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Abstract 
 
This paper quantifies a tenant-side “split incentives” problem that exists when the largest 
commercial sector customers are on electricity-included property lease contracts causing them to 
face a marginal electricity price of zero. We use exogenous variation in weather shocks to show 
that the largest firms on tenant-paid contracts use up to 14 percent less electricity in response to 
summer temperature fluctuations. The result is retrieved under weaker identifying assumptions 
than previous split incentives papers, and is robust when exposed to several opportunities to fail. 
The electricity reduction in response to temperature increases is likely to be a lower bound when 
generalized nationwide and suggests that policymakers should consider a sub-metering policy to 
expose the largest commercial tenants to the prevailing retail electricity price. 
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1. Introduction

Separating the party who pays for energy from the one making decisions about electricity use has

long been cited as creating incentives for energy over-consumption or underinvestment in energy

efficiency in both the commercial and residential sectors. In the U.S., roughly 20 percent of com-

mercial building occupants rent space with electricity bundled into their monthly rent. Under this

contract structure commercial tenants face zero marginal cost of consuming electricity, creating

an incentive to over-consume. The remaining 80 percent of tenants pay their own monthly utility

bills, which will dampen the incentive for building owners to invest in energy efficiency if owners

cannot capitalize on a rent premium for energy efficiency upgrades. These misalignments between

tenant and landlord incentives may lead to overconsumption of energy and overproduction of pol-

lution that Pigouvian taxes are not well suited to correct (Jaffe and Stavins (1994), Gillingham

and Palmer (2014)). Given that the commercial sector accounts for over 35 percent of end-use

electricity consumption in the U.S., the welfare costs from excess energy use may be substantial.

Yet little evidence exists about the magnitude of these “split incentive” principal-agent problems

in the commercial sector.1

In this paper, we estimate an important component of the change in electricity use from switch-

ing commercial customers on electricity-inclusive rent contracts to tenant-paid utility contracts, a

distinction we refer to as “contract type”. We do this by evaluating how the relationship between

electricity use and temperature (the temperature response gradient, henceforth “TRG”) differs

by contract type. We illustrate how the structure of the rental contract may create two distinct

split incentives, one on the intensive and another on the extensive margin of demand for energy

services, which lead to different empirical predictions relating to the TRG. When considering the

intensive margin, the TRG will be less steep under a tenant-paid than an electricity-inclusive, or

“owner-paid” contract. This occurs because, for a given level of energy efficiency capital, firms on

a tenant-paid contract pay a positive marginal price for electricity use while those on an owner-

paid contract face a marginal price of zero. The second split incentive relates to owner incentives
1More broadly, the existence of this principal-agent problem may justify programs or regulations to mandate

energy efficiency, such as building energy standards or the use of firm-level energy saving obligations, also known
as “white certificates”, that have been adopted in several European countries (Stavins (2011), Giraudet and Finon
(2015), Papineau (2017)).
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to invest in energy efficient durables. Under a tenant-pay contract, owners have little incentive to

invest. Since (all else equal) lower investment in energy efficiency leads to a steeper TRG, firms

located in buildings on tenant-pay contracts should exhibit a steeper TRG relative to owner pay

contracts. We refer to this as the extensive margin effect. These two split incentives impact the

TRG in opposite directions in relation to contract type, allowing us to empirically test which split

incentive (if any) dominates in our setting.

Results suggest that the intensive margin effect dominates among the largest firms. Tenant-

paid contracts induce considerable energy savings among these customers during the hottest

summer months. For the largest decile of firms, switching from an owner-paid to tenant-paid

utility contract would reduce electricity use by roughly 3 percent over the course of a year and up

to 14 percent in the summer months. The annual savings among large consumers are comparable

to popular energy conservation measures such as home energy reports, which produce average

savings of approximately 2 percent (Allcott (2011)). Furthermore, the savings occur at times

when the value of electricity is likely to be high: during the hottest days of the year. Our finding

that the largest customers are most responsive to contract type corroborates recent evidence

from the residential sector in Sweden (Elinder et al. (2017)). In contrast, contract type does not

measurably impact consumption decisions for the smallest 90 percent of commercial customers.

These results are consistent with profit-maximizing firms facing adjustment costs in electricity

consumption, such that a relatively small absolute value of bill savings, among smaller firms,

would not warrant conservation behavior.

Our empirical approach exploits the differential effect of an exogenous weather shock on elec-

tricity use across firms on an owner versus tenant paid contract. To do this we make use of

cross-sectional variation in local weather exposure within a calendar billing month generated

from the staggering of electricity billing periods across customers. We combine these weather

data with monthly bills from 1,074 commercial firms serviced by a Connecticut electric utility

between October 2007 and May 2011, and property-level information on fixed observables in-

cluding whether the tenant or landlord pays the electric bill. This panel data set allows us to

examine the differential impact of local weather shocks on electricity use across contract types,

controlling for potential selection into contract type based on firm or fixed building attributes. A
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“levels” comparison of electricity use across contract type would be biased if firms on owner- and

tenant-paid contracts differ in ways that are correlated with energy use. Focusing instead on the

TRG across contract type captures the sensitivity of electricity consumption to fluctuations in

temperature and allows us to control for a rich set of variables that may correlate with selection

into contract type, thereby permitting identification under weaker assumptions.

Our identifying assumption is that selection into contract type is unrelated to unobservable

electricity demand drivers that are correlated with the TRG. We present three pieces of em-

pirical evidence that support this assumption. First, motivated by recent work demonstrating

that the electricity response to temperature shocks meaningfully differs across certain building

attributes, we directly control for the possibility that the TRG is heterogeneous in observable

building attributes (Novan et al. (2017)). After controlling for interactions between temperature

and attributes such as building age and industry type, our results are unchanged. Second, we

use a change to a Connecticut metering regulation. This change was legislated after the end of

our sample period and altered building owners’ ability to select into contract type. It provides

us with an opportunity to examine the TRG of firms located in buildings that switched contract

types shortly after the change, and to test whether they exhibit a differential response gradient.

They do not. Third, we assess the effect of potential correlations between any remaining unob-

servable characteristics and the treatment, as described in Oster (2017). This places bounds on

the potential bias from selection on unobservables. Each of these tests exposes our identifying

assumption to an opportunity to fail, and the results of each test support our main conclusions.

Given the size of the firms responsive to contract type, the estimated treatment effect translates

into significant costs from misaligned incentives. Using very conservative assumptions, we find

that if incentives were aligned among the largest decile of commercial customers nationwide,

total energy savings would be roughly one and a quarter times the savings from solving the

split incentives problem for the entire U.S. residential electricity sector. The magnitude of the

treatment effect and the relative size of large commercial firms are the primary factors leading to

this result. Though the number of commercial customers affected by the split incentives problem

is small relative to residences, these customers use much more energy. Thus, addressing the

commercial split incentive problem requires a fraction of the contact points, while likely leading
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to greater energy savings. Our estimates imply greenhouse gas reductions of between 615-1200

thousand tons of CO2 per year, or (to give a sense of scale) roughly 3.3 to 6.6 times the average

annual savings from yearly Weatherization Assistance Program retrofits. These savings may be

achievable at a relatively low cost. When we compare the cost of retrofitting units with sub-meters

(to allow switching to tenant-paid utility bills) with the estimated annual bill savings amongst

the largest customers, the payback period is less than one year. One caveat to note is that our

results are identified based on the TRG. A switch from owner to tenant paid contracts, and the

accompanying disincentive for landlords to invest in energy efficiency, may also alter the level

of electricity use. While many building-level energy efficiency investment choices available to

landlords affect the TRG, we cannot rule out that these “level” effects may lead to a consumption

increase and mitigate or even overwhelm the TRG savings we identify relating to the temperature

gradient.

Despite the robustness of our results, identification of our main effect arises from the behavior

of 110 large firms, 19 of whom are on owner-pay contracts. Our need to lean on a small sample

raises the possibility that our study may be under-powered and that our results may be driven

by outliers. While our research setting prevents us from completely nullifying these concerns, we

present evidence that allows us to reject the hypothesis that our findings are driven by a single

outlier among the largest owner-pay firms in our sample.

This work makes four main contributions to the academic literature and environmental policy

discussion. First, compared to the residential setting where a growing literature points to both

the potential and limitations of energy efficiency and contracting solutions (Gillingham et al.

(2012), Hassett and Metcalf (1999), Fowlie et al. (2015), Elinder et al. (2017)), little is known

about the commercial setting. We provide a commercial counterpart to existing residential esti-

mates on the split incentives problem. Second, our identification strategy makes several advances

towards credibly estimating the magnitude of the split incentives problem. The response gradi-

ent, temperature-characteristic interactions, contract switcher controls, and Oster bounds each

provide support for the identifying assumption and extend the existing literature on split incen-

tives. Third, our results reveal substantial heterogeneity in firm responsiveness to contract type

and point to the importance of looking beyond population average treatment effects. Lastly, our
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results suggest a targeted prescriptive policy of tenant-paid contracts among large firms may be

a net beneficial greenhouse gas abatement strategy.

The rest of the paper is organized as follows. Section 2 presents our conceptual framework and

our predictions about the TRG among tenant- and owner-paid utilities under the two potential

split incentives. Section 3 reviews our empirical setting and presents our data. Section 4 discusses

identification and our empirical specifications. Section 5 presents our empirical results and policy

implications. Section 6 briefly concludes.

2. Conceptual Framework

The two forms of the split-incentive principal-agent problem introduced in the previous section

translate into simple empirical predictions, which we articulate in more detail in this section.

The structure of a rental contract shifts both the responsibility for electricity bill payments (the

intensive margin) and the extent of investment in energy efficiency (the extensive margin). These,

in turn, affect how we would expect electricity consumption to change in response to an exoge-

nous demand shifter such as temperature fluctuations. Our framework highlights that when the

intensive margin dominates, tenant-paid rental contracts will lead to electricity consumption lev-

els that exhibit a weaker positive covariance with temperature relative to owner-paid contracts.

In contrast, if the extensive margin dominates, the opposite holds: owner-pay contracts create

incentives that will result in a lower consumption response to temperature changes. Our setting

allows for a test of which of these channels dominates.

2.1 Set-up and Notation

Tenant k’s electricity consumption, measured in kilowatt-hours (kWh), in a building owned by

landlord j is given by Y = f(E, T, Pk(W )). Electricity use depends on energy efficiency capital, E,

temperature, T , and the price per kWh of electricity paid by tenant k, Pk(W ), which is a function

of contract typeW . Under standard conditions, electricity consumption is decreasing in P and E,

and increasing in T .2 For any building there are two potential contract types offered: an owner
2These follow, respectively, from a downward-sloping demand curve, an assumption that rebound effects are

less than 100 percent in magnitude, and by restricting our attention to temperatures of 65F and above such that
derived electricity demand (via air conditioning) is increasing in temperature.
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paid contract, W = 0, and a tenant-pay contract W = 1. Under the former Pk(W ) = Pk(0) = 0,

and under the latter Pk(W ) = Pk(1) = p, where p is the retail price of electricity. When choosing

where to rent commercial space, tenants choose the contract type and the capital characteristics

of a building. Conditional on these decisions, which are assumed to be fixed in the short-run,

tenants make monthly decisions about electricity use.

