
Mohamed, Belal; Shalaby, Ahmed; Sayed, Mohammed S.

Conference Paper

High-Level Synthesis Hardware Accelerators of Integer-
pixel Motion Estimation of HEVC on SoC-FPGA Platform

2nd Europe - Middle East - North African Regional Conference of the International
Telecommunications Society (ITS): "Leveraging Technologies For Growth", Aswan, Egypt,
18th-21st February, 2019
Provided in Cooperation with:
International Telecommunications Society (ITS)

Suggested Citation: Mohamed, Belal; Shalaby, Ahmed; Sayed, Mohammed S. (2019) : High-Level
Synthesis Hardware Accelerators of Integer-pixel Motion Estimation of HEVC on SoC-FPGA
Platform, 2nd Europe - Middle East - North African Regional Conference of the International
Telecommunications Society (ITS): "Leveraging Technologies For Growth", Aswan, Egypt, 18th-21st
February, 2019, International Telecommunications Society (ITS), Calgary

This Version is available at:
https://hdl.handle.net/10419/201745

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/201745
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


High-Level Synthesis Hardware Accelerators of Integer-pixel Motion 

Estimation of HEVC on SoC-FPGA Platform 

Belal Mohamed, Ahmed Shalaby, and Mohammed S. Sayed 

 

Abstract 

Motion estimation entails the major computation complexity load and processing time in HEVC 

video encoder. Integer-pixel Motion Estimation (IME) consume more than 45% of the processing 

time. Therefore, this paper presents a High-Level Synthesis Hardware Accelerator for Integer-

pixel Motion Estimation of HEVC on Xilinx SoC-FPGA Platform. The hardware accelerator is 

three time faster than the corresponding software implementation with only 100 MHz clock 

frequency on Xilinx Zynq ZC702 FPGA. 

I. Introduction 

The new H.265/HEVC video coding standards [1] added huge computational complexity to 

achieve double the compression ratio (i.e. 50% bit rate reduction) for the same video quality in 

comparison with the preceding H.264/AVC standard. This high computational cost represents a 

big challenge for real-time compression of video data. Integer-pixel and fractional pixel motion 

estimation, DCT and quantization, and intra-prediction represent almost 90% of the processing 

load of the HEVC encoder. Processing time profiling was carried in [2]. Based on the profiling 

results, Motion estimation with its two parts; integer-pixel and fractional pixel, accounts for more 

than 65% of the processing time (i.e. processing load), DCT and quantization consumes about 15% 

of the processing time, intra-prediction consumes about 1.5% of the processing time, and memory 

setting and copying consumes about 7% of the processing time. 

II. Architecture  

Motion estimation (ME) is used for inter frame prediction where the motion in the current frame 

is predicted from one or more reference frames by calculating a motion vector for every block. In 

our implementation, Integer-pixel Motion Estimation (IME) computes the Integer Motion Vector 

(IMV) by utilizing full search algorithm within a search range ±16 pixels. As shown in Figure 1(a), 

the architecture is composed of 1) the input memory of the search window, 2) the input memory 

of the reference block, 3) Sum of Absolute Difference (SAD) unit, 4) comparison unit and 5) 



motion vector calculator unit. Outputs of the IME are minimum cost value and Integer motion 

vector, which are saved in registers. 

 Memory Organization 

The block size in our implementation is fixed to the size of 16 x 16 pixels and the pixel is 

placed in 8-bits width. The search window size is configured as 48 x 384 = (32 + 16) x (48 * 8 

bits), while the reference block size is configured as 16 x128 = 16 x (16 * 8 bits). The search 

window memory is filled in 576 cycles. The writing process is shown in Figure 1(b), where four 

pixels are sent to the search memory at a cycle.  Each row is a register of size 384 bits (48 pixels). 

In 12 cycles, the registers is filled then the write process move to the next row. The total number 

of cycles is 576 (12 cycle per row x 48 rows). While the reference block memory is filled in 64 

cycles. Likewise, four pixels are written to the memory at a cycle.  Each row is a register of size 

128 bits (16 pixels).  In 4 cycles, the registers is filled then the write process move to the next row. 

The total number of cycles is 64 (4 cycle per row x 16 rows). 

