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Abstract

We point out that the simple slice sampler generates chains that are correlation-free

when the target distribution is centrally symmetric. This property explains several results

in the literature about the relative performance of the simple and product slice samplers.

We exploit it to improve two algorithms often used to circumvent the slice inversion prob-

lem, namely stepping out and multivariate sampling with hyperrectangles. In the general

asymmetric case, we argue that symmetrizing the target distribution before simulating

greatly enhances the efficiency of the simple slice sampler. To achieve symmetry we fo-

cus on the Box-Cox transformation with parameters chosen to minimize a measure of

skewness. This strategy is illustrated with several sampling problems.

Jel code: C11, C15.
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1 Introduction

The slice sampler is a data augmentation technique to generate Markov chains whose mix-

ing properties generally ensure a rapid convergence to the target distribution. Roberts and

Rosenthal (1999) for instance show that for well-behaved distributions, convergence takes place

in less than six hundred iterations. This result assumes algebraic knowledge of the region

below the slice, a situation which is often difficult to achieve in practice. To circumvent the

slice inversion problem, Neal (2003a) has proposed several algorithms known as stepping out

in univariate cases and hyperrectangle sampling in multivariate contexts. The few tunings re-

quired makes these algorithms attractive for routine use. Since its popularization by Neal, the

slice sampler has been applied in a wide variety of disciplines like for instance acoustics (Jasa

and Xiang, 2009), climate research (Tarasov et al., 2012), economics (Kline and Tamer, 2016),

finance (Li, 2011), genetics (Dunson and Xing, 2009), machine learning (Bishop, 2006), and

spatial modelling (Agarwal and Gelfand, 2005).

We argue that the class of centrally symmetric distributions offers new insights into both the-

oretical and algorithmic properties of the simple slice sampler. The concept of central symmetry

is discussed for instance in Serfling (2006); it is sometimes also referred to as ‘equal symmetry’

(Hollander, 1968) or ‘radial symmetry’ (Nelsen, 1993). Cases of applied interest include the

whole family of elliptically contoured distributions. Besides its relevance in many inferential

problems, the class of centrally symmetric distributions deserves a special attention because of

a property which has been overlooked in the literature: when applied to target distributions

that are centrally symmetric, the simple slice sampler generates chains that are uncorrelated.

This optimal feature is a consequence of Lemma 3.2 in Liu, Wong, Kong (LWK, 1994) and it

follows from the interleaving Markov property of samplers built by data augmentation. Other

data augmentation schemes such as the product slice sampler share this optimal property under

the more demanding condition that all the components that factorize the target distribution are

symmetric around the central point. This observation explains several results in the literature

about the relative performance of the simple and product slice samplers (Neal, 2003b).

When the slice interval cannot be inverted algebraically, we show that stepping out preserves

the zero-correlations property when the target distribution is unimodal. Some correlations

instead arise in the case of univariate multimodal distributions as well as with hyperrectangle
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sampling. For such cases we show that important efficiency gains can be obtained from a simple

amendment to Neal algorithms that exploits central symmetry.

Next, the optimality of the simple slice sampler for centrally symmetric distributions offers the

opportunity to symmetrize the target distribution before applying the slice sampler. To achieve

symmetry we focus on the Box-Cox power transformation (Box and Cox, 1964), with parameters

chosen to minimize the Mardia measure of skewness (Mardia, 1970). Neal algorithms amended

to take symmetry into account can then be implemented on the new scale, the draws being reset

to the original scale by inverse transformation. This strategy has the advantage of simplicity, its

implementation is almost costless, and the many experiments we report confirm its effectiveness

in enhancing efficiency. It provides a valid alternative to overrelaxation and reflective methods

for improving the efficiency of the slice sampler.

Section 2 discusses the slice sampler in the central symmetric case. Neal algorithms are

reviewed and a simple amendment that takes symmetry into account is presented. The ad-

vantage of exploiting symmetry when approximating the slice region is illustrated with several

examples taken from the literature. Section 3 considers the general case of asymmetric dis-

tributions. Several examples show that the strategy of symmetrizing before implementing the

slice sampler with the amended Neal algorithms is greatly beneficial. Section 4 concludes.

2 Efficiency of the simple slice sampler for symmetric

distributions

To simplify we first consider the univariate case. Given a density π(x) having support X ∈ ℜ,

suppose that we wish to calculate the expectation Eπh(x) =
∫

X
h(x)π(x)dx of a real-valued

and π-integrable function h(x). Suppose further that this integral being intractable we resort

to the Markov Chain Monte Carlo simulation method known as the slice sampler. The simple

slice sampler generates a homogeneous Markov chain {xn} ≡ {x1, x2, · · · } by introducing an

auxiliary variable u such that (u, x) are jointly uniformly distributed as in:

π(u, x) = U{0 < u ≤ π(x)}, (2.1)
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from which u and x are iteratively drawn from their conditional distributions π(u|x) and

π(x|u) (see for instance Chapter 8 in Robert and Casella, 2004). The resulting chain {xn}

is π-irreducible, aperiodic, and Harris recurrent (Mira and Tierney, 2002), so it converges in

distribution to π(x) and the average hn(x) =
1
n

∑

i h(xi) converges almost surely to Eπh(x). By

Lemma 3.1 in LWK the Markov chain {xn} is reversible so provided that h2(·) is π-integrable,

the average hn(x) admits a central limit theorem with associated variance (see e.g. Jones,

2004):

V (hn(x)) =
1

n
Vπ(h(x))(1 + 2

n
∑

i=1

n
∑

j=i+1

ρj−i)

where ρj−i denote the autocorrelation between h(xi) and h(xj). For n large enough, the ex-

pression above is well approximated by

V (hn(x)) ≃
1

n
Vπ(h(x))(1 + 2

n
∑

i=1

ρi) =
1

n
Vπ(h(x)) IFh (2.2)

where the inefficiency factor IFh – also known as autocorrelation times – summarizes the

efficiency of the Markov transition kernel to generate samples of h(x) with x ∼ π(x). Chains

with smaller inefficiency factor produce sample averages hn(x) which estimate Eπh(x) more

accurately. LWK analyse the correlation structure of the Gibbs sampler within a two-component

augmentation scheme like the simple slice sampler. Taking benefit from the interleaving Markov

property of the sequences {xn} and {un} which implies that E(xi, xi+1|ui) = E(xi|ui)E(xi+1|ui),

LWK show that the first autocovariance of the chain {xn} verifies Cov(xi, xi+1) = Vπ[Eπ(x|u)].