2.2 Competing Split Incentive Hypotheses

Our empirical predictions relate to the temperature response gradient (TRG): ∂Y
∂T . The TRG

reflects the sensitivity of electricity consumption to fluctuations in temperature, and it has two

attractive features. First, since temperature fluctuations are exogenously experienced by tenants,

this variation is an appealing source for identification. Second, as we will discuss, the TRG will

differ as a function of contract type, W , along two margins: an extensive and an intensive one.

Temperature interacts with energy efficiency and price to influence electricity use. The more

energy efficient a building is, the less sensitive energy demand is to temperature increases (i.e. the

TRG is shallower): ∂2Y
∂T∂E < 0. This intuition is supported by recent empirical work demonstrating

that the electricity response to temperature shocks is decreasing in the stringency of building

energy codes (Novan et al. (2017)). The TRG will also be dampened at higher prices, all else

equal. This follows from the costs associated with increasing air conditioning as temperature

increases and as the tenant pays a higher price for electricity: ∂2Y
∂T∂Pk

< 0. The incentives created

by contract type flow from these pieces of intuition.

When W = 1, tenants pay p>0 for every kWh of electricity they use. In contrast, under

an owner paid contract, the marginal price tenants pay for electricity equals 0. Because of this

difference in prices, tenant k’s TRG will be shallower under a tenant paid than under an owner

paid contract, all else equal (including E). Our first empirical prediction follows.

Prediction 1:
∂Y

∂T

∣∣∣∣∣
E, p>0

<
∂Y

∂T

∣∣∣∣∣
E, p=0

(1)

The level of E may also be expected to change with contract type, and this will have a distinct

effect on the TRG. Consider landlord j’s decision to invest in energy efficiency capital. Landlord
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j chooses E to maximize profits from the rental of commercial units,

max
E

πj = R(E)− Pj(W )Y (E)− rE.

Rental revenues denoted by R depend on energy efficiency capital E, where we assume that rents

are weakly increasing in E. Total costs comprise the electricity bill, Pj(W )Y (E), which is a

function of the price per kWh of electricity paid by landlord j and the quantity of electricity

consumed by the tenant. Total costs also include the costs to purchase energy efficiency capital,

where we assume the cost per unit of capital is r. Under differentiability, the landlord chooses a

quantity of E such that

∂R

∂E
− Pj(W )

∂Y

∂E
= r. (2)

The landlord chooses to invest in energy efficiency capital up to the point where the increase

in marginal benefit from a unit of energy efficiency capital is equal to the marginal cost. The

marginal benefit from energy efficiency capital consists of two components: the increase in rents

from additional energy efficiency capital and the reduction in the electricity bill from a decrease

in electricity consumption.

Now suppose that a building with a landlord-paid contract structure is exogenously placed

on a tenant-paid contract, W = 1. The tenants occupying this building will now pay a price p

per kWh of electricity used, and the price paid by the landlord is Pj(W ) = P (1) = 0. As shown

below, this reduces the incentive for a landlord to invest in energy efficiency because the landlord

will no longer benefit from lower electricity bills after investing in energy efficiency, and equation

(2) will simplify to
∂R

∂E
= r. (3)

If the landlord cannot obtain a rent premium that fully accounts for the higher up-front costs

of energy efficiency investments, her demand for energy efficiency capital will be reduced. This

leads to the second split incentives problem: if tenant k is on a tenant-paid contract, the building

owner will be disincentivized from investing in energy efficiency capital.

This outcome leads to our second prediction about the TRG and how it changes with contract

type. Let L denote a low level of E, and H denote a high level.
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Prediction 2 :
∂Y

∂T

∣∣∣∣∣
E=L, p

>
∂Y

∂T

∣∣∣∣∣
E=H, p

(4)

If the split incentive effect is operating entirely through the extensive margin (i.e. holding

electricity price constant), then tenant k’s TRG will be steeper if W = 1 than if W = 0. This

prediction arises because of lower levels of investment in energy efficiency capital by landlord j in

a tenant-paid building.

The two split incentive effects set forth in predictions 1 and 2 represent competing hypotheses

about the TRG in tenant-paid contract buildings. These two effects are likely to occur simulta-

neously, such that any conservation benefit from a tenant paying their own energy bills could be

mitigated or overwhelmed by building capital inefficiencies. Alternatively, in owner-paid buildings

attenuation in the temperature gradient from investment in energy efficiency capital may be com-

promised or dominated by split incentives from the absence of a price signal for tenants. What

we observe in our data is the net outcome of these two competing effects: a negative estimate

for the impact of a tenant-paid contract on electricity consumption indicates that the intensive

margin dominates, whereas a positive coefficient indicates that the extensive margin dominates.

3. Empirical Setting: Background and Data

The split incentives literature goes back several decades and has used a number of different

methodological approaches, from interviews with building industry professionals (Blumstein et al.

(1980)), to engineering approaches combined with survey data (Murtishaw and Sathaye (2006))

and regression-based analyses (Levinson and Niemann (2004), Davis (2012), Gillingham et al.

(2012), Krishnamurthy and Kriström (2015), Elinder et al. (2017)). Most recently, energy savings

resulting from a switch from owner- to tenant-paid contracting in the residential sector have been

documented in a quasi-experimental setting by Elinder et al. (2017). The split incentive problem

resulting from tenant-paid electricity contracts, which reduce the incentive for landlord investment

in energy efficiency capital, has been documented by Davis (2012), Krishnamurthy and Kriström

(2015) and Myers (2015).

In the residential sector, existing studies have found that that the split incentive effect on
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aggregate consumption is of modest to moderate magnitude. Levinson and Niemann (2004) find

that energy bills in the U.S. are 0.7 percent higher when apartment dwellers do not pay for heat.

Elinder et al. (2017) find that electric energy consumption in a sample of Swedish apartments

falls by close to 25 percent when tenants are shifted from owner-paid to tenant-paid electricity

billing, where this effect is driven in large part by the highest-consuming households.3

While the engineering literature has identified several channels through which split incentives

may affect commercial sector consumption, a gap remains in our understanding of its precise

magnitude. One exception is Kahn et al. (2014), who find that energy consumption by tenants

who pay their own energy bills is 20 percent lower compared to owner-paid units. However, as

noted by the authors, this estimate reflects the effect of both contract type itself, and selection

into contract type and buildings based on preferences for energy services.

In this study we focus on energy overconsumption that arises from air conditioning. The

mechanism of control over air-conditioning by tenants is an important consideration in mea-

suring firm-level response to contract type. Individual tenants in multi-tenant buildings may

each exercise control over cooling in their units through zonal air-conditioning, which has been

commercially available since the late 1950s (Meyer (2006), Hoger (2014), AHRI (2017)). In the

commercial sector in the summer months, buildings can be over-cooled, leading to reduced comfort

levels and an accompanying increase in electricity consumption of up to 8 percent (Derrible and

Reeder (2015)). Equipment and electronics usage may also increase if there are poor incentives

to conserve. Sanchez et al. (2007) find that office equipment and electronics - such as computers,

personal space heaters and fans - account for up to 20 percent of annual building-level electricity

consumption.

We evaluate our research questions within the jurisdiction of United Illuminating (UI), an

investor-owned electric utility in Connecticut servicing customers across 17 counties. Figure 1

shows its service territory. The regulations surrounding metering in Connecticut make it an

advantageous setting in which to study the split incentives problem. To get a sense for the
3Another dimension to the principal-agent problem is less than efficient turnover from oil-fired to gas-fired boilers

for residential heating in the northeastern U.S. (Myers (2015)). This outcome is consistent with asymmetric
information over heating costs when tenants pay for heat. Inefficient turnover led to 37 percent higher annual
heating costs in the 1990-2009 period.
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regulatory landscape, consider the owner of a multi-tenanted building. Monitoring each tenant’s

individual electricity use would require the installation of a sub-meter. However, prior to the

summer of 2013 the state prohibited the retrofitting of commercial and multi-family buildings with

sub-meters. As a result, only buildings initially constructed with sub-meters in place could charge

individual tenants for energy consumption.4 In all other buildings electricity consumption was

master-metered (monitored at the building level), and thus tenants signed owner-paid contracts.

Since our analysis focuses on the time period 2007 to 2011, the presence of sub-meters in buildings

is predetermined from the perspective of current owners and tenants. While tenants are able to

choose buildings based on electricity contract type, doing so limited their choice set to buildings

retrofitted with a sub-meter at the time of construction.

In 2013, new legislation passed by the Connecticut General Assembly eliminated the sub-

metering prohibition (Hartford Business Journal (2013)). While we cannot directly test the effect

of this change on electricity use due to the fact that it post-dates our electricity billing sample,

the legislative change enables us to gain further insights into selection on contract type based on

firm and building-level energy consumption characteristics.5

3.1 Data

We combine three data sets to form a panel of 39,233 observations on monthly electricity use from

1,074 firms, and monthly weather from 32 unique zip codes.6 The first data source is monthly

billing data provided by UI that reports account-level monthly electricity consumption (in kWh),

peak monthly throughput or power (in kW), and monthly expenditure. These data also contain

information on the industrial classification number - or NAICS code - of each account. The

second source is the CoStar Group, a commercial-sector multiple listing service and database

that includes building-level information on utility contracts and hedonic characteristics, such as

year of construction, number of stories and total square feet. Third, we obtained average daily
4Several states have historically banned utility sub-metering, primarily for consumer protection reasons. The

main concern has been that owners would overcharge tenants for sub-metering services. States that have banned
sub-metering include California, New Jersey, Massachusetts, and New York (Allen et al. (2007), NJAA (2005),
Cross (1996)).

5As we later discuss, we obtain data on contract “switchers” in the post-2013 period, where switchers are defined
as firms located in buildings that changed their contract type from owner-paid to tenant-paid utilities, or vice versa.
Altogether 65 firms were located in one of these buildings.

6We use the terms customers, firms, and accounts interchangeably in this study.
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temperature data from the National Oceanic and Atmospheric Administration (NOAA).

Table 1 presents sample summary statistics on monthly consumption (in kWh), peak through-

put in the highest demand hour within a billing month (kW), location, and industry, by contract

type, for the firms in our sample. The average customer (across contract types) spends about

$695 a month on electricity; the average building is approximately three stories; and the primary

industry is ‘Finance, Real Estate and Management’, which makes up about 50 percent of the

sample among both contract types.7 The predominant share of accounts are located in office

buildings (72 percent), followed by industrial buildings (22 percent). In our sample, about 84

percent of firms pay their own electricity bill. The regional distributions are also similar across

contract types, with about 30 percent of observations in central cities, and the rest located in

more suburban areas.

