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Abstract 

 

An increasing share of variable renewable energy sources (VREs) basically affects the electricity 

price formation in two ways: (1) The so-called merit order effect tends to lower the base price 

level and challenges conventional plants to remain profitable. (2) Due to the variable nature of 

renewable energy infeed, the shortterm demand for flexibility increases and changes the volatility 

of electricity prices. The more variable prices offer opportunities for controllable electricity 

producers (CEPs) to provide up- and down-ramping flexibility to increase their revenues. In 

contrast, the VREs with high degrees of simultaneity tend to pay for this flexibility in the electricity 

spot market to reduce their imbalance exposure. The intraday market (IDM) for electricity has 

gained importance for the market value of different technologies lately and continues to expand 

due to the increasing efforts to balance within-day deviation from day-ahead schedules. This 

article presents a combination and extension of two existing models to capture the peculiarities 

of the intraday price formation and to analyse the impact of the IDM on the market value of VREs 

and CEPs. Doing so, the paper suggests an adjustment of the classical market value factor metric 

and to go beyond classical day-ahead market (DAM) information. The article shows that market 

value factors (MVFs) can be stabilized if the IDM delivers ‘marketbased’ price signals for the costs 

of flexibility, that are sufficient to activate flexibilities prior to the usually more expensive 

imbalance mechanism (IBM). Yet, the MVFs from single VRE technologies will worsen if their 

market share is high enough to outweigh forecast errors from other technologies and if they 

become a permanent price maker in the IDM and the IBM. 

 

Keywords : intraday markets, imbalance mechanism, market value, renewable energy 

JEL-Classification : Q47, N74 

  

Christian Pape 

Ph. D. Student, House of Energy Markets and Finance 

and Commercial Analyst, innogy SE 

Gildehofst. 1, 45127 Essen  

+49-(0)201 / 1214 – 373 

Christian.pape@uni-due.de or christian.pape@innogy.com 

The authors are solely responsible for the contents which do not necessarily represent the opinion of the House of Energy Markets 

and Finance.   



 

 

1 Introduction 

The emission trading system (EU ETS) and the support of renewable energy sources (RES) are two main 

political instruments in Europe to fight global warming. Both instruments influence the investment behaviour 

and trading activities of market participants and therefore impact the electricity price volatilities and the 

demand for flexibility in the sector. Hereby, flexibility is understood as the up- and down-ramping from 

production or demand units to balance short-term (within-day) deviations from the scheduled production, e.g. 

due to unforeseen increase or decrease of RES production. The monetary value of this flexibility materializes 

in the day-ahead market (DAM) and even more in the intraday market (IDM), because the value of electricity 

depends on the point in time when it is produced and the IDM gate closure is significantly closer to the start 

of delivery compared to the DAM gate closure. Hereby, the effects from the IDM is different for variable 

renewable energy sources (VREs)1 generally demanding flexibility from the system and Controllable 

Electricity Production (CEP) providing flexibility to the system. A commonly used metric to analyse the effects 

on revenues from dispatchable (controllable) and non-dispatchable (variable) technologies is the market value 

factor (among other see Lamont, 2008; Hirth, 2013 or Winkler et al., 2016). The measure describes the 

revenues earned by a production technology on the market - not including subsidy payments - relative to the 

base price. Typically, the market value factors (MVFs) are calculated based on day-ahead prices (DAP) and 

include the so-called profile costs, the imbalance spread and grid related costs (see section 2). Yet, the 

increasing importance of flexibilities and the development of intraday trading raises the question if the DAP 

remains an adequate reference to quantify profile and imbalance costs in renewable-dominated energy systems. 

Without intraday trading, the quantity differences between the day-ahead position and the actual production 

will be spilled to the imbalance mechanism (IBM). By use of sufficiently liquid IDM, market participants can 

lower their imbalance exposure and (especially VREs) will be less obliged to rely on the IBM. The latter is 

important because the IBM is prone to inefficiencies resulting from market power or penalties imposed (among 

others see Weber, 2010 or Bueno-Lorenzo et al., 2013). Due to their dependency on uncertain weather 

conditions, VREs are expected to face additional (flexibility) costs in the IDM. However, by trading intraday, 

the VREs will more likely reduce their imbalance exposure compared to the situation without further 

adjustments after the DAM. In contrast, the IDM delivers revenue potentials for CEP, e.g. by allowing them 

to sell additional quantities or to buy back quantities after the day-ahead gate closure. In this context, this 

article contributes to the literature by analysing the impact from the IDM on MVFs going beyond the classical 

DAM and quantifying the costs of flexibility and their impact on the market value of CEP and VRE assets 

more rigorously. Doing so, the article suggests to adjust the market value factor metric and to consider self-

curtailment during times of oversupply in the system. The methodological contribution is twofold: First, the 

article combines and further develops a parsimonious fundamental model to accurately model the price level 

(Kallabis et al., 2016) and an approach to account for the peculiarities of the IDM (Pape et al., 2016), i.e. 

notably reflecting shorter lead times and inflexibilities in the conventional power production. The combined 

model is extended to account for system adaptions during times of negative prices and to describe the interplay 

between intraday and imbalance uncertainties (forecast errors of load, wind, solar and power plant outages) 

and imbalance risk exposure (costs). In course of the model extension, an econometric approach is applied to 

quantify the shortening of the intraday supply stack based on actual intraday prices (IDPs). Second, the article 

contributes to the - as of late - scarce literature on European IDMs for electricity, by enlarging the insights 

                                                        
1 RES include all Renewable sources, whereas VRE is used for the non-dispatchable RES, i.e. wind and Solar 
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about the IDM and about the interaction with the IBM. The modelling results shed light on the longer term 

impacts of the IDM on MVFs. To the best of the author’s knowledge, the latter effects have not been quantified 

nor structurally been analysed in the literature. The remaining article is structured as follows. Section 2 

explains the market value of flexibility and the relevance of forecast uncertainties. Section 3 describes the 

methodology applied and addresses necessary model extensions whereas section 4 describes the dataset. 

Section 5 presents the results from the model validation and decomposes the impacts of IDM on the MVFs. 

Section 6 discusses the results and section 7 summarizes the main findings.  

2 The impact of intraday markets on the market value factors 

The market value is defined as the market-based revenue that plant operators can earn. The value factor metric 

calculates the volume-weighted average revenue from a certain technology 𝑖. The resulting measure is referred 

to as the ‘absolute’ market value (MV) (Winkler et al., 2016). The ‘relative’ MV or MVF is expressed in 

percent by comparing the absolute MV to the average base price 𝑆		and is given by: 

 𝑉% =
'(

'	
	
𝑤ℎ𝑒𝑟𝑒	𝑆- =

'.∙0.,2
3
.

0.,2
3
.
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with 𝑔5,% the generation and 𝑆5 the market prices. Thus, the ‘absolute’ MV from a certain technology is 

compared to the average base price, which implicitly assumes a flat and non-variable production profile. 

Commonly in literature and in practice, the reference price to calculate the value factor 𝑉% is the DAP (among 

others Hirth, 2013; Obersteiner and Saguan, 2011; Winkler et al., 2016). Traditionally, the DAP has been the 

reference price in electricity spot markets but the share of VRE and the relevance of the IDM are increasing 

(see Table 13). Hereby, the so-called imbalance spread is not included in (2-1) and would be calculated based 

on the difference between the DAP and the imbalance prices (IBP). As spot markets are generally defined as 

the markets for immediate delivery (cf. Hull, 2011), it seems logical to apply intraday instead of day-ahead 

information in Eq. (2-1) and calculate the imbalance spread based on intraday prices (IDP) and IBP. Though, 

the IDM is a subsequent market to the DAM and the DAM can be used for short term hedging, i.e. the 

scheduling of power plants with longer lead times. Hence, this article suggests to explicitly consider the 

imbalance spread in the MVF and to decompose the MVF as follows 
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The index DA, ID and IB indicate the use of day-ahead, intraday or imbalance information. Eq. (2-2) takes the 

IDP to weight the forecast error or the flexibility provision (g?,@
AB − g?,@

BD). The denominator is the actual 

production.2 As empirically observed and expected for efficient markets, the DAM and IDM market are on 

average free of arbitrage, such that SDA≈SID≈S		. If DA, ID and IB information are applied in Eq. (2-2), Vi
'  is 

labelled Vi
IB. If the denominator in Eq. (2-2) is g?,@

ABN
?  and 𝑔5,%

OP − 𝑔5,%
OQ = 0, Vi

'  is called Vi
ID. If one neglects the 

deviation from the day-ahead schedule by setting 𝑔5,%
OQ − 𝑔5,%

QS = 𝑔5,%
OP − 𝑔5,%

OQ = 0 and uses 𝑔5,%
QST

5  as the 

denominator, Vi
' is labelled Vi

DA. In this case, Vi
DA is equal to Eq. (2-1) based on day-ahead information.3  

                                                        
2 IB quantities are thus not the quantities spilled into the IBM but synonymous to the actually realized production. 
3 As indicated in Kallabis et al. (2016) or Beran et al. (2017) 𝑔5,% is a model output in the kind of fundamental model applied here. 
Thereby one may approximately count the number of times during which the demand falls into a certain demand interval (see section 
3.13). For CEPs 𝑉%

OQ ≤ 𝑉%
OP because the CEPs will probably provide the flexibility and earn additional margins. On the other hand, 

the IB stack is not modeled in the following and IB production for CEPs cannot be calculated. 
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The effects from intraday trading on MVF differ between technology types. While dispatchable assets are 

flexible in the sense that they may react to changes in market prices (flexibility provider) and hence may 

increase their revenues during the intraday trading, VREs are dependent on their respective renewable energy 

source (flexibility demanders), i.e. wind or solar are incentivized to maximize their electricity production if 

prices are not negative (see section 3.2). Figure 1 schematically summarizes the effects on the market value of 

VRE and CEP. Hirth (2013) points out that the market value of renewables is affected by three technology 

properties. First, the production of VRE depends on weather conditions. Due to the restricted potential to store 

electricity, this variability affects their market value. Since VRE infeed leads, other things being unchanged, 

to a decrease in the energy price (‘merit order effect’, among other see Sensfuß et al., 2008), they earn less 

than the base price. The effect of variability is labelled ‘profile costs’, ‘utilization effect’ or ‘capture rate’. 