This result suggests that asymmetry of the target distribution is a source of inefficiency. A

simple example is given by the exponential distribution: the smaller u the larger Eπ(x|u), giving

rise to a non-null first-autocorrelation. Hence we expect skewness of the target distribution to

impair the performance of the simple slice sampler. To illustrate we consider an example

discussed in Roberts and Rosenthal (2002) and Robert and Casella (2004) as a case where the

simple slice sampler appears to be poor.

Example 1: Let us consider the distribution π(x) = e−x1/d
/ d! defined over the support ℜ+ and

indexed by the positive integer d. Closed-form expressions for the slice interval, the skewness,
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and the first-autocorrelation of the Markov transition kernel implied by the simple slice sampler

are given in Appendix A. The skewness values displayed in Table 1 for d = 1, 2, 5, 10, and

20 reveal that this distribution becomes increasingly asymmetric as d increases. As can be

seen in Table 1, the first-autocorrelation ρ1 increases together with the skewness of the target

distribution up to an upper bound equal to 3/4. Although not displayed in Table 1, all chain

autocorrelations increase together with the skewness of the distribution. This example stresses

that the simple slice sampler can be inefficient when applied to unimodal distributions that are

strongly asymmetric.

Table 1. Skewness of e−x1/d
/ d! and first autocorrelation implied by the slice sampler

d = 1 d = 2 d = 5 d = 10 d = 20

Skewness 2 4.30 24.72 4.70× 102 1.91× 105

ρ1 0.50 0.64 0.73 0.74 0.75

Conversely, LWK’s result Cov(xi, xi+1) = Vπ[Eπ(x|u)] implies that consecutive draws will

be uncorrelated when Eπ(x|u) is constant. This occurs when the target density is centrally

symmetric, i.e. when x − Eπ(x) is distributed like Eπ(x) − x, since in this case the centre of

the slice interval S(u) falls exactly on the mean of x, i.e. Eπ(x|u) = Eπ(x) ∀u ∈ (0,max π(x)).

This feature equally holds for multivariate distributions. We give this special property of the

simple slice sampler in Proposition 1.

Proposition 1 Suppose the target density π(x), x ∈ ℜd, is centrally symmetric, i.e. π(x −

Eπ(x)) = π(Eπ(x)− x). Then the simple slice sampler generates draws which are uncorrelated

at all lags.

Proposition 1 is a consequence of Lemma 3.2 in LWK. It concerns all lags since by Theorem 3.1 in

LWK the autocorrelations of a marginal chain obtained by data augmentation are nonnegative
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and decreasing, so a null autocorrelation at the first lag implies zero autocorrelations at all

lags. We illustrate Proposition 1 revisiting the previous example.

Example 1 (cont’d): In Roberts and Rosenthal (2002), the distribution π(x) = e−x1/d
/ d!, x ∈

ℜ+, arises by applying the transformation x = ‖z‖d, z ∈ ℜd, to the distribution π(z) = e−‖z‖.

By property of the Euclidian norm, π(z) is centrally symmetric about zero, i.e. π(z) = π(−z).

The slice region S(u) = {z : u ≤ π(z)} corresponds to the sphere generated by {z : ‖z‖ ≤

− log u} from which the vector z can be uniformly drawn given u. This scheme yields a first

correlation equal to zero for all elements of vector z whatever the dimension d. All inefficiency

factors are then equal to one.

To benefit from this optimal property of the simple slice sampler, the slice region S(u) must

be known in closed form. Example 1 gives one such case but most often the slice interval cannot

be inverted analytically. Neal (2003a) proposes several algorithms to circumvent the inversion

problem. Given a current point x0, a draw u from U{0 < u ≤ π(x0)}, stepping out proceeds as

follows:

Neal stepping out algorithm for univariate distributions:

(i). Random positioning: build a random interval (L,R) of length W around x0 by setting

L = x0 − γW , γ ∼ U(0, 1), and R = L+W ;

(ii). Expanding: check whether the bounds L and R lie outside of the slice interval S(u) and

expand the bounds otherwise, i.e. set L = L −W until π(L) < u and R = R +W until

π(R) < u;

(iii). Shrinking: draw a candidate xc ∼ U(L,R). If xc /∈ S(u), shrink the interval (L,R) by

setting either L = xc if xc < x0 or R = xc if xc ≥ x0. Repeat until xc ∈ S(u) and then

set x1 = xc.

(iv). Set x0 = x1 and sample a new u from U{0 < u ≤ π(x0)}.
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This algorithm generates draws that are uncorrelated when the target distribution is symmet-

ric and unimodal. Indeed in such cases the interval (L,R) where to draw the candidate xc

always contains S(u), guaranteeing that the equality Eπ(x|u) = Eπ(x) holds for all u. This

optimal property of stepping out is shared with doubling, another algorithm proposed by Neal

for delineating the slice interval. It does not however generalize to distributions which are mul-

timodal. Consider for instance the case of a symmetric bimodal distribution with zero-mean

defined over a connected support. Suppose also that the slice interval is made up of two disjoint

intervals, say S(u) = (−S2,−S1) ∪ (S1, S2), and that the current state x0 belongs to (S1, S2).

When W < 2S1, the expanding step will end up with (L,R) such that the set of admissible

draws (L,R) ∩ S(u) = (S1, S2) does not contain the mean of the distribution. In this case the

equality Eπ(x|u) = Eπ(x) does not hold giving rise to chain correlations. When W > 2S1 it is

the shrinking step that generates autocorrelations even if (L,R) ∩ S(u) = S(u). For instance

assume that the expanding step has ended up with (L,R) = (−S2, S2). The next state x1

will belong to (−S2,−S1) only if the first candidate draw xc falls into (−S2,−S1), an event

which occurs with probability (S2−S1)/(2S2) < 1/2. This outcome is not affected by the more

general situation where L < −S2 and R > S2. Hence in multimodal cases stepping out favours

permanence in the sub-interval which contains the current state: a positive correlation follows.

