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Incremental Risk Charge Methodology 

 

Tim Xiao
1
 

 

ABSTRACT 

The incremental risk charge (IRC) is a new regulatory requirement from the Basel 

Committee in response to the recent financial crisis. Notably few models for IRC have been 

developed in the literature. This paper proposes a methodology consisting of two Monte Carlo 

simulations. The first Monte Carlo simulation simulates default, migration, and concentration in 

an integrated way. Combining with full re-valuation, the loss distribution at the first liquidity 

horizon for a subportfolio can be generated. The second Monte Carlo simulation is the random 

draws based on the constant level of risk assumption. It convolutes the copies of the single loss 

distribution to produce one year loss distribution. The aggregation of different subportfolios with 

different liquidity horizons is addressed. Moreover, the methodology for equity is also included, 

even though it is optional in IRC. 

 

 

Keywords: Incremental risk charge (IRC), constant level of risk, liquidity horizon, constant loss 

distribution, Merton-type model, concentration. 
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The Basel Committee on Banking Supervision (see Basel [2009 a]) released the new 

guidelines for Incremental Risk Charge (IRC) that are part of the new rules developed in response 

to the financial crisis and is a key part of a series of regulatory enhancements being rolled out by 

regulators. 

IRC supplements existing Value-at-Risk (VaR) and captures the loss due to default and 

migration events at a 99.9% confidence level over a one-year capital horizon. The liquidity of 

position is explicitly modeled in IRC through liquidity horizon and constant level of risk. 

The constant level of risk assumption in IRC reflects the view that securities and 

derivatives held in the trading book are generally more liquid than those in the banking book and 

may be rebalanced more frequently than once a year.  IRC should assume a constant level of risk 

over a one-year capital horizon which may contain shorter liquidity horizons. This constant level 

of risk assumption implies that a bank would rebalance, or rollover, its positions over the one-

year capital horizon in a manner that maintains the initial risk level, as indicated by the profile of 

exposure by credit rating and concentration. 

The current market risk capital rule is: 

Total market risk capital = general market risk capital  

     + basic specific risk capital    (1) 

     + specific risk surcharge 

where 

 General market risk capital = 3 x 
dayVaRGeneral 10

%99_  

 Basic specific risk capital = 3 x 
dayVaRSpecific 10

%99_  

 Specific risk surcharge = (m – 3) x 
dayVaRSpecific 10

%99_  

where m is the specific risk capital multiplier under regulators’ guidance 

 

The new market risk capital standard will be: 
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   Total market risk capital = general market risk capital  

+ basic specific risk capital    (2) 

        + incremental risk charge 

where Incremental risk charge = 
yearVaRIRC 1

%9.99_  

In this paper, we present a methodology for calculating IRC. First, a Merton-type model 

is introduced for simulating default and migration. The model is modified to incorporate 

concentration. The calibration is also elaborated. Second, a simple approach to determine market 

data, including equity, in response to default and credit migration is presented. Next, a 

methodology toward constant level of risk is described. The details of applying the constant level 

of risk assumption and aggregating different subportfolios are addressed. Finally, the empirical 

and numerical results are presented. 

 

2 Simulation of Default and Credit Migration 

The IRC encompasses all positions subject to a capital charge for specific interest rate 

risk according to the internal models with exception of securitization and nth-to-default credit 

derivatives. Equity is optional. For IRC-covered positions, the IRC captures default risk and 

credit migration risk only. 

2.1 Simulation Model 

Most of the portfolio models of credit risk used in the banking industry is based on the 

conditional independence framework. In these models, defaults and credit migration of individual 

borrowers depend on a set of common systematic risk factors describing the state of the economy. 

Merton-type models have become very popular. The Merton-type model (or standardized Merton 

model) is 

 iiiiz 
2

1      (3) 

where 
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 i,   The independent standard normally random variables 

    The systematic risk 

 i   The idiosyncratic risk for issuer/obligor i 

i  The weighted correlation reflecting the impact of systematic risk factor 

on issuer/obligor i.  

iz  The normalized asset return or creditworthiness indicator for 

issuer/obligor i 

This model becomes the most popular one in default and migration risk modeling and 

yields the core of the Basel II capital rule (see Heitfield [2003]). 