Second, due to the uncertainty of weather forecasts, the VRE production is uncertain until the delivery of 

electricity. Balancing these forecast errors is costly. Hence, balancing in the IBM and/or IDM reduces the 

MVF for VRE (first two bars on the left of the base price in Figure 1), but the trading in the IDM may increase 

the MVF for flexibility providing technologies (first bar on the right of the base price in Figure 1). Balancing 

energy costs for conventional power plants are related to outages that occur just before delivery. Third, VRE 

sites are usually geographically distant from load centres (e.g. due to better weather conditions or cheaper land) 

and their usage causes hence higher grid costs.4 Apart from cooling water restrictions or heat driven must-run 

demand, conventional power plants do not depend on weather conditions. Therefore, CEPs are not affected by 

profile costs and may be able to sell their flexibility in the IDM.  

 

Figure 1: Different effects on the market value for VREs and CEP 

 

Market participants with access to the IDM have the opportunity to use updated and more accurate forecasts 

during the intraday session to reduce their imbalance quantities or to increase revenues (among others Chaves-

Ávila et al., 2013; Chaves-Ávila and Fernandes, 2015). Additionally, most electricity market designs 

incentivise the use of the IDM to avoid larger quantities in the IBM. In Germany, the IBM is based on a one-

price system and the IBP is bounded by the average IDP depending on the grid situation at a certain point in 

time. This implies that deviations from the day-ahead schedule can - on average - be offset at lower costs in 

the IDM compared to the IBM. The smaller the time span between intraday gate closure and the IBM (delivery) 

is, the higher the chances to decrease the imbalance quantities. On the one hand, the forecast errors from VRE 

assets significantly decrease (in a non-linear form, among others Ahlstrom et al., 2013; Borggrefe and Neuhoff, 

2011; Holttinen et al., 2013; Kühnert, 2016; Larson et al., 2016) with time to delivery due to more accurate 

weather forecasts (Figure 2). On the other hand, if less time until delivery remains, the amount of assets that 

                                                        
4 This is not the case, if distributed generation at a low-voltage level reduces the net power exchange with the high-voltage network 
and if the grid operator pays compensations for so-called embedded benefits. 
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are able to up- or down-ramp their capacity decreases. Up-ramping capacity decreases due to the limitation 

coming from start-up or ramping times of conventional power plants. Down-ramp capabilities decrease due to 

down-ramping times and limited willingness to ramp down, e.g. due to (avoided) start-up costs or high 

minimum stable operation limits from thermal generation assets (Henriot, 2014). The IDM enables to reduce 

the imbalance exposure and assigns market based price signals to the flexibility needed in the system. The 

modelling of forecast errors and inflexibilities generation assets are subject in section 3. 

 
Figure 2: Intraday markets intensify system adaption prior to the IBM, cf. Bjørndal et al. (2016). 

3 Methodology 

The methodology aims to assess the impacts of different fundamental drivers on MVFs based on longer term 

simulation of DAPs and IDPs. The quantification of the impacts of the IDM on the market value of VRE 

furthermore requires an approximation of the imbalance exposure. Therefore, the final model combines and 

extends two existing models. The first part is a parsimonious modelling approach presented by Kallabis et al. 

(2016) which enables to model the electricity price level based on a piecewise linear bid stack. This model is 

extended to cover the peculiarities of the IDM as discussed by Pape et al. (2016). The major advantages of the 

linearized bid stack are, to quantify the shortening of the intraday merit order and to incorporate self-

curtailment activities during times of oversupply. Figure 3 gives an overview about the modelling procedure. 

 
  Figure 3: Overview of modelling steps and procedure 
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3.1 Basic Model  

The modelling approach is based on a piece-wise linear approximation of the bid stack which uses a limited 

number of assumptions compared to so-called parameter-rich models (Weron, 2014). Instead of modelling 

every plant individually, |I| different technology classes i ∈ I are modelled. Thereby, differences in the 

efficiencies within a technology class are incorporated by assuming the heat rate (inverse efficiency) of each 

technology to be a linear function over the installed capacity, with	η@ ∈ η@,Y@Z	η@,Y[\ . Thereby, η@,Y[\	 

corresponds to the most efficient generation plant and η@,Y@Z to the least efficient one (cf. Kallabis et al., 2016). 

Assuming cost-based bidding by the plant operators, the segments b@,? of the bid curve can be determined based 

on the variable costs, which include fuel and emission cost x@ derived based on the emission intensity	e@ and 

heat rate η@ and other variable costs	c@,a?bcd. The bidding quantity equals the total available capacity K@,?a?[f 

adjusted by non-availabilities υ@,? (e.g. maintenance). The bid curve is adjusted to account for must-run 

capacity	from combined heat and power production K@,?,hij. In contrast to Kallabis et al. (2016) and Pape et 

al. (2016), the CHP must-run level is modelled as a linear function of the temperature (see Figure 9 in the 

Appendix). The bidding function describes the relation between capacities and electricity prices and thus 

delivers a bid quantity b@,? at given spot price	S?: 

 𝑏%,5 𝑆5 	=

	0	 , 𝑆5 < 𝑐%,n%o

𝐾%,5 ∙
'.<q2,r2s

q2,rtu<q2,r2s
	 , 𝑐%,n%o < 𝑆5 < 𝑐%,nvw

𝐾%,5 , 𝑆5 > 𝑐%,nvw	

, with	𝐾%,5 = 𝐾%,5y5vz ∙ υ%,5 − 𝐾%,5,{|} (3-1) 

As defined in Eq. (3-2), the demand for electricity,	L? is reduced by the variable renewable production of 

wind	W? and solar So? with zero variable generation costs. Due to the modelling of the must-run generation 

from CHP, their capacity K@,?,hij is subtracted as well. The net electricity exports are added to the domestic 

electricity demand. The foreign trade balance (FTB?) is determined using a regression model (section 5.1). 

 	𝐷5 =	𝐿5 −𝑊5 − 𝑆𝑜5 + 𝐹𝑇𝐵5 − 𝐾%,5,{|}
O

 (3-2) 

An increasing number of very low or negative residual demand levels due to an increasing share of RES can 

trigger curtailment activities from renewable technologies or from must-run assets. Therefore, the model from 

Kallabis et al. (2016) is extended by introducing additional intervals to i ∈ I in Eq. (3-1) such that the adjusted 

bid stack covers	j ∈ J intervals. To implement potential curtailment from actively managed RES, one assumes 

curtailment thresholds at c�,Y@Z < 0 and c�,Y[\ = 0.5 The rationale is that subsidized renewable assets will not 

produce at prices below the negative of the subsidy payment. On the other hand, assets will drop out of the 

subsidy scheme in the next years and then do not have any incentive to produce at negative prices. The range 

for the self-curtailment of RES hence represents heterogeneity in support levels and risk aversion among 

market participants, e.g. windfarms operating with or without subsidy. The conventional must-run capacities 

have delivery obligations. Yet, negative electricity prices can provide economic incentives to reduce their 

production. The opportunity costs of providing heat through a heat-boiler can describe the curtailment 

threshold for heat driven must-run CHP. The curtailment intervals are bounded by the RES infeed and the 

must-run capacity, such that K@,? for those interval equals to W? and K�,?,hij�∈A , respectively.  

                                                        
5 If 𝑐�,nvw ≥ 	0, a start of curtailment at positive prices is assumed and may reflect risk aversion due to IBP risks.  
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Pape et al. (2016) have shown that factors beyond pure fundamentals influence the spot price formation, in 

particular mark-ups during scarcity events or due to (avoided) start-up costs. Therefore, the regression model 

in Eq. (3-3) is applied to increase the accuracy for out-of-sample DAP predictions.  

 
𝑆5
QS =	𝑐� + 𝑐� ∙ 𝑆5

QS,��o�
+ 𝑐� ∙ 𝑅𝑎𝑚𝑝5	

QS,��
+ 𝑐� ∙ 𝑅𝑎𝑚𝑝5

QS,Qy�o + 𝑐� ∙ 𝐿𝑆𝑅zy�,5
QS +

𝑐� ∙ 𝐿𝑆𝑅 %0 ,5
QS +	𝑐¡ ∙ 𝑆5<�

QS,��o�
+ 𝜔5  

(3-3) 

S?
BD,£¤Z¥

	is the fundamental price estimate, cZ with n = (1,..,7) are the regression coefficients and ω?	is an 

independently and identically distributed error term. The ramp-variables describe (avoided) startup-costs, the 

LSR variables (Load-Supply-Ratio) indicate market states with scarcities and the autoregressive component 

covers trading behavior. More information is found in Pape et al. (2016). 

3.2 Intraday peculiarities and forecast uncertainties 

The model defined in section 3.1 could be evaluated using intraday information, but the IDM is a subsequent 

market to the DAM and shows peculiarities. From a fundamental perspective, one expects that the bid curve 

in the IDM is steeper due to shorter lead times and inflexibilities and that the bid curve differs between up-

ramping and down-ramping. In order to determine the up- and down-ramping potential (operating and non-

operating) for the IDM, the marginal plant at the day-ahead gate closure is identified. Given the piecewise-

linearized bid stack, the marginal plant is a point k? on a linearized segment of the bidding function b?
	 𝑆5 . 

The bidding function b?
	  is thereby defined as b? S? = b�,?

®
�¯� 𝑆5 . The marginal plant k? can be interpreted 

as an additional interval k? with zero capacity within the range spanned by the intervals j ∈ [1, … , J]. In the 

IDM, the bid stack is modified taking k? as fix point to calculate the aggregated lower (down-ramp) part of the 

bid stack bt
down	 and the upper (up-ramp) part of the bid stack bt

up	 based on Eq. (3-4) and (3-5).  