When applied to multimodal distributions, Neal stepping out algorithm thus breaks the

interleaving property. This feature can be exploited to revert the correlation sign by positioning

the initial slice interval around the mirror image of x0 with respect to the distribution centre,

i.e. around 2Eπ(x) − x0 instead of around x0. Such a switch is possible because as long as

it is acceptable, the point around which the slice interval is built has no relevance for the

convergence of the algorithm. We label antithetic stepping out this simple amendment to Neal

algorithm given below:

Antithetic stepping out for univariate symmetric distributions:

(i)-(iii). Like in Neal stepping out for univariate distributions.

(iv). Set x0 = 2Eπ(x)− x1 and sample a new u from U{0 < u ≤ π(x0)}.
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This algorithm requires knowledge of the distribution centre Eπ(x). We discuss the performance

of the two samplers in Example 2 where two symmetric normal mixtures are considered, one

unimodal to illustrate the optimality of Neal stepping out for such distributions, and a bimodal

one to enlighten the advantage of exploiting symmetry. The comparison is made in terms of

the relative inefficiency factor defined as:

RIF =
IFA

IFB
×

TimeA
TimeB

(2.3)

where A and B refer to the two competing algorithms with inefficiency factor IFA and IFB

and computational time TimeA and TimeB. The RIF measures the factor by which sampler

A′s run-time must be increased to achieve the same precision as sampler B; values larger than

one point to a greater efficiency of scheme B.

Remark 1: In general, the performance of stepping out depends on the length W chosen for

the initial slice interval. Wide intervals imply more mixing but the number of rejections can

increase noticeably. On the opposite tiny intervals imply stickiness. All results reported in the

sequel are obtained with W set equal to three times the standard deviation of x; this value is

larger than the one standard deviation suggested by Neal, but in our experience it often gives

a good trade-off between the mixing and the run-time.

Example 2: Let us consider the following two normal mixtures: the unimodal kurtotic dis-

tribution π(x) = 2/3 φ1(x) + 1/3 φ1/10(x) and the separate bimodal distribution π(x) =

1/2 φ1/2(x− 3/2)+ 1/2 φ1/2(x+3/2), where φσ(x) denotes the normal density with zero-mean

and standard deviation σ. These two distributions can be visualized in Figure 1 of Marron and

Wand (1992). For the two versions of stepping out, Table 2 reports the inefficiency factor, the

average number of evaluations of the target density used to simulate one draw, and the relative

inefficiency factor.
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Table 2. Slice samplers efficiency in Example 2

Kurtotic Bimodal

Plain stepping out

IF 1.00 2.96

#eval 6.42 6.19

Antithetic stepping out

IF 1.01 0.40

#eval 6.42 6.19

RIF 0.99 7.40

Notes: kurtotic distribution: π(x) = 2/3 φ1(x) + 1/3 φ1/10(x); bimodal distribution: π(x) = .5 φ1/2(x− 3/2)+

.5 φ1/2(x + 3/2); IF refers to the inefficiency factor defined by setting h(x) = x in (2.2); it is calculated using

one hundred thousand of simulations after discarding the first one thousand with autocorrelations weighted by

a Parzen window of length one hundred; #eval gives the average number of evaluations of π(x) used to simulate

one draw; the relative inefficiency factor RIF is defined in (2.3) with antithetic stepping out taken as algorithm

B.

For the kurtotic distribution, both algorithms yield an inefficiency factor equal to one. This

confirms the efficiency of plain stepping out to sample from symmetric unimodal distributions,

and also that the antithetic version does not harm in such cases. As expected some correlations

arise when applying plain stepping out to the symmetric bimodal distribution: the inefficiency

factor rises to 2.96. The antithetic algorithm does not show this feature: the negative cor-

relations induced by the switching mechanism in step (iv) lead to an inefficiency factor equal

to 0.40. Overall, the relative inefficiency factor is about 7 in favour of the antithetic version.

As the two algorithms perform an equal number of evaluations of the target distribution, the

run-time is equivalent and all the improvement pertains to the mixing. Although it stems from

a trivial amendment, antithetic stepping out appears to be quite powerful for sampling from
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symmetric distributions with known centre. We could check that other choices of W such that

one and ten times the scale of x does not alter this outcome.

Remark 2: The bimodal distribution of Example 2 is defined over a connected support. Mira

and Roberts (2003) point out that, when the support is disconnected and the initial interval

length W is too small, stepping out fails to produce an irreducible Markov chain. This failure

also occurs with the antithetic version. In such situations increasing W seems to be the only

viable route.

Proposition 1 refers specifically to the simple slice sampler. Variants involving further aux-

iliary variables are however available: in particular, the product slice sampler factorizes the

target density like in π(x) ∝ f0(x)
∏m

i=1 fi(x), and introduces m auxiliary variables u1, · · · , um

whose joint distribution together with x is proportional to f0(x)1{x ∈
⋂m

i=1 Si(ui)}, Si(ui) de-

noting the interval Si(ui) = {x : 0 < ui ≤ fi(x)} (see Edwards and Sokal, 1988). The aim is

to simplify the slice inversion problem by carefully choosing the functions fi(x). The product

slice sampler generates uncorrelated draws when Eπ(x|u1, · · · , um) = Eπ(x) for all u1, · · · , um.

Since Eπ(x|u1, · · · , um) = Ef0(x|x ∈
⋂m

i=1 Si(ui)), zero correlations will be obtained when the

centre of the slice region
⋂m

i=1 Si(ui) falls on Ef0(x) whatever u1, · · · , um. This is rather peculiar

since it requires that f0(x) and the factors fi(x) are all symmetric around Eπ(x). Applying

the product slice sampler to a target distribution which is symmetric but whose components

are either asymmetric or with different centres is thus sub-optimal: in such cases the simple

slice sampler performs better. This explains the large increase in autocorrelation times, from

1.1 with the simple slice sampler to up to 187 with the product version, that Neal (2003b)

reports when simulating from the Bernoulli logistic regression model discussed in Example 5 of

Damien, Wakefield, and Walker (1999).

