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I 

Modelling German electricity wholesale spot prices with a parsimonious fundamental model – 

Validation & application 

by Philip Beran*, Christian Pape and Christoph Weber 

Abstract 

Increasing shares of fluctuating renewable energy, the integration of European electricity grids 

and markets as well as new technologies induce continuous change in the European energy 

system. Due to these changes, fundamental electricity system and market models that have been 

developed and applied in the past are dealing with an increasing number of details inducing 

correspondingly huge data needs. The complexity of these called parameter-rich models (cf. 

Weron, 2014) leads to limited transparency, also on the impact of data on results, and makes 

model backtesting rather cumbersome. At the same time, the validity of future scenarios based 

on non-validated models is dubious. To complement these highly complicated models, more 

reduced models may be helpful both for transparency and for backtesting. In this paper, we apply 

a parsimonious fundamental modelling approach to determine hourly German day-ahead power 

market prices and production volumes. The methodology approximates the supply stack by a 

piecewise linear function and considers fundamental information, e.g. power plant capacities 

and availabilities, fuel prices, must-run production and cross-border exchange. We reduce 

complexity by considering technology classes, uncoupled time periods and only one market area. 

Between 2011 and 2015, German day-ahead prices declined by 38% and various reasons have 

been identified in literature, namely a drop in emission certificate prices, the expansion of 

renewable energies (RES) or lower fuel prices. However, the decision of the German government 

to shut down nuclear power plants after the Fukushima nuclear disaster happened at the same 

time and received too little attention as it rather by itself could have led to an increase in prices. 

The parsimonious model is able to reproduce the hourly historical prices (2011-2015) with a 

MAE of 5.6 €/MWh and accurately reproduces the electricity production volumes for most 

thermal production units. In a case study, we investigate a counterfactual scenario without 

accelerated nuclear phase-out in Germany after the Fukushima nuclear disaster in 2011. The 

results indicate that German day-ahead power prices would have fallen by additional 3 €/MWh 

if the nuclear phase-out would have not occurred. Since coal- and gas-fired production as well 

as additional imports have substituted production from nuclear power plants, their usage would 

have dropped in the counterfactual scenario. 

 

Keywords: Electricity markets, Fundamental modelling, Nuclear phase-out 

JEL-Classification: Q41, Q48  
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1 Introduction 

Increasing shares of variable RES, the integration of European electricity markets and 

technological development induce continuous change in the European electricity system. Widely 

used parameter-rich models aim to cope with these developments by including an increasing 

number of details (e.g. multiple, interconnected countries, variety of (new) generation 

technologies, manifold technical restrictions and costs or regulatory frameworks. However, the 

operation of these models requires considerable amounts of data and is therefore prone to errors 

in the data handling or delivers biased results if the input data is inaccurate. Since reward is low 

and the effort is high, backtesting results for this type of model class are rather scarce in literature 

(cf. e.g. the backtesting results provided by Bublitz et al. (2014), Bublitz et al. (2017), Everts et al. 

(2016), Hirth (2018),). At the same time, the validity of future scenarios based on non-validated 

models is dubious. Therefore, models based on reasonable simplifications may be helpful both 

for transparency and for backtesting. This type of models is often referred to as structural models 

or parsimonious fundamental models (cf. Weron, 2014; Kallabis et al., 2016) and are 

characterised by reduced complexity and assumptions on data aggregation. 

In this paper, a parsimonious fundamental model for the German day-ahead spot market is 

developed, validated and applied. The modelling is based on the ideas by Kallabis et al. (2016) 

and Pape et al. (2016). We validate the model for years 2011-2015 with respect to prices and 

production quantities and discuss strengths and weaknesses of the parsimonious approach. 

During that period German day-ahead prices declined by 38%. Various reasons have been 

identified in literature. Bublitz et al. (2017) apply both an agent-based and a regression model to 

investigate the contribution of different fundamental drivers to the German spot market price 

decline between 2011 and 2015. They find carbon and coal prices to be the main reason for the 

price drop (in total of almost 11 €/MWh of the electricity price). Hirth (2018) analyses the 

individual contribution of fundamental factors using the model EMMA for the years 2008-2015. 

He concludes that the largest factor depressing prices is the expansion of RES (-24% of base price 

2008). Everts et al. (2016) use a similar method based on a fundamental model to investigate 

changes in spot prices between 2008 and 2014. They find the decline in emission prices to have 

the strongest effect on German day-ahead prices (ca. -6 €/MWh). The same applies for Kallabis 

et al. (2016), who investigate future prices between 2007 and 2014 and conclude that emission 

prices have a higher decreasing impact on electricity future prices than RES additions or 

decreasing fuel prices. We contribute to the existing literature by developing the model from 

Kallabis et al. (2016) and Pape et al. (2016) for application to day-ahead market data. The 

corresponding hourly description of the market modelling makes detailed data work crucial. 

Besides price validation we focus on production volumes and foreign trade balance as well as 
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indications about CO2 reduction. We demonstrate that the parsimonious nature is well suited to 

investigate policy or other fundamental impacts in counterfactual case-studies, such as the 

nuclear phase-out decision in Germany. In response to the Fukushima nuclear disaster, the 

German Federal Government decided to phase-out nuclear power until 2022 and to immediately 

shut down eight nuclear power plants. This political intervention meant a reduction of 8.4 GW 

generation capacity and thus directly influenced German electricity industry.1 The effect of the 

German nuclear phase-out has been discussed in several studies with different focuses. Studies 

that were published immediately after the moratorium are ex ante analyses that focus on the 

feasibility of the (complete) nuclear phase-out from the perspective of security of supply. Kunz 

and Weigt (2014) provide an overview and conclude that the nuclear phase-out has rather 

moderate effects. Depending on the investigated time span, studies report price effects of up to 

+10 €/MWh after the phase-out.2 Recently, Grossi et al. (2017) investigate residual load and spot 

prices before (2009 and 2010) and after (2012) the phase-out. They estimate an increasing price 

effect of 8.7% that is partly driven by market power and find that the price effect is strongest in 

off-peak hours. Some of the above mentioned ex post analyses on the electricity price drop have 

also determined the counteracting phase-out effect. Bublitz et al. (2017) find a 8.4% effect 

compared to prices in 2011, Everts et al. (2016) an effect of 11.8% in comparison to prices of 

2006 and Hirth (2018) determines a price increase of 22% under ceteris paribus conditions 

compared to the 2008 electricity spot price level. 

The remaining article is structured as follows. Section 2 introduces the parsimonious fundamental 

model and explains model adaptions. In Section 3, the used data is presented and a model 

validation for German day-ahead market prices and production volumes is conducted. 

Subsequently validation results, shortcomings and advantages are discussed. In Section 4 the 

model is applied in a counterfactual case-study to investigate the impact of the German nuclear 

phase-out decision. Section 5 discusses general implications for model aggregation and 

validation and Section 6 concludes and outlines possible further research. 

2 Model 

The modelling approach in this article is based on the works of Kallabis et al. (2016) and Pape et 

al. (2016). While former apply the model for analysis of the futures markets and latter are 

focussing on intraday markets, we merge both model specifications and adjust the model for the 

German day-ahead spot market. Starting point is the simple supply stack model featuring an 

                                                
1 The seven oldest and nuclear power plant “Krümmel” were shut down. Effectively, the decline in 
generation capacity was 6.3 GW in 2011, because the nuclear power plants “Brunsbüttel” and “Krümmel” 
haven’t been online for a while due to technical problems. 
2 Among others Traber and Kemfert (2012) analyse the development until 2020, Fürsch et al. (2012) 
determine merit-order effects until 2030 under consideration of the phase-out and D'haeseleer et al. (2013) 
focus on implications on the transmission grid until final German nuclear phase-out in 2022. 
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ascending supply curve derived from marginal costs of power production and a virtually inelastic 

demand. This approach is refined by approximations on varying power plant efficiencies, CHP 

and pumped storage plants. In addition, detailed data on load, renewable infeed, capacities, 

imports and exports and availabilities are used. 