 𝑏5
�y�o	 𝑆5 = 𝐷5 − 𝑏�,5

	 𝑆5
¹.<�

�¯�   (3-4) 

 𝑏5
��	

𝑆5 = 𝑏�,5
	 𝑆5

º
�¯¹.:�

  (3-5) 

The lower part of the bid stack bt
down	 consists of all capacities with 𝑗 < 𝑘5 that are online (running) before the 

intraday bidding to meet they day-ahead demand 𝐷5
QS. The remaining capacity is offline and constitutes the 

upper part of the bid stack b?
��
. The shortening of the intraday bid stack 𝑏5

OQ may then be written as 

 
𝑏5
OQ 𝑆5

OQ|𝑆5
QS = 𝐷5

QS − b?
�y�o	 𝑆5

OQ|𝑆5
QS ∙ 1 − 𝑠�y�o

'.
;8¾'.

89

+ 𝐷5
QS + b?

��	
𝑆5
OQ|𝑆5

QS ∙ 1 − 𝑠��
'.
;8¿'.

89

= 𝐷5
OQ . 

(3-6) 

As k? depends on the DAP, the intraday bid stacks b?
�y�o	 and b?

��	 are expressed conditional on the DAP 

	. |𝑆5
QS  in Eq. (3-6). The factors s¤Á and s¥aÂZ adjust the intraday bid stack to reflect inflexibilities of thermal 

power plants and other effects in the IDM. In contrast to Pape et al. (2016), the factors s¤Á and s¥aÂZ adjust 

the linearized segments and not absolute capacities per power plant. By assuming that the market price contains 

most information about the supply and demand situation in the system, one can use observed IDPs to estimate 

the shortening of the intraday supply stack. Eq. (3-6) describes the functional relation of bidding capacities 

depending on the IDP. A modified version of this bidding stack may be used to determine the fundamentally 

expected intraday residual demand (produced from conventional power plants) as follows: Dt
ID,fund=bt

ID* St
ID . 
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Hereby, the shortening factors s¤Á and s¥aÂZ are set to zero to determine a Dt
ID,fund that reflects the residual 

demand that would correspond to the IDP without shortening, see Eq. (3-7). 

𝐷5
OQ,��o�

= bt
ID* St

ID = 𝐷5
QS − b?

�y�o	 𝑆5
OQ|𝑆5

QS '.
;8¾'.

89
+ 𝐷5

QS + b?
��	

𝑆5
OQ|𝑆5

QS '.
;8¿'.

89

  (3-7) 

Dt
ID,fund may be determined based on the actual DAP (St

DA) or based on a DAP estimated from an application 

of the fundamental model to (estimated) day-ahead demand. This estimated DAP is labelled St
DA. For forecasts 

of future DAPs and IDPs, St
DA is not given and thus one uses of St

DA for the estimation of s¤Á and s¥aÂZ. For 

the estimation, one then compares the fundamentally expected residual demand to the actual residual demand. 

As the difference is related to the forecast error, a closer look at the intraday forecast error FE?
AB,?a? and its 

possible decomposition is required.   

 

The forecast error	FE?
AB,?a? determines whether up- or down-ramping is needed in the IDM. The smaller the 

time to delivery gets, the more certain the actual demand and production (see Figure 2). Thus, the highest 

forecast error is expected between the day-ahead position and the actual production. In absence of an IDM, the 

difference between the day-ahead demand D?
BD and the actual (realized) demand D?

AÇ would determine the 

position in the IBM (FE?
BD,?a?

= D?
AÇ − D?

BD). Actually, the IDM exists and the forecast error given by D?
AB −

D?
BD can be traded intraday. Only the forecast error that occurs after the intraday gate closure will be balanced 

in the IBM (FE?
AÇ,?a?

= D?
AÇ − D?

AB). The relation between the overall forecast error, the intraday forecast error  

FE?
AB,?a? and the imbalance forecast error FE?

AÇ,?a? may be written as follows: 

 𝐹𝐸5
5y5 = 𝐹𝐸5

OQ,5y5 + 𝐹𝐸5
OP,5y5	 (3-8) 

The share of the forecast error that is traded in the IDM is expected to be higher if the time span between 

intraday gate closure and delivery gets smaller and/or if more market participants actively trade their positions 

intraday. From a fundamental perspective, each factor in Eq. (3-2) faces uncertainty and has its own forecast 

error. In practice, not all of the individual errors are observable for the system or official data is not available. 

In particular, the components 𝐹𝐸5
OQ,5y5and 𝐹𝐸5

OP,5y5 are not separable based on publicly available data. 

Therefore, the focus in the following is set on an analysis and decomposition of the total day-ahead forecast 

error in wind 𝐹𝐸5
É, solar 𝐹𝐸5

'y, capacity 𝐹𝐸5
{v� and load 𝐹𝐸5

Ê forecast errors, see Eq. (3-9). 

 𝐹𝐸5
5y5 = 𝐹𝐸5

5y5,yËÌ + 𝐹𝐸5
Ê + 𝜖5	𝑤𝑖𝑡ℎ	𝐹𝐸5

5y5,yËÌ = 𝐹𝐸5
É + 𝐹𝐸5

'y + 𝐹𝐸5
{v� (3-9) 

Hereby, the forecast error is decomposed in an observable part 𝐹𝐸5
5y5,yËÌ, the not (well) observable load 

forecast error FEt
L and a stochastic component 𝜖5 which is different from Pape et al. (2016). The load forecast 

error FEt
L is not (well) observable but is subject of various research. Among others Taylor and McSharry (2007) 

or Hahn et al. (2009) state a RMSE for the load forecast errors around 1.9 to 2.7% of the expected load level. 

The observable part is further decomposed according to the sources of deviations: The forecast error of VREs 

(FE?
Ï and FE?

Ða) can be estimated based on historical day-ahead forecast and actual production data provided 

by the transmission system operators (TSOs). Prima facie the VRE errors (wind and solar) are unbiased and 

normally distributed FE?
Ï~N 0, σÉ

�  and FE?
Ða~N 0, σÐa

�  with variance σÏ
�  and	σÐa

�  (possible correlation is 

investigated in section 5.3.1). The forecast error related to outages FEt
Cap leads to additional demand in the 

IDM and is determined within the model based on carefully evaluated availability factors (υi,t) for the DAM 

and IDM. To quantify FE?
AB,h[Á, one starts to solve the intraday model based on actual DAP and sets s¥aÂZ 
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and s¤Á to zero. In this way, one compares the available intraday capacities with the expected day-ahead 

availabilities. FE?
AB,h[Á

: = D?
BD − bAB S?

BD :
 delivers the forecast error related to outages and uses the 

underlying assumption that additional supply from thermal power plants is unlikely to be activated during the 

intraday session if they have not been scheduled day-ahead. Strictly positive values ensure that capacity only 

fails if it exists. Outages after the day-ahead gate closure represent a shortening of the lower part of the bid 

stack b?
�y�o	and are modelled explicitly (cf. section 3.1). For the upper part of the bid stack b?

��	availabilities 

can de- or increase, but increases are unlikely to happen, due to the decreasing time to delivery. After having 

defined Dt
ID,fund and FEt

ID,tot one can continue and introduce 𝜙5
	  as the difference between fundamental and 

actual residual demand in the IDM Dt
ID, whereby Dt

ID= 	Dt
DA+FEt

ID,tot  and then 𝜙5
	  is given by Eq. (3-10) 

 𝜙5 = 𝐷5
OQ,��o�

− 𝐷5
OQ = 𝑏5

OQ∗ 𝑆5
OQ|𝑆5

QS	 − 𝐷5
OQ − 𝛾5. (3-10) 

bt
ID* in Eq. (3-10) describes the unadjusted intraday supply stack with s¤Á = s¥aÂZ = 0 as used in Eq. (3-7) to 

determine Dt
ID,fund. Dt

ID is an observable proxy to the residual demand traded in the intraday market. Here the 

actual residual demand is taken and any difference related to 𝐹𝐸5
OP,5y5 is included in the error term 𝛾5. So this 

equation allows to determine an observable proxy to the difference between the residual load without 

shortening and the actually observed residual load. Applying the definitions of Eqs. (3-6) and (3-7) one gets:  

 𝜙5 = −𝑠�y�o ∙ b?
�y�o	 𝑆5

OQ|𝑆5
QS

'.
;8¾'.

89

+ 𝑠�� ∙ b?
��	

𝑆5
OQ|𝑆5

QS
'.
;8¿'.

89

 (3-11) 

By combining Eqs. (3-10) and (3-11) one can estimate the shortening factors based on the supply stacks b?
�y�o	 

and b?
��	
. If one assumes, that the error term, which is included here in  Eq. (3-10) is independent of the 

observed respectively constructed variables, OLS delivers unbiased estimates of s¤Á and s¥aÂZ. 

 

Among others, Just and Weber (2015) highlight the challenge of modelling the IBM due to a possible 

disconnect between spot market, reserve capacity market and the IBM. Thus, a sophisticated model for 

imbalance prices and quantities is out of the scope of this article. However, to understand the impacts of IDM 

on the market value of VRE, the interaction with the IBM has to be acknowledged (Hirth, 2013; Neuhoff et 

al., 2013; Weber, 2010). The IBP formation is non-linear and potentially asymmetric. The main driver for the 

IBM outcome is the forecast error FE?
AÇ,?a? as it determines if additional up- or down ramping (reserve) capacity 

is needed. In contrast to Just and Weber (2015), a simplified linear formulation for the IBP	S?
AÇ is used  

 𝑆5
OP − 𝑆5

OQ,��o�
= ν� ∙ 𝐹𝐸5

OP,5y5 :
+ ν� ∙ 𝐹𝐸5

OP,5y5 <
+ 𝜖5

OP. (3-12) 

Eq. (3-12) accounts for potentially asymmetric dependencies in the imbalance price formation if up- or down 

ramping is required.6 The forecast error for the individual VRE is given by Eq. (3-9) and Eq. (3-8). 

                                                        
6 In contrast to Just and Weber (2015), we do not use quarter-hourly data but model the link between the average hourly IB error and 
the corresponding average IBP (ReBAP: standardized price for balance energy). For hourly values no discontinuity in the IBP for 
decremental and incremental balancing demand is observed (cf. Figure 7 in the Appendix). Instead of Eq. (3-12), a specification 

similar to Just and Weber (2015) would be 𝑆5
OP∗ = νÚ,� ∙ −𝟙{ÝÞ.