In the multivariate context, delineating the slice region S(u) = {x : u ≤ π(x)} is more

involving. Neal (2003a) proposes the following algorithm:
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Neal multivariate slice sampling with hyperrectangles:

(i). Random positioning: given x0 ∈ ℜd, build a random hyperrectangle
∏d

j=1(Lj , Rj) by

setting for each coordinate Lj = x0j − γjWj, γj ∼ U(0, 1), and Rj = Lj +Wj.

(ii). Shrinking: draw a candidate xc by simulating xc
j ∼ U(Lj , Rj) for j = 1, 2, · · · , d. If

xc /∈ S(u), shrink the hyperrectangle by setting either Lj = xc
j if xc

j < x0j or Rj = xc
j if

xc
j ≥ x0j . Repeat until x

c ∈ S(u) and then set x1 = xc.

(iii). Set x0 = x1 and sample a new u from U{0 < u ≤ π(x0)}.

This algorithm keeps the number of evaluations of the target density reasonably low. Contrary

to the univariate case however it generates correlations even for symmetric distributions that

are unimodal. Indeed each time the candidate xc is rejected as falling outside of the slice

region, the hyperrectangle is updated by removing layers of
∏d

j=1(Lj , Rj), making the new

hyperrectangle more concentrated around x0. This mechanically rises the chain correlations.

Removing the shrinking step does not overcome this problem because the number of rejections

can become prohibitive. Like in the univariate case, this feature can be exploited to enhance

efficiency as detailed below:

Antithetic multivariate slice sampling with hyperrectangles:

(i)-(ii). Like in Neal multivariate slice sampling with hyperrectangles.

(iii-bis). Set x0 = 2Eπ(x)− x1 and sample a new u from U{0 < u ≤ π(x0)}.

As in the univariate case, approximating the slice interval around x1 or around its image

2Eπ(x)− x1 does not harm convergence. We illustrate the performance of the antithetic mul-

tivariate slice sampler with another example taken from the literature.
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Example 3: Liechty and Lu (LL, 2010) adapt the product slice sampler to the d-dimensional

normal distribution truncated to a region A, say N(0,Σ)1A, using the factorization:

π(x) ∝
d
∏

i=1

exp{−
1

2
aii x

2
i }

d
∏

i=1

d
∏

j=i+1

exp{−
1

2
aij xixj}1A (2.4)

where aij , i, j = 1, · · · , d, are the elements of the precision matrix Σ−1. LL propose two product

slice samplers which differ in the number of auxiliary variables: the d + 1-method introduces

one variable for each term in the first product plus one further variable for the second product

in (2.4); the d(d+1)/2-method introduces instead one auxiliary variable for each factor. For the

quadrivariate normal distribution with support ℜ4, (−.05, .05)4, (−.0325, .0325)4, as considered

in the LL’s simulation study, Table 3 reports the performance of Neal multivariate algorithm

and its antithetic version against the two product slice samplers. The performance is evaluated

in terms of IF (2.2), the average number of evaluations of the target density by iteration, plus

the RIF (2.3) with the antithetic algorithm taken as benchmark. For the product samplers

the average number of evaluations of the target density is measured by the average number of

rejections by iteration plus one. We have used the code distributed as supplemental material

of LL (2010); it can be checked that the numbers in Table 3 are in broad agreement with those

displayed in Table 1 of LL.

For the truncations considered, the two LL samplers give inefficiency factors which are close

to one. As each term in the factorization (2.4) is symmetric about the origin, this optimal

performance of the two product samplers results from central symmetry. With Neal multivariate

algorithm, the inefficiency factors range from 7 to 11: as expected the shrinking step implies

some stickiness. In contrast the antithetic algorithm produces inefficiency factors below one-

fifth. The d(d + 1)/2 product sampler necessitates the smallest number of evaluations, about

one and a half by iteration; the (d+1) product sampler is more demanding in this respect. With

less than three evaluations by iteration the Neal and the antithetic samplers are moderately

more costly than the d(d+ 1)/2 algorithm. In terms of RIF the antithetic sampler dominates

substantially, the smallest RIF taking value about seventeen.
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Table 3. Slice samplers efficiency in Example 3

Truncation regions

ℜ4 (−.05, .05)4 (−.0325, .0325)4

Plain multivariate

max IF 11.07 8.42 7.44

#eval 2.93 2.82 2.75

RIF 88.14 57.66 48.65

(d+ 1) auxiliary variables

max IF 1.03 1.02 1.04

#eval 61.49 10.60 3.96

RIF 162.77 39.47 20.91

d(d+ 1)/2 auxiliary variables

max IF 1.01 1.01 1.05

#eval 1.56 1.41 1.25

RIF 17.32 19.97 21.59

Antithetic multivariate

max IF 0.13 0.14 0.15

#eval 2.92 2.83 2.76

RIF 1.00 1.00 1.00

Notes: max IF refers to the maximum inefficiency factor of the four-dimensional chain, calculated on one

hundred thousand of simulations using a Parzen window of length one hundred; the relative inefficiency factor

RIF is calculated as in (2.3) with the antithetic multivariate sampler taken as algorithm B.
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Turning to the case of asymmetric distributions, we investigate whether some efficiency gains

could be achieved by symmetrizing.

3 Efficiency gain from symmetrizing

We first consider the univariate case. Suppose an invertible transformation indexed by para-

meter λ, say y = g(x;λ), makes the target distribution centrally symmetric on the new

scale. Then the slice sampler could be applied to the symmetrized density π(y) to simu-

late a correlation-free chain {yn}, the draws being then reset to the original scale using the

inverse transformation x = g−1(y;λ). To achieve symmetry we focus on the class of power

transformations introduced by Box and Cox (1964):

y = g(x;λ) =

{

[(x+ λ2)
λ1 − 1]/λ1 if λ1 6= 0

ln(x+ λ2) if λ1 = 0
(3.1)

where λ = (λ1, λ2) ∈ ℜ×ℜ+. While the shift λ2 can be set equal to any value that guarantees

x + λ2 > 0, the power parameter λ1 must instead be estimated. An estimator is built by

considering a measure of symmetry say R(y1, · · · , yn) such that Eπ(R(y1, · · · , yn)) = 0 when

π(y) is symmetric; solving R(g(x1;λ), · · · , g(xn;λ)) = 0 yields the estimate λ̂. Several measures

of symmetry are discussed in Taylor (1985). Focusing on the skewness under the assumption

that the first three moments exist, the symmetrization of the target distribution proceeds as

follows:

(i) Apply the simple slice sampler to π(x) to get a preliminary sample (x1, · · · , xb);

(ii) Set λ2 = max(0,−min(x1, · · · , xb)(1 + δ)) for some δ ≥ 0;

(iii) Find λ1 that minimizes the square of the skewness calculated on the transformed sample

g(x1;λ), · · · , g(xb;λ).