 
1a) Supply stack with heterogeneous 

costs within the technology classes. 
1b) Supply stack with overlapping 

technology classes 
1c) Rearranged supply stack with 

mixed cost intervals. 
 
Figure 1: Piecewise linear supply curve 

2.1 Core model 

The starting point for the modelling is to define the aggregated bid stack 𝐵 at time 𝑡 as the inverse 

function of the individual bidding function 𝑏𝑡
−1 of each technology class 𝑝𝑙 (cf. Eq. (1)). 

Bt = bt
−1(Dt) 𝑤𝑖𝑡ℎ bt(St) = ∑ bpl,t

𝑝𝑙∈𝑃𝐿

 (1) 

To take care of the heterogeneity within the technology classes arising from varying power plant 

age, retrofit-measures and technical issues, we consider minimal 𝜂𝑝𝑙
𝑚𝑖𝑛 and maximal 𝜂𝑝𝑙

𝑚𝑎𝑥 power 

plant efficiencies resulting in variable cost ranges  [𝑐𝑝𝑙,𝑡
𝑚𝑖𝑛, 𝑐𝑝𝑙,𝑡

𝑚𝑎𝑥]. Variable production costs are 

determined by Eq. (2) considering power plant efficiencies 𝜂𝑝𝑙 ∈ [𝜂𝑝𝑙
𝑚𝑖𝑛, 𝜂𝑝𝑙

𝑚𝑎𝑥], fuel costs 𝑐𝑝𝑙,𝑡
𝑓𝑢𝑒𝑙, 

CO2 emission allowance price 𝑐𝑡
𝐶𝑂2 and additional variable costs 𝑐𝑝𝑙

𝑜𝑡ℎ𝑒𝑟. 

cpl,t =
cpl,t
fuel + EFfuel ∗ ct

CO2

ηpl
+ cpl

other (2) 

It is assumed that market participants bid their marginal costs and therefore aim to produce 

whenever the spot price 𝑆𝑡 is above their variable costs (Eq. (3); cf. Kallabis et al., 2016). If the 

market price is within the cost interval 𝑐𝑝𝑙,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑡 ≤ 𝑐𝑝𝑙,𝑡

𝑚𝑎𝑥 of a technology, the bidding quantity of 

the technology interval is assumed to be proportional to the relative distance between interval 

bounds and the market price (𝑆𝑡 − 𝑐𝑝𝑙,𝑡
𝑚𝑖𝑛)/(𝑐𝑝𝑙,𝑡

𝑚𝑎𝑥 − 𝑐𝑝𝑙,𝑡
𝑚𝑖𝑛). 
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bpl,t(St) =

{
 
 

 
 

0 , St < cpl,t
min

AvCappl,t ∙
St − cpl,t

min

cpl,t
max − cpl,t

min
, cpl,t

min ≤ St ≤ cpl,t
max

AvCappl,t , St > cpl,t
max

 (3) 

The available capacity 𝐴𝑣𝐶𝑎𝑝𝑝𝑙,𝑡 of technology class 𝑝𝑙 is determined as the available share of 

the total installed capacity 𝐶𝑎𝑝𝑝𝑙,𝑡 of technology 𝑝𝑙 (Eq. (4)). The availability factor 𝐴𝑣𝑝𝑙,𝑡 takes 

into account scheduled and unscheduled power plant outages.3 

AvCappl,t = Avpl,t ∙ Cappl,t (4) 

The demand side is represented by the residual load 𝐷𝑡 described in Eq. (5) (cf. Kallabis et al., 

2016). The residual load at time step 𝑡 is the actual electricity demand 𝐿𝑡 minus wind 𝑊𝑡 and 

solar 𝑃𝑉𝑡 feed-in, corrected also for the foreign trade balance 𝑇𝐵𝑡 and the must-run production 

from CHP plants 𝐶𝐻𝑃𝑡
𝑀𝑅. The approach for estimating the must-run CHP production is described 

in Section 2.2. The foreign trade balance 𝑇𝐵𝑡 is based on actual observations and is given if one 

subtracts the electricity exports from electricity imports at time 𝑡. 

Dt = Lt −Wt − PVt − TBt − CHPt
MR (5) 

The electricity spot market price at time 𝑡 then results from the marginal costs at the intersection 

of supply and demand, 𝑆𝑡 = 𝐵𝑡(𝐷𝑡).
4 

2.2 Model adaptation and production quantities 

To establish a modelling framework that is able to represent relevant aspects of the German day-

ahead market and to accurately reproduce prices and production volumes based on a 

parsimonious number of input data, we extend the core model in several ways. One point is that 

we extend the model so that it is capable to determine the production volume for each technology 

class. Given the parsimonious, piece-wise model structure this is rather straight-forward for a 

given supply stack. Yet here a second modification comes into play. In order to model day-ahead 

market results, the hourly availabilities have to be used to describe changes in the supply stack 

due to plant outages and planned maintenance. Thereby it is important to consider only the 

information that was available when the bids to the day-ahead market were submitted. 

                                                

3 The availability factor 𝐴𝑣𝑝𝑙,𝑡 is defined as 𝐴𝑣𝑝𝑙,𝑡 = 1 −
𝑈𝑛𝑎𝑣𝑝𝑙,𝑡

𝑠𝑐ℎ𝑒𝑑+𝑈𝑛𝑎𝑣𝑝𝑙,𝑡
𝑢𝑛𝑠𝑐ℎ𝑒𝑑

𝐶𝑎𝑝𝑝𝑙,𝑡
 where 𝑈𝑛𝑎𝑣𝑝𝑙,𝑡

𝑠𝑐ℎ𝑒𝑑  and 

𝑈𝑛𝑎𝑣𝑝𝑙,𝑡
𝑈𝑛𝑠𝑐ℎ𝑒𝑑 are the scheduled and unscheduled capacity outages of technology 𝑝𝑙 in time step 𝑡 (cf. Pape 

et al., 2016). 
4 In times with negative residual load, the market price 𝑆𝑡 is set to -10 €/MWh (cf. Pape et al., 2016). 
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A further modification is related to CHP-production. As in the models of Kallabis et al. (2016) 

and Pape et al. (2016), we consider temperature dependent must-run production from CHP. 

Before we can determine the actual production quantities, we therefore need to specify the CHP 

approximation (cf. Pape et al., 2016). In contrast to the stepwise functional relationship between 

the hourly average temperature and the level of must-run utilization used in Pape et al. (2016), 

we suggest a monotonically decreasing function 𝑓𝑀𝑅(𝑡𝑒𝑚𝑝𝑡) (cf. Eq. (6)) to avoid jumps and to 

smoothen the temperature driven CHP must-run utilization. 

fMR(tempt) = {

1 tempt < 2 °C

1.07̅ − 0.038̅ ∙ tempt 2 °C ≤ tempt ≤ 20 °C
0.3 tempt > 20 °C

 (6) 

If temperatures are below 2 °C, heating demand is high and therefore all must-run power plants 

are assumed to be producing – further increases in heat demand at very low temperatures are 

assumed to be covered by heat boilers. In warm hours with temperatures above 20 °C we assume 

that heating demand is low and only 30% of the inflexible CHP power-plants are producing (e.g. 

for industrial heating processes). In order to correctly represent the annual heating demand, the 

temperature driven seasonality is scaled in Eq. (7) to yearly CHP must-run production 𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 𝑀𝑅 

per technology class 𝑝𝑙. 

𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 𝑀𝑅 =

𝑓𝑀𝑅(𝑡𝑒𝑚𝑝𝑡)

∑ 𝑓𝑀𝑅(𝑡𝑒𝑚𝑝𝑡)𝑡∈𝑦𝑒𝑎𝑟
∙ 𝑦𝑝𝑙,𝑦𝑒𝑎𝑟

𝐶𝐻𝑃 𝑀𝑅 ∙
𝐶𝑎𝑝𝑝𝑙,𝑡

𝐶𝐻𝑃 𝑀𝑅

𝐶𝑎𝑝𝑝𝑙,𝑦𝑒𝑎𝑟
𝐶𝐻𝑃 𝑀𝑅 (7) 

The total must-run CHP production (cf. Eq. (8)) in time step 𝑡 is subtracted from electricity 

supplied in Eq. (5). Thereby we further distinguish CHP capacities and production into 

production from flexible and inflexible power plants. The latter have no variability of their 

electricity production at given heating demand while former have some flexibility to produce 

additional electricity which may be bid into the spot electricity market. 

𝐶𝐻𝑃𝑡
𝑀𝑅 = ∑ 𝑦𝑝𝑙,𝑡

𝐶𝐻𝑃 𝑀𝑅

𝑝𝑙∈𝑃𝐿𝐶𝐻𝑃

 (8) 

Non-must-run CHP is assumed to have the same cost structure than non-CHP capacities and thus 

is added up and included into the bidding quantity 𝑏𝑝𝑙,𝑡. Eventually, the overall production 

volume 𝑦𝑝𝑙,𝑡 of a technology class 𝑝𝑙 at time 𝑡 is made of two parts due to the modelling of the 

CHP must-run as stated in Eq. (9).5 

ypl,t = bpl,t + ypl,t
CHP MR (9) 

                                                
5 In case of a technology class 𝑝𝑙 without CHP capacity 𝑦𝑝𝑙,𝑡

𝐶𝐻𝑃 becomes 0 MWh. 
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We consider nine different generation technology classes: biomass, coal, lignite, gas 

(distinguished into combined-cycle-gas (CCG) and open-cycle-gas (OCG)), oil, nuclear, run-of-

river, pumped-storage and miscellaneous.6 Due to subsidies and German laws (notably the 

guaranteed priority infeed), renewable generation capacities from biomass and run-of-river hydro 

are assumed to have marginal costs of zero. CHP generation is available for biomass, coal, lignite, 

CCG, OCG, miscellaneous and oil. 

Pumped-storage power plants have to be considered differently. As these power plants consist of 

at least two reservoirs connected by a turbine and a pump, they will pump water into their 

reservoirs in hours with low electricity prices and aim to produce during high (peak) prices to 

maximize their profit. Since we are simulating time steps without coupling, we assume pumped-

storage power plants to turbine with marginal costs based on expected average cost of charging 

based on coal-, oil- and gas-fired power plants. Current consumption of pumps is considered 

exogenously in the overall load 𝐿𝑡.
7 

The model aims to replicate the German electricity prices and domestic production by 

considering only one market area – basing hence the entire model on information aggregated to 

one market area. For this reason, the parsimonious model makes use of the net foreign trade 

balance. When applying the parsimonious fundamental model as part of an ex post analysis, 

available historical data can be used. In applications for future scenarios or case studies 

(cf. Chap. 4) the foreign trade balance is not available and therefore needs to be derived 

separately. To the best of our knowledge, there are no public forecasts for scheduled commercial 

flows available. For that reason, we develop a multiple regression model similar to Kallabis et al. 

(2016) in Eq. (10). In addition to the approach by Kallabis et al. (2016), we include temperature 

and emission prices to the regression model. The inclusion of temperature as an explanatory 

variable is notably motivated by the importance of electric heating which varies in different 

countries (e.g. high share in France). Emission prices will affect trade balances not only through 

variable cost of local plants but also through changes in the overall merit-order and resulting 

reversed flows. E.g. the Netherlands are likely to import less when gas plants become more 

competitive. This approach, when applied to single years in the past, leads to an adjusted R² of 

60% on average. This is a substantial improvement over the previous specification. 

                                                
6 The collective class of miscellaneous is also divided into two classes. Power plants assigned to the first 
miscellaneous class have low variable costs derived by variable costs of biomass, lignite and coal. This 
class represents capacities that include multi-fuels with partly subsidies or plants that profit from other cost 
reductions. The second miscellaneous class has variable costs derived from coal, gas and oil plants and 
represents more expensive generation capacity, e.g. mixed gas and oil fuels. 
7 A detailed list of all considered power plants and parameters can be found in Appendix A1. 
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TBt = β0 + β1Wt + β2PVt + β3Lt + β4AvCapLIG,t + β5AvCapNUC,t

+ β6CO2t + β7Tempt + εt 
(10) 

The multiple regression analysis identifies influences from all considered regressors that are 

significant at a 99% level except for the CO2 emission allowance price in 2014. Results in Table 

1 indicate an import surplus between 5.0 GW and 19.3 GW as a starting point. Each MW from 

wind 𝑊𝑡 and photovoltaic 𝑃𝑉𝑡 as well as each available MW of nuclear 𝐴𝑣𝐶𝑎𝑝𝑁𝑈𝐶,𝑡 and lignite 

capacity 𝐴𝑣𝐶𝑎𝑝𝐿𝐼𝐺,𝑡 reduce the import level and lead to an export surplus at some point. The 

most influential driver amongst those investigated is the available lignite capacity. The domestic 

load 𝐿𝑡, CO2 emission certificate prices 𝐶𝑂2𝑡and temperature 𝑇𝑒𝑚𝑝𝑡 increase Germanys 

electricity imports. 

Table 1: Foreign trade balance auxiliary model - regression results for years 2011-2015 

  Estimates 

Variable 2011 2012 2013 2014 2015 

(constant) [MW] 4985.56 9636.59 16515.74 19304.15 19153.52 

Wind-infeed [MW]*** -0.3270 -0.2030 -0.3218 -0.2956 -0.1994 

Solar-infeed [MW]*** -0.4461 -0.4538 -0.3977 -0.3587 -0.2674 

Load [MW]*** 0.0766 0.0669 0.0953 0.0873 0.0684 

Available lignite capacity [MW]*** -0.2891 -0.2538 -0.5900 -0.9746 -0.9134 

Available nuclear capty. [MW]*** -0.4494 -0.6395 -0.8898 -0.7814 -0.6109 

CO2-price [€/t]*** (1) 60.23 -425.50 -695.03 35.07 -497.04 

Temperature [°C]*** 174.56 103.18 73.42 60.65 57.37 

# observations 8760 8784 8760 8760 8760 

adjusted R² 0.6727 0.4273 0.6025 0.7125 0.6000 

F-statistics 2572.40 937.35 1897.78 3102.46 1877.76 

Each year is estimated based on hourly data. 1% significance level in each regression is 
marked with ***. Due to autocorrelated and heteroscedastic error terms ε we estimate 
Newey-West standard errors. 
1) CO2-price is not significant in 2014 regression. 

 

Overall, the presented parsimonious fundamental model for the day-ahead market has two major 

simplifications compared to full fundamental models. The first reduction relates to the spatial 

coupling. In full fundamental models, multiple market areas are considered and imports and 

exports between these regions are determined endogenously. In the parsimonious model, 

however, only one market area is considered and the foreign trade balance has to be assessed 

using statistical methods. The second simplification relates to the temporal coupling. Full 

fundamental models usually model coupled time steps. This allows the consideration of start-up 

costs and minimal operating times. Hydro and pumped-storage power plants can be included 

with endogenous operation schedules and shadow prices. The parsimonious model reduces 

complexity by considering uncoupled time periods neglecting start-up costs and other operating 
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restrictions. On the other hand, the parsimonious model differentiates generation costs within 

one technology class, whereas larger system models tend to use constant generation cost per 

technology class. While full models often tend to use rough availability data, careful research on 

power plant availabilities is at the core of the parsimonious approach. For ex ante simulations, 

these detailed times series data may however be replaced by more or less simple distributional 

assumptions.  
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3 Validation 

3.1 Data 

To validate our model with respect to prices and production volumes, we model the German 

day-ahead market for the years 2011 to 2015. Hereby, we distinguish two data sets. The first data 

set contains all time series and parameters to run the fundamental model and simulate the 

German day-ahead market. The second data set is the comparison data set needed for the model 

validation. Table 2 gives an overview on data and sources used for modelling and validation. 