;=,.ß.
¾Ú	}

+ ν� ∙ 𝐹𝐸5
OP,5y5 :

+ νÚ,� ∙ 𝟙{ÝÞ.
;=,.ß.

áÚ	}
+ ν� ∙ 𝐹𝐸5

OP,5y5 <
	+

𝑆5
OQ,��o�

. But here the coefficients for νÚ,� and νÚ,� are not significant when estimated with data from 2012 until 2015. 
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4 Data  

The dataset for the estimation and model validation covers the years 2012 until 2015. The reference for the 

intraday model is the weighted average IDP during the last three hours before delivery (ID3 index as defined 

by the EPEX spot).7 The base scenario for the longer term forecast is mostly aligned on the scenario B from 

the 2016 grid development plan (NEP) for 2030 (50 Hertz Transmission GmbH et al., 2017). This scenario 

assumes a medium speed of transformation towards 100% RES and a medium intensity of innovations. Hereby, 

the VRE additions are based on the corridors defined in § 3 EEG 2017 (German renewable energy Act). The 

solar capacity additions are reduced from a level of 52 GW onwards due to the flexible cap (‘atmender 

Förderdeckel’) which equals roughly 10% of the electricity production in the base case. The main drivers for 

RES addition are wind onshore and offshore. EU-ETS prices are assumed to increase and are accompanied by 

other actions to support RES. Table 1 summarizes the data sources and the method to determine expectations. 

Table 2 compiles the historical values and the inputs for Base Case 2030. 

 

The regression model for the 𝐹𝑇𝐵5
	  is slightly adjusted compared to Kallabis et al. (2016). On the one hand, 

the production from wind onshore and offshore sites is expected to influence the cross-border trades 

differently. All offshore facilities feed into the grid in the northern part of Germany whereas onshore is more 

dispersed across the country. On the other hand, the regressor for the available nuclear capacity is combined 

with the available lignite capacity due to the nuclear phase-out in Germany after 2022. Additionally, two 

dummies are designed to describe the typical plant behaviour. In line with Karakatsani and Bunn (2008), the 

intuition is that power plants ramp-up in the morning for the morning peak and tend to stay online to benefit 

from the evening peak. Therefore, the super peak dummy includes the hours from 9 am to 10 am and 5pm to 

8pm on weekdays and the sun peak dummy covers hours from 11 am to 4 pm.8 The estimates for the FTB 

regression can be found in Table 3. 

 

 
𝐹𝑇𝐵5

	 =	𝛼Ú + 𝛼�𝐿5 + 𝛼�𝑊5
ãoÌ yäå + 𝛼�𝑊5

ã��Ì yäå
+ 𝛼�𝑃5 + 𝛼�(𝐾z%0o%5å,5

+ 𝐾o�qzåvä,5) + 𝛼�𝑆𝑢𝑝𝑒𝑟𝑝𝑒𝑎𝑘5 + 𝛼¡𝑆𝑢𝑛𝑝𝑒𝑎𝑘5 
(4-1) 

 

The lower curtailment threshold for actively managed wind assets is set to -49 EUR/MWh implying an 

assumed average subsidy payment at 49 EUR/MWh, i.e. if the electricity price would decrease to -49.5 

EUR/MWh and the subsidy payment would be at 49 EUR/MWh, subsidized assets would lose -0.5 EUR/MWh 

and are incentivized to curtail their production. The upper curtailment threshold is at 0 EUR/MWh. The 

resulting linear interval reflects heterogeneous risk aversion against negative prices of subsidy-backed and 

merchant wind generation.9 The curtailment thresholds (𝑐�,Y@Z and 𝑐�,Y[\) for the must-run CHP are set to -50 

and -100 EUR/MWh reflecting opportunity costs for the use of a heat boiler to deliver heat and/or contractual 

penalties if no heat is delivered to the counterparty. 

                                                        
7 Due to the continuous nature of the IDM, more than one IDP exists in Germany. The ID3 index represents the latest information 
before delivery and is less sensitive to outliers than last, high or low prices. 
8 In contrast to Kallabis et al. (2016), the FTB predictions are modelled endogenously. Therefore, the exchange flows are restricted to 
the net transfer capacity (NTC) values reported in the NEP. Across all transmission lines, electricity exports from Germany are 
restricted to -32’101 MW and imports to 36’100 MW. Due to the change to flow-based market coupling in CWE, a sensitivity analysis 
is done for the FTB to check the robustness of the modelling approach. 
9 To incentivize self-curtailment of subsidy-backed assets in times of negative prices in Germany, no subsidy is paid in times of six or 
more consecutive hours of negative prices (cf. § 51 EEG: German Renewable Energy Act). The effects on the cash flow of a wind farm 
without curtailment is shown in the appendix, Figure 8 
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Table 1: Data sources and methods used for the base case expectations 

Data Source Specification Expectations 

Load entsoe.eu Hourly load values Adjusted historical Profile 

Demand iea.org/statistics Energy Supplied netzentwicklungsplan.de  

Electricity Price energate.de Phelix Futures Base netzentwicklungplan.de 

Imbalance Price tennettso.de ReBAP Regression analysis 

Coal Price ditto API#2 (CIF ARA) ditto or last quoted product 

CO2 ditto EU Allowances (EUA) ditto 

Gas price ditto Gas-TTF Ditto 

Wind and solar eex-transparency.com Ex-ante and ex-post 

production 

Standardized Profiles from Öko Institut and 

ForWind GmbH (2016) calibrated to full load 

hours based on netzentwicklungplan.de10 

Unavailability ditto Non-usability Extrapolation (see Kallabis et al., 2016) 

Cross Border 

Flows 

transparency.entsoe.eu Commercial Schedule Regression analysis and NEP NTCs (cf. p. 98) 

as upper and lower limits  

Capacities BNetzA.de Production capacities netzentwicklungsplan.de 

CHP production Ditto Electricity production Similar to Kallabis et al. (2016) 

 

 

Table 2: Historical values and input assumptions basically representing the NEP Scenario B and C for 2030 
(*Mean of the ID3 index based on own calculations 2012, 2013, 2014) 

 
 

                                                        
10 Sensitivity analysis based on historical profiles from 2015 deliver no significant changes in the results. 

Information Actual Actual Actual Actual Base Altern.

Year 2012 2013 2014 2015 2030 2030 Min_eta Max_eta
c_other

€/MWh
Emission

Coal Price € /MWh 10.5 8.8 8.1 7.3 12.0 11.6

Gas Price € /MWh 27.4 29.3 23.5 22.2 32.0 31.0

EUA € /t 7.7 4.6 6.1 7.7 22.0 28.0

Demand TWh 572 565 546 567 540 530

FTB TWh -20.5 -34.3 -35.6 -55.5 - -

Wind (onshore) TWh 50.7 51.7 57.4 88.3 82.5 68.3

Wind (offshore) TWh 0.5 0.7 1.1 8.0 55.0 45.5

Solar TWh 26.4 31.0 36.0 38.4 54.0 52.4

Biomass GW 5.6 6.4 6.8 6.8 7.4 7.4 - - -     -

Gas (CC) GW 21.7 20.8 23.0 23.0 20.8 20.2 40% 60% 1.2     

Coal GW 26.2 25.6 25.5 25.5 18.3 14.7 30% 46% 2.5     0.34

Lignite GW 20.5 21.5 21.3 21.3 10.3 9.4 29% 43% 2.0     0.4

Miscellaneous GW 4.0 4.8 4.3 4.3 3.5 3.3 - - - -

Nuclear GW 12.1 12.1 12.1 12.1 0.0 0.0 33% 36% 0.5     -

Gas (OG) GW 9.5 9.1 10.1 10.1 9.0 8.8 25% 36% 1.2     0.2

Oil GW 3.9 4.1 3.8 3.8 1.0 1.1 24% 44% 1.2     0.26

PSPH, RRH GW 10.8 11.0 10.7 10.7 16.4 16.2 - - - -

Base Day-ahead €/MWh 42.6 37.8 32.8 31.6 - -

Base Intraday* €/MWh 43.9 38.4 33.0 31.6 - -
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Table 3: Estimation results for the FTB regression based on data 2015 

𝜶𝟎 Intercept 16'161.38*** R-squared 0.60 

𝜶𝟏 demand [MW] 0.04*** Adjusted R-squared 0.60 

𝜶𝟐 wind Onshore [MW] -0.18*** S.D. dependent var 2742.05 

𝜶𝟑 wind Offshore [MW] -0.27*** Observations (2015 only, due wind offshore data) 8753 

𝜶𝟒 solar [MW] -0.23*** Durbin-Watson statistic  0.18 

𝜶𝟓 available base plants 
[%] 

-0.81*** Significances are computed using standard errors obtained 
through the Newey-West procedure. Significances at the 0.01 
level are labeled with ***, at the 0.05 level with **and at 0.1 
level with *.  

𝜶𝟔 super peak 781.18*** 

𝜶𝟕 sun peak -36.97*** 

5 Results 

In section 5.1, the results of the econometric estimation is presented. Then, the modelling equations for 

electricity prices and MVFs are validated using data from the period 2012 to 2015 (cf. section 5.2). Finally the 

results on the future development of  MVFs and the main driving forces are presented in section 5.3. 

5.1 Estimation  

Due to better data availability and an increasing maturity of the IDM, the years 2014 and 2015 are used to 

determine the DAP regression results, the forecast errors and to evaluate the shortening factors of the ID model. 

Table 4 summarizes the estimation results for the DAP regression model which are in line with the results 

obtained for earlier years in Pape et al. (2016).  

 

Table 4: Estimation results from the multiple regression model to increase the accuracy of DAP forecasts  
𝑐Ú intercept 5.236*** R-squared 0.766 
𝑐� fundamental price 0.868*** Adjusted R-squared 0.766 
𝑐� ramp up 0.346*** F-statistic 9'540.833 
𝑐� ramp down -0.060** Probability (F-statistic) -0.000 
𝑐� LSR low -8.630*** Mean dependent variable 32.195 
𝑐� LSR high 2.219** S.D. dependent variable 11.142 
𝑐� AR -0.006*** Observations 17514 

 Durbin-Watson statistic 0.419 
Significances are computed using standard errors obtained through the Newey-West procedure. Significances at the 0.01 level are labeled 
with ***. For the applications, the ramp-Variables in Eq. (3-3) are calculated based on H = 4 hours (see Pape et al., 2016) 

 

For wind, the RMSE per unit of energy produced ranges between 17% and 19% and for solar between 16% 

and 20%. Recently, entsoe.eu (2017) started to publish load forecast data. The estimates based on ENTSO-E 

data are similar to the RMSEs reported in the literature and range between two and three percent. This 

percentage is significantly lower than the one for VRE since weather uncertainties have less impact on load 

and since the aggregate load is formed from a high number of end-users with heterogeneous error profiles. 