The slice sampler can then be applied to the transformed variable y with density:

π(y) =

{

π((1 + λ1y)
1/λ1 − λ2) (1 + λ1y)

1−λ1
λ1 λ1 6= 0

π(exp(y)− λ2) exp(y) λ1 = 0
(3.2)
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with λ = λ̂. In general the slice interval will not be invertible on the new scale, and depending

on whether π(y) is unimodal or multimodal the use of either plain or antithetic stepping out

is more appropriate. As the transformation guarantees 1 + λ1y > 0, the bound L (R) must be

greater (lower) or equal to −1/λ1 when λ1 is positive (negative).

Strictly speaking, zero correlations in the chain {yn} does not imply that the transformed

draws {h(xn)} = {h(g−1(yn;λ))} that are used to estimate Eπ(h(x)) will be uncorrelated as

well. Depending on the shape of π(y) some correlations may indeed resurge with the inverse

transformation. The ideal situation occurs when the joint distribution of u and y is rectangular,

that is when u and y are independent. Being more assertive is however difficult; we can only

report that in the many experiments we have made including the examples that follow we have

faced no case of strong correlations resurging on the original scale.

We illustrate the performance of the symmetrizing strategy revisiting Example 1.

Example 1 (cont’d): In spite of its strong asymmetry - see Table 1, the distribution π(x) =

e−x1/d
/ d! is successfully symmetrized by the Box-Cox transformation, the skewness on the

new scale not exceeding 0.01 in absolute value even when d = 20. Ten thousand simulations

have been used to estimate the parameter λ. The transformed distribution remains unimodal

so plain stepping out can be safely used. For the two implementations Table 4 reports the

inefficiency factor, the average number of evaluations of the target density by iteration, and the

relative inefficiency factor (2.3). Without symmetrizing the inefficiency factor increases with

d, reaching 16.37 when d = 20. Symmetrizing almost annihilates the chain correlations: the

inefficiency factor stays constant at around 1.2 regardless of d. Symmetrizing also hastens the

algorithm: while on the original scale the average number of evaluations necessary to generate

one draw increases with d up to 15.3, this number remains stable about 5 when the Box-Cox

transformation is used. Overall, the relative inefficiency factor ranges from 2.3 to 37.3 for d

increasing from 1 to 20: hence the more asymmetric the distribution, the more advantageous

the symmetrization. In this example the gain of symmetrizing is substantial.
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Table 4. Slice samplers efficiency in Example 1

d = 1 d = 2 d = 5 d = 10 d = 20

Plain stepping out

IF 2.97 4.74 7.24 8.92 16.37

#eval 4.37 4.62 6.01 8.97 15.30

Box-Cox & stepping out

IF 1.16 1.17 1.23 1.22 1.19

#eval 5.01 5.01 4.85 4.79 4.98

RIF 2.35 2.91 6.53 12.39 37.78

Notes: target distribution π(x) = e−x1/d

/ d!; IF refers to the inefficiency factor defined by setting h(x) = x in

(2.2) and calculated using one million of simulations after discarding the first one thousand; the autocorrelations

are weighted by a Parzen window of length one hundred; #eval gives the average number of evaluations of the

target density used to simulate one draw; the relative inefficiency factor RIF is defined in (2.3) with the Box-Cox

transformation plus stepping out taken as algorithm B.

We report further evidence with the following example.

Example 4: Let us consider the following three univariate distributions: the truncated normal

π(x) = φ1(x) for x ∈ ℜ+, the skewed logistic π(x) = 2e−x/
(

(1+e−x)2(1+e−10x)
)

for x ∈ ℜ pro-

posed by Gupta and Kundu (2010), and the beta distribution π(x) = Beta(0.5, 10), x ∈ (0, 1).

These distributions have skewness between 1 and 2.31 — see Table 5. Ten thousand points

have been used to optimize the λ parameter. In the three cases the Box-Cox transformation

corrects the asymmetry, the skewness falling below 0.03 in absolute value, while preserving

unimodality. Without symmetrizing stepping out yields inefficiency factors between 1.9 and

4.7; upon symmetrizing, the inefficiency factors never exceed 1.2. Also the average number

of evaluations of the target distribution slightly decreases after symmetrizing. Altogether, the
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relative inefficiency factor (2.3) ranges from 2 to 5 in favour of symmetrizing.

Table 5. Slice samplers efficiency in Example 4

Truncated normal Skewed logistic Beta

Skewness 1.00 1.46 2.31

Stepping out

IF 1.94 2.01 4.74

#eval 5.14 5.36 5.60

Box-Cox & stepping out

IF 1.06 1.03 1.17

#eval 4.96 5.14 4.69

RIF 1.90 2.04 4.84

Notes: truncated normal distribution: π(x) = φ1(x), x ∈ ℜ+; skewed logistic: π(x) = 2e−x/
(

(1 + e−x)2(1 +

e−10x)
)

, x ∈ ℜ; beta: π(x) = Beta(0.5, 10), x ∈ (0, 1); IF refers to the inefficiency factor defined by setting

h(x) = x in (2.2) and calculated using one million of simulations after discarding the first one thousand; the

autocorrelations are weighted by a Parzen window of length one hundred; #eval gives the average number of

evaluations of the target density used to simulate one draw; the relative inefficiency factor RIF is defined in

(2.3) with Box-Cox transformation plus stepping out taken as algorithm B.