Similar to the original Merton model, this model is also assuming that the default and 

migration only happens at the end, which achieves significant simplification. 

2.2 Simulation model for multiple-liquidity-horizon subportfolios 

Liquidity horizons are determined for each position to reflect actual practice and 

experience during periods of both systematic and idiosyncratic stresses. The total portfolio shall 

be divided into the subportfolios based on different liquidity horizons. Let’s assume that there are 

two subportfolios with different liquidity horizons: 3 month and 6 month. To model different 

liquidity periods, one can use the above model (3) but calibrate different i ’s, such as, 
im _3  

and im _6 , for different periods. 

  Alternatively, one can also use a multiple-period model as: 

 imimimz _3

2

33 1      For 3 month  (4) 

 imi

mm

imz _6

2

2

36

6 1
1





 




   For 6 month  (5) 

where i  is unique for different periods under issuer i and   is an exponentially declining 

weight (see Dunn [2008]). 
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2.3 Calibration of i  

The most popular approaches to calibrate the asset correlation are Maximum Likelihood 

Estimation or regression based on time series default data. Alternatively, in the new Basel Capital 

Accord, a formula for derivation of risk weighted asset correlation for corporate, sovereign, and 

bank exposures is given as (see Tasche [2004] and Basel [2003]): 

 )1(24.012.0 iii       (6) 

Where 
50

50

1

1









e

e iPD

i        

2.4 Concentration 

The phenomenon we need to model is that concentration will result a higher IRC number, 

comparing to non-concentration case. Furthermore, the more concentration a portfolio has, the 

higher IRC result it generates. To achieve this, we model the effect of issuer and market 

concentration as well as clustering of default and migration by introducing another parameter, the 

concentration parameter.   

There are two correlations we need to consider: correlation between credit migration and 

default events of obligors and correlation between credit migration/default events and systematic 

market risk factors. The study (see Kim [2009]) shows that the correlation between credit 

migration/default events and systematic market risk factors is very small and negligible. 

However, correlation between credit migration and default events of obligors is significant and 

cannot be ignored. Therefore, the concentration parameter is solely dependent on correlation 

between credit migration and default. 

Our methodology is based on a simple mechanism for coupling issuer/market 

concentrations to migrations and defaults. In the simulation framework (3) or (4) and (5), the 

probability of a migration or default increases with the asset volatility.  Since the effect of 

increasing concentration within a sector is to increase the probability of migration/default events 



 6 

within that sector, we model increased concentration as an increase in the volatility of the 

systematic risk driver.  All positions sensitive to that risk driver will have an increased probability 

of migration/default events occurring. The modified simulation model is 

iitiiiz 
2

1)||1(      (7a) 

Where i  is the weighted concentration factor depending on correlation between issuer default 

and migration events and  

k

kt

k

tt

t

xxx

22

1

1 














    (7b) 

where if one uses (3),   = 0 and   tt x . Otherwise,   is time declining weight and 

ktt xx ,,  are independent standard normally random variables representing systematic risks in 

different time periods. 

2.5 Calibration of i  

The calibration is based on credit migration matrix. It can be derived using either analytic 

closed-form or Monte-Carlo simulation. In theory, one can use Pearson’s product moment or 

Kendall’s  . 

2.6 Determination of default and credit migration 

The simulated asset return iz , combined with migration/default thresholds, is used to 

ascertain when default or migration is deemed to occur. The calculation of the thresholds of credit 

migration and default is based on credit migration probability (see JP Morgan [1997]). Using a 

BBB issuer as an example and given migration matrix, we can calculate the thresholds as: 

BBB

AA

BBB

A

BBB

BBB

BBB

BB

BBB

B

BBB

CCC

BBB

D zzzzzzz ,,,,,, . The rating bands and thresholds are shown in Figure 1 
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Figure 1 Credit migration rating thresholds (for BBB) 

 

If the normalized asset of the issuer is smaller than 
BBB

Dz , it defaults. If the normalized 

asset is between 
BBB

Dz  and 
BBB

CCCz , it migrates to CCC, and so on. We use an effective middle value 

to represent each band: 
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2.7 Calibration of transition matrix, default probability (PD), and loss given 

default (LGD) 

BBB

Dz  BBB

BBBz  

BBB

BBBu  
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The straight forward cohort approach is used to estimate transition matrices based on 

obligors’ rating history, which has become the industry standard. The PD estimate is based on 

EDF data that is used for calculation of PD benchmarked against internal default history. Internal 

data is used for LGD parameter benchmarked against relevant external proxy data. 

