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Abstract: 

Understanding of volatility term structure is highly relevant both for market agents 

and policymakers. As traditional methodologies often bring results contradicting 

situation on the markets, we revisit volatility term structure modeling in univariate 

case. In this paper we benefit from extensive high-frequency dataset of US Treasury 

futures prices allowing us to empirically inspect the behaviour of the respective 

realized volatility term structure. We believe that the discovered properties justify 

the application of multi-factor modeling techniques primarily developed for yield 

curves. Finally we develop the comprehensive methodology fitting empirical data 

efficiently by term structure decomposition using Nelson-Siegel class of models. 
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1 Introduction

Existing literature on term structure modeling usually targets yield curves. However, volatility

literature arrived to consensus, that implied volatility is dynamic and that Black and Scholes

(1973) assumption of constant volatility across varying time to maturity is rejected by empirics.

Therefore, volatility is forming a term structure, which is reflecting the fact, that uncertainty

is perceived differently across varying horizons. Thorough understanding of volatility term

structure is of high importance for valuation of various financial assets and its derivatives such

as interest rate derivatives.

Despite the fact that volatility term structure brings additional valuable information com-

pared to sole analysis of yield levels, publishing activity focusing on volatility term structure

modeling has been rather scarce. Descriptive analyses on implied volatility term structure were

compiled for instance by Stein (1989) or Xu and Taylor (1994), who arrived to conclusion that

similarly to yield curves, term structure of implied volatility can take broad variety of patterns.

As Cieslak and Povala (2016) state, as long as the short end of yield term structure represents

the markets expectations of monetary policy steps, volatility term structure reveals information

of uncertainty associated with these steps. Therefore, ability to efficiently model volatility term

structure is of interest both for policymakers and investors.

Majority of existing literature of term structure modeling works with low-dimensional affine

models, where usually single factor for volatility modeling is applied. However, volatility litera-

ture is gradually converging to analogous conclusion to Litterman and Scheinkman (1991), who

claimed that at least three factors are needed for proper description of interest rate terms struc-

ture. As far as volatility is concerned, much of the recent literature comes to conclusion that

single-factor stochastic volatility models are not efficient and are outperformed by multi-factor

volatility models in terms of capturing the volatility dynamics (e.g. Kim and Singleton (2012),

Park (2011), Christoffersen et al. (2009)). Moreover, departure from single-factor volatility

models has also interpretational and economic substantiation as numerous empirical studies

arrived to conclusion that long-term volatility shows different behavior patterns compared to

short-term volatility (Byoun et al. (2003), Heynen et al. (1994) or Mixon (2007)). Therefore,

extension to multi-factor (at least two-factor) models appears logical step to match observed

data.

As Derman et al. (1996), Krylova et al. (2009) or Christoffersen et al. (2009) remark, volatil-

ity term structures show analogous characteristics to yield curves. This is frequent motivation

starting point for extension and application of methods primarily developed for interest rate

term structure modeling also for volatilities. Similarity of behaviour of yield curve and term

structure of other financial assets justifying application of modeling approaches primarily devel-

oped for interest rates has been claimed in literature by multiple authors. Among others, Hansen

and Lunde (2013) or Barunik and Malinska (2016) arrived to conclusion that similarity of yield

curve and oil futures term structure allow for successful application of Nelson-Siegel model for

fitting respective curves on extensive dataset. Therefore, we believe potential similar properties

of volatility term structure and yield curve together with the fact that existing literature con-

tinually adheres to decomposition of volatility term structure to components (often performed

using principal components analysis) justifies application of Nelson-Siegel approach on volatility
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term structure modeling task. Moreover, we suppose that the approach and respective inter-

pretation of the Nelson-Siegel components by Diebold and Li (2006) is able to generate good fit

for volatility term structure. Diebold and Li (2006) interpreted the components as short-term,

medium-term and long-term (subject to certain conditions thoroughly discussed in their paper)

which suitably corresponds the above mentioned conclusion of relevant literature that volatility

was detected to contain different type of information and to be differently sensitive for short,

medium or long-term horizon.