Our empirical analysis will seek to test whether the effect of contract type on electricity use

differs by firm size, given that absolute bill reductions from conservation will be concentrated

among the largest firms. To measure firm size, we follow a similar approach to Aigner and

Hirschberg (1985), and use peak throughput or peak load. Explicitly, for each firm we measure

peak throughput or power (in kW) in a billing month, and then take the mean of peak load across

all billing months in the sample.8 Peak throughput provides one measure of firm size since it

reflects the electric load requirements of electricity-using equipment.9 We then assign each firm

to a firm size decile based on our mean peak load measure.10 Table 2 presents the sample summary

statistics for firms in the top size decile, which includes 19 owner-paid firms and 91 tenant-paid

firms. Mean monthly electricity bills in this group are over $3,000. Buildings in this decile also

tend to be located in much larger and somewhat taller buildings compared to the full sample.

Weather is measured as the number of cooling degree days (CDD) and heating degree days

(HDD) in a zip code billing-month. To arrive at this observational unit, we begin by using daily
7The ‘Industry’ category refers to NAICS codes in the Construction, Manufacturing, and Mining sectors.
8Peak throughput is the maximum power demand in the top hour of each billing month.
9Commercial equipment such as air conditioners and heat pumps are typically differentiated by size based on kW

capacity. For example, the American Society of Heating, Refrigerating and Air Conditioning Engineers categorizes
air conditioners and heat pumps with capacity between 20-40 kW as small to medium commercial, and equipment
capacities larger than 40 kW as large commercial (ASHRAE (2004)).

10Our decision to analyze heterogeneity in the data by decile is guided by the simplicity of dividing the sample
into ten sub-samples.
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temperature data collected from ten local weather stations to construct daily CDD and HDD at

each weather station. CDD, which measure demand for space cooling services, are obtained by

subtracting 65 from the average Fahrenheit temperature on a given day with temperatures above

65, while HDD, which measure demand for space heating services, are obtained by subtracting

the average Fahrenheit temperature on a given day from 65 on days with temperatures below

65. These daily weather station measures are used to compute daily zip code level weather. We

use inverse distance weighting relative to zip centroids, and then sum within a billing-month in

each zip code to obtain monthly CDD and HDD. Finally, for ease of coefficient interpretation, we

divide cumulative CDD and HDD by total days in that billing period to arrive at average daily

CDD and HDD by billing month.

This observational unit provides both cross-sectional and temporal variation in weather. One

source of cross-sectional variation arises from temperature differences across the 32 zip codes in

UI’s service territory. This is made clear in Figure 2, which displays the daily temperature by zip

code between October 2007 and May 2011. Despite the relatively small region, there is visible

cross-sectional variation in daily temperatures with summer temperatures varying between 5 to

10 degrees across zip codes. Variation in our weather variable also occurs because of differences

in billing cycles - which denote the start date and end date of a billing period - across firms. In

our sample, there are 16 unique billing cycles, where firm assignment to a billing cycle is based

on geography. The staggering of billing cycles throughout a month provides a second source of

cross-sectional variation in weather due to the fact that a hot day may be included in different

billing “months” for firms on different billing cycles.11

4. Empirical Framework

In this section, we begin by describing a simple levels comparison of electricity use across firms on

owner- and tenant-paid contracts, and show that this approach will likely lead to biased estimates

of the principal-agent problem. Next, we detail the empirical approaches that we deploy, the
11The assignment of billing cycles based on geography raises the possibility that they may be correlated with

weather and contract type. We investigate this by testing if a systematic relationship between bill cycle and
weather exists. A regression of weather on bill cycle shows that that the sixteen billing cycles are neither jointly
nor individually significant in explaining cooling degree days or heating degree days (Appendix section A.1).
Nevertheless, our empirical approach explicitly addresses this concern by conditioning on billing cycle.
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coefficient estimates that these retrieve, the identifying assumptions upon which our empirical

approach hinges, and the robustness tests we implement.

4.1 Average Treatment Effects: Levels Comparison

To examine the split incentives problem, we begin by comparing overall electricity use across firms

on owner- and tenant-paid contracts conditional on a number of rich time controls using OLS,

Yit = α+ β1Czt + β2Hzt + θTi + ηit+ γt + εit (5)

The outcome variable is the natural log of electricity use for firm i in billing month t. The regressor

of interest, Ti, is an indicator variable that takes on a value of 1 if firm i is on a utilities excluded

or tenant-pays contract, and 0 if it is on a utilities included or owner-pays contract. The variables

Czt and Hzt are average daily cooling and heating degree days for a firm assigned to billing month

t and located in zip code z. We further condition on billing month fixed effects, denoted by γt,

and firm-specific time trends ηi.

Our coefficient of interest, θ, will reflect the average effect of contract type on monthly elec-

tricity use if assignment to a tenant-paid or owner-paid contract is independent of potential

outcomes. In our setting, this identifying assumption seems untenable, since the mechanism by

which firms and buildings are assigned to contract type is likely correlated with fixed firm or

building attributes that also determine electricity use. Tenants may sort into contract type based

on electricity use, the elasticity of their electricity demand, or firm-specific attributes. Another

possibility is that the presence of sub-meters in a building, and hence the ability for owners to

implement tenant-paid contracts, may be co-determined with other fixed building attributes. In

our setting, the decision to construct a building with or without sub-meters may coincide with

other construction decisions such as insulation or window quality that affect electricity use. For

these reasons, buildings and firms on tenant-paid contracts likely differ from those on owner-paid

contracts in ways that affect electricity use. Failure to account for selection into contract type

may result in a biased estimate of θ.

To empirically explore whether selection on fixed firm and building attributes may confound

the estimation of equation (5), we compare firms on owner- and tenant-paid contracts across
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a number of observables that we hypothesize may be related to contract type. Tables 1 and

2 report mean characteristics for firms on tenant- and owner-paid contracts, as well as the t-

statistic associated with the difference in means. Motivated by empirical specifications that focus

on the principal-agent problem among all firms and only the largest customers, we present these

comparisons for all firms in our sample, Table 1, and firms in the top demand decile, Table 2.

As shown in Table 1, the covariates are balanced along the rich set of covariates we observe.

However, a comparison of means across the top decile of firm size reveals that firms on owner-

and tenant-paid contracts differ in building height and industry type. These balance statistics

cast doubt on an empirical approach that relies on a levels comparison in electricity use across

firms on different contracts, and lead us to forgo the formal estimation of equation (5).

4.2 Average Treatment Effects: Temperature Gradient

We propose an empirical approach that controls for the possibility that firms and buildings on

owner- and tenant-paid contracts may be systematically different in fixed attributes that also

affect electricity use. We begin with the hypothesis that if a split incentives problem exists, then

it should be observed in differences in cooling across owner- and tenant-paid contracts.12 We test

this hypothesis by evaluating how electricity use differs in response to a 1 CDD increase across

firms on an owner- versus tenant-paid contract, controlling for firm fixed effects and weather.

To evaluate the differential effect of a CDD on electricity use across contract type, we estimate

a fixed effects model,

Yit = β1Czt + β2Hzt + θ1Ti × Czt + θ2Ti ×Hzt + Lt + ηit+ γt + γi + εit (6)

In this specification, the indicator variable for whether tenant i pays its own electric bill is in-

teracted with each of the weather variables, Ti × Czt and Ti ×Hzt. Importantly, this estimating

equation conditions on account fixed effects γi. This allows us to control for all fixed firm and

building characteristics including those that affect electricity use and may systematically differ

across contract type. We also condition on bill length, Lt, defined as the number of days in a
12 Most Connecticut commercial customers heat their units with natural gas or fuel oil rather than electricity

(EIA (2012)), leading us to hypothesize that electricity use will be most responsive to weather conditions in the
summer months, when air-conditioning use is high.
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billing month, to account for differences in weather attributable to variation in bill length across

billing months.

The coefficient, θ1, reflects the differential effect of temperature increases on electricity use

across firms on tenant- and owner-paid contracts. A natural interpretation of θ1 is the change

in demand for air conditioning among tenant-paid contract firms relative to owner-paid firms, in

response to warmer temperatures, holding constant the existing building stock. To estimate this

treatment effect, we exploit variation in CDD generated from the staggering of billing cycles, and

compare how a firm on a tenant- versus owner-paid contract responds to this variation netting

out fixed firm characteristics. This approach allows us to account for fixed building and firm

attributes systematically correlated with contract type and electricity use.

Nevertheless, identification of the treatment effect still rests on a key assumption: the re-

sponse of electricity use to CDD differs only by unobservables uncorrelated with contract type.

When compared to the levels regression in equation (5), the requirements for identification are

less onerous. This is because equation (6) allows for selection into contract type based on fixed

unobservables. Our empirical approach only breaks down if fixed building attributes that affect

electricity use in a temperature-dependent way are also systematically correlated with contract

type. In our setting, this would occur if, for example, building age was systematically correlated

with contract type, and the electricity response to temperature differed across building vintage.

Under this scenario, our estimated treatment effect would capture the effect of a change in demand

for air conditioning among firms in tenant-paid contract buildings relative to owner-paid build-

ings, where differences across buildings would reflect both contract type and other co-determined

building attributes.

To examine the plausibility of our main identifying assumption, we augment equation (6) to

account for the possibility that building attributes which differ systematically across contract type

may also impact electricity use along a temperature gradient. Our main estimating equation thus

conditions on interactions between weather and building and firm attributes that (i) differ across

contract type and (ii) are primary determinants of electricity use (EIA (2015)),

Yit = β1Czt + β2Hzt + θ1Ti × Czt + θ2Ti ×Hzt +ψXi × [Czt, Hzt] + Lt + ηit+ γt + γi + εit (7)
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The term ψXi×[Czt, Hzt], denotes a vector of building and firm attributes interacted with heating

and cooling degree days, where Xi includes indicator variables for building type (retail, office,

etc.), firm NAICS code, and quartile of building vintage.13

Our testable hypothesis is that if building attributes confound the TRG then our coefficient

estimate on contract type, θ1, will be sensitive to the inclusion of interactions between temperature

and building/firm covariates. If the coefficient estimate remains unchanged after conditioning on

these interaction terms, then this provides evidence to support our main identifying assumption

and the interpretation of our coefficient of interest as the impact of contract type on electricity

use. In terms of the conceptual framework introduced in Section 2, a negative estimate for θ1 in

equation 7 would therefore indicate that the intensive margin (price) dominates, whereas a positive

coefficient would indicate that the extensive margin (energy efficiency capital) dominates.

