080 0.024 0.100 0.004 0.000 0.355 0.175 0.522
volatility 0.813 0.171 0.458 0.187 0.000 0.155 0.036 0.084

Second, we report the scatter plots of estimated cross-sectional G’s versus cross-sectional

instruments for different Fama-French factors and on four selected days in Figures 4-7 show.

The black solid line is the sieve fitted G function using B-splines with degree 3 (Eilers and

Marx, 1996). The plots show several interesting features. First, by comparing the subplots

in the same column, one can see that the estimated G function is time-varying. Secondly,

the estimated G functions have noticeable nonlinear patterns. As for the specific functions,

for the market factor, there is a small downward slope, which is consistent with our finding

that small-size firm slightly tends to have a G value larger than 1. A stronger downward

slope can be found in the case of the SMB factor. This is also consistent with our finding

that large-size firms are more likely to have negative values for the SMB factor’s G. Figure

5 gives the result with size replaced by value. The second column indicates that small-value

firms tend to have insignificant or negative G values for the HML factor. Figure 6 presents

the result for momentum. One can see an obvious downward slope for the HML factors’ in

July 1, 2008. In fact, this pattern is very persistent during the 2008-2009 crisis. The result

shown in Figure 7 is consistent with our finding that large-volatility stocks are very likely to

have market G values larger than 1. Lastly, all those figures with non-flat G functions are
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consistent with the results in Table 5.
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Figure 4: Different factors’ G versus size at representative days

10 Conclusion

This paper studies a conditional factor model with a large number of assets for high-frequency

data. It has been well known in financial economics that factor betas depend on observed

instruments such as firm specific characteristics and macroeconomic variables, and a key

object of interest is the effect of instruments on the factor betas. One of the key features of our
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Figure 5: Different factors’ G versus value at representative days

model is that we specify the factor betas as functions of time-varying observed instruments

that pick up long-run beta fluctuations, plus a remaining (idiosyncratic) component that

captures high-frequency movements in beta. It is found that the limiting distribution of

the estimated instrument effect on the betas has a discontinuity when the strength of the

idiosyncratic beta is near zero, which makes all the existing inference procedures fails to be

valid and produce misleading results. We provide a uniformly valid inference using a cross-

sectional bootstrap procedure for the effect on the betas of firms’ instruments, and do not

need to pretest to know whether or not the idiosyncratic beta exists, or their strengths. Our

procedure allows both known and estimated factors. In addition, we employ the estimated
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Figure 6: Different factors’ G versus value at representative days

factors to conduct out-of-sample forecast of integrated volatility. Taking into account the

time-varying idiosyncratic beta components is also necessary for the out-of-sample forecast

interval to be uniformly valid.

Because the instrumental beta specification is a function of macroeconomic and firm vari-

ables, it captures long-run movements in beta driven by structural changes in the economic

environment and in firm- or industry-specific conditions. In contrast, because the idiosyn-

cratic beta specification is based on high-frequency returns, it picks up short-run fluctuations

in beta in periods of high market volatility. The two components capture different aspects

of market beta dynamics.
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Figure 7: Different factors’ G versus value at representative days
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