 

3 Credit Spreads and Equity Prices 

After simulating default and migration of all issuers/obligors, we need to price every 

instrument in order to generate loss distributions. The question is whether we should simulate 

market data or not? 

The earlier version of Basel IRC paper (see Basel [2008]) requires financial institutes to 

capture four risks: default, credit migration, significant credit spread changes, and significant 

equity price changes. However, the new guideline (see Basel [2009 a]) limits the risks to default 

and credit migration only. In addition, a separate Basel paper (see Basel [2009 b]) further states 

that IRC contains only incremental default and migration risks, and all price risks belong to the 

comprehensive risk. These messages give us a clear indication that only default and credit 

migration are risk factors in IRC and all market prices/data are not. Therefore, we recommend 

simulating default and migration only but not simulating any market prices/data.  

We assume all market prices/data are deterministic (flat) and use forward prices/data for 

valuation. The fat tail behavior and market correlations are embedded in the market. Keeping 

these parameters constant ensures we measure only P&L variation due to credit rating changes 

(migration or default) per IRC requirements.  The selection of credit spreads or equity prices, 

however, should reflect the credit quality changes. 

 

3.1 Credit spreads 
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All issuers/obligors shall be divided into credit groups based on geographies and sectors. 

Assume that the credit spreads for different ratings under each group are available. Then we can 

select associated credit spreads to price a bond or a CDS according to the creditworthiness 

simulation of the issuer/obligor. 

3.2 Equity prices 

In risk neutral world, the forward equity price at future time T is  

rT

T eEE 0       (9) 

Where r is the risk free interest rate and 0E  is the today’s spot equity price 

If the issuer defaults at T, the equity price should be 0. If the issuer is upgraded or 

downgraded, the equity price should be larger or smaller than the risk neutral forward price 

rT

T eEE 0 . This is the phenomenon we are going to model: 

 


















downgradedifeE

upgradedifeE

defaultif

changecreditnoifeE

E

rT

o

rT

rT

T

0

0

0


The underlying dynamic of Merton model is 

 ttAtt dWAdtrAdA       (11) 

Where tA  is the corporate asset value; r is the risk-free interest rate; 
A  is  the asset volatility 

and tW  is the Wiener process. 

Applying Ito’s lemma, we have 

  yTTrTAA AAT   2

2
1

0 exp     (12) 

where y denote the standard normal variable 

The Merton model states that the equity of a company is a European call option on the 

asset of the company with maturity T and a strike price equal to the face value of the debt that 

will become due at T. 
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The payoff of Merton model is 

  0,max DAE TT       (13) 

where D denotes the debt of the company. 

The mathematical expression of Merton model is 

 )()( 2100 dDNedNAE rT     (14) 

where T
rTDA

d A

A


 2

1)/ln( 0
2,1 


  

We still use the BBB issuer as an example. Based on (8), (12), and (13), the equity price 

at T, if default occurs, is 

   0exp 2

2
1

0  DuTTrTADAE BBB

DAA

D

T

DBBB

T   (15) 

The equity price at T without credit quality changes is 

   rTBBB

BBBAA

BBB

T

BBBBBB

T eEDuTTrTADAE 0

2

2
1

0 exp    (16) 

We solve equations (14), (15), and (16) to get 0A , 
A , and D. Then, with the known 0A , 

A , and D, we can obtain any equity price at T under any credit rating according to (8) and (13). 