We turn to the multivariate case. To symmetrize a d-dimensional distribution we follow

Andrews, Gnanadesikan, and Warner (1971), applying a Box-Cox transformation to each co-

ordinate separately as described below:

(i) Run the slice sampler to get a preliminary sample of length b, say (x1, · · · ,xb);
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(ii) Apply the Box-Cox transformation (3.1) to each element of x in turn to get y = (y1,

· · · , yℓ, · · · , yd) where yℓ = g(xℓ, λℓ), and λℓ = (λℓ1, λℓ2) for ℓ = 1, · · · , d; this yields the

transformed sample (y1, · · · ,yb);

(iv) Select λλλ = (λ1, · · · , λd) which minimizes the Mardia (1970) measure of multivariate skew-

ness calculated on (y1, · · · ,yb).

The distribution of the transformed variable verifies:

π(y) = π(g−1(y1, λ1), · · · , g
−1(yd, λd)) |

d
∏

ℓ=1

∂g−1(yℓ, λℓ)/∂yℓ | (3.3)

which is straightforward to evaluate at λλλ = λ̂̂λ̂λ, similarly to the univariate case (3.2).

The symmetry of π(y) can then be fruited using the antithetic multivariate algorithm de-

scribed in Section 2. Except in particular situations however, central symmetry will not hold

exactly. Also Eπ(y) will generally be unknown so it must be estimated using the preliminary

sample (y1, · · · ,yb), yielding y = (1/b)
∑

i yi. Hence the antithetic multivariate algorithm

requires a further check since given the current state y0, the mirror point 2y − y0 must fall

within the slice region. Otherwise the switch cannot take place and the slice region must be

built around y0 instead of around its image, as detailed below.

Antithetic slice sampling for symmetrized multivariate distributions:

(i)-(ii). Like in Neal multivariate slice sampling with hyperrectangles; this yields the new draw

y1.

(iii). Sample a new u, say u∗, from U{0 < u ≤ π(y1)}.

(iv). If 2y − y1 ∈ S(u∗) set y0 = 2y − y1; otherwise set y0 = y1.

We illustrate the performance of this strategy with the following example.

Example 5: We modify the four-variate truncated normal distribution discussed in Example 3

by considering an asymmetric truncation region, namely the positive subspace of ℜ4. Table 6

18



details the performance of the LL product slice samplers, of the Neal multivariate algorithm,

and of its antithetic variant implemented on the symmetrized distribution. For this distribution

the Mardia measure of skewness amounts to 2.2, and upon symmetrizing it falls to 0.04. On

the original scale the Neal algorithm yields a maximum inefficiency factor equal to 11.85.

Augmenting the number of auxiliary variables with the d+ 1 and d(d+ 1)/2 product samplers

further increases the maximum inefficiency factor by one-third. With the antithetic algorithm,

all inefficiency factors remain instead close to 1. This outcome is obtained at the moderate

cost of 15% further evaluations of the target distribution compared to the Neal algorithm,

due to the need to check that the mirror point falls within the slice region. In contrast the

product samplers perform many more evaluations of the target distribution due to a large

number of rejections: if augmenting the number of auxiliary variables helps inverting the slice

region, it also implies a computational cost. Overall, to attain the precision of the antithetic

algorithm, the Neal multivariate sampler must run five times longer, and the LL samplers at

least fourty times longer. The antithetic sampler thus yields substantial efficiency gains also in

this multivariate example.

Table 6. Slice samplers efficiency in Example 5

Original scale After symmetrizing

Neal (d+ 1) d(d+ 1)/2 Antithetic

max IF 11.85 14.21 14.03 0.91

# eval 2.89 25.35 15.05 3.37

RIF 4.97 72.38 40.71 1.00

Notes: truncated normal distribution: π(x) = N(0,Σ)1A, where A refers to the positive subspace of ℜ4 and Σ

is taken as in LL (2010); IF is the inefficiency factor defined by setting h(x) = x in (2.2) and calculated using

one hundred thousand simulations after discarding the first one thousand; the autocorrelations are weighted by

a Parzen window of length one hundred; #eval gives the average number of evaluations of the target density

used to simulate one draw; the relative inefficiency factor RIF is defined in (2.3) with Box-Cox transformation
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plus antithetic sampler taken as algorithm B.

Finally we consider an application to Gaussian spatial models.

Example 6: Gaussian spatial modelling

Suppose we wish to describe the surface temperature t(si) recorded at some known locations

s1, · · · , sn using a Gaussian spatial model with the latitude and longitude as explanatory vari-

ables:

t(si) = β0 + β1 latitude(si) + β2 longitude(si) + ǫ(si)

Following De Oliveira, Kedem, and Short (1997), we assume that the errors ǫ(si) are related

through an exponential covariance function:

Cov(ǫ(si), ǫ(sj)) = σ2 exp{−
‖si − sj‖

θ
}

where θ > 0 and ‖si − sj‖ denotes the geodetic distance between two locations (see Baner-

jee, 2005). Agarwal and Gelfand (2005) argue in favour of the Bayesian approach to analyze

such Gaussian spatial models. Berger, De Oliveira, and Sans (2001) however warn against

the use of improper priors in this framework. As prior distributions, we consider the inde-

pendent and proper distributions β1 ∼ Beta(4, 4)1(−100,100), β2 ∼ Beta(4, 4)1(−100,100), σ
2 ∼

Beta(2, 10)1(0,200), and θ ∼ Beta(3, 4)1(0,700). The parameter β0 has been eliminated by de-

meaning. Data for the January 1995 mean temperature recorded over a grid of 24×24 locations

that covers Central America have been downloaded from the NASA Langley Research Center

Atmospheric Science web-site.

To simulate from the joint posterior distribution of β1, β2, σ
2 and θ, we compare the Neal

multivariate algorithm against its antithetic version applied to the symmetrized distribution.

Each sampler is implemented in a Fortran code which is run on a 64-bit computer equipped

with a CPU of 2.4GHz and 32Gb of RAM. One hundred thousand simulations are stored after a

burn-in of one thousand. For the antithetic algorithm, the Box-Cox transformation is estimated

using ten thousand extra simulations, and these simulations are also used to estimate the centre

of the transformed distribution; all these operations are taken into account when measuring

the run-time. For the two competing simulators, Table 7 reports the inefficiency factor for each
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parameter, the average number of evaluation of the joint posterior distribution per iteration,

the relative inefficiency factor as well as the run-time. In this application the run-time deserves

a particular monitoring because each evaluation of the joint posterior distribution involves the

inversion of a 242 × 242 covariance matrix.