4.3 Conditional Average Treatment Effects: Temperature Gradient

A central focus of this paper is whether the size of the split incentives problem varies substantially

across firms. One form of heterogeneity in the response to contract type may arise based on

customer size, since relatively larger firms are likely to have higher electricity expenditures, and

therefore larger bill savings from conservation. To empirically examine this form of heterogeneity,

we estimate conditional average treatment effects for firms in different deciles of average peak

power, in (kW).14 To implement this, we augment equation (7) and estimate,

Yit = β1d(Czt × 1id) + β2d(Hzt × 1id) + θ1d(Ti × Czt × 1id) + θ2d(Ti ×Hzt × 1id)

+ψdXi × [Czt × 1id, Hzt × 1id] + Lt + ηit+ γt + γi + εit (8)

This estimating equation now includes a vector of indicator variables denoted by 1id that are set

equal to 1 if tenant i has mean peak power in decile d (i.e. d = {1, ..., 10}), and zero otherwise.

These indicator variables are interacted with the weather variables, and the treatment effect of
13The building vintage quartile dummies capture the variation in building energy standard adoptions in Con-

necticut (OSBI (2018)).
14Details of the size decile construction are discussed in Section 3.1. However, it bears repeating that we define

firm size by average peak power (in kW) in the top demand hour within a billing month, and that this variable is
distinct from our dependent variable, total monthly energy consumption (in kWh).
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interest. This allows to us to separately estimate, for each size decile, the differential effect of a

CDD on demand for electricity across contract type.

4.4 Robustness

To examine the plausibility of our main identifying assumption, in addition to the attribute-

temperature interaction terms discussed in section 4.2, we implement two novel robustness tests.

The first makes use of a regulatory change allowing buildings to switch contract type and tests

if selection is an empirical concern. Second, to account for the possibility of remaining selection

on unobservables, we apply a new technique proposed by Oster (2017) to bound our estimated

treatment effects.

Our first robustness test takes advantage of a policy change to sub-metering regulations.

Within our sample period, a ban on sub-metering retrofits in Connecticut made selection by

customers and building owners along contract type very costly, if not impossible. For example,

customers desiring attributes of a centrally-metered building may have preferred to pay their

own electricity, and landlords may have preferred to offer tenant-paid energy utilities. However,

retrofitting buildings with unit-level electricity meters - a prerequisite for tenant-paid contracting

- was not permitted. In 2013, about two years after our sample period ended, this restriction was

lifted and landlords were allowed to retrofit buildings with sub-meters.

We use building-level tenancy contract information collected a year and a half after the Con-

necticut legislative change to assess whether sorting based on energy consumption preferences

might have occurred once sub-metering retrofits were allowed. Since the legislative change al-

lowed a more flexible re-matching of tenants into contract type, this presents an opportunity to

observe which buildings switched and to directly examine whether controlling for them changes

our baseline results.15 Under the null hypothesis of “no selection,” our estimated treatment ef-

fect should be unchanged after conditioning on the identity of firms switching contract types by

interacting indicator variables for these “switchers” with CDD and HDD.
15Roughly six percent of customers switched contract types by early 2015, with 34 owners moving to a tenant-

paid contract and 31 transitioning to an owner-paid contract. We control for both types of switches in our empirical
specifications. Switches to owner-paid contracting were not limited prior to the sub-metering policy change, and
there are several reasons why owners may switch to owner-paid contracting, such as metering costs or tenant risk
aversion (see Levinson and Niemann (2004) for a more detailed discussion).
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Our second test uses a technique proposed by Oster (2017). This method requires the as-

sumption that the relationship between treatment and unobservables can be recovered from the

relationship between treatment and observables. If this is the case, movements in the coefficient

of interest and R-squared levels from the inclusion of control variables inform us about selection

on unobservables. Building on Altonji et al. (2005), Oster (2017) points out that under the plau-

sible assumption that observable controls share covariance properties with unobservable variables,

omitted variable bias is proportional to coefficient movements, but only if these movements are

scaled by changes in total R-squared. An ideal scenario in this context is one in which the treat-

ment coefficient of interest changes very little as new covariates are added, and the regression

R-squared approaches its maximal theoretically possible value, after accounting for measurement

error (Gonzalez and Miguel (2015)). In this case, a large R-squared suggests there is little vari-

ation remaining to bias the coefficient. The Oster approach yields a range for the bias-adjusted

coefficient of interest, or an identified set formed by the treatment effect in the fully controlled

regression, and the bias-adjusted effect. We retrieve the Oster bounded set in a post-estimation

procedure and present it in our results.16

5 Results and Discussion

The reduced form relationship between contract type, firm size, temperature and electricity con-

sumption is presented in Figure 3. It plots electricity consumption against average temperature

within one-degree bins, across both contract types, for the bottom nine deciles of firm size in

panel (a), and the top decile in panel (b). Superimposed on each scatter plot is a lowess fit of

consumption on temperature. This figure provides a preview to our formal regression results and

points to three interesting patterns of firm behavior. First, as shown in panel (a), on average

there is almost no discernible difference in consumption by contract type across the distribution

of temperatures in the bottom nine size deciles. Second, in the top size decile, shown in panel

(b), we observe a significant divergence in usage across contract types, with firms on owner-paid

utility contracts exhibiting higher use. Third, this difference in usage is most pronounced when

air-conditioning demand rises. Consumption levels begin to diverge more sharply once tempera-
16Appendix Section A.3 provides more detail on the Oster bounds approach.
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ture increases beyond approximately 65 F, the temperature at which demand for cooling typically

begins (EPA (2014)).

Table 3 presents our formal regression results. Column (1) displays estimates from the es-

timation of equation (6), a regression comparing the differential impact of a weather shock for

firms with a tenant-paid contract type relative to an owner-paid contract, controlling for firm and

billing-month fixed effects and firm-specific time trends. When looking across all firms, we find

there is no difference in the effect of weather shocks on consumption across contract type. In the

remainder of Table 3, we report results that include tenant-paid contract interactions with CDD

and HDD for each size decile. Column (2) reports results from the estimation of the conditional

average treatment effects analog of equation (6). Columns (3) to (5) examine the robustness of

this result to potential confounding factors by reporting results from the estimation of equation

(8). Column (3) conditions on the interaction of CDD and HDD with building and industry

type; column (4) adds interactions of CDD and HDD with building vintage quartiles; and column

(5) adds controls for the differential effect of temperature shocks among contract the switchers

described in Section 4.4.

Our results indicate that a split incentives problem leads to overconsumption of energy among

the largest decile of firms. Focusing on our preferred specification in column (5), we find that a

tenant-paid contract leads to about a 1.4 percent decrease in kWh per average daily CDD for the

top decile of electricity consumers. This translates into about a 3 percent decrease in electricity

use among the top size decile of customers. In contrast, contract type does not statistically

impact consumption decisions for the other 90 percent of commercial firms. This large divergence

in response to contract type based on firm size points to a first source of heterogeneity in response

to treatment, and potentially large savings from the targeted deployment of a policy instrument.

A second source of heterogeneity results from seasonal variation in the treatment effect. We

find that the split incentive can lead to significant increases in electricity use but only during the

hot summer months. In the summer months, switching from an owner to a tenant-paid contract

would reduce monthly electricity consumption by up to 14 percent. The summer response is

consistent with a framework in which demand for electric air conditioning during these hot months
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drives the divergence in the TRG across owner- and tenant-paid contracts.17

Though contract type only influences electricity choices for a narrow set of customers during a

concentrated period of time, restructuring contract type has meaningful implications for aggregate

electricity usage. This is because the responsive firms are the largest electricity consumers and are

quite sensitive to hot temperatures. Our results suggest that a policy which switched the largest

decile of electricity consuming firms in our sample from an owner to tenant-paid contract would

result in annual electricity savings per firm of roughly 19,000 kWh. Comparing these savings to

the total quantity of electricity consumed by all commercial firms in our sample, we find that this

policy change would lead to a 1.4 percent reduction in total electricity use.

We also estimate the effect of contract type on electricity expenditure by estimating our

preferred conditional average treatment effects specification with log monthly bill as the dependent

variable; results are shown in column (6) of Table 3. For the top decile of electricity consumers,

the estimated treatment effect is a 1.2 percent decrease in the monthly bill per average daily CDD.

The value of total bill savings among these high consumers is approximately $310 per summer

month. On average, this represents a 10 percent reduction in electricity expenditure.

5.1 Robustness Results

One of the robustness tests discussed in Section 4.4 is to use tenancy contract information collected

a year and a half after a Connecticut legislative change to assess whether sorting based on energy

consumption preferences might have occurred once sub-metering retrofits were allowed. Under

the null hypothesis of “no selection,” our estimated treatment effect should be unchanged after

conditioning on the identity of firms switching contract types by interacting indicator variables

for these “switchers” with CDD and HDD.

This is indeed what we observe. As shown in column (5) of Table 3, including the switchers

controls has no significant effect on our estimated coefficient relative to column (4), which does not

include the switchers controls. In addition, since columns (3) to (5) of Table 3 include building and

firm attributes interacted with heating and cooling degree days, as discussed in Section 4.2, the

insensitivity of the results to these provides evidence to support our main identifying assumption
17The coefficients on HDD (not reported) are not statistically significant. Since most firms in Connecticut use

natural gas or fuel oil for heating, this is not surprising.
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and the interpretation of our coefficient of interest as the impact of contract type on electricity

use.

To further gauge the robustness of our results to potential selection on unobservables, we

apply a second robustness test: the bounds analysis proposed by Oster (2017). We make an equal

selection assumption, which implies that any residual omitted variable bias is a function of: (i) the

treatment coefficient before and after the inclusion of covariates; (ii) R-squared values before and

after the inclusion of covariates; and (iii) the maximum theoretically possible R-squared, namely

from a regression on consumption and all possible observable and unobservable controls.18 Given

our rich set of controls, the equal selection assumption is likely conservative, as it assumes that

any remaining unobservables are as important as the observables in explaining the treatment

(Oster (2017), Altonji et al. (2005)).

Table 4 reports the identified set estimates from two different specifications with log usage and

log bill as the dependent variables, respectively, corresponding to the fully controlled specifications

reported in columns (5) and (6) of Table 3.19 As shown in this table, we continue to detect a split

incentives effect after accounting for any remaining selection on unobservables. A tenant-paid

contract induces at minimum monthly electricity and bill savings of 0.7 and 0.6 percent per CDD,

respectively. This range implies annual firm-level bill savings of between $677 to $1,265.