Table 5shows the RMSEs used for the application. Low correlation coefficients and an absence of significance 

in the test for variance inflation for the wind and solar forecast errors support the assumption of uncorrelated 

error distributions.11 

 

 

 

                                                        
11 The variance inflation factor measures the impact of multicollinearity on an OLS regression, i.e. quantifies the increase in the variance 
of the regression coefficient due to collinearity (cf. e.g. Assenmacher (2002)). 
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Table 5: Day-ahead forecast error from load, wind and solar 2012 to 2015 
RMSE in GW load (DA) wind (DA) solar(DA) balancing energy 

2012 2.00 0.96 1.03 0.91 

2013 1.96 1.14 1.27 0.71 

2014 1.91 1.18 1.28 0.50 

2015 1.98 1.75 1.23 0.45 

∅	annual value [GW] 54.2 7.1 3.8 53.3 

RMSE [%	𝐨𝐟	𝐚𝐧𝐧𝐮𝐚𝐥	𝐚𝐯𝐞𝐫𝐚𝐠𝐞] 𝝈𝐋	= 2.5-3.0% 𝝈𝐖	= 17-19% 𝝈𝐒𝐨	= 16-20% 𝝈𝐈𝐁	= 0.9-1.6% 

 

The estimates for the shortening factors as described in section 3.2 are reported in Table 6. The shortening 

factors show the expected signs. Their magnitudes differ for the upper and lower part of the bid stack indicating 

that the willingness and/or ability to provide up- and down ramp flexibilities differ. 

 

Table 6: Estimation results of the reverse-engineering based on observed intraday prices 2012-2015. 
  off-peak peak R-squared 0.470 
𝒔𝒅𝒐𝒘𝒏  0.128*** 0.120*** F-statistic 5'215 
𝒔𝒖𝒑  0.154*** 0.166*** S.D. dependent variable 6'639 

   Observations 17'518 
   Durbin-Watson statistic  0.740    

 

Imbalance prices and quantities in Germany are published with a two months delay in quarter hourly 

granularity. To estimate the parameters from Eq. (3-12), hourly average prices are used and two percent of the 

dataset 2012-2015 (35’062 observations) are considered as outliers to avoid an overestimation of the imbalance 

costs in the long term forecasting.12 The corresponding results are reported in Table 7. 

 

Table 7: Estimation results IBP regression based on data 2012-2015 

𝝂𝟏 impact negative error [MW] 0.045*** R-squared 0.486 

𝝂𝟐 impact positive error [MW] 0.049*** Adjusted R-squared 0.494 

   S.D. dependent var 31.494 

5.2 Validation  

The models by Kallabis et al. (2016) and Pape et al. (2016) are validated based on futures data from 2007 to 

2014 respectively are based on spot market data from 2012 until 2013. The validation period for the model 

developed in this article covers 2012 to 2015. Within the validation period, the DAM model explains 67.3% 

of the price variance. In combination with the DAP regression model, it captures almost another 4.5% reaching 

an overall explained variance of 71.8%. If the intraday model uses the DAP from the day-ahead model 

combined with the DAP-regression approach, the intraday model explains 73.5% of the IDP variance with a 

MAE at 5.88 EUR/MWh for 2012 until 2015. The model estimation is based on data from 2014 until 2015 (cf. 

section 5.1). Therefore, the in-sample results for these years indicate lower MAEs at 4.78 and 5.26 EUR/MWh 

based on the DAP regression approach (Eq.(3-3)). By means of the DAP as starting point for the intraday 

model, the explained variance is at 82.7% and the MAE decreases to 4.51 EUR/MWh for 2012 until 2015 (for 

2014 and 2015 the MAEs are at 3.98 and 4.04 EUR/MWh). Figure 10 and of Figure 11 in the appendix show 

further performance measures evaluated on an hourly scale and the probability density function (pdf) of prices. 

The production amounts are verified based on monthly and yearly data from 2012 to 2015 (see appendix, 

                                                        
12 Outliers are replaced by the value of the 1% (-162.98 EUR/MWh) and 99% (-151.59 EUR/MWh) quantile. 
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Figure 12). An extensive verification of the production quantities for the DA model is found in Beran et al. 

(2017). The resulting MVFs are compared to the historical observations in Figure 4 and in Table 8. Despite its 

parsimonious nature, the model delivers notable results with deviations measured as MAPE for the base price 

< 1%, for the Wind MVF (WMVF) at 1.5 to 2.5% and for the Solar MFV (SMVF) between 4 and 5%.  

 
Figure 4: Comparison of observed and modelled MVF (DA: day ahead Eq. (2-1), ID: including intraday 

market, IB: including imbalance Eq.(2-2)) and base prices (right axis) in EUR/MWh 2012 until 2015. 

 

Table 8: Comparison of observed and modelled MVF 

  Modelled   Observed  

 2012 2013 2014 2015 2012 2013 2014 2015 

𝑽𝒘𝒊𝒏𝒅
𝑫𝑨

  0.911 0.900 0.901 0.867 0.883 0.865 0.870 0.844 

𝑽𝒔𝒐𝒍𝒂𝒓
𝑫𝑨   1.107 1.054 1.012 1.011 1.039 0.986 0.979 0.983 

𝑽𝒘𝒊𝒏𝒅
𝑰𝑫

  0.891 0.861 0.888 0.860 0.891 0.845 0.863 0.830 

𝑽𝒔𝒐𝒍𝒂𝒓
𝑰𝑫   1.101 1.025 0.995 0.990 1.027 0.976 0.970 0.981 

𝑽𝒘𝒊𝒏𝒅
𝑰𝑩

  0.877 0.829 0.847 0.823 0.858 0.822 0.838 0.835 

𝑽𝒔𝒐𝒍𝒂𝒓
𝑰𝑩   1.070 0.987 0.950 0.990 0.978 0.938 0.950 0.974 

Base EUR/MWh 44.5 37.4 32.4 32.0 42.6 37.8 32.8 31.6 

 

It is assumed that 66.67% of the forecast error from each factor in Eq. (3-9) is traded intraday.13 The remaining 

33.33% are spilled to the IBM. Table 9 shows a break-down of the WMVF and the SMWF into their 

components (cf. Figure 1). The profile costs for wind are around 14-16% in 2015. At the same time solar has 

low (< 2%) profile costs. Even though a high share of the forecast error is balanced intraday (66.67% of the 

forecast error), the discount on the MVF for the IBM is larger than the discount due to intraday trading (ID 

uncertainty < IB uncertainty, see Table 9). The counter-factual case in Table 9 assumes that the complete 

forecast error is spilled to the IBM and that no IDM exists. In this case, one neglects a potentially worsening 

effect on IBPs if higher errors are spilled to the IBM ([ID uncertainty + IB uncertainty] < IB uncertainty, 

                                                        
13 The traded amount depends on various factors and varies between markets, technologies, regional deployment and behaviors of 
market participants. Hence, the assumption reflects an average value derived from the literature.  

14



 

 

counter-factual). Even under such conservative assumptions, the VRE pay 0.25 to 1.40 EUR/MWh more if no 

IDM exists; this equals annual costs of circa 92 M EUR (76/83/91/118 M EUR in 2012/2013/2014/2015). 

Based on the model validation, it can be concluded that the model accurately predicts prices, quantities and 

MVF for the German spot market and that it provides a sound basis for longer term modelling.  

 

Table 9: Different effects on the market value for VREs (2012 until 2015) 

MVF Component (Observed MVF) Wind Solar 

 2012 2013 2014 2015 2012 2013 2014 2015 

Profile Costs +0.117 +0.135 +0.130 -0.039 -0.039 +0.014 +0.021 +0.017 

Intraday Uncertainty (𝑽𝒊
𝑰𝑫 − 𝑽𝒊

𝑫𝑨) +0.008 -0.020 -0.007 -0.014 -0.012 -0.009 -0.009 -0.002 

Imbalance Uncertainty IB (𝑽𝒊
𝑰𝑩 − 𝑽𝒊

𝑰𝑫) -0.033 -0.024 -0.025 +0.005 -0.049 -0.038 -0.020 -0.008 

IB Uncertainty, counter-factual (𝑽𝒊
𝑰𝑩 − 𝑽𝒊

𝑫𝑨) -0.042 -0.065 -0.057 -0.021 -0.092 -0.056 -0.048 -0.017 

5.3 Decomposing the impact on market value factors 

5.3.1 Development of variable renewable energies  

The parsimonious nature of the model allows a systematic analysis of different influencing factors in a ceteris 

paribus a framework. The following table summarizes the results for the base case as presented in section 4. 

This base case serves as starting point for further analysis. Additionally, Table 10 shows the impact if different 

shares of the forecast error are balanced in the intraday market. 

 

Table 10: Market value factors (MVF) per VRE technology in 2030 and for different level of IDM usage 

  VRE Prices [EUR/MWh] 

 m* Wind Onshore Offshore Solar Base Peak Offpeak Std. 