Table 2: Model input and validation data 

Model data Data info Resolution8 Years Source 
Coal price API#2 (CIF ARA) front month future D 2011-2015 Energate 
Gas price OTC TTF day-ahead D 2011-2015 Energate 
Oil price ICE Brent Index D 2011-2015 Energate 
CO2 price EU CO2 emission allowances D 2011-2015 Energate 
Wind feed-in Day-ahead forecasts QH 2011-2015 50Hertz, Amprion, Tennet, 

TransnetBW Solar feed-in Day-ahead forecasts QH 2011-2015 

Cross-border 
flows 

Day-ahead cross-border 
commercial schedule 

H 
2011-2014 ENTSO-E transparency 

2015 ENTSO-E transparency 

Load 
Day-ahead hourly load values H 

2011-2014 ENTSO-E data portal 
2015 ENTSO-E Power Statistics 

Electricity supplied M 2011-2015 IEA 

Availability 
shares 

Non usability generation 
(ex ante & ex post) 

H 2011-2015 EEX Transparency 

EEX master data power H 2011-2015 EEX Transparency 

Generation 
capacity 

Installed net generating capacity 
Y 2011-2014 

ENTSO-E (2017), 
BNetzA (2017) 

Y 2015 
ENTSO-E transparency, 
BNetzA (2017) 

Installed CHP capacity 
Y 2011 Eurelectric (2013) 

CHP must-run 
shares 

Y 2012, 2014 Öko-Institut (2015) 

CHP production volumes 
Y 2011-2015 AGEB (2017) 

Temperature data H 2011-2015 DWD WESTE-XL 
Validation data Data info Resolution Years Source 
Electricity price EPEX Spot German day-ahead price H 2011-2015 EPEX SPOT 
Production 
volumes 

Yearly net production volumes by 
technology classes 

Y 2011-2015 ENTSO-E Power Statistics, 
Destatis, BMWi (2017), 
IEA, Öko-Institut (2014), 
Öko-Institut (2015) 

 

The day-ahead auction for the joint market area of Germany and Austria closes daily at 12 p.m. 

Thus, the bidding of market participants is based on information that is available before gate 

closure.9 

                                                
8 The resolution column states the temporal resolution of the original data source: Y=Yearly, M=Monthly, 
D=Daily, H=Hourly, QH=Quarter-hourly. All time series are edited to become hourly input data for the 
fundamental model. Missing data are interpolated. 
9 We assume that day-ahead forecasts for cross-border flows, load as well as wind and solar forecasts to 
be available to market participants before gate closure even though the actual publication is later. Since 
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For the residual load in Eq. (5) we use hourly load data from the ENTSO-E transparency 

platform.10 This data represents so-called public supply including network feed-in of electricity 

originating from RES into the distribution grid but it does not contain parts of conventional 

distributed generation, notably from industrial and traction power stations (ENTSO-E, 2016). 

ENTSO-E hourly load data only represents approx. 86% of actual load (see Eq. (5)). Therefore, 

hourly load data is scaled to monthly electricity supply data according to IEA monthly energy 

statistics. We use an adjusted approach based on Kallabis et al. (2016) and presented in Eq. (11) 

to scale load 𝐿𝑡 at time period (hour) 𝑡. 

Lt = (Lt
ENTSOE)

2
∙ βm(t)

GL + Lt
ENTSOE ∙ {

βm(t)
Peak if t ∈ Peak

βt
Offpeak

if t ∉ Peak
 (11) 

Grid losses are not linear with respect to the load level and therefore, we consider a quadratic 

form with a monthly grid loss parameter 𝛽𝑚(𝑡)
𝐺𝐿  (cf. Eq. (12)). Furthermore other losses are 

considered with time-differentiated impact factors 𝛽𝑚
𝑃𝑒𝑎𝑘 and 𝛽𝑚

𝑂𝑓𝑓𝑃𝑒𝑎𝑘 (cf. Eq. (13)).11 

βm(t)
GL =

GLm(t)

∑ (Li
ENTSOE)i∈Mt

2 (12) 

βm
hType

=
OLm

|Hm
hType

|
∙
LM(t)
ENTSOE,hType

LM(t)
ENTSOE,Base

 with hType ∈ {peak, off‑peak} (13) 

The modelling of must-run CHP production in Eq. (7) requires data on temperature, turbine 

characteristics and overall CHP production. We follow Pape et al. (2016) and take temperature 

data as the average temperature of four metropolitan areas in Germany weighted by their 

population number. To the best of our knowledge no consistent data set on net CHP production 

and net CHP capacities by technology class are available for years 2011 to 2015. AGEB (2017) 

presents yearly CHP production data by technology class neglecting data on micro-cogeneration. 

We close this gap using Öko-Institut (2015) data. CHP capacities by technology class are 

available for years 2011 (Eurelectric, 2013), 2012 (Öko-Institut, 2014) and 2014 (Öko-Institut, 

                                                
EEX transparency data for scheduled and unscheduled unavailabilities contain a notification timestamp, 
we distinguish sharply regarding data known at gate closure at 12 p.m. 
10 Due to a change in data provision from ENTSO-E there is no consistent day-ahead load forecast dataset 
available for the period under consideration. We use country package data for the years 2011–2014 and 
power statistics values for 2015 (cf. also Hirth and Schumacher (2015) on the handling of ENTSO-E load 
data). 
11 Where 𝐺𝐿 = 𝑔𝑟𝑖𝑑 𝑙𝑜𝑠𝑠𝑒𝑠, 𝑂𝐿 = 𝑜𝑡ℎ𝑒𝑟 𝑙𝑜𝑠𝑠𝑒𝑠, 𝑚(𝑡) = 𝑚𝑜𝑛𝑡ℎ 𝑤𝑖𝑡ℎ ℎ𝑜𝑢𝑟 𝑡 𝑤𝑖𝑡ℎ𝑖𝑛, 𝑀(𝑡) =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟.𝑚𝑜𝑛𝑡ℎ, 𝐻𝑚 = 𝑝𝑒𝑎𝑘‑ 𝑜𝑟 𝑜𝑓𝑓‑𝑝𝑒𝑎𝑘‑ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟.𝑚𝑜𝑛𝑡ℎ and 

𝐿𝑀(𝑡)
𝐸𝑁𝑇𝑆𝑂𝐸 = 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑀(𝑡). We ascribe 35% of the discrepancy between monthly IEA and 

ENTSO-E values to grid losses and 75% to other losses. 
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2015). We extrapolate CHP capacities for years 2013 and 2015 considering the total capacity 

development of each technology class and assumed CHP production volumes.12 

To capture capacity changes during the year, we use EEX transparency data. Because this data 

only represents ca. 74% of conventional generation capacity in Germany (compared to BNetzA 

data), we scale to year-end values given in official German statistics (BNetzA, 2017) and ENTSO-

E yearly statistics and adequacy retrospect (ENTSO-E, 2017; cf. Eq. 14). 

Cappl,t =
Cappl,t

EEX

Cappl,YE(t)
EEX

∙ Cappl,YE(t)
BNetzA/ENTSOE

 (14) 

For the model validation with regard to prices and production volumes, suitable comparative 

data is required. Since we are modelling the German day-ahead market, we use for price 

validation EPEX Spot day-ahead market auction results for Germany/Austria, which are available 

in hourly resolution for the years 2011 to 2015. To validate the production volumes, a consistent 

net production data set by technology class for the years 2011 to 2015 is required. To the best of 

our knowledge, such a data set does not exist. Among others, BMWi (2017) describe yearly gross 

production by technology class, IEA (2017) provides monthly net production separated into four 

production classes while Destatis and ENTSO-E (2017) supply monthly and yearly data on net 

production. Yet, based on our analysis, we observe varying data quality and class differentiation. 