We present further robustness checks in Appendix section A.3. As shown in Table A2, we

also include building story interactions with cooling and heating degree days; the results are

qualitatively unchanged and the point estimate on our variable of interest increases. Table A2 also

shows that our treatment effect is not sensitive to the functional form of the building characteristic

controls. Section A.2 also addresses concerns that electricity use may be correlated with mean

peak load (the size decile), which could bias our coefficient of interest. To test this concern,

we estimate decile-by-decile regressions, thereby eliminating any potential correlation between

the decile dummy variable and electricity use. As shown in Table A3, the top decile results are

virtually unchanged in the decile-by-decile results.
18Further details on the Oster approach are provided in Appendix Section A.2.
19The maximum theoretically possible R-squared may be less than 1 if there is measurement error. These set

estimates assume that the maximum possible R2 is 0.98, given the estimated 2 percent measurement error in
electricity meter readings (Dong et al. (2005), Reddy et al. (1997)).
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It is possible that there are some residual unobserved attributes of the 19 firms that are

correlated with the (true) treatment effect. Such unobservables would have to be time-varying

due to the presence of tenant fixed effects, and must also be orthogonal to building type, NAICS

code, building vintage, and number of stories in order to introduce bias.

Finally, since our need to lean on a small sample of top decile firms raises the possibility

that our results are driven by outliers, we assess whether the exclusion of any single observation

negates our main result. Figure 4 presents coefficient estimates and confidence intervals on the

Tenant×CDD interaction term in the 10th decile, obtained by successively dropping one of the 19

owner-paid firms and estimating equation (8). As shown, our results are robust to the exclusion

of any of the largest 19 firms on owner pay contracts.20

5.2 Generalizability

There are roughly 18 million commercial electricity customers in the U.S. and 5.6 million com-

mercial buildings ((EIA (2017), EIA (2012)). In this section, we explore the similarity of the

subpopulation under study here to the full population of commercial sector tenanted buildings in

the U.S. Understanding if our estimates apply to the broader population of large commercial users

provides insights into the potential energy savings from restructuring electricity contracts from

owner- to tenant-pay. To demonstrate the broader relevance of our results, we proceed in three

steps. First, we make use of a representative data set of national commercial building attributes

to show that, along important observables, the data source used in our analysis is representative of

building attributes throughout the U.S. Second, we focus exclusively on the database used in our

analysis, and illustrate that the distribution of attributes for commercial buildings in Connecticut

is similar to those in the broader U.S. Third, we compare contract types and energy intensity in

commercial buildings in Connecticut to those across the U.S. We use these contract type statistics

in Section 5.3 to estimate the energy savings implied by our treatment effect.

In the first step, we demonstrate that the building database used in our analysis is a represen-

tative sample of building attributes in the U.S. Our empirical sample uses data on contract type

and building attributes collected from the CoStar group. An advantage of the data collected by
20The results are also robust to excluding any of the largest 91 tenant-paid firms. These results are not reported

here but are available from the authors by request.
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the CoStar group is that it includes buildings throughout the U.S., totaling about 97 percent of

tenanted buildings. We compare three important building characteristics in the CoStar dataset

– building height, age and size – to the Energy Information Administration’s Commercial Build-

ing Energy Consumption Survey (CBECS), a nationally representative data set on attributes in

both owner and tenant occupied commercial buildings. The CBECS and CoStar datasets are

very similar in building height and vintage. While the average CoStar building is larger than

the CBECS average, this may be representative of the larger size of leased buildings compared

to owner-occupied buildings (EIA (2012)). These similarities in observables, along with the fact

that the CoStar database is reflective of leased commercial buildings in the U.S., lend confidence

to the national representativeness of the CoStar data.

Second, we show that within the CoStar data there is strong overlapping support in the

distributions of measurable building characteristics between Connecticut and the rest of the United

States. The overlapping support of building characteristics can be seen in Figure 5. Ideally, we

would compare attributes of buildings in the top 10th percentile of electricity usage in Connecticut

to those in the U.S. This is not feasible since CoStar does not collect electricity use as a variable.

Instead we display the full distribution for both Connecticut and the U.S. of building attributes

that we hypothesize are highly correlated with electricity use: square feet, number of stories,

and year of construction. For all three variables, significant overlap exists, despite some apparent

differences (e.g. Connecticut has a lower proportion of very small buildings). As we discuss below,

differences between the Connecticut sample and the broader population imply that the commercial

split incentives problem is potentially even larger in the rest of the U.S. than in Connecticut.

Finally, comparing the composition of contract types and energy intensity in Connecticut to

the rest of the U.S. leads to the conclusion that the split incentive problem we identify is likely

at least as large outside of Connecticut as it is within Connecticut. Approximately 34 percent

of commercial, non-government floorspace in New England is leased, as compared to 39 percent

nationwide (EIA (2012)). The CoStar database reports contract type for commercial lessees

nationwide, differentiating between contracts that transmit price incentives to tenants and those

that do not. In our Connecticut sample, about 15 percent of commercial lessees are on owner-
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pay contracts, as compared to 25 percent nationwide.21 With respect to energy intensity, New

England is the least energy-intense region in the nation when measured by kWh per square foot

of commercial building space (EIA (2012)). When we condition on buildings in which owners pay

for electricity, New England is still well below the national average: 11.6 kWh per square foot in

New England versus 14.4 nationwide.

Proportionally, less commercial floorspace is rented in New England than nationwide; a higher

proportion of commercial renters are on owner-pay contracts in the rest of the U.S.; and the

energy intensity per commercial square foot is higher in regions outside of New England. Thus

the magnitude of the potential split incentives problem in the commercial segment is likely to be

larger per square foot of building space in the rest of the country than it is in Connecticut.22

5.3 Quantifying Benefits from Aligning Split Incentives

Under certain plausible assumptions, addressing the commercial split incentives problem for the

largest ten percent of commercial firms nationwide has relatively high benefit-to-cost, and would

produce energy savings roughly three times larger than those achieved from restructuring rental

contracts for all residential users who don’t pay their utilities. As detailed in Appendix A.4,

using data on the costs of sub-metering, we estimate the payback period and cost effectiveness

from sub-metering individual units and shifting to a tenant-paid contract. We find the payback

period is less than one year and the cost effectiveness is 3.3 cents per kWh after the first year, 1.6

cents per kWh after two years, and 1.1 cents after 3 years, assuming the annual electricity savings

persist at the same level. As laid out in Appendix A.5, the energy savings from converting the

top size decile of firms nationwide from owner- to tenant-paid contracts is 411 gigawatt-hours per

year, and amounts to 289 percent of the residential sector analog.23

21The nationwide figure is even larger if we include contracts with a prorated utility payment for all building
occupants, whereby tenants pay a weighted average of the building’s utility bill based on the square feet occupied.
In this contractual arrangement, tenants do not pay for the marginal cost of their energy use and large consumers
benefit by paying less than their share of utilities. Conservatively, we categorize these as ‘owner-paid’ in our
paper, though only about 3 percent of tenants are on a prorated contract in our sample. Nationwide, about 20
percent of tenant contracts include a prorated utility payment. In Section 5.3 we treat these figures under the most
conservative assumptions.

22While we have done our best to assess the representativeness of our sample using measured building character-
istics, there remains the possibility that we are missing some remaining time-varying, unmeasured unique aspect
of the 19 owner-paid firms, which we use to identify our effect.

23Under extremely conservative assumptions detailed in Appendix A.5, the savings are still 125 percent of the
residential sector analog.
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We also calculate the reduction in external damages from tenant-paid contracts in our sample.

In Appendix section A.6, we convert the estimated energy savings into avoided CO2 and PM2.5

emissions, and then monetize the reduction in emissions. Estimated external benefits and the

value of energy savings per firm are presented in Table 5. As shown in columns (1) and (2), the

per firm value of avoided damages ranges from $102 to $204. In columns (3) and (4) we add to

this the estimated bill savings and report an annual firm-level social benefit of switching from an

owner- to tenant-paid contract ranging between $779 and $1,469. Finally, in columns (5) and (6)

we measure the value of the energy savings using the avoided marginal cost of electricity in place

of bill savings.24 Total social benefits using avoided marginal costs are between $676 and $1,346.

Given that the average cost of a sub-meter is $625, sub-metering retrofits are likely net beneficial

from a social perspective.

One caveat in the interpretation of these benefit calculations is that we focus exclusively on

the net effect of a switch from owner to tenant paid contracts on the TRG. The possibility remains

that such a switch can lead to a countervailing underinvestment in energy efficiency capital that

may impact the level of electricity use. While many building-level energy efficiency investment

choices available to landlords, such as insulation or air-conditioner models, affect the TRG, we

cannot rule out that the level effects may mitigate the magnitude of the energy savings implied

by our estimates, implying a potential role for complementary building energy standards.

5.4 Bill Savings and the Non-Response of Most Commercial Firms

While we estimate that contract type has a sizable effect on electricity use for the largest firms,

one unanswered question is why the remaining 90 percent of commercial firms do not respond

to contract type. In our view, the most likely explanation is that the net benefit of decreasing

electricity consumption for these customers is negative. This is consistent with recent research

that documents negative realized net benefits from energy efficiency investments (Hassett and

Metcalf (1999), Fowlie et al. (2015)). Consider the electricity choices of an office building, the

sector that makes up the largest share of buildings in our sample. Overcooling and overheating
24We use this approach to net out fixed costs. Fixed costs are not avoided costs in this setting, since they will

be recovered by the utility from other customers under the cost-plus regulatory structure in Connecticut. Our
measure of avoided marginal cost is the average hourly locational marginal price for Connecticut over the sample
period, $59.42. Our data source is the New England Independent System Operator (NE-ISO), www.iso-ne.com.
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are common in office buildings. Derrible and Reeder (2015) suggest that overcooling increases

electricity consumption by 8 percent per year. For the average top decile firm in our sample,

this would translate into roughly 40,000 of wasted kWh that could be eliminated by managerial

oversight or behavioral change. Such actions would translate into $3,200 in bill savings. By

comparison, 8 percent of usage for the average firm in the next-largest (ninth) decile translates

into 15,000 kWh, or $1,200 in potential savings. Accessing these savings would likely require

incurring a fixed cost, such as allocating attention of a manager or engineer to monitor and adjust

air conditioner and chiller operation. For all but the largest firms, the cost of avoiding overcooling

may well exceed the reduction in expenditure from wasted energy.

Other explanations could also account for the lack of a treatment effect across most firms.

One possibility is that a tenant-paid contract does induce some conservation behavior among the

bottom 9 deciles, but that landlord-side underinvestment in building-level energy efficiency cancels

any of the consumption savings from tenants paying their own utility bills. Another possibility is

(potentially rational) inattention leading to unresponsiveness among commercial firms (Jessoe and

Rapson (2015)). Comparing the $677 to $1,265 annual bill saving from a tenant-paid contract to

the average commercial unit size in Connecticut, 14,000 square feet, implies an average annual bill

saving of 4.8 to 9 cents per square foot. This represents about 0.2 percent of the average annual

revenues per square foot in office and retail industries and highlights that the savings smaller firms

forgo likely represent a small share of their annual sales. After accounting for the time and effort

required to calculate the energy savings from different energy efficiency investments, smaller firms

may be rationally inattentive to potential energy savings (Sallee (2014)).