Day-Ahead: 𝑽𝒊
𝑫𝑨  0.77 0.75 0.81 0.97 49.11 61.96 41.96 26.27 

2/3 Intraday (1/3 IB) m=2/3 0.67 0.64 0.71 0.87 48.85 61.69 41.71 27.12 

𝑽𝒊
𝑰𝑩 − 𝑽𝒊

𝑫𝑨 with m=2/3  -0.11 -0.11 -0.10 -0.10 -0.26 -0.27 -0.25 0.85 

Full Intraday (No IB) m=1 0.74 0.74 0.74 0.93 48.70 61.48 41.60 27.97 

𝑽𝒊
𝑰𝑩 − 𝑽𝒊

𝑫𝑨 with m=1  -0.03 -0.02 -0.07 -0.04 -0.41 -0.49 -0.36 1.70 

No Intraday (Full IB) m=0 0.04 -0.13 0.29 0.35 - - - - 

𝑽𝒊
𝑰𝑩 − 𝑽𝒊

𝑫𝑨 with m=0  -0.74 -0.88 -0.52 -0.62 - - - - 

*m: Share of the 𝐅𝐄𝐭
𝐭𝐨𝐭 that is traded intraday; 𝐅𝐄𝐭

𝐈𝐃,𝐭𝐨𝐭
= 𝐅𝐄𝐭

𝐭𝐨𝐭 ∙𝐦 and 𝐅𝐄𝐭
𝐈𝐁,𝐭𝐨𝐭

= 𝐅𝐄𝐭
𝐭𝐨𝐭 ∙ (𝟏 −𝐦) 

 

The base price is at circa 49 EUR/MWh and the day-ahead model predicts slightly higher base prices than the 

ID model. At a market share of electricity production around 25% (15% onshore and 10% offshore), the 

WMVF is at 0.77. Onshore wind has the highest market share from the VRE in the base case and this induces 

a circa 6 percentage points lower 𝑉%
QS for onshore compared to offshore wind.14 The SMVF is at circa 0.97 at 

10% market share. Due to short lead times and the efforts of market participants to balance their forecast errors, 

the standard deviation of IDPs is almost 1 EUR/MWh higher than for the DAP.15 The VREs demand flexibility 

in the IDM and IBM and lose around 10-11 percentage points. Hereby one assumes that only two thirds of the 

wind and solar forecast error 𝐹𝐸5
5y5 (m=2/3) are traded in the IDM. If the complete forecast error is traded in 

                                                        
14Another reason for higher MVF of offshore is a higher coefficient in the FTB regression, such that high offshore penetration tends to 
increase exports and stabilizes prices during times of high offshore supply. 
15 Due to computational burden, the sampling for the intraday model was restricted to750 paths. 
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the IDM (m=1), the MVF for the VRE is higher (WMVF 3 and SMVF 4 percentage points) compared to the 

situation where only 66.67% of the forecast error is traded intraday and the remaining 33.33% of the forecast 

error is spilled into the IBM. If we assume on the contrary that the IDM cannot be used (m=0) the SMVF 

drops to 35% and the WMVF to 4%. The onshore WMVF even gets negative, which would imply higher 

balancing costs than market revenues.16  

 

For the base case, the share in electricity production is at 15% for onshore wind and at 10% for offshore wind.17 

The overall base price level decreases under ceteris paribus conditions by circa 20 EUR/MWh if the wind 

market share increases by 30 percentage points (cf. Figure 5 and Figure 13 left). 𝑉%
QS indicates profile costs 

for wind (offshore and onshore) around 20 to 27% for low market shares and around 61 to 66% at high market 

shares (Figure 5, left). With increasing market shares of the electricity production, the wind error tends to drive 

the IDP and IBP, which in turn increases the costs to balance their position after the DAM gate closure. With 

increasing share of wind production, the solar assets can stabilize their revenues in the IDM by gaining from 

high prices during hours in which the wind error causes IDP to move into a beneficial direction for solar based 

production. Solar assets also benefit from the reduced magnitude and number of negative prices due to self-

curtailment of wind assets and must-run production assets. However, the leverage from additional solar 

capacities is limited due to the fact that solar production only impacts electricity prices during day times and 

due to the flexible cap at 52 GW (see Figure 5, right and Figure 13). A doubling of the 8% market share of 

solar production reduces the base price by 5 EUR/MWh. At high markets shares, the profile costs for solar 

may raise up to 35% and the imbalance and intraday costs up to another 10% compared to less than 5% at low 

market shares. A sensitivity analysis with respect to the correlation of forecast errors shows increasing MVFs 

for VRE for negative correlation and vice versa decreasing MVFs in case of positive correlation (cf. Table 11). 

Increasing positive or negative correlation has the highest impact on the SMVF.18  

 
Figure 5: MVF of VEP and base prices for different level of VRE share of production (wind, left; solar, right). 

                                                        
16 m=0 and m=1 may overestimate the impact of no or full ID trading, because the model was calibrated based on m=2/3. 
17 For the sensitivities, one assumes that the proportion from offshore wind increases with increasing wind production. 
18 Figure 13 in the appendix shows the MVFs for CEPs. CEPs are able to realize additional intraday revenues at wind market shares 
above 20%. Although cheaper RES production shifts them to the right in the bid stack, their revenues measured relative to the base 
price increases due to increasing intraday scarcity. In contrast, CEPs do not profit form high market shares of solar production in the 
IDM because solar assets tend to produce at peak times and cannibalize return for CEPs in these hours.  
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Table 11: Analysis of changing correlation between forecasts error of VRE and decreasing load error 

Impact on: Unit Base case Correlation 

   ID  -0.5 -0.25 +0.25 +0.5 

Δ onshore WMVF / 0.64 +0.010  +0.002  -0.007  -0.007  

Δ offshore WMVF / 0.70 +0.010  +0.003  -0.006  -0.008  

Δ SMVF / 0.86 +0.024  +0.011  -0.013  -0.021  

Δ base  EUR/MWh 48.85 -0.010  +0.005  +0.009  -0.152  

Δ peak  EUR/MWh 61.96 -0.002  +0.070  +0.084  -0.176  

Δ offpeak  EUR/MWh 41.96 -0.014  -0.031  -0.033  -0.140  

5.3.2 Development of emission prices and system demand 

The impacts from emission costs on the electricity prices tend to decrease in a decarbonized energy system, 

i.e. if less CO2-emitting production assets set the electricity price. Yet, emission intensive technologies will 

persist in the European energy mix for some decades and VREs would benefit from higher emission prices. 

Like all infra-marginal plants, VREs earn additional carbon rents if the emission price increases and the price-

setting technology is pricing in the additional costs in their bidding (Möst et al., 2016; Pahle et al., 2011; Veith 

et al., 2009)19. In this context, the marginal (price-setting) plant does not profit from higher emission prices 

but has higher costs of production. Since the base price and the absolute market value are increasing, the 

relative MVFs, as shown in Figure 6, only slight improve for VRE. The impact of changing emission prices is 

equally strong for the DAM and IDM, thus high and stable emission prices could incentivize investments in 

assets with low emissions or even market-based RES additions.20 An analysis of changes in other input 

commodity prices is shown in the appendix in Figure 14. The demand in the system is a further sensitive factor 

impacting every hour whereas fuel and emission prices only show an effect if the respective technology is 

setting the price. Higher load increases the base price and has similar impact on the MVF as raising CO2 prices.  

 
Figure 6: MVFs and base prices for different level of CO2 prices (left) and load (right) 

                                                        
19 Müsgens (2016) shows that windfall profits occur at high emission prices and stimulate investments in low emission technologies. 
20 On the empirical interaction effect of RES additions and emission prices see among others Rathmann (2007); Van den Bergh, K. et 
al. (2013); Koch et al. (2014); Kallabis et al. (2016).  
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6 Discussion  

The modelling results underline the aforementioned need for MVF analysis to go beyond pure profile cost 

investigations based on day-ahead information. To accurately model the development of the market value of 

VREs, two aspects are relevant. On the one hand, the imbalance costs have to be reflected in the MVF to assess 

the profitability of VRE. On the other hand, going beyond day-ahead information means to consider intraday 

optimisation potentials to mitigate the imbalance risk exposure in the MVF metric (see section 2). Despite the 

shortening of the intraday bid stack, it is shown that the balancing of forecast errors in the IDM is preferable 

compared to the use of the IBM. VREs - on average - face lower risks if they balance their forecast errors in 

the IDM rather than relying on the IBM and this allows additional revenues for flexibility providers (CEP) 

even if they may face additional costs to activate their flexibility. The model validation for the years 2012 until 

2015 illustrates that the development of the German IDM is one major element why imbalance energy demand 

did not increase, even though increasing amounts of RES have been added to the system (‘German imbalance 

paradox’, cf. Hirth and Ziegenhagen, 2015; Ocker and Ehrhart, 2017), i.e. generation assets with sufficient 

flexibilities are available and prices in the IDM incentivise to deliver this flexibility to the system. The longer-

term development may however differ. Table 12 shows a comprehensive summary of the longer-term impacts.  

 

Table 12: Comprehensive summary of main drivers and impacts on Base prices and MVF 

Driver  Impact of an increase Base 

price 

MVF 

VRE 

MVF 

CEP 

ID specific impact Possible action to 

mitigate risks 

RES 

penetration 

- Replacement of 

conventional capacity in 

the long run 

- Cannibalization  

- -- + 

 

- Simultaneity effect  

- Market ‘dominance’ 

- Diversification  

CO2 price - Changing bid stack  

-windfall profits 

+ + - ” - Regulation of emission 

quantities and/or price or 

consistent RES regulation 

Fuel prices - Steeper bid stack + + ++ - Fuel switch / 

Load - Less oversupply  

- Less negative price risk 

++ °/+ -- - Load shifting or load 

shedding 

- Support of demand side 

management (DSM) 

Flexibility 

(ID)
21

 

Mitigate risk of higher 

RES penetration  

° + + - Stabilizing effect on 

MVF  

- Self-curtailment  

- intraday market design 

 

In line with other literature, this article shows decreasing MVFs of VREs at higher shares of installed 

renewable capacities due to increasing profile costs (sometimes called ‘cannibalization effect’). Over and 

above the latest analyses in the literature, this article has shown that balancing risk can be mitigated by use of 

the IDM. The longer term modelling results lead to the conclusion that the imbalance paradox may disappear 

if the VREs breach a critical threshold for the market share and if system adaptions do not happen 

simultaneously. I.e. in line with Huber et al. (2014), it is expected that the situation for certain VREs worsens 

if they dominate the market. Market dominance means that one technology type has such a high market share 

that its error outweigh the forecast errors of other technologies and that the technology type becomes a 

permanent price-maker in the IDM. While other technologies occasionally benefit from electricity price 

movements in the opposite of their own forecast error position, this is not the case for the dominating VRE 

                                                        
21 The results of an analysis about changes in available flexibility is summarized in the appendix in Table 14, e.g. if no shortening of 
the ID bid stack is considered21. This would imply higher flexibility provision in the IDM. The opposite occurs if the flexibility of the 
windfarms is reduced in the sense that they do not down-ramp during times of negative prices.  
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technology. For the German electricity market, the wind technology is most prone to become the dominant 

VRE technology. Liquid IDM and diversification in terms of (a) technology type, (b) technological 

development, (c) regional deployment or (d) smart operation of RES assets may decrease the simultaneity 

effect of VRE and potentially mitigate the dominance of the forecast error from one technology. 