Additionally, the data providers treat production from micro-installations and industry processes 

differently and occasionally report divergent values for the same technology class. Therefore, we 

create a plausibility checked and harmonised data set for annual net production volumes by 

technology class based on total gross electricity generation from BMWi (2017) and total net 

electricity generation from IEA (2017).13 The division into the individual technology classes is 

mainly conducted based on ENTSO-E (2017) data. CHP production is derived from AGEB (2017), 

Öko-Institut (2014) and own calculations and assumptions. 

3.2 Results 

The model validation covers two steps: First, the model accuracy for the German electricity spot 

market prices for the years 2011-2015 is tested. Second, we compare the fundamental production 

volumes with the actual generation (cf. Section 3.2.2). 

                                                
12 Resulting consistent CHP production from must-run and flexible CHP plants by technology class can be 
found in Appendix A2. 
13 The full synthetic electricity balance for Germany for the years 2011 to 2015 can be found in Appendix 
A2. 
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3.2.1 Price validation 

For the price validation, the descriptive statistics and error measures reported in Table 3 and 

Table 4 are used. 

Table 3: Descriptive statistics on observed and fundamental German day-ahead prices in 2011-2015 

    Mean Min Max S.D. # neg. 

2011 
Observed 51.12 -36.82 117.49 13.60 15 

Fundamental 51.31 15.04 102.94 11.50 0 

2012 
Observed 42.60 -221.99 210.00 18.68 56 

Fundamental 44.60 -10.00 203.17 15.67 11 

2013 
Observed 37.79 -100.03 130.27 16.45 63 

Fundamental 38.47 6.75 94.34 15.11 0 

2014 
Observed 32.76 -65.03 87.97 12.77 64 

Fundamental 32.84 6.66 72.90 10.25 0 

2015 
Observed 31.63 -79.94 99.77 12.67 126 

Fundamental 33.06 6.39 76.69 9.43 0 

Overall 
Observed 39.18 -221.99 210.00 16.63 324 

Fundamental 40.06 -10.00 203.17 14.50 11 
 

Table 4: Error measures parsimonious fundamental model 

Errors ME MAE RMSE R² 

2011 0.19 4.94 6.77 0.75 

2012 2.00 6.31 11.72 0.62 

2013 0.68 6.95 9.57 0.66 

2014 0.08 4.80 6.93 0.71 

2015 1.43 5.07 7.05 0.70 

Overall 0.88 5.61 8.63 0.73 

 

European and German electricity wholesale markets have seen a price drop of ca. 38% between 

2011 and 2015. Despite to its parsimonious nature, our model replicates this price decline 

accurately. The average MAE over all years reaches 5.6 €/MWh and the explained share of total 

variance is 73%. The model predicts a price drop of ca. 35% (3 percentage points lower than the 

actual price drop) leading to a slightly higher fundamental price compared to the observed prices 

in all years. Based on monthly data, we observe a tendency to slightly overestimate the spot price 

level in some months (e.g. 2015) and to underestimate in other months (e.g. spring 2014; cf. 

Figure 2) with no systematic (seasonal) pattern which would have indicated a misspecification of 

the model. 
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Figure 2: Observed and fundamental monthly average day-ahead prices 

The years 2012 and 2013 have the lowest explained variance (R² of 62% in 2012 and 66% in 

2013), due to more volatile prices and extreme values than the other years. The standard 

deviation (S.D.) of the modelled prices is lower than the observed level which is in line with other 

findings. Inter alia fundamental models do not cover effects like strategic bidding, price mark-

ups, negative prices or other effects that may increase the price volatility (cf. Weron, 2014; Pape 

et al., 2017). E.g., negative prices were only reproduced in 11 out of a total 324 observed hours, 

because negative prices occur in the model during times of negative residual load (cf. Section 

2.2). Another reason for lower price volatility in the parsimonious fundamental model is that the 

model implicitly assumes completely flexible power plants without technical and intertemporal 

restrictions (e.g. start-up or ramping times; cf. Weber, 2004). Another aspect that is not considered 

in the parsimonious fundamental model is the provision of positive or negative reserve capacity. 

Power plants that offer positive or negative spinning reserve capacity have to stay online, which 

implies that they increase the likelihood of low or even negative prices in individual hours. The 

histogram of observed and simulated prices (cf. Figure 3) also indicates that the model describes 

generally well the price distribution, albeit the occurrence of prices below 20 €/MWh is clearly 

underestimated. This may be attributed to the aforementioned aspects. 
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Figure 3: Histogram of observed and fundamental prices 

Overall, the fundamental model captures the typical daily structure of electricity spot market 

prices (Figure 4). However, the model tends to underestimate the valleys in early morning hours 

and during midday as well as morning and evening peaks, leading to flatter and less volatile price 

curves. The lowest errors occur in the first and last hour of the day with MAE’s of ca. 4 €/MWh 

and highest errors during noon hours (cf. Figure 5). Especially in the volatile years 2012 and 

2013, this error at noon reaches up to 9 €/MWh. Overall, the hourly error yet never exceeds 7 

€/MWh (cf. Figure 5).14 

                                                
14 A possible rationale for differing model quality of each year could be a varying data quality. As the high 
MAE’s in years 2012 und 2013 mainly result from the winter period, it is conceivable that the interplay 
between availability and capacity is not entirely consistent there. 
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Figure 4: Observed and fundamental hourly average day-ahead prices 

 

Figure 5: Hourly MAE's for years 2011-2015 

3.2.2 Production volumes 

As a second validation step, we compare yearly fundamental production volumes with actual 

observed generation by technology class. Since consistent comparison data do not exist for the 

investigated period (c.f. Section 3.1), plausibility-checked data is used instead (cf. Appendix A2). 

One has however to take into account that the data sources used for the comparison provide an 

ex post indication of the overall electricity market in Germany, whereas the parsimonious 

fundamental model represents the situation at day-ahead auction. Hence, the fundamental model 

does not take into account events on the intraday and reserve markets and thus, e.g. the forecast 
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error of RES. Also redispatch measures are not captured by the model.15 The fundamental model 

determines the generation from fossil technology classes nuclear (+2.5%), lignite (+4.9%) und 

coal (+6.8%) accurately and slightly overestimates their yearly total production volumes (cf. 

Figure 6 and Figure 7). Annual hydro generation is marginally underestimated by ca. 7.1%. A 

closer look at this aggregated class reveals a slight overestimated production from run-of-river 

plants and too low production from pumped-storage plants. The production from biomass assets 

is significantly overestimated (+15.1%) while gas production is significantly underestimated (-

20.3%).16 

 

Figure 6: Absolute production volume errors for all years 

The underestimation of the production from the relatively expensive technology classes gas and 

pumped-storage-hydro and the simultaneous overestimation of production from coal and lignite 

fired power plants can be partly explained by the previously discussed effect of underestimating 

power plant inflexibilities (cf. 3.2.1). Gas and pumped-storage-hydro plants offer flexibility in 

reality which is rarely needed in the parsimonious fundamental model, because the actually 

inflexible cheaper power plants, e.g. coal- and lignite-fired power plants provide flexibility 

instead. The overproduction from biomass and run-of-river power stations results from their in-

                                                
15 E.g., the average difference in annual production between TSO’s day-ahead forecasts and BMWi actual 
generation is 1.6 TWh for solar- and 3.7 for wind-infeed for the considered period. This leads to a general 
difference between these two data sets. 
16 The production of the mixed and collective technology class “miscellaneous” is overrated in some years 
and in others underestimated. Since data sources for the comparison data set as well as the installed 
capacity are highly volatile over the years, this class will not be considered further in the production volume 
validation. 
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transparent costs structure and the retained assumption that they bid with marginal costs of zero 

€/MWh. 

 

Figure 7: Relative production errors (average numbers indicated for each technology class) 

4 Case-Study: German nuclear phase-out 

4.1 Counterfactual analysis 

The parsimonious fundamental model introduced and validated in this article, is well suited to 

evaluate the impact of political decisions on the electricity market. One of the biggest political 

intervention in the German electricity market has been the nuclear moratorium decided by the 

German government after the Fukushima nuclear accident. In the following, we investigate the 

impact on the German electricity market if the nuclear moratorium and the immediate phase-out 

of 8.4 GW nuclear power capacity had not taken place. 