6. Conclusion

We measure the “split incentive” effects of tenancy contract type using a unique empirical setting

and dataset of tenancy contracts and electricity use among commercial sector clients. Our empir-

ical framework compares how temperature shocks impact electricity consumption across firms on

owner- and tenant-paid contracts. Importantly, it helps us to overcome the well-known empirical

challenge of separately identifying the split incentives problem from selection on fixed attributes.

Our approach consists of three steps to probe and address the main identification challenge:
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selection on unobservables that affect electricity use along a temperature gradient. We allow for

a heterogeneous TRG along several dimensions by including interactions between temperature

and building attributes that may be correlated with energy consumption, testing for selection by

taking advantage of a state-level change in metering regulations, and accounting for any potential

remaining correlations between unobservable characteristics and the treatment using the Oster

(2017) identified set approach.

Our results indicate heterogeneous returns to a tenant-paid contract, with a negative and sig-

nificant effect of the tenant-paid contract type on consumption observable only in the top decile

of firm size. The intensive margin margin effect dominates among the largest firms. This hetero-

geneous response is consistent with a setting in which the bill savings from changing consumption

do not cover the adjustment costs for small firms, and is in line with recent evidence from the

residential sector (Elinder et al. (2017)).

The result implies a potential policy case for encouraging tenant-paid energy contracting

among large commercial and industrial customers. For the largest decile of firms, we find that

firms who pay their own utility bills consume about 3 percent less electricity annually than

tenants whose utility bills are bundled into rents, and save between $677 and $1,265 on their

annual electricity bills. These reductions lead to a 1.4 percent saving in total electricity consumed

by all firms in our sample. The payback period from sub-metering and switching to a tenant-paid

contract is less than one year when considering only the temperature response gradient.

However, a policy mandating such a switch may also impact the level of electricity use via

owner investment decisions. Mandating tenant-pay contracts could lead owners to invest less in

energy efficient capital, which would affect energy consumption levels. Consider a world in which

landlords invest more in energy efficiency when they bear the costs of their tenant’s electricity

use. Since owner-paid buildings under this line of reasoning already enjoy a high level of energy

efficient capital, if they were to become tenant-pay, not much would change since energy efficiency

is both durable and in most cases not transportable from one building to another. There’s little

reason to expect landlords to spend money to un-install past energy-efficiency investments. As a

result, only going-forward investments would be affected by this contract switch. There is little

evidence to draw upon that would allow us to compare the magnitude of these investment effects
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to the gradient effects measured in this paper. However, while these may well generate sizeable

effects over the long term, they could also be small and may be outweighed by the gradient effects.

Despite the robustness of our results, there is still a need for complementary evidence via ad-

ditional research. Statistical power is a concern throughout empirical science (Ioannidis (2005)),

and studies with samples of this size may be at risk of being underpowered, increasing the proba-

bility of false positives. Nonetheless, the difficulty of developing and deploying a research design

to test the split incentives problem among commercial electricity customers makes ours one of the

very first contributions to quantify the commercial split incentives effect on energy consumption.
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Figure 1: UI Territory

Notes: United Illuminating’s service territory. It offers electricity distribution services to 17 counties in Connecticut,
an area totaling 335 square miles.
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Figure 2: Weather data variation
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Notes: Average daily temperature in UI’s service territory between October 2007 and May 2011, at the zip code
level. Despite the relatively small region, there is visible cross-sectional variation in daily temperatures, with
summer temperatures varying between 5 to 10 degrees across zip codes. Temperature variation within a zip code
is also possible, due to differences in billing cycles across firms

34



Figure 3: Consumption by contract type

(a) Bottom Nine Deciles
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(b) Highest Consumption Decile

.2
.6

1
1.

4
1.

8

Av
er

ag
e 

D
ai

ly
 C

on
su

m
pt

io
n 

(0
00

s 
kW

h)

40 50 60 70 80 90

Average Monthly Temperature

Tenant-Paid Scatter Owner-Paid Scatter
Tenant-Paid Lowess Owner-Paid Lowess

Notes: Each scatter plot presents monthly electricity consumption against average temperature within 1-degree
bins, for the bottom nine decile of firms in panel (a), and the top consumption decile in panel (b). The observations
are color-coded by contract type, in both the bottom nine deciles (panel (a)), and the top consumption decile (panel
(b)). The solid and dashed lines are a lowess fit of the same data.



Figure 4: Robustness to outliers
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Notes: To assess whether outlier observations from one of the 19 owner-paid firms in the top size decile are driving
the results, this figure presents coefficient estimates obtained by successively dropping one of the 19 firms. The
blue dots represent the point estimates, and the capped lines are the 95% confidence intervals.
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Figure 5: Support of building characteristics in Connecticut vs. U.S.
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Notes: The Figure shows the overlapping support of building size, stories and year of construction for Connecticut
and U.S. buildings.
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Table 1: Summary statistics and covariate balance in full sample

1

t-Statistic

Mean St. Dev. Min Max Mean St. Dev. Min Max

kW 28.7 43.7 0 582 34.5 62.0 0 576 -0.39 -0.3879644

kWh (000s) 8.0 14.0 0 194 9.3 17.3 0 206 -0.31 -0.3072166

Bill ($) 653 1014 12 15,758 739 1231 12 13,128 -0.29 -0.285333

Bill Length 30.3 1.3 27 33 30.4 1.3 27 33 -0.30 -0.3045645

Building S.F. (000s) 57.3 59.4 0.8 389 66.7 93.5 2.3 416 -0.42 -0.4208475

Year Built 1974 26 1850 2009 1968 33 1855 1992 0.76 0.75580493

Building Stories 2.6 1.6 1 12 3.4 3.1 1 15 -1.09 -1.0948417

Industry 0.12 0.33 0 1 0.10 0.30 0 1 0.26 0.25964075

Trade, Accommodation 0.16 0.36 0 1 0.13 0.33 0 1 0.35 0.35464475

Finance, Real Estate, Management 0.47 0.50 0 1 0.55 0.50 0 1 -0.63 -0.6343386

Education, Health, Pub. Admin. 0.18 0.38 0 1 0.17 0.37 0 1 0.11 0.10664838

Entertainment, Recreation, Services 0.07 0.25 0 1 0.05 0.22 0 1 0.35 0.3516801

Northeast 0.27 0.44 0 1 0.31 0.46 0 1 -0.35 -0.3473102

Southeast 0.20 0.40 0 1 0.23 0.42 0 1 -0.29 -0.2854884

Northwest 0.13 0.33 0 1 0.06 0.23 0 1 1.11 1.10944723

Southwest 0.41 0.49 0 1 0.41 0.49 0 1 0.00 0

Observations

Firms

All Firms

6,469
  171

32,764
    903

Tenant-Paid Owner-Paid

Notes: The table shows the mean, mininum value, maximum value and standard deviation for the observed
covariates, for tenant-paid and owner-paid contracts, respectively. The last column shows the value of the t-
statistic for the null hypothesis of equal means between the two contract types. The number of observations in
each group in the t-statistic calculation is the number of firms in that group. Asterisks indicate a rejection of the
null at the 5 percent level of significance.
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Table 2: Summary statistics and covariate balance in top consumption decile

1

t-Statistic

Mean St. Dev. Min Max Mean St. Dev. Min Max

kW 132.4 71.2 17 582 164.2 120.9 5.0 576.0 1.11 1.10712455

kWh (000s) 40.6 24.1 4 194 44.5 34.1 1.3 206.0 0.47 0.47440112

Bill ($) 3002 1759 414 15,758 3276 2403 169 13128 0.47 0.4713521

Bill Length 30.4 1.3 27 33 30.4 1.3 27.0 33.0 0.03 0.03104636

Building S.F. (000s) 86.8 79.7 2.0 389 144.9 146.4 22.0 416.0 1.68 1.67870445

Year Built 1978 19 1920 2009 1973 24 1900 1990 0.85 0.85394858

Building Stories 3.0 2.4 1 12 6.1 5.1 1 15 2.61* 2.60561878

Industry 0.22 0.41 0 1 0.18 0.39 0 1 0.40 0.40298272

Trade, Accommodation 0.09 0.28 0 1 0.04 0.20 0 1 0.92 0.91796421

Finance, Real Estate, Management 0.46 0.50 0 1 0.77 0.42 0 1 2.83* 2.82619725

Education, Health, Pub. Admin. 0.09 0.29 0 1 0.00 0.00 0 1 2.96* 2.96050097

Entertainment, Recreation, Services 0.15 0.35 0 1 0.00 0.00 0 1 4.09* 4.08831086

North 0.39 0.49 0 1 0.27 0.44 0 1 1.06 1.05950465

South 0.61 0.49 0 1 0.73 0.44 0 1 1.06 1.05950465

City 0.27 0.45 0 1 0.40 0.49 0 1 1.07 1.06635796

Observations
Firms      91  19

Top Decile Firms

3,202 703

Tenant-Paid Owner-Paid

Notes: The table shows the mean, mininum value, maximum value and standard deviation for the observed
covariates, for tenant-paid and owner-paid contracts, respectively. The last column shows the value of the t-
statistic for the null hypothesis of equal means between the two contract types. The number of observations in
each group in the t-statistic calculation is the number of firms in that group. Asterisks indicate a rejection of the
null at the 5 percent level of significance.
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Table 3: Split incentive effect by consumption decile

1

Dependent variable: Log Bill
(1) (2) (3) (4) (5) (6)

Tenant x CDD -0.00001
(0.00009)

Tenant x CDD (10th Dec.)  -0.013**   -0.015***  -0.014**  -0.014**  -0.012**
(0.006) (0.006) (0.006) (0.006) (0.005)

Tenant x CDD (9th Dec.) 0.001 0.004 0.005 0.005 0.004
(0.009) (0.010) (0.009) (0.009) (0.009)

Tenant x CDD (8th Dec.) -0.000 0.004 0.004 0.004 0.002
(0.007) (0.007) (0.007) (0.007) (0.005)

Tenant x CDD (7th Dec.) -0.004 -0.002 0.003 0.003 0.001
(0.007) (0.008) (0.007) (0.007) (0.005)

Tenant x CDD (6th Dec.) 0.010 0.013* 0.010 0.010 0.009*
(0.008) (0.007) (0.007) (0.007) (0.005)

Tenant x CDD (5th Dec.) 0.003 0.004 0.005 0.005 0.004
(0.007) (0.008) (0.007) (0.007) (0.005)

Tenant x CDD (4th Dec.) 0.009 0.012 0.012 0.012 0.009
(0.011) (0.011) (0.010) (0.010) (0.006)

Tenant x CDD (3rd Dec.) -0.017 -0.017 -0.012 -0.012 -0.006
(0.014) (0.014) (0.013) (0.013) (0.008)

Tenant x CDD (2nd Dec.) 0.005 0.005 0.007 0.007 0.006
(0.010) (0.010) (0.009) (0.009) (0.005)

Tenant x CDD (1st Dec.) -0.004 -0.003 -0.003 -0.003 -0.003
(0.013) (0.014) (0.013) (0.013) (0.007)

Account & Time F.E.s, Acct. Trend YES YES YES YES YES YES
Characteristics Interactions NO NO YES YES YES YES
Characteristics Interactions w/ Year-Built NO NO NO YES YES YES
Switchers Controls NO NO NO NO YES YES

Observations 39,233 39,233 39,233 39,233 39,233 39,233
Accounts 1,074 1,074 1,074 1,074 1,074 1,074
R-squared (within) 0.08 0.09 0.10 0.11 0.11 0.27

Log Usage

Notes: The dependent variable in columns (1)-(5) is the natural log of electricity use in a billing month, and in
column (6) it is the natural log of the electricity bill in a billing month. Column (1) presents results without decile
interactions, and columns (2)-(6) include results across size deciles. Additional controls included in all regressions
are cooling degree days, heating degree days, and heating degree days interacted with contract type. Column (3)
further conditions on cooling and heating degree days interacted with building type and NAICS code dummies.
Column (4) adds interactions of quartile of year-built with cooling and heating degree days. Column (5) also
includes switchers dummies interacted with cooling and heating degree days. Standard errors clustered at the
building level are in parentheses, ***p<0.01, ** p<0.05, * p<0.1.