Table 7. Slice samplers efficiency in Example 6

β1 β2 σ2 θ

Multivariate sampler with hyperrectangles

IF 8.72 9.40 8.45 7.85

# eval 4.17

run-time 28.52

Antithetic multivariate sampler after symmetrizing

IF 0.39 0.36 0.56 0.69

# eval 4.65

run-time 37.30

RIF 17.08 19.51 11.39 8.63

Notes: IF refers to the inefficiency factor defined by setting h(x) = x in (2.2) and calculated using one

hundred thousand of simulations after discarding the first one thousand; the autocorrelations are weighted by

a Parzen window of length one hundred; #eval gives the average number of evaluations of the target density

used to simulate one draw; run-time is the CPU time in seconds used per hundred simulated iterations; the

relative inefficiency factor RIF is defined in (2.3) with Box-Cox transformation plus antithetic sampler taken

as algorithm B.

The Neal sampler yields inefficiency factors about 8, and requires an average number of evalu-

ations equal to 4.2. The Box-Cox transformation reduces the Mardia skewness from 2.7 on the
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original scale to 0.07. The antithetic sampler benefits from symmetrizing, yielding inefficiency

factors below one, and this advantage is obtained at a moderate cost since the average number

of evaluations increases only moderately from 4.2 to 4.7. For the four parameters, Figure 1

shows the cumulative posterior mean in deviation from the full sample average: the antithetic

sampler appears to be quite effective in reducing the variance of the posterior mean. This

result is obtained at the cost of increasing the run-time by one-third. Overall, this yields a

RIF between nine and seventeen in favour of the antithetic algorithm. Given that one hundred

thousand simulations are obtained in about eight hours, the Neal algorithm should run about

seventy-two hours to yield the accuracy achieved with the antithetic algorithm.

Figure 1 Cumulative posterior means in Example 6,

in deviation from full sample averages
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Notes: the x-axis shows the number of simulations; the blue line refers to multivariate slice sampling with

hyperrectangles and the black one to the antithetic version applied to the symmetrized distribution.
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4 Conclusion

We point out that the simple slice sampler generates chains with zero-correlations when the

target distribution is centrally symmetric. This property is shared by the product slice sampler

under the stronger condition that all factors of the target distribution are centrally symmetric

around the same point. This explains the outcome of several comparisons between the simple

and the product slice samplers which have appeared in the literature. The optimal behaviour

of the simple slice sampler in the symmetric case also sheds some light on the algorithms that

Neal (2003a) has proposed to circumvent the slice inversion problem. In the case of symmetric

distributions which are univariate and unimodal, we could indeed see that stepping out preserves

the zero-correlations property. Some correlations instead arise in the univariate multimodal and

multivariate cases. In these situations we propose a slight amendment to stepping out and to

Neal multivariate sampling with hyperrectangles which consists in constructing the slice interval

around the mirror image of the current state with respect to centre of symmetry. The examples

we report suggest that this antithetic strategy greatly enhances efficiency.

Since skewness of the target distribution impairs the efficiency of the slice sampler, symmet-

rizing the target distribution is worth considering. We focus on the Box-Cox transformation

for its limited computational cost, with the objective to minimize the skewness. The antithetic

algorithm is then implemented on the transformed distribution, the draws being then reset to

the original scale by inverse transformation. The examples we report show that this simple

and almost costless strategy yields important efficiency gains, in particular when the target

distribution is strongly asymmetric. It thus provides a valid alternative to overrelaxation and

reflective methods for improving efficiency. Of course the use of skewness to symmetrize the

target distribution must be made with some caution since, if symmetry implies zero skewness,

the opposite is not true. For such cases, alternative measures of symmetry should be considered.

Should the Box-Cox transformation fail symmetrizing, alternative transformations can be found

in Yeo and Johnson (2000) and in Yang (2006).
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Appendix A

Given a positive integer d, the first moment of the distribution π(x) = e−x1/d
/ d! verifies:

Eπ(x) =
1

d!

∫ ∞

0

x e−x1/d

dx =
1

(d− 1)!

∫ ∞

0

z2d−1 e−zdz =
(2d− 1)!

(d− 1)!

where the second equality follows from the change of variable z = x1/d and the third one from

the gamma function. The k-th moment verifies similarly:

Eπ(x
k) =

((k + 1)d− 1)!

(d− 1)!

Given the first three moments the skewness sk(x) ≡ Eπ[(x− Eπ(x))
3]/Vπ(x)

3/2 is obtained as:

sk(x) =
(4d− 1)!/(d− 1)!− 3(3d− 1)!(2d− 1)!/(d− 1)!2 + 2((2d− 1)!/(d− 1)!)3

((3d− 1)!/(d− 1)!− ((2d− 1)!/(d− 1)!)2)3/2

To calculate the first autocorrelation of the chain generated by the slice sampler first notice

that the slice interval S(u) = {x : u ≤ π(x)} amounts to x ∈ (0, [− ln(u d!)]d), with u ∈

(0, 1/d!). The conditional moment E(x|u) thus verifies E(x|u) = [− ln(u d!)]d/2. The marginal

distribution of the auxiliary variable u is given by π(u) = [− ln(u d!)]d. The first covariance of

the transition kernel is then obtained as:

Vπ[Eπ(x|u)] =
1

4

∫ 1

d!

0

[− ln(u d!)]3ddu− ((2d− 1)!/(d− 1)!)2

= (3d)!/(4d!)− ((2d− 1)!/(d− 1)!)2

where the integral is solved by substitution setting v = − ln(ud!) and using the gamma function.

The first correlation of the transition kernel which verifies Corr(xi, xi+1) = Vπ[Eπ(x|u)]/Vπ(x)

is such as:

Corr(xi, xi+1) =
(3d)!/(4d!)− ((2d− 1)!/(d− 1)!)2

(3d− 1)!/(d− 1)!− ((2d− 1)!/(d− 1)!)2

=
(3d)!/(4d!)− ((2d− 1)!/(d− 1)!)2

(3d)!/(3d!)− ((2d− 1)!/(d− 1)!)2

=
3

4
−

(2d− 1)!2

4((3d− 1)!(d− 1)!− (2d− 1)!2)

24



References

Agarwal D.K. and Gelfand A.E. (2005), ‘Slice sampling for simulation based fitting of

spatial data models’, Statistics and Computing, 15, 1, 61− 69.