Therefore, we conduct a so-called counterfactual analysis for the German nuclear phase-out. A 

counterfactual analysis in context of a political intervention is a comparison of what actually 

happened and what would have happened in the absence of the intervention or in the presence 

of an alternative intervention (c.f. White, 2006). The core of the case-study is an analysis of the 

German electricity market in the period 2011-2015 without the nuclear phase-out and the 

immediate reduction of 8 GW of nuclear generation capacity (absence of intervention). In the 

present case, the installed nuclear power plant capacity and availability are directly affected. Due 

to continuing technical incidents, the German nuclear power plants Brunsbüttel (771 MW) and 

Krümmel (1346 MW) had not been in operation for a long time before the Fukushima accident. 

We assume that this situation would have lasted and that both power plants would have not been 

available for electricity generation even without the moratorium decision. Eventually we consider 

hence an additional 6.3 GW of nuclear capacity in contrast to the actual situation in 2011. The 
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associated power plant unavailabilities are adjusted accordingly and remain unchanged until the 

Fukushima accident. For the remainder of 2011, the scheduled and unscheduled power plant 

availability are carefully adjusted for the moratorium. It is assumed that the seasonal maintenance 

rhythms of nuclear power plants are not affected by the moratorium and can be extrapolated to 

the decommissioned power plants. For the years 2012-2015, the actual unavailability factor is 

therefore applied to all nuclear power plants. In addition to these directly affected fundamental 

factors, the German foreign electricity balance and emission prices would have been indirectly 

influenced. The intuition is that reduction of low-emission nuclear generation mostly led to 

increased use of dirty coal generation in the short time. As a result, demand for CO2 emission 

allowances and prices increased. Matthes et al. (2011), Kunz and Weigt (2014) as well as 

Lechtenböhmer and Samadi (2013) among others have investigated this relationship. They 

conclude that there was only a small price effect of about 2 €/t on the CO2 emission allowance 

price (which is within the standard deviation) and that it has vanished within a short time. 

Therefore, we do not consider any CO2 effect in this case study. The second, indirectly influenced 

fundamental factor is the German electricity trading balance. In times of low German electricity 

prices, Germany tends to export electricity, while it imports in high-price phases. Since we expect 

the German price structure to have changed as a result of the intervention in the German power 

plant park, the German foreign trade balance is also affected. Since the foreign trade balance is 

an exogenous factor in the parsimonious model, it needs to be estimated separately. For this 

purpose we use a regression model to approximate the foreign trade balance for the 

counterfactual case (see Section 2.2 and Table 6). 

4.2 Results 

The results for the counterfactual case for the years 2011-2015 are compared to the validation 

results (section 3.2.1). A comparison with actual values would lead to biased results since the 

model inaccuracies would then only be included in the counterfactual and distort the results. 

Overall, the price level in the counterfactual case decreases by an average of 3 €/MWh (-7.6%). 

The electricity price drop in the period between 2011 and 2015 is more pronounced in the case 

study with 38.7% than in the validation calculation (35.6%). Prices are less volatile in the case-

study, i.e. highest prices are lower and lowest prices are higher. In particular, no negative prices 

occur due to the additional generation capacity. One reason for this is the additional cheap 

generation capacity and consequently a longer, more shallow part of the supply curve. However, 

insufficient reproduction of hours with low prices has been identified as a major drawback of the 

parsimonious fundamental model and thus more negative prices should be expected without the 

nuclear phase-out. The prices in the counterfactual case are not only lower but the price 

difference is highly volatile on a monthly basis, ranging from a counterfactual price level 
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exceeding the validation case one time at the beginning of 2012 (+1€/MWh) to an average 

monthly difference of -7 €/MWh in November 2011 (cf. Figure 8). 

Table 5: Descriptive statistics for day-ahead prices in the validation case and the counterfactual case 

    Mean Min Max S.D. # neg. 

2011 
Validation Case 51.31 15.04 102.94 11.50 0 

Counterfactual Case 48.39 14.05 89.33 11.35 0 

2012 
Validation Case 44.60 -10.00 203.17 15.67 11 

Counterfactual Case 41.16 6.45 108.01 13.74 0 

2013 
Validation Case 38.47 6.75 94.34 15.11 0 

Counterfactual Case 35.87 6.78 90.98 14.07 0 

2014 
Validation Case 32.84 6.66 72.90 10.25 0 

Counterfactual Case 30.05 6.69 72.37 8.30 0 

2015 
Validation Case 33.06 6.39 76.69 9.43 0 

Counterfactual Case 29.68 6.59 64.45 7.74 0 

Overall 
Validation Case 40.06 -10.00 203.17 14.50 11 

Counterfactual Case 37.03 6.45 108.01 13.38 0 
 

 

Figure 8: Monthly average day-ahead prices for the validation case and the counterfactual case 

The altered generation structure also impacts the German generation mix, with an increase of 

nuclear production by 46.3 TWh per annum. On the other hand, production from fossil 

technologies coal (-14.3 TWh), lignite (-4.4 TWh), gas (-4.9 TWh) and others (-0.4 TWh) 

decreases. In total, this results in a decline of 24.0 TWh in production from combustible fuels. 

This corresponds to 51% of the additional nuclear energy production. The remaining share of 

22.3 TWh additional nuclear production is exported to neighbouring countries. 
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Figure 9: Shift in production volumes: Case-study without nuclear phase-out vs. fundamental validation 

The model hence predicts that the accelerated phasing-out of nuclear power in the year 2011 

resulted in a price increase of 3 €/MWh on average in the following years. The results indicate 

that the nuclear phase-out led to less nuclear production (-45.9 TWh) and at the same time 

increased production from (domestic) fossil fired power plants (+23.6 TWh). The reason for the 

emerging gap is the reduced German electricity export surplus (-22.3 TWh) in the phase-out case 

(cf. Table 6). In other words, because Germany would have exported much more electricity 

without the nuclear phase-out, only every second TWh of electricity not produced by nuclear 

power plants has led to an increase in German emissions and thus can be tracked to the nuclear 

phase-out decision. Thus, the nuclear phase-out has had an impact on German emissions and on 

the fact that Germany will almost certainly miss its 2020 climate targets (SZ, 2017). But given the 

low carbon and fuel prices, cheap German electricity would have been exported anyway. 

Curbing sufficiently German emissions would have been difficult even without the accelerated 

nuclear phase-out. 

Table 6: German foreign electricity trade balance according to actual data and in the counterfactual case 

[TWh] 2011 2012 2013 2014 2015 

Actual (AGEB, 2017) -6.30 -23.10 -33.80 -35.60 -51.80 

Counterfactual -16.39 -46.55 -67.22 -58.33 -73.09 
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A comparison of our results to recent studies that have quantified the effect of the German nuclear 

phase-out on day-ahead prices (Bublitz et al. (2017), Hirth (2018) and Everts et al. (2016)) shows 

similarities but also differences. Notably all other studies focus on the decomposition of the price 

drop and thus also quantify effects going in the opposite direction of the phase-out. Bublitz et al. 

(2017) thereby aggregate the nuclear phase out with other changes in conventional capacities. 

There are also differences in the considered time periods and in the performed validation. Grossi 

et al. (2017) identify a 8.7% price effect comparing pre (2009-2010) and post Fukushima (2012) 

prices. Everts et al. (2016) find a phase-out related effect of 11.8% in the period 2006-2014 

whereas Hirth (2018) determines an increase of 22% under ceteris paribus conditions for the 

nuclear moratorium in the period of 2008 to 2015. The isolation of the effect leads to a higher 

value, notably due to the non-consideration of the partly compensating changes in imports and 

exports. Bublitz et al. (2017) investigate the same period as done in this article and obtain rather 

similar results. They identify a recovery effect on prices in the range of 8.4% (4.3 €/MWh) due to 

the decrease in power plant capacities (not only nuclear).17 A further difference is that all the 

mentioned studies focus on the price effect and do not investigate changes in the generation mix.  