Table 4: Oster bounds for monthly usage and bill

1

Lower Bound
Upper Bound

Lower Bound
Upper Bound

Identified Set Estimate

Log Usage

-0.014
-0.007

Log Bill

Identified Set Estimate

-0.012
-0.006

Notes: The Oster bounds present an identified set of treatment effect coefficients (interpreted as savings per average
daily CDD) by accounting for residual omitted variable bias through an equal selection assumption. The omitted
variable bias is assumed to be a function of the treatment coefficient and R-squared values before after the inclusion
of covariates, as well as the maximum theoretically possible R-squared, namely from a regression on consumption
and all possible observable and unobservable controls.
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Table 5: External benefits and the value of energy savings per firm

Low $  0High $    Low $    High $    Low $    High $

(1)  (2) (3) (4) (5) (6)

PM2.5 0.38 00.76 677 1266 574 1143

CO2 101.95 000202.91 779 1468 676 1345

Total 102.33 000203.67 779 1469 676 1346

Social'Benefits'Calculations:
New'England'(eGRID'NEWE'region)'emissions'factors,'tons'per'kWh Values

NOx 0.00000026
SO2 0.00000071
CO2 0.00036420

PM2.5 0.00000003

Total'emissions'saved'per'tenantSpaid'firm'during'summer'months,'in'tons,'using'Oster'bounds High Low
NOx 0.00500 0.00251
SO2 0.01361 0.00684
CO2 6.99706 3.51544

PM2.5 0.00064 0.00032

Total'damages,'using'Oster'bounds High Low
NOx 1.49937 0.75331
SO2 16.33161 8.20526
CO2 202.91482 101.94763

PM2.5 0.76283 0.38326
WAP'calculations 221.50863 111.28946
CO2'savings:emissions'factors'times'per'firm'electricity'savings'times'number'of'firms

High Low
1224486 615201

WAP'savings:
EIA'(2010): 2.65'tons/hh/per'yr
Fowlie'et'al: actual'savings'are'2.5'times'lower'than'modeled'savings'suggests'1.06'tons/hh/yr
Average'number'of'WAP'retrofits'per'year:'7million'total'over'40'years:'175000'per'year
Total'annual'WAP'savings:'1.06'times'175000= 186000

Using'the'total'annual'WAP'savings,'our'CO2'savings'are'larger'by'between:
6.583258 3.307533457

External + Value of Savings (Billed)External Benefits External + Value of Savings (Marginal Cost)

Notes: External Benefits measure the annual per-firm reduction in pollution damages from lower electricity con-
sumption. External + Value of Savings (Billed) measures the sum of the external benefits and the value of the bill
savings from contract type, which are the annual bill savings noted in the text ($677-$1487). External + Value of
Savings (Marginal Cost) uses the average hourly locational marginal price in Connecticut over the sample period,
of $59.42, to value the energy savings. The low and high values are derived from the Oster identified set estimates
for electricity savings, discussed in the text.
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Appendix

A.1 Bill Cycles and Weather

We assess whether bill cycle is correlated with the TRG across contract type by testing for a
systematic relationship between bill cycle and weather. In Table A1, we report the results of a
regression of weather on bill cycle. As shown, we find that the sixteen billing cycles are neither
jointly nor individually significant in explaining cooling degree days or heating degree days.

A.2 Oster Bounds Details

Our study assesses the effect of contract type T on electricity consumption y, as specified in
equation (8). One of our robustness tests implements the Oster (2017) approach. A more detailed
explanation of the approach follows here.

If observables and unobservables have the same explanatory power in y (after taking into
consideration any measurement error in y), then the following is a consistent estimator of the
effect of T on y:

ˆ̂
θ = θ̂∗ − (θ̂ − θ̂∗)× Rmax −R∗

R∗ −R
, (A1)

where θ̂∗ and R∗ are the coefficient estimate and R2 from the regression with a full set of controls,
in column (5) of Table 3, and θ̂ and R are the coefficient and R2 from an uncontrolled regression
that includes only the coefficient of interest. The Rmax term represents the R2 in a regression
of y on all possible observable and unobservable controls, which can be less than 1 in there is
measurement error in y. The ˆ̂

θ is the basis for identifying the upper bound for the Oster bounds
presented in Table 4 of the main paper.25

A.3 Additional Robustness Tests

Our estimated treatment effect is not sensitive to alternative specifications, as shown in Table
A2. Column (1) is the fully controlled specification from column (5) of Table 3, augmented with
stories quartile dummies interacted with cooling and heating degree days. The point estimate
increases and remains statistically significant. In columns (2)-(7) we show that the results are
not sensitive to the functional form of the building characteristic controls. The point estimate
changes very little when the characteristics are included as is or in the form of tertile, quintile or
sextile dummies.

Another robustness check we conduct is to estimate decile-by-decile regressions instead of
interacting decile dummy variables with the contract type dummy in the full sample, as in equation
(8). This is to assess whether consumption in (kWh) may be correlated with average power in the

25As noted in the main paper, given our rich set of controls the equal selection assumption we make is likely
conservative, as it assumes that any remaining unobservables are as important as the observables in explaining the
treatment (Oster (2017), Altonji et al. (2005)).
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peak hour within a billing month, which we use to construct our size deciles. If that is the case,
one might be concerned this correlation could bias the coefficients.26 Estimating ten separate
regressions for each decile avoids any potential correlation of the decile dummy variables with
consumption.

The results of these regressions are presented in Table A3. They confirm what we find in the
full sample results in Table 3 of the paper. In the fully controlled specification, shown in column
(4), the treatment effect indicates a 1.3 percent reduction in monthly consumption per average
monthly cooling degree day induced by a tenant-paid contract. This is lower by 0.1 percentage
points compared to Table 3 in the paper. These decile-by-decile regressions also show that in the
sixth size decile a tenant-paid contract is associated with an increase in consumption and monthly
bill relative to an owner-paid contract. Based on our conceptual model, this suggests that capital
inefficiencies may dominate any benefit from a price signal in this decile. However, the share of
the within variation in consumption explained by the different specifications in the sixth decile is
among the lowest, which suggests that there is considerable remaining unobserved heterogeneity.

Finally, to allay any concerns regarding a potential relationship between firm deciles and the
kWh-temperature gradient, we have created Figure A1 reporting the consumption response to
temperature within each decile. The figure reports the coefficients of a decile-by-decile regression
of normalized kWh on average daily temperature. The coefficients report values for deciles 1
through 10. As shown, there is no evidence of a monotonic relationship between consumption and
temperature moving from the lower to upper deciles. For example, the third, fourth and ninth
deciles have a higher consumption response to temperature coefficient compared to the top decile.

A.4 Benefit-to-Cost Calculation

Sub-meter costs range from $250-$1000 per unit (Pike Research (2012), White (2012), Millstein
(2008)). Given the average estimated annual bill savings of $970 and assuming a unit-level sub-
meter cost of $625, the payback period is less than one year, even after allowing for installation
costs. This is well below the payback threshold for most firms’ energy conservation investments
(Anderson and Newell (2004)). With a unit- or firm-level sub-meter cost of $625, a cost which
would be incurred up-front, and an average annual treatment effect of 19,000 kWh saved among
high consuming firms, the cost effectiveness is 3.3 cents per kWh after the first year, 1.6 cents
per kWh after two years, and 1.1 cents after 3 years, assuming the annual electricity savings
persist at the same level.27 The submeter costs cited above do not capture other potential costs
from switching to tenant-paid contracting, such as tenants who prefer a bundled rent and utilities
payment who would therefore pay a premium for such an arrangement. While it is difficult to
test for this possibility or identify a value for these other potential costs, a full accounting of all
costs should be compared to the benefits we have estimated here.

26The correlation between the size deciles and monthly kWh consumed is 0.58, so while it is positive, it is by no
means perfect. There are many firms with high average kW and low kWh and (to a lesser extent) vice versa.

27In most states sub-meter system costs can be recovered through surcharges on tenant utility bills. This enables
owners to recover their investments costs. If the owner’s surcharge doesn’t recover the full value of the savings, the
payback period may be longer.
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A.5 Energy Savings from Restructuring Contracts

To calculate the energy savings from restructuring rental contracts for the largest ten percent
of commercial firms nationwide, we perform the following calculation. There are 130 million
residential electricity customers in the U.S., of whom 10.4 million rent dwellings with utilities
included (EIA (2009)). Assuming they conserve 0.7 percent of their electricity when exposed to a
non-zero price (Levinson and Niemann (2004)), total residential savings are 142 million kWh per
year. By comparison, there are approximately 18 million commercial sector electric customers
in the U.S. (EIA (2017)), 39 percent of which rent their building space (based on the share of
tenanted buildings in the U.S. in EIA (2012)). Suppose 25 percent of those (1.74 million) have
an owner-paid utilities contract. The top size decile, 174,000 customers, save a total of 411
gigawatt-hours per year (1.4 percent based on our preferred empirical estimates) from a switch to
tenant-pay contracts. This amounts to 289 percent of the residential sector analog. Under much
more conservative assumptions, this number falls to 177 gigawatt-hours per year, or 125 percent
of the residential sector analog. We reduce the fraction of renters from 39 percent to 36 percent to
reflect the share of tenanted floor space, rather than the share of tenanted buildings (EIA (2012)),
use the average electricity use across all large firms (not just those on owner-pay contracts, who use
more electricity), and adjust our treatment effect estimate down by one standard deviation. These
changes are multiplicative and thus result in an extremely conservative estimate. Importantly,
this calculation does account for underinvestment in energy efficiency, and the subsequent increase
in energy consumption, that may arise from a switch from owner to tenant paid contracts.