Andrews D.F., Gnanadesikan R., and Warner J.L. (1971), ‘Transformations of mul-

tivariate data’, Biometrics, 27, 825− 840.

Banerjee S. (2005), ‘On geodetic distance computations in spatial modeling’, Biometrics, 6,

2, 617− 625.

Berger J.O., De Oliveira V., and Sanso B. (2001), ‘Objective Bayesian analysis of

spatially correlated data’, Journal of the American Statistical Association, 96, 456, 1361−1374.

Bishop C.M. (2006), Pattern Recognition and Machine Learning, Springer Verlag: Singapore.

Box G.E.P. and Cox D.R. (1964), ‘An analysis of transformations’, Journal of the Royal

Statistical Society B, 26, 2, 211− 252.

Damien P., Wakefield J.C., and Walker S. G. (1999), ‘Gibbs sampling for nonconjugate

and hierarchical models by using auxiliary variables’, Journal of the Royal Statistical Society

B, 61, 331− 344.

De Oliveira V., Kedem B., and Short D.A. (1997), ‘Bayesian prediction of transformed

gaussian random fields’, Journal of the American Statistical Association, 92, 1422− 1433.

Dunson D.B. and C. Xing (2009), ‘Nonparametric Bayes modeling of multivariate categor-

ical data’, Journal of the American Statistical Association, 104, 487, 1042− 1051.

Edwards R.G. and A.D. Sokal (1988), ‘Generalization of the Fortuin-Kasteleyn-Swendsen-

Wang representation and Monte Carlo algorithm’, Physical Review D, 38, 6, 2009− 2012.

Gupta, R.D. and D. Kundu (2010), ‘Generalized logistic distributions’, Journal of Applied

Statistical Sciences, 18, 51− 66.

Hollander M. (1968), ‘Certain uncorrelated nonparametric test statistics’, Journal of the

American Statistical Association, 63, 707− 714.

Jasa T. and Xiang N. (2009), ‘Efficient estimation of decay parameters in acoustically

coupled-spaces using slice sampling’, Journal of the Acoustical Society of America, 126, 3,

25



1269− 1279.

Jones G.L. (2004), ‘On the Markov chain central limit theorem’, Probability Surveys, 1, 299−

320.

Kline B. and Tamer E. (2016), “Bayesian inference in a class of partially identified models”,

Quantitative Economics, 7, 329− 366.

Li J. (2011), “Volatility components, leverage effects, and the return−volatility relations”,

Journal of Banking & Finance, 35, 1530− 1540.

Liechty M. W. and Lu J. (2010), “Multivariate normal slice sampling”, Journal of Com-

putational and Graphical Statistics, 19, 2, 281− 294.

Liu J.S, Wong W.H., and Kong A. (1994), ’Covariance structure of the Gibbs sampler

with applications to the comparison of estimators and data augmentation schemes’, Biometrika,

81, 1, 27− 40.

Mardia K.V. (1970), ‘Measures of multivariate skewness and kurtosis with applications’,

Biometrika, 57, 3, 519− 530.

Marron J. S. and Wand M.P. (1992), ‘Exact integrated squared error’, The Annals of

Statistics, 20, 2, 712− 736.

Mira A. and Roberts G.O. (2003), ‘Discussion’, The Annals of Statistics, 31, 3, 748− 753.

Mira A. and L. Tierney (2002), ‘Efficiency and convergence properties of slice samplers’,

Scandinavian Journal of Statistics, 29, 1, 1− 12.

Neal R.M. (2003a), ‘Slice sampling’, The Annals of Statistics, 31, 3, 705− 741.

Neal R.M. (2003b), ‘Slice sampling: rejoinder’, The Annals of Statistics, 31, 3, 758− 767.

Nelsen R.B. (1993), ‘Some concepts of bivariate symmetry’, Nonparametric Statistics, 3,

95− 101.

Robert C.P. and Casella G. (2004), Monte Carlo statistical methods, 2nd ed., Springer:

New York.

Roberts G.O. and Rosenthal J. (2002), ‘The polar slice sampler’, Stochastic Models, 18,

2, 257− 280.

26



Roberts G.O. and Rosenthal J. (1999), ‘Convergence of slice sampler Markov chains’,

Journal of the Royal Statistical Society B, 31, 643− 660.

Serfling R. J. (2006), Multivariate Symmetry and Asymmetry, in Encyclopedia of Statistical

Sciences, ed. S. Kotz, N. Balakrishnan, C. B. Read, and B. Vidakovic, New York: Wiley,

5338− 5345.

Tarasov L., Dyke A.S., Neal R.M., and Peltier W.R. (2012), ‘A data-calibrated

distribution of de-glacial chronologies for the North American ice complex from glaciological

modeling’, Earth and Planetary Science Letters, 315− 316, pp. 30− 40.

Taylor J. M. (1985), ‘Power transformations to symmetry’, Biometrika, 72, 1, 145− 152.

Yang Z. (2006), ‘A modified family of power transformations’, Economics Letters, 92, 14−19.

Yeo I. and Johnson R.A. (2000), ‘A new family of power transformations to improve nor-

mality or symmetry’, Biometrika, 87, 4, pp. 954− 959.

27



Europe Direct is a service to help you find answers 
to your questions about the European Union. 

Freephone number (*): 

00 800 6 7 8 9 10 11 
(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may 
charge you). 

More information on the European Union is available on the internet (http://europa.eu). 

HOW TO OBTAIN EU PUBLICATIONS 

Free publications: 

• one copy:
via EU Bookshop (http://bookshop.europa.eu);

• more than one copy or posters/maps:
from the European Union’s representations (http://ec.europa.eu/represent_en.htm);
from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);
by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or
calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications: 
• via EU Bookshop (http://bookshop.europa.eu).



doi:10.2760/10835 

ISBN 978-92-79-93405-6 

 K
J-A

E-18-011-EN
-N

  


	Template JRC WPEF_front_technical
	slice11
	Template JRC WPEF_back_new