For instance, when the rating changes from BBB to A, the equity price at T is 

   DuTTrTADAE BBB

AAA

A

T

ABBB

T   2

2
1

0 exp)0,max(   (17) 

 

4 Constant Level of Risk 

The constant level of risk reflects recognition by regulators that securities/derivatives 

held in the trading book are generally much more liquid than those in the banking book, where a 

buy-and-hold assumption over one year may be reasonable. It implies that IRC should be 

modeled under the assumption that banks rebalance their portfolio several times over the capital 

horizon in order to maintain a constant risk profile as market conditions evolve. Of course, we do 

not suggest that the constant level of risk framework be taken literally as a model of banks’ 
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behavior: clearly portfolios are altered on a daily basis, not simply held constant for some period 

then instantaneously rebalanced. Rather, we regard the rollover interpretation as being a 

reasonable approximation to the way banks manage their trading portfolios over a certain 

horizon. In general, one should model constant level of risk instead of constant portfolio over one 

year capital horizon. 

There are several ways to interpret constant level of risk: constant loss distribution or 

constant risk metrics (e.g. VaR). We believe the constant loss distribution assumption is the most 

rigorous. Under this assumption, the same metrics (e.g. VaR, moments, etc.) can be achieved for 

each liquidity horizon.  

The liquidity horizon for a position or set of positions has a floor of three months. Let us 

use three months as an example. We interpret constant level of risk to mean that the bank holds 

its portfolio constant for the liquidity horizon, then rebalances by selling any default, 

downgraded, or upgraded positions and replaces them so that the portfolio is returned to the level 

of risk it had at the beginning. The process is repeated 4 times over the capital horizon resulting 4 

independent and identical loss distributions. The one year constant level of risk loss distribution is 

the convolution of 4 copies of the three month loss distribution. In Monte Carlo context, this 

can be modeled by drawing 4 times from the single period loss distribution measured over 

the liquidity horizon. The total PnL is the summary of these 4 random draws. 

An intuitive explanation is shown in Figure 2. A generic path with appears in red; P&L 

contributions from each liquidity horizon appear in blue. In this schematic, the position 

experiences downgrade, upgrade or default, resulting in a loss or profit.  This position is then 

removed and replaced at the end of each liquidity horizon by rebalancing. The final P&L for the 

path will be the summary of all losses and profits. 

 

 Portfolio  

Value 

V(0) = V0 
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   Figure 2 Constant level of risk 

 

In addition, one needs to consider the reinvestment of all cash flows realized during the 

liquidity horizon and rollover of expired deals. 

 

5 Aggregation and Time Horizon Correlation 

First we need to divide the portfolio into the subportfolios based on liquidity horizons. If 

there is only one single-liquidity-horizon subportfolio, the rebalance at the end of each liquidity 

horizon washes out the time horizon correlation. However, if there are multiple subportfolios, the 

time horizon correlations need to be addressed. 

To elaborate the details, we assume there are two subportfolios with liquidity horizons: 3 

months and 6 months. Based on the default and migration simulation and full re-valuation, we 

can generate loss distributions at first liquidity horizons for 3-month and 6-month subportfolios as 

mPL3 , and mPL6 . 

There are two approaches to achieve the correlative aggregation: copula approach or 

correlation matrix approach.  

5.1 Copula approach 
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We conduct the second Monte Carlo simulation by generate 4 standard normal random 

draws for scenario j: 
jjjj xxxx 4321 ,,., . These random draws represent a Monte-Carlo path. 

5.1.1 Three-month Subportfolio 

The P&L distribution of three-month subportfolio is mPL3 . The four draws of loss 

distribution are        )(,)(,)(,)( 43332313

j

m

j

m

j

m

j

m xPLxPLxPLxPL  , where   is the 

accumulative normal. The total P&L of the three-month subportfolio for scenario j is 

  



4

1

33_ )(
i

j

im

j

mtotal xPLPL     (18) 

5.1.2 Six-month Subportfolio 

The P&L distribution of the six-month subportfolio is mPL6 . We can calculate 

correlation ),( 63 mm PLPL  between mPL3  and mPL6  using Pearson product-moment. The two 

correlated random draws are 
j

mm

j

mm

j

m xPLPLxPLPLx 2

2

631631_6 ),(1),(    and 

j

mm

j

mm

j

m xPLPLxPLPLx 4

2

633632_6 ),(1),(   . The two draws of loss distribution are 

   )(,)( 2_661_66

j

mm

j

mm xPLxPL  . The total P&L of the six-month subportfolio for scenario j is 

  