 

(a) technology type: As highlighted by Gawel et al. (2017), many regulatory frameworks fail to internalize the 

costs associated with the system integration of VREs and a large part of these costs materializes in the MVFs 

of VREs. In this context, technology specific auctions with regulated auction budgets could ensure cost-

efficiency of renewable support and diversification in terms of RES technology types (Kreiss et al., 2017).22 

In case of merchant (subsidy free) RES investments, one would expect that the cheapest technology increases 

its market share. As seen in Europe e. g. for PV or offshore wind investments, an increasing demand for a 

certain technology can trigger cost reduction and accelerate this cycle (Makridis, 2013; Myhr et al., 2014). An 

increasing market share then bears the risk of falling MVFs in the long-run, which again underlines the 

requirement of technological diversification. With rational investors and market-based mechanisms, one would 

expect that risk aversion of investors against decreasing MVFs would lead to increased diversification.23 (b) 

technological development: Another possibility to limit the simultaneity effect of VRE is the technological 

development in the sense that the production profiles differ between generations of technologies, e.g. 

increasing turbine capacities and hub heights impact the generation profiles due to differing power curves and 

wind conditions. Also, so called low-wind-speed turbines are a feasible solution (Hirth and Müller, 2016; 

Wichser and Klink, 2008).24 However, the possible differentiation within one technology is limited compared 

to the choice of different technologies. (c) regional deployment: Profile differentiation can also be achieved 

by regional deployment of VRE assets. The optimal site for a wind farm should not solely be chosen based on 

yield maximization but also based on other possible benefits of the site, e.g. if weather fronts tend to arrive 

earlier. The grid however sets constraints for the regional deployment. The regulator can steer regional 

deployment by influencing grid extension plans.25 (d) smart operation of RES: A smart operation of VREs 

assets can mitigate the MVF risk. As shown in this article, the self-curtailment of VRE production at negative 

prices will influence MVFs. The higher the number and magnitude of negative prices or the higher the 

imbalance risk exposure, the more likely it gets that VREs try to ramp down. In this context, the role of the 

IDM is to enable the trading of flexibilities prior to the IBM by indicating system tightness or oversupply prior 

to IBM. The willingness to balance open positions, in particular from VRE, induces additional revenues for 

actively managed CEP. Higher mark-ups for the provision of this flexibility may then intensify investments in 

CEP assets. Consequently, in markets with high share of VREs, a functioning IDM is important to assure 

system stability, to decrease the imbalance demand and to prevent investments below an optimal level 

(‘missing money’). These findings are in line with e.g. Weber (2010) or Selasinsky (2016). 

                                                        
22 In technology-neutral renewable auctions, the regulatory authorities can force or intensify technological differentiation, e.g. by 
defining correction factors that serve as a mark-up on unfavourable technology bid prices. Technology-specific auction design may 
more directly support diversification. This argument only holds if the remuneration scheme leaves the MVF risk to the investors.  
23 Based on this perspective, a renewable support system that does not cover the profile cost risk seems beneficial. An exemplary design 
choice is a Contract for Difference (CfD) definition as implemented in the UK which sets an intermittent day-ahead index as reference. 
In contrast, the German regulation uses a technology specific benchmark for each RES type and includes a compensation for the profile 
cost development in the remuneration. 
24 The idea of low-wind-speed turbines is to start production earlier than other wind assets and therefore to sell electricity at times 
where prices are not plunging due to the merit-order effect. 
25 E.g. for the first German onshore auction, so-called ‘grid extensions areas’ were defined by the Regulatory Authority (BNetzA) to 
limit the maximum capacity additions in certain region with high wind penetration 
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7 Conclusion 

This article presents a methodology to investigate MVFs going beyond classical DA-based approaches. The 

combination of two existing modelling approaches enables the analysis of fundamental impacts of the IDM on 

MVFs and enriches the MVF analysis for VREs presented in other literature (among others Green and 

Vasilakos, 2011; Hirth, 2013; Winkler et al., 2016). Hereby, the combined model increases the scope to 

quantify and mitigate the imbalance risk exposure of VRE by use of the IDM. Yet, the model is limited to a 

domestic view with a simplified exchange flow approximation and a simplified forecast error modelling. 

Therefore, the consideration of neighboring countries with direct interconnections or more sophisticated 

forecast error modelling (joint errors of VRE or intertemporal effects) are of interest for future research. Also, 

the parsimonious nature of the modelling is predestined for analysing data with higher granularity, i.e. quarter 

hourly contracts. As the settlement period in the German IBM covers 15 minutes, the effects, especially on the 

IBP regression model, may be a focus of future research. 

 

Generally, the research on the interaction between IDM, IBM and their impact on MVFs is timely and relevant 

for policy makers and for investors in the energy industry. This article shows that the IDP reflects the cost for 

flexibility more accurately than pure DAP models and that the IDM can be used to decrease the IBM exposure. 

On the one hand, this has relevance for investments in assets providing flexibility (CEPs), because IDM deliver 

additional revenues potentials and are important for a functioning energy-only-market.26 On the other hand, 

the price signals on the IDM are crucial for VRE investors because the IDM can be used to mitigate their IBM 

exposure. The biggest risk for single technologies is that one technology, e.g. wind production in the German 

electricity market, becomes the predominant VRE source such that its simultaneity effect diminishes 

(‘cannibalize’) DAM and IDM market revenues and that its forecast error dominates the IDM and IBM. The 

latter effect will cause increasing flexibility costs for this technology if it becomes a ‘permanent’ price maker 

in the balancing markets (IDM and IBM). Political guidance to intensify system flexibilization and a 

diversified mix of VRE generation is desirable to mitigate long-term MVF risks. The present article underlines 

the importance of functioning IDM for ‘market-based’ signals for the costs of flexibility and the activation of 

such flexibilities prior to the usually more expensive IBM. To support merchant27 RES investments, an 

accompanying academic discussion of the long-term development of MVF is desired to prevent - most likely 

costly - political intervention at later points in time.  

  

                                                        
26 If capacity mechanisms were introduced, scarcity rents would be shifted into an explicit remuneration scheme. In such a case, the 
base prices and especially peak prices would decrease. The market value of VRE however will fall by much less due to the fact that 
scarcity rents are usually concentrated during times of tightness (undersupply) in the system in which VRE production tends to be low. 
In a policy perspective then a capacity market design which allows the participation of VREs might be considered as beneficial. 
However, due to the variable nature of VRE, the participation in capacity markets would require some derating of VRE capacities 
compared to CEP in order to avoid distorting incentives. 
27 E.g. latest offshore auction results in Europe, i.e. Kriegers Flak in Denmark, Borssele 3&4 in the Netherlands and the German 
Offshore auction indicate that wind offshore LCOE get closer to market prices (subsidy free). 

20



 

 

8 References 

50 Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH. (2017). 

Szenariorahmen für die Netzentwicklungspläne Strom 2030. Retrieved from 

https://www.netzentwicklungsplan.de/  

Ahlstrom, M., Bartlett, D., Collier, C., Duchesne, J., Edelson, D., Gesino, A.,. . . La Rodriguez, M. de T. 

(2013). Knowledge Is Power: Efficiently Integrating Wind Energy and Wind Forecasts. IEEE Power and 

Energy Magazine, 11(6), 45–52. https://doi.org/10.1109/MPE.2013.2277999  

Assenmacher, W. (2002). Einführung in die Ökonometrie (6., vollst. überarb. und erw. Aufl). München: 

Oldenbourg. 

Beran, P., Pape, C., &  Weber, C. (2017). Modelling German electricity wholesale spot prices with a 

parsimonious fundamental model: Validation and application. HEMF Working paper submitted to 

Utilities Policy. 

Bjørndal, E., Bjørndal, M. H., Midthun, K., &  Zakeri, G. (2016). Congestion management in a stochastic 

dispatch model for electricity. IAEE Energy Forum, NHH Dept. of Business and Management Science 

Discussion Paper 2016/12, 61–62. 

Borggrefe, F. & Neuhoff, K. (2011). Balancing and intraday Market Design: Options for Wind Integration 

(Discussion Papers). Berlin. 

Bueno-Lorenzo, M., Moreno, M. Á., &  Usaola, J. (2013). Analysis of the imbalance price scheme in the 

Spanish electricity market: A wind power test case. Energy Policy, 62, 1010–1019. 

https://doi.org/10.1016/j.enpol.2013.08.039  

Chaves-Ávila, J. P. & Fernandes, C. (2015). The Spanish intraday market design: A successful solution to 

balance renewable generation? Renewable Energy, 72, 422–432. 

Chaves-Ávila, J. P., Hakvoort, R. A., &  Ramos, A. (2013). Short-term strategies for Dutch wind power 

producers to reduce imbalance costs. Energy Policy, 52, 573–582. 

https://doi.org/10.1016/j.enpol.2012.10.011  

entsoe.eu. (2017). Transparency Platform: Total Load - Day Ahead / Actual. Retrieved from 

https://transparency.entsoe.eu/dashboard/show  

Gawel, E., Lehmann, P., Purkus, A., Sölderholm, P., &  Witte, K. (2017). Rationales for technology-specific 

RES support and their relevance for German policy. Energy Policy, 102, 16–26. 

Green, R. & Vasilakos, N. (2011). The Long-term Impact of Wind Power on Electricity Prices and 

Generating Capacity. Working Paper (CCP Working Paper No. 11-4). 

Hagemann, S. & Weber, C. (2015). Modeling Liquidity and Prices in Intraday Markets for Electricity: The 

Role of Fundamental and other Factors (Dissertation). Essen. 