5 Implications for model aggregation and validation 

Although the model used here is far less detailed than many other fundamental models, it has 

been possible to obtain good validation results in backtesting studies. This contrasts with most 

large scale fundamental models where detailed validation results are scarce (cf. also Weron 

(2014)). This is due to the challenges in backtesting a large-scale model: 

The backtesting procedure of a full fundamental model has to be done at least in three steps: The 

first test includes one country and several time steps. In a second step, a single country with 

intertemporal constraints is tested. Finally, the backtesting of the full model has to be done. Thus, 

the increased complexity of these full fundamental models makes model backtesting rather 

cumbersome and leads to limited transparency, also on the impact of data on results. 

The parsimonious approach followed here allows by contrast to use detailed historical 

information, e.g. on power plant availabilities, to compare modelling and real market outcomes. 

This allows also to test different hypotheses to complement data that are hardly available (e.g. on 

CHP operation). A related advantage of the parsimonious model structure is that time series 

aggregation is not necessary to reach acceptable computation times. Correspondingly the full 

richness of historical data may be exploited. On the other hand, the degree of technological 

                                                
17 Bublitz et al. (2017) report volume-weighted prices which are somewhat higher than the usual (time-
weighted) prices. Furthermore, they refer to the starting price level in 2011 when computing relative 
impacts, whereas our case study refers to the (lower) average price level between 2011 and 2015. 
Therefore, their decrease in absolute terms is larger than ours. 
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aggregation may be considered as an inconvenient – although it is partly alleviated by the 

definition of upward sloping segments in the supply stack. 

Yet the most important drawback of the reduced model certainly is that it cannot capture 

intertemporal interdependencies. Here further work is required to identify adequate 

simplifications - which may be inspired from outcomes of larger models and/or historical 

observations. Conversely intertemporal interdependencies also pose large challenges to the time 

aggregation in larger models – and without detailed validation aggregation approaches should 

also be subject to critical scrutiny. 

Finally, an important possibility for complementary use of parsimonious and parameter-rich 

models is when it comes to model the interplay between regions and countries in Europe. The 

regression-based approach to model exchange used here may also be an option for detailed 

models of the German energy system. On the other side, longer term analyses using the 

parsimonious model certainly benefit from a detailed modelling of the exchange flows based on 

a multi-region fundamental model that goes beyond a pure extrapolation of historically observed 

statistical relationships. 

6 Conclusion 

This paper introduces a parsimonious fundamental model for the German day-ahead market that 

has significantly reduced complexity through aggregated technology classes, uncoupled time 

periods and only one market area. The model is validated for the years 2011-2015 and it is shown 

that the model reproduces spot prices and annual production volumes accurately. 

Despite the aforementioned limitations, the parsimonious model is a simple and validated 

approach for simulating the German day-ahead market and offers potential for numerous 

applications in future research on policy pathways and for cross-validation of results obtained 

with more detailed models. 

In a case study, we apply the model to investigate the effects of the nuclear phase-out decision 

in the German day-ahead market. We find that day-ahead prices would have decreased 

additionally by 3 €/MWh on average. Thus, the political intervention has counterbalanced the 

price drop by approximately 7.6%. At the same time, the output from coal, lignite and gas fired 

power plants would have been lower, while the German overall production and German net 

power exports would have increased significantly without the nuclear phase-out decision. 

This leads to three major findings: Firstly, the political intervention slowed down prices by about 

7.6% on average. Secondly, the high CO2 emissions of the German energy industry can only 

partly be ascribed to the nuclear phase-out. As a direct result of the phase-out, only 23.3 TWh of 

electricity have been replaced by other domestic generation – currently mostly fossil fuels. 
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Finally, we find a high interaction with the foreign trade balance which is modelled based on a 

simplified regression model. 

When assessing policy measures, we hence advice to be aware of the drawbacks of consulting 

untested or insufficiently backtested models. Even though backtesting is time-consuming and 

reward has been low in the past, it is essential to identify errors made in the past and to avoid 

them in the future. Despite its parsimonious nature, the data work for the presented model setup 

was challenging due to potential biases that may be caused by inaccurate input data or data of 

low quality. Well documented, publicly available and transparent datasets would ease this 

process and make model results more comparable.18 

Further research may focus on additional model improvements, e.g. enhanced modelling of 

intertemporal restrictions for pumped-storage power plants or including implications from reserve 

markets. In addition, the model may be used for the analysis and assessment of further policy 

interventions, as well as for future scenarios, e.g. investigations of a potential German coal phase-

out or the further effects of the ongoing nuclear phase-out until 2022. Another application of the 

parsimonious fundamental model is the combined usage with econometric forecasting 

approaches (cf. Beran et al., 2017). 

 

                                                
18 A detailed discussion of this topic can be found in Pfenninger et al. (2017). They postulate more 
transparency in energy economic modelling and data. 
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Appendix 

A1 Generation technology classes and parameters 

 Installed capacity at year end [GW] 

Technology (𝒑𝒍) 𝜼𝒎𝒊𝒏 𝜼𝒎𝒂𝒙 𝑐𝑝𝑙
𝑜𝑡ℎ𝑒𝑟 2011 2012 2013 2014 2015 

Biomass 1.00 1.00 0.00 5.47 5.70 5.86 6.36 6.80 

CCG 0.40 0.6 1.20 14.97 18.74 19.52 19.25 19.68 

Coal 0.30 0.46 2.50 25.72 27.28 26.76 26.21 26.48 

Lignite 0.29 0.43 2.00 20.23 21.25 21.52 21.31 21.31 

Miscellaneous 1 0.55 0.65 0.80 4.62 2.16 2.59 2.32 2.32 

Miscellaneous 2 0.3 0.47 1.53 3.94 1.84 2.21 1.98 1.98 

Nuclear 0.33 0.36 0.50 12.05 12.07 12.07 12.07 10.79 

OCG 0.25 0.36 1.20 6.58 8.23 8.57 8.46 8.64 

Oil 0.24 0.44 1.20 4.17 3.90 4.10 3.80 3.80 

Pumped-storage 0.75 0.80 0.40 6.72 6.39 6.35 6.35 6.35 

Run-of-river 1.00 1.00 0.00 3.56 4.40 4.60 4.30 4.30 

 

 

A2 Shares of inflexible CHP power plants 

Table 7: Share of inflexible CHP power plants 

  coal Lignite oil gas biomass misc. 

Share of inflexible CHP plants19 0.91 0.45 0.28 0.82 0.36 0.36 
 

  

                                                
19 Own calculations based on Öko-Institut, 2014. We combine flexibility information by commercial sector 
with technology shares in these sectors to determine values stated in Table 7. 
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A2 German electricity balance 2011-2015 

Table 8: German electricity Balance 2011-2015 

          2011 2012 2013 2014 2015 Sources 

Gross electricity generation   612.08 628.64 637.65 626.65 646.89 BMWi (2017) 

of which Nuclear 107.97 99.46 97.29 97.13 91.79 
BMWi (2017) 

of which Fossil Fuels 355.75 361.20 362.92 341.20 340.44 

  of which Coal   112.40 116.39 127.29 118.59 117.74 

BMWi (2017) 
    Lignite   150.07 160.74 160.92 155.82 154.46 

    Oil   7.16 7.63 7.20 5.66 6.21 

    Gas   86.13 76.45 67.52 61.13 62.03 

of which Hydro   23.51 27.87 28.78 25.44 24.90 BMWi (2017) 

  of which Pumped-Storage 5.84 5.78 5.78 5.86 5.92 
BMWi (2017) 