(a) 

 

 

 

(b) 

Figure 1  a) Block diagram of Integer-motion estimation b) The search window write process 

 Processing Unit 

The processing unit is divided into three units [3]: 1) SAD unit shown in Figure 2(a), 2) 

Comparison unit, and 3) motion vector calculator unit. SAD unit receives the input values of the 

pixels from the search window memory and reference block memory. Then the Processing 

Element (PE) works to calculate the SAD value between the pixels and its references. Next, the 



output values is stored at the output SAD register. The architecture of the SAD unit is shown in 

Figure 2(a).  A pipelined architecture of the PE is developed in order to speed up the processing 

time, as shown in Figure 2(b). Thirty-three PEs work in parallel to calculate SAD values for thirty-

three overlapped blocks of a row. Finally, for the thirty-three SAD values, the minimum value and 

its index are computed by the comparison and MVC units. Since our implementation utilizes the 

full search algorithm, this process is repeated for all blocks till the integer motion vector and its 

corresponding minimum SAD value are found and stored. 

(a) 

 

(b) 

Figure 2. a) SAD unit Architecture b) Processing Element (PE) of the SAD unit 

III. Development and Resource Utilization 

Hardware/Software co-design aims to exploit the interaction between hardware and software 

with the goal to optimize and/or satisfy the design metrics such as cost, performance, power, and 

time-to-market. In this context, System-on-Chip FPGAs platforms are produced to accelerate the 

development of complex electronics systems based on HW/SW co-design methodology. SoC-

FPGAs are programmable System-on-Chip (SoC) that combines programmable logic and 

microprocessor unit to implement the hardware and software respectively.  In this paper, HEVC 

encoder, Kvazaar [4], is ported to run on the processing unit (i.e. microprocessor) inside the FPGA 

and the hardware core IP for IME is implemented by High-Level Synthesis HLS approach using 

Vivado [5]. The IME core is implemented and verified using real-time test vectors from Kvazaar. 

Our platform is Xilinx Zynq ZC702, evaluation kit in [6].    



The proposed architecture of Integer Motion Estimation (IME) was developed using High level 

Synthesis (HLS) technique on Vivado platform from Xilinx. Former, C-code of the IME algorithm 

is optimized to be hardware friendly. Latter, the next step is to design the interfaces and apply the 

proposed architecture. The Interface with the IME core is 32-bits AXI-bus where data is 

transmitted and received through it. Four pixels are sent to the core per a clock cycle to fill the 

memory over the AXI-bus. The IME core is synthesized on Xilinx Zynq ZC702 FPGA.  The 

resource utilization of the implemented core is illustrated in Table 1.  

Table 1. Summary of resources utilization of IME core on Xilinx Zynq 

ZC702 FPGA 

 

 

 

Figure 3.  Proposed HLS Architecture for the IME Core “fullsearch16_kvz_0” 

 



IV. Prototyping and Integration 

The proposed IME hardware accelerator is integrated with Kvazaar HEVC encoder software, 

where Kvazaar is running on the ARM processor. Figure 3 shows the details of the integration. 

The component of the system are 1) the processor, in Zynq ZC702, which is a Dual ARM Cortex-

A9 core processor. 2) The generated IME core by HLS. 3) BRAMs to hold the data between the 

IME core and the processor. 4) Advanced Extensible Interface AXI Bus to connect between the 

processor, BRAMs and IME core.  

V. Testing Methodology 

The developed IME hardware accelerator is tested on Xilinx Zynq ZC702. Our aim is to verify 

IME module functionality using real-time test vectors. Also, to discover the limitations regarding 

the time of the target platform. In the verification test, the IME module is implemented as an 

external peripheral on FPGA logic then it is feed by test-vectors from the software running on the 

processor. Kvazaar software is ported as an application on Embedded Linux. In order to perform 

this task, the following steps are required: 

1. IME module is implemented by standalone-BSP Board Supported Package methodology 

[7]. Standalone-BSP is a simple, low-level software layer, it provides access to basic 

processor feature such as cashes, interrupts, exceptions as well as the basic features of 

hosted environment such as standard input and output, abort and exit. Using standalone-

BSP, IME module is implemented as an external peripheral for Cortex-A9 with fixed 

physical address added to Cortex-A9 memory mapping table. Whenever the Cortex-A9 

wants to communicate with the IME module, it just calls it as a hardware peripheral like 

any external peripheral USB, I2C, SPI, etc.    