Hahn, H., Meyer-Nienberg, S., &  Pickl, S. (2009). Electric load forecasting methods: Tools for decision 

making. European Journal of Operational Research, 199, 902–907. 

Henriot, A. (2014). Market Design with Centralized Wind Power Management: Handling Low-predictability 

in Intraday Markets. The Energy Journal, 35(1), 99–117. https://doi.org/10.5547/01956574.35.1.6  

Hirth, L. (2013). The market value of variable renewables: The effect of solar and wind power variability on 

their relative price. Energy Economics, 38, 218–236. 

21



 

 

Hirth, L. & Müller, S. (2016). System friendly wind power: How advanced wind turbine design can increase 

the economic value of electricity generated through wind power. Energy Economics, 56, 51–63. 

Hirth, L. & Ziegenhagen, I. (2015). Balancing power and variable renewables :Three links. Renewable and 

Sustainable Energy Reviews, 50, 1035–1051. 

Holttinen, H., Miettinen, J., & Sillanpää, S. (2013). Wind power forecasting accuracy and uncertainty in 

Finland (VTT TECHNOLOGY No. 95). Espoo. 

Huber, M., Dimkova, D., &  Hamacher, T. (2014). Integration of wind and solar in Europe: Assessment of 

flexibility requirements. The Energy Journal. (63), 236–246. 

Hull, J. C. (2011). Options, Futures, and Other Derivatives (8th). Boston et al.: Pearson College Div. 

Just, S. & Weber, C. (2015). Strategic behavior in the German balancing energy mechanism: Incentives, 

evidence, costs and solutions. Journal of Regulatory Economics, 48(2), 218–243. 

Kallabis, T., Pape, C., &  Weber, C. (2016). The plunge in German electricity futures prices: Analysis using 

a parsimonious fundamental model. Energy Policy, 95, 280–290. 

Karakatsani, N. V. & Bunn, D. W. (2008). Forecasting electricity prices: The impact of fundamentals and 

time-varying coefficients. International Journal of Forecasting, 24(4), 764–785. 

https://doi.org/10.1016/j.ijforecast.2008.09.008  

Koch, N., Grosjean, G., &  Edenhofer, O. (2014). Causes of the EU ETS price drop: Recession, CDM, 

renewable policies or a bit of everything? New evidence. Energy Policy, 73, 676–685. 

https://doi.org/10.1016/j.enpol.2014.06.024  

Kreiss, J., Ehrhart, K.-M., &  Haufe, M.-C. (2017). Appropriate design of auctions for renewable energy 

support: Prequalification and penalties. Energy Policy, 101, 512–520. 

Kühnert, J. (2016). Development of a Photovoltaic Power Prediction System for Forecast Horizons of 

Several Hours (Dissertation). Oldenburg. 

Lamont, A. D. (2008). Assessing the long-term system value of intermittent electric generation technologies. 

Energy Economics, 30, 1208–1231. 

Larson, D. P., Nonnenmacher, L., &  Coimbra, C. F. M. (2016). Day-ahead forecasting of solar power output 

from photovoltaic plants in the American Southwest. Renewable Energy, 91, 11. 

https://doi.org/10.1016/j.renene.2016.01.039  

Makridis, C. (2013). Offshore wind power resource availability and prospect: A global approach. 

Environmental Science & Policy, 33, 28–44. 

Möst, D., Hobbie, H., &  Schmidt, M. (2016). The Impact of Auctioning in the EU ETS: Are Utilities still 

Profiting. IAEE Energy Forum. (Bergen Special Issue), 54–59. 

Myhr, A., Bjerkseter, C., Agotnes, A., &  Nygaard, T. A. (2014). Levelised cost of energy for offshore wind 

turbines in a life cycle perspective. Renewable Energy, 66, 714–728. 

Neuhoff, K., Barquin, J., Bialek, J. W., Boyd, R., Dent, C. J., Echavarren, F.,. . . Weigt, H. (2013). 

Renewable electric energy integration: Quantifying the value of design of markets for international 

transmission capacity. Energy Economics, 40, 760–772. 

Obersteiner, M. & Saguan, M. (2011). Parameters influencing the market value of wind power: A model-

based analysis of the Central European power market. International Transactions on Electrical Energy 

Systems, 21(6), 1856–1868. 

22



 

 

Ocker, F. & Ehrhart, K.-M. (2017). The “German Paradox” in the balancing power markets. Renewable and 

Sustainable Energy Reviews, 67, 892–898. 

Öko Institut and ForWind GmbH. (2016). Daten zur Einspeisung erneuerbarer Energien. Retrieved from 

https://www.oeko.de/aktuelles/2016/daten-zur-einspeisung-erneuerbarer-energien/  

Pahle, M., Fan, L., &  Schill, W.-P. (2011). How emission certificate allocation distort fossil investments: 

The German example. Energy Policy, 39, 1975–1987. 

Pape, C., Hagemann, S., &  Weber, C. (2016). Are Fundamentals Enough? Explaining Price Variations in the 

German Day-Ahead and Intraday Power Market. Energy Economics, 54, 376–387. Retrieved from 

doi:10.1016/j.eneco.2015.12.013  

Rathmann, M. (2007). Do support systems for RES-E reduce EU-ETS-driven electricity prices? Energy 

Policy, 35(1), 342–349. https://doi.org/10.1016/j.enpol.2005.11.029  

Selasinsky, A. (2016). The integration of renewable energy sources in continuous intraday markets for 

electricity (Dissertation). Technische Universität Dresden, Dresden. 

Sensfuß, F., Ragwitz, M., &  Genoese, M. (2008). The merit-order effect: A detailed analysis of the price 

effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–

3094. https://doi.org/10.1016/j.enpol.2008.03.035  

Taylor, J. W. & McSharry, P. E. (2007). Short-Term Load Forecasting Methods: An Evaluation Based on 

European Data. IEEE Transactions on Power Systems, 22(4), 2213–2219. 

Van den Bergh, K., Delarue, E., &  D'haeseleer, W. (2013). Impact of renewables deployment on the CO2 

price and the CO2 emissions in the European electricity sector. Energy Policy, 63, 1021–1031. 

https://doi.org/10.1016/j.enpol.2013.09.003  

Veith, S., Werner, J. R., &  Zimmermann, J. (2009). Capital market response to emission rights return: 

Evidence from the European power sector. Energy Economics, 31, 605–613. 

Weber, C. (2010). Adequate intraday market design to enable the integration of wind energy into the 

European power systems. Energy Policy, 38(7), 3155–3163. https://doi.org/10.1016/j.enpol.2009.07.040  

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. 

International Journal of Forecasting, 30(4), 1030–1081. https://doi.org/10.1016/j.ijforecast.2014.08.008  

Wichser, C. & Klink, K. (2008). Low wind speed turbines and wind power potential in Minnesota, USA. 

Renewable Energy, 33, 1749–1758. 

Winkler, J., Gaio, A., Pfluger, B., &  Ragwitz, M. (2016). Impact of renewable electricity markets: Do 

support schemes matter? Energy Policy, 93, 157–167. 

  

23



 

 

Appendix 

 
Figure 7: Scatter plot of hourly average Imbalance Quantities (IBQ, here equal to 𝐹𝐸5

OP,5y5) and Imbalance 

Prices (IBP) in Germany 2012 until 2015 based on tennettso.de  

 

Table 13: Increasing importance of intraday markets in Europe, cf. Hagemann and Weber (2015) with updates 

based on EPEX.com, OMEL.com, Nordpool.com etc.. 

Country Gate closure  

[min. to delivery] 

Intraday trading Volume 2014 

and increase in 2015 [TWh] 

RES* share of 

inst. cap. [%] 

Conventional 

capacity [GW] 

Denmark 60  0.45    ~36.3  7.98 

France (EPEX Spot) 30  3.29  3.78  ~10.7  96.43 

Germany (“) 30 26.38  37.49  ~39.0  99.75 

UK (APX) 60  14.48 14.55  ~11.6  78.30 

 

 
Figure 8: Exemplary cash flow due to 6 hour rule in Germany without self-curtailment 

 

 

 
Figure 9: Must-run electricity production as a linear function of temperature 
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Figure 10: Hourly mean prices and point forecast errors for the day-ahead model (top) and intraday model 

(bottom) 2012-2015. The RMSE puts higher weight to larger deviations in single observations, thus 

occasionally larger errors are includes in the dataset. 
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Figure 11: Distribution of actual prices and price forecasts 2014-2015 for the day-ahead model, the intraday 

model with use of actual DAP and the intraday model with use of the regression model. The pfd of the modelled 

intraday prices is closer to the pdf of actual IDP, if one uses the actual DAP to determine the separation point 

for the intraday supply stack. In this case, the forecast error from the day-ahead model (left of Figure 11) is 

not carried into the intraday model causing larger deviations between the actual and the modelled IDP. 

 

 
Figure 12: Shares of the overall production per fuel type 2012 to 2015  
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Figure 13: MVF and base prices for different level of VRE share of production (wind, left and solar, right) 

 

 
Figure 14: Coal and gas price sensitivity: The reference (0%) coal price is at 12 EUR/MWhth and the reference 

(0%) gas price is at 32 EUR/MWhth. The smaller the differences between coal and gas production costs, the 

flatter the slope of the intraday supply stack. This effect decreases the IDP volatility and the difference between 

𝑉%
QS and 𝑉%

OP for VRE. At higher gas prices (>+20%) OCG production is replaced by other (formerly more 

expensive) technologies. The VREs neither profit nor lose from high prices in the IDM due to higher prices.  

 

Table 14: Impact of lower capacities of base load plants (coal and lignite) or peak load plants (OCG and CCG) 

as well of higher ID Flexibility and no self-curtailment. 
 Unit Base 

case 

ID Flex (no. 

shortening) 

Self-

curt. off 

Δ WMVF / 0.671 +0.01 -0.00 

Δ SMVF / 0.874 +0.03 +0.00 

Δ Base  EUR/MWh 48.80 -0.01 +0.09 

Δ Peak  EUR/MWh 61.65 -0.05 -0.09 

Δ Sigma  EUR/MWh 27.26 -0.14 -0.01 
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