    Run-of-River & Seasonal Storage 17.67 22.09 23.00 19.59 18.98 

of which Other Renewables   100.34 115.22 122.80 135.62 162.49 BMWi (2017) 

  of which Wind   48.88 50.67 51.71 57.36 79.21 

BMWi (2017)     Solar   19.60 26.38 31.01 36.06 38.73 

    Biomass   31.85 38.17 40.08 42.20 44.55 

of which Miscellaneous (non-renewable)   24.50 24.89 25.86 27.26 27.28 BMWi (2017) 

  of which Waste   4.76 4.95 5.41 6.07 5.77 
BMWi (2017) 

    Others   19.75 19.94 20.45 21.19 21.51 

-Own consumption   34.89 35.83 36.35 35.72 36.87 Own calculation based on AGEB (2017) 

=Theoretical net electricity generation   577.19 592.81 601.31 590.93 610.01   

-Data gap   0.00 0.00 0.00 0.00 0.00 Own calculation 

IEA data for net electricity generation   576.92 592.74 601.82 591.95 616.18 IEA (2017) 

=Net electricity generation   577.19 592.81 601.31 590.93 610.02 ENTSO-E (2017) 

of which Nuclear   102.20 94.18 92.15 91.80 86.77 ENTSO-E (2017) 

of which Fossil Fuels   333.50 335.42 335.27 337.24 325.58 ENTSO-E (2017) 

  of which Coal   105.10 106.54 117.10 114.82 107.00 Own calculation based on ENTSO-E (2017) 

    of which without CHP 84.20 85.94 95.60 95.22 88.10 Own calculation 

      CHP   20.90 20.60 21.50 19.60 18.90 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 19.06 20.31 19.29 16.70 16.69 
Own calculation based on Öko-Institut (2015); AGEB (2017) 

        MO CHP 1.84 0.29 2.21 2.90 2.21 

  of which Lignite   140.70 148.43 147.36 148.77 143.04 ENTSO-E (2017) 

    of which without CHP 135.30 142.73 141.46 143.67 137.74 Own calculation 

      CHP   5.40 5.70 5.90 5.10 5.30 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 2.59 2.42 2.38 2.46 2.46 
Own calculation based on Ökoinstitut (2015); AGEB (2017) 

        MO CHP 2.81 3.28 3.52 2.64 2.84 

  of which Oil   6.30 7.09 5.70 4.94 5.53 Own calculations based on ENTSO-E (2017), RWE (2017) 

    of which without CHP 4.50 4.99 3.60 3.04 3.53 Own calculation 

      CHP   1.80 2.10 2.10 1.90 2.00 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 0.65 0.61 0.57 0.48 0.48 
Own calculation based on Öko-Institut (2015); AGEB (2017) 

        MO CHP 1.15 1.49 1.53 1.42 1.52 

  of which Gas   81.40 73.37 65.10 68.71 69.99 Own calculations based on ENTSO-E (2017), RWE (2017) 

    of which without CHP 29.04 21.24 14.34 19.21 17.40 Own calculation 

      CHP   52.36 52.13 50.77 49.50 52.59 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 30.17 46.62 42.87 47.01 47.00 
Own calculation based on Öko-Institut (2015); AGEB (2017) 

        MO CHP 22.19 5.51 7.89 2.49 5.59 

of which Hydro 23.51 27.87 28.78 25.44 24.90 BMWi (2017) 

  of which Pumped-Storage 5.84 5.78 5.78 5.86 5.92 
BMWi (2017) 

    Run-of-River & Seasonal Storage 17.67 22.09 23.00 19.59 18.98 

of which Other Renewables   100.60 115.89 119.20 128.72 156.36 ENTSO-E (2017) 

  of which Wind 46.50 50.52 50.78 55.48 79.08 
ENTSO-E (2017) 

    Solar 19.00 26.38 31.02 34.96 35.21 

  of which Biomass   31.10 35.04 35.90 36.80 40.63 ENTSO-E (2017) 

    of which without CHP 18.36 19.47 17.56 15.80 19.22 Own calculation 

      CHP   12.74 15.57 18.33 21.00 21.40 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 6.76 6,32 5.77 6.63 6.63 
Own calculation based on Öko-Institut (2015); AGEB (2017) 

        MO CHP 5.98 9.25 12.57 14.37 14.78 

  of which Other Renewables   4.00 3.95 1.51 1.48 1.44 ENTSO-E (2017) 

of which Miscellaneous (not RES) 17.38 19.44 25.91 7.72 16.42 ENTSO-E (2017) 

  of which Waste   0.00 0.00 0.00 0.00 4.75 ENTSO-E (2017) 

  of which Others   17.38 19.44 25.91 7.72 11.67 Own calculation based on ENTSO-E (2017) 

    of which Others (raw)   18.20 17.64 25.91 14.99 7.98 ENTSO-E (2017) 

      correction   -0.82 1.80 0.00 -7.27 3.69 Own calculation 

      without CHP   16.38 18.24 24.81 6.22 10.27 Own calculation 

      CHP   1.00 1.20 1.10 1.50 1.40 Own calculation based on Öko-Institut (2015); AGEB (2017) 

      of which MR CHP 0.76 0.36 0.42 0.37 0.37 
Own calculation based on Öko-Institut (2015); AGEB (2017) 

        MO CHP 0.24 0.84 0.68 1.13 1.03 

of which CHP (overall)   94.20 97.30 99.70 98.60 101.60 Own calculation based on Öko-Institut (2015); AGEB (2017) 

  of which MR CHP   59.99 76.64 71.29 73.65 73.63 Own calculation 

  of which MO CHP   34.21 20.66 28.41 24.95 27.97 Own calculation 

+ Imports (electricity flows from foreign countries)   49.70 44.20 38.40 38.90 33.60 AGEB (2017) 

= Net Electricity Volume   626.89 637.01 639.71 629.83 643.62   

- Exports (electricity flows into foreign countries)   56.00 67.30 72.20 74.50 85.40 AGEB (2017) 

= Net Domestic Electricity Volume   570.89 569.71 567.51 555.33 558.22   

- Pump Current Consumption   7.50 8.12 7.47 8.00 8.05 ENTSO-E (2017) 

- Grid Losses and Unrecorded Factors   #NV #NV 23.60 32.20 25.80 AGEB (2017) 

= Net Electricity Consumption   #NV #NV 536.44 515.12 524.36   
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A3 MAE’s for all hours of the day and all years 

Table 9: MAE's for all hours of the day and all years 

MAE 2011 2012 2013 2014 2015 

1 4,19 4,56 3,87 3,39 4,19 

2 4,58 4,95 4,45 3,83 4,18 

3 5,29 5,46 4,96 4,23 4,60 

4 5,89 6,09 5,03 4,73 4,83 

5 5,65 5,59 5,03 4,44 4,76 

6 4,71 4,96 4,43 3,68 4,04 

7 4,87 6,11 6,89 5,24 4,76 

8 5,46 6,35 7,75 6,66 6,03 

9 5,15 5,92 7,54 6,11 6,51 

10 4,48 5,47 7,67 5,18 5,48 

11 4,42 6,44 7,97 4,78 4,74 

12 4,75 7,34 8,74 4,85 4,62 

13 4,76 8,02 8,47 4,81 4,94 

14 4,55 8,37 8,55 4,96 5,41 

15 4,96 8,99 9,04 5,00 6,01 

16 5,45 8,47 8,45 4,82 6,27 

17 5,17 7,96 8,40 4,50 6,22 

18 4,63 6,78 8,42 4,57 6,02 

19 5,72 6,86 8,43 5,60 5,55 

20 5,96 7,13 8,20 6,45 5,24 

21 5,01 5,72 6,68 5,04 4,62 

22 4,54 4,63 6,60 4,61 4,46 

23 4,38 5,09 7,07 4,40 4,15 

24 4,01 4,22 4,10 3,41 4,02 
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A4 Histogram of day-ahead prices in the validation case and the 

counterfactual case 

 

Figure 10: Histogram of day-ahead prices in the validation case and the counterfactual case 
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