2. Kvazaar is ported on ARM Cortex-A9 running on Embedded Linux using PetaLinux. The 

PetaLinux tools offer everything necessary to customize, build and deploy Embedded 

Linux solutions on Xilinx processing systems [8]. In this context, Kvazaar is cross-

compiled, using GNU tool, as an application for Embedded Linux. However, Kvazaar is 

modified to call the IME hardware module instead of calling module function in the 

software flow.  

3. The image of the complete solution including the hardware description (standalone BSP IP 

Module) and the Embedded Linux application is built and uploaded to SD card, where The 



First Stage Boot Loader (FSBL) in the Zynq ROM reads the “boot.bin” file from the SD 

card and start the Kvazaar application.  

This method is utilized for verification to drive the IME module with real-time test vectors. In 

the following section, we present the results of the verification test. Screenshots from the test are 

displayed. Also the timing results are demonstrated. In addition, a comparison between the 

software IP and the HLS accelerators are showed to demonstrate the gain achieved by integrating 

IP modules as Hardware on programmable logic. 

VI. Integer-pixel motion estimation architecture’s test: 

In our implementation, Integer Motion Estimation (IME) computes the Integer Motion Vector 

(IMV) by utilizing full search algorithm within a search range ±16 pixels. In our testcase, each 

pixel is stored as an integer. So for 16 × 16 block size, the input test vector is 64 pixels × 32 bits. 

The test vector is generated by Kvazaar then feed to the IME module. Next, the test runs and the 

output is stored and compared with the reference output. The output vector contains two integer, 

IMV and best SAD values.   

 Test Screenshot 

In Figure 4, a screenshot of the test is captured. The test is passed as shown in the figure, the 

done signal is triggered after all output vector is compared and matched to the reference output. 

The yellow marker shows the end of the testcase.  

 Timing Report 

In order to verify the benefits of the HLS flow, a timing analysis is performed to compare 

between the pure software IME module runs on ARM processor and HLS IP module. Table 2 

shows the timing report of IME. The IME HLS IP module runs at 100 MHz clock, with 1826 clock 

interval. The output is produced after 1826 / 100 MHz around 18.26 µsec. while in software, it 

takes 54.5 µsec. So HLS IP module accelerate around three times over the software IP. 

VII. Acknowledgment 

We would like to thank Egypt-Japan University of Science and Technology (E-JUST) for the 

continuous support and the National Telecom Regulatory Authority (NTRA) of Egypt for funding 

this work. 



 

Figure 4. Test Screenshot of Integer Motion Estimation IP Module 

Table 2. Timing Report of Integer Motion Estimation IP Module 

 
 



VIII. References:  

[1] Kim, I.-K., et al.: High efficiency video coding (HEVC) test model 10 (HM10) encoder 

description. Doc.JCTVC-L1002. 12thMeeting: Joint Collaborative Team on Video Coding 

(JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Geneva, CH (2013). 

[2] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC Complexity and Implementation 

Analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1685-1696, Dec. 

2012. 

[3] 51. M. Sayed, “A Fast Architecture for Exhaustive Search Block Matching Algorithm with 

MPEG-4 Applications,” in Proc. the 16th IEEE International Conference on Electronics, 

Circuits and Systems (ICECS’09), Hammamet, Tunisia, Dec. 13-16, 2009, pp. 787-790. 

[4] Viitanen, Marko, et al. "Kvazaar: Open-Source HEVC/H. 265 Encoder." Proceedings of the 

2016 ACM on Multimedia Conference. ACM, 2016. http://ultravideo.cs.tut.fi/#encoder -last 

accessed April 24th, 2017. 

[5] https://www.xilinx.com/products/design-tools/vivado.html 

[6] https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0041-zc7000-

video-and-imaging-kit-hub.html. 

[7] https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/SDK_Doc/concepts/

sdk_c_bsp_internal.htm 

[8] https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html 

 

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0041-zc7000-video-and-imaging-kit-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0041-zc7000-video-and-imaging-kit-hub.html