2

1

_666_ )(
i

j

imm

j

mtotal xPLPL     (19) 

Summing up (18) and (19), we can get the total P&L for scenario j as 

  
j

mtotal

j

mtotal

j

total PLPLPL 3_6_      (20) 

5.2 Correlation matrix approach 

Based on the four 3-month independent identical loss distributions: 

mmmm PLPLPLPL 3333 ,,, , and two 6-month independent identical loss distributions: 

mm PLPL 66 , , we can construct a 66  pair-wise sample correlation matrix  . Applying the 



 14 

Cholesky decomposition to the correlation matrix  , we have 
TLL , where L  is a lower 

triangular matrix.  

We conduct the second Monte Carlo simulation by generating 4 independent standard 

normal random draws: 
jjjj xxxx 4321 ,,.,  for the four 3-month periods in a year and 2 independent 

standard normal random draws 
jx5 , 

jx6  for the two 6-month periods to construct a path/scenario j. 

The random draw vector is  jjjjjj xxxxxxX 654321 . We can obtain correlative 

random draw vector  

 jjjjjj xxxxxxX 654321
~~~~~~~

  by 
TT XLX 

~
   (21) 

The total P&L for scenario j is 

   



6

5

6

4

1

36_3_ )~()~(
i

j

im

i

j

im

j

mtotal

j

mtotal

j

total xPLxPLPLPLPL  (22) 

The final IRC will be 99.9% VaR based on distribution 
j

totalPL . In general, the 

correlation matrix approach is more generic and can be easily extended to any number of 

subportfolios. 

 

6 Numerical and Empirical Results 

The above methodology has been implemented. The empirical study shows the results on 

P&L distributions, numerical stability & convergence, concentration effect, and capital impact.  

The loss distributions for the testing portfolio are shown in Figure 3 and 4. 
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pdf: 3 month loss distribution
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Figure 3 Histogram of loss distribution at 3 month 

 

pdf: one year loss distribution
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Figure 4 Histogram of loss distribution at 1 year 

 

6.1 Convergence study 

People normally believe that 50,000 simulations provide sufficient stability to measure 

the 99.9
th
 percentile loss required for the regulatory IRC measure. However, our study shows that 

50,000 paths are not convergent. Actually 100,000 simulations are needed to archive a better 

numerical stability and convergence. The results are shown in Table 1 

 

Table 1 convergence results 
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Scenarios IRC Diff from previous Diff from average 

8,000.00 102.31  -1.51% 

10,000.00 103.56 1.23% -0.30% 

20,000.00 100.44 -3.01% -3.30% 

40,000.00 100.71 0.27% -3.04% 

60,000.00 110.01 9.23% 5.91% 

80,000.00 105.22 -4.35% 1.30% 

100,000.00 104.90 -0.31% 0.99% 

120,000.00 103.66 -1.18% -0.20% 

140,000.00 103.96 0.28% 0.08% 

160,000.00 103.61 -0.33% -0.25% 

180,000.00 105.23 1.56% 1.31% 

200,000.00 103.14 -1.99% -0.71% 

Average 103.87   

 

6.2 Concentration study 

The purpose of this section is to demonstrate that the model (7) can reflect issuer and 

market concentrations. To simplify our tests, we assign all issuers with the same concentration 

factor  . It is shown that the IRC increases according to the increasing of  , up to 30% in table 

2. 

 

Table 2 Concentration study 

Scenarios   IRC Diff from 0 concentration 

100,000 0 104.90 0 

100,000 0.2 116.97 11.50% 
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100,000 0.4 122.37 16.66% 

100,000 0.6 128.49 22.48% 

100,000 0.8 132.83 26.63% 

100,000 1 137.23 30.82% 

 

6.3 Capital impact 

The capital impact can be measured as the ratio between IRC and specific risk surcharge. 

The results significantly depend on the composition of a portfolio and the specific risk multiplier 

of a financial institution set by the regulator. The ratio of our testing portfolio is 5.8. 
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