A.6 Monetizing External Damages

To calculate the reduction in external damages from tenant-paid contracts, we convert the esti-
mated energy savings into avoided CO2 and PM2.5 emissions, and then monetize the reduction in
emissions. We do not include damages from NOx and SO2 emissions, given regional and federal
regulations in place during our sample period. Assuming the emissions caps for these regulations
were binding, a reduction in electricity consumption would not reduce aggregate emissions. While
CO2 emissions were also regulated, the early phase of this program, covering our sample period,
did not have a binding cap (CRS (2017)).

To quantify CO2 reductions we use the Environmental Protection Agency’s eGRID database
which provides average 2009 emission rates for the New England subregion, measured as tons
emitted per MWh of electricity produced. Since we use average CO2 emission rates in our cal-
culations, rather than marginal rates, our estimated reductions are conservative (see Rothschild
and Diem (2009)). The eGRID emission factors together with the energy savings among the top
decile firms and the total number of tenant-paid firms translates into aggregate CO2 savings of
between 615 to 1200 thousand tons per year.28 To give a sense of scale, this is between 3.3 to
6.6 times the average annual savings achieved from yearly Weatherization Assistance Program
(WAP) retrofits.29 The PM2.5 emission rates estimate is obtained from Connors et al. (2005).

28Total CO2 emissions saved per tenant-paid firm during summer months, using the Oster bounds, is 3.5-7 tons.
29An average of 175,000 WAP retrofits are performed every year, which save approximately 1.06 tons of CO2

per household per year (Fowlie et al. (2015), DOE (2017), EIA (2010)). These retrofits therefore save 186,000 tons
of CO2 every year.
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The PM2.5 emission rate estimate is obtained from Connors et al. (2005). Marginal CO2 damages
are from IWGSCC (2015) and damage estimates for PM2.5 come from Muller and Mendelsohn
(2007).
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Figure A1: Relationship between consumption and temperature

Notes: The figure reports the coefficients of decile-by-decile regressions of normalized kWh on average daily tem-
perature. Moving left to right, from the lower to upper deciles, there is no evidence of a monotonic relationship
between consumption and temperature.
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Table A1: Bill cycle conditional independence assumption

(1) (2) (3) (4)
CDD CDD 10th Dec. HDD HDD 10th Dec.

Bill Cycle 2 -0.037 0.306
(0.466) (1.657)

Bill Cycle 3 -0.131 0.114 0.298 -0.605
(0.468) (0.814) (1.674) (2.429)

Bill Cycle 4 0.189 0.433 -0.394 -2.071
(0.434) (0.557) (1.553) (1.663)

Bill Cycle 5 -0.131 -0.044 0.197 -1.172
(0.475) (0.713) (1.703) (2.139)

Bill Cycle 6 -0.156 0.154 0.111 -1.000
(0.527) (0.814) (1.886) (2.429)

Bill Cycle 7 0.050 0.326 0.416 -1.205
(0.454) (0.596) (1.620) (1.806)

Bill Cycle 8 -0.182 0.184 0.490 -0.594
(0.499) (0.620) (1.775) (1.865)

Bill Cycle 9 0.470 -0.052 -0.509 -0.911
(0.501) (0.632) (1.796) (1.936)

Bill Cycle 10 0.621 -0.196 -1.142 -0.966
(0.509) (0.686) (1.833) (2.160)

Bill Cycle 11 -0.028 0.137 0.646 -1.850
(0.487) (0.733) (1.754) (2.275)

Bill Cycle 12 -0.061 -0.168 0.170 -0.906
(0.438) (0.579) (1.572) (1.783)

Bill Cycle 13 0.130 0.006 -0.785 -2.248
(0.484) (0.686) (1.744) (2.183)

Bill Cycle 14 0.024 -0.151 0.781 -0.751
(0.448) (0.586) (1.600) (1.783)

Bill Cycle 15 0.157 0.190 0.354 0.208
(0.569) (0.709) (2.003) (2.128)

Bill Cycle 16 -0.003 0.162 0.466 -1.849
(0.516) (0.679) (1.852) (2.118)

Constant 2.193*** 2.543*** 15.408*** 16.748***
(0.377) (0.451) (1.358) (1.335)

Observations 2,479 1,051 2,594 1,270
F test for joint significance 0.471 0.218 0.248 0.245

Notes: Results are reported from an OLS regression of CDD or HDD on bill cycle. The unit of 
observation is a billing cycle - zip code. Standard erors are reported in parentheses. *** p<0.01; 
** p<0.05; * p<0.1

6



Table A2: Robustness to alternative specifications

Dependent variable: 

(1) (2) (3) (4) (5) (6) (7)

Tenant x CDD (10th Dec.)   -0.015**    -0.014***    -0.016***    -0.017***    -0.017***    -0.017***    -0.016***

(0.007) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

Tenant x CDD (9th Dec.) 0.006 0.004 0.001 0.000 0.001 0.001 0.001

(0.008) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010)

Tenant x CDD (8th Dec.) 0.005 -0.001 -0.002 -0.003 -0.001 -0.001 -0.001

(0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.007)

Tenant x CDD (7th Dec.) 0.002 -0.007 -0.008 -0.007 -0.007 -0.008 -0.007

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Tenant x CDD (6th Dec.) 0.009 0.010 0.009 0.010 0.010 0.009 0.010

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Tenant x CDD (5th Dec.) 0.006 0.000 -0.001 -0.001 -0.000 -0.000 -0.000

(0.007) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Tenant x CDD (4th Dec.) 0.012 0.009 0.009 0.009 0.009 0.009 0.009

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Tenant x CDD (3rd Dec.) -0.013 -0.018 -0.019 -0.019 -0.018 -0.019 -0.019

(0.012) (0.014) (0.014) (0.014) (0.015) (0.014) (0.014)

Tenant x CDD (2nd Dec.) 0.006 0.006 0.005 0.006 0.007 0.006 0.006

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Tenant x CDD (1st Dec.) -0.004 -0.007 -0.008 -0.007 -0.007 -0.007 -0.008

(0.013) (0.013) (0.012) (0.013) (0.013) (0.013) (0.013)

Account Fixed Effects YES NO NO NO NO NO NO

Time F.E.s, Acct. Trend YES YES YES YES YES YES YES

Switchers Controls YES YES YES YES YES YES YES

Characteristics Controls YES YES YES YES YES YES YES

Observations 39,233 39,233 39,233 39,233 39,233 39,233 39,233

Accounts 1,074 1,074 1,074 1,074 1,074 1,074 1,074

R-squared (within) 0.110 0.085 0.085 0.085 0.085 0.085 0.085

Robust standard errors clustered at the building level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

Log Usage

Notes: The dependent variable in columns (1)-(7) is the natural log of electricity use in a billing month. Column
(1) augments the specification estimated in column (5) of Table 3 to include building stories quartile dummies
interacted with cooling and heating degree days. Columns (2)-(7) present specifications without firm fixed effects.
Column (2) includes building type and NAICS code dummy variables, year of construction, number of stories
and building size in square feet. Column (3) replaces the number of stories with dummy variables for each story.
Column (4) includes quartile dummies for year of construction, number of stories, and building size. Columns
(5)-(7) includes the same variables in the form of tercile, quintile and sextile dummies, respectively. Additional
controls included in all regressions are cooling degree days, heating degree days, and heating degree days interacted
with contract type. Standard errors clustered at the building level are in parentheses, ***p<0.01, ** p<0.05, *
p<0.1.



Table A3: Decile-by-decile regressions

1

Dependent variable: Log Bill
(1) (2) (3) (4) (5)

Tenant x CDD (10th Dec.) -0.012** -0.013** -0.013** -0.013** -0.012** Observations
(0.006) (0.006) (0.006) (0.006) (0.005) 3,905

R-squared (within) 0.197 0.273 0.282 0.288 0.433

Tenant x CDD (9th Dec.) 0.001 -0.000 0.001 0.003 0.003 Observations
(0.010) (0.010) (0.008) (0.009) (0.008) 3,952

R-squared (within) 0.078 0.157 0.194 0.205 0.324

Tenant x CDD (8th Dec.) 0.001 0.007 0.006 0.007 0.005 Observations
(0.007) (0.009) (0.009) (0.010) (0.007) 3,895

R-squared (within) 0.136 0.263 0.269 0.272 0.413

Tenant x CDD (7th Dec.) -0.003 -0.004 0.002 0.002 0.001 Observations
(0.007) (0.008) (0.008) (0.008) (0.006) 3,871

R-squared (within) 0.108 0.209 0.227 0.231 0.327

Tenant x CDD (6th Dec.) 0.010 0.019*** 0.016** 0.015** 0.012*** Observations
(0.008) (0.007) (0.006) (0.006) (0.004) 3,976

R-squared (within) 0.077 0.155 0.159 0.168 0.285

Tenant x CDD (5th Dec.) 0.003 0.001 0.000 -0.001 0.001 Observations
(0.007) (0.008) (0.008) (0.008) (0.006) 3,921

R-squared (within) 0.102 0.183 0.209 0.209 0.308

Tenant x CDD (4th Dec.) 0.009 0.006 0.006 0.007 0.006 Observations
(0.011) (0.012) (0.009) (0.009) (0.006) 3,912

R-squared (within) 0.252 0.317 0.338 0.338 0.547

Tenant x CDD (3rd Dec.) -0.017 -0.019 -0.009 -0.008 -0.003 Observations
(0.014) (0.015) (0.014) (0.014) (0.008) 4,003

R-squared (within) 0.098 0.127 0.151 0.153 0.423

Tenant x CDD (2nd Dec.) 0.006 0.010 0.013 0.016 0.012* Observations
(0.010) (0.008) (0.009) (0.010) (0.006) 3,883

R-squared (within) 0.115 0.165 0.186 0.188 0.335

Tenant x CDD (1st Dec.) -0.004 -0.006 -0.006 -0.008 -0.004 Observations
(0.013) (0.014) (0.012) (0.014) (0.009) 3,915

R-squared (within) 0.096 0.130 0.142 0.143 0.322

Account & Time F.E.s, Acct. Trend YES YES YES YES YES
Characteristics Interactions NO YES YES YES YES
Characteristics Interactions w/ Year-Built NO NO YES YES YES
Switchers Controls NO NO NO YES YES

Usage

Notes: The dependent variable in columns (1)-(4) is the natural logarithm of electricity use in a billing month.
The dependent variable in column (5) is the natural logarithm of billed expenditure in a billing month. Standard
errors clustered at the building level are in parentheses, ***p<0.01, ** p<0.05, * p<0.1.
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