As mentioned above, decomposition of yield curves to factors using various methodologies

has been frequently applied both in literature and practice (see e.g. Litterman and Scheinkman

(1991) or Diebold and Li (2006)). More recently, the literature has been examining also common

factors in the second moment as a new source of valuable information (e.g. Jareño and Tolentino

(2012), Dı́az et al. (2010) or Benito and Novales (2007)). Benito and Novales (2007) tested the

statistical equivalence of the volatility series estimated from a factor model for interest rates to

those obtained from a factor model for volatilities. The author concluded that the results are

not equal, which might be caused by loss of some information on second order moments during

the estimation of yield curve factors.

Summarized, our motivation to inspect the decomposition of volatility term structures of

the US Treasury futures is following. First, the realized term structure of US Treasury futures

behaves differently for short and long maturities and therefore presumably contains additional

valuable information relevant for various market agents. Second, proved versatility and ability

of Nelson-Siegel class of models to fit wide spectrum of yield curves and term structures of

various assets is likely to operate efficiently also in case of realized volatility being the efficient

instrument capturing the latency of volatility. And finally, we also believe that substance of

the Nelson-Siegel factors has tangible and useful interpretation with respect to the properties

of the realized volatility in relation to maturity. We expect that decomposition of the whole

term structure to factors with handy substantiation as long-term, short-term and medium-term

components might be useful in future bond pricing research. Since we are exploring the topic

with limited existing literature coverage, this paper intends to present initial inspection of the

realized volatility term structure properties and formulation of ”stylized facts” which will be

useful in future research.

This paper is organized as follows. Section 2 presents methodology applied, focusing espe-

cially on motivation and justification of application of Nelson-Siegel approach in case of realized

volatility term structure modeling, Section 3 describes data and data processing techniques,

Section 4 presents the fitting procedure, Section 5 summarizes the results and Section 6 con-

cludes.

2 Methodology

In this paper, we intend to show that it is possible to explain the universe of term structures

of volatility of Treasury futures (front contracts) returns observable on the market by limited

number of factors having their immediate substantiation. For this task we benefit from two key

concepts recalled below - realized volatility measure and dynamic Nelson-Siegel model.
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2.1 Realized volatility

Inspecting (and also modeling and forecasting) volatility is complicated by the fact that the ac-

tual volatility is not directly observable. Therefore, researchers developed multiple approaches

relying on strict parametric assumptions to capture the latency of volatility. These methodolo-

gies include autoregressive conditional heteroskedasticity (ARCH) or stochastic volatility (SV)

models, or alternatively, option-based implied volatility measures. As Andersen and Teräsvirta

(2009) summarize, in order to approximate current and future levels of volatility, some litera-

ture also employs historical volatility measures (i.e. backward-looking sample return standard

deviation), which generally do not provide with outcomes consistent with basic properties of

volatility (such as mean revision).

Thanks to availability of high-frequency data on various financial assets and to increasing

computational power needed for efficient processing of large-scale datasets, we can observe in

recent literature stronger presence of model-free data-driven volatility measurements to the

detriment of parametric conditional volatility models. As concluded by Andersen et al. (2003),

simple realized volatility models show better forecasting performance compared to traditional

volatility models. Following the recent surge of literature, we will employ realized volatility

(RV) measures in order to accomplish the primary goal of this paper, i.e. to model volatility

term structure using Nelson-Siegel approach.

First step is to construct realized volatility from high-frequency log-returns. We use medRV

estimator as formulated by Andersen et al. (2012) constructed as:

medRVt =
π

6− 4
√

3 + π

(
N

N − 2

)N−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2 (1)

where rt,i generally represents the i−th return on trading day t and N is the number of

equispaced returns on the trading day.

As discussed in Andersen et al. (2012), medRV performs better compared to bi-power or

multi-power RV measures in terms of robustness in finite sample with respect to jumps and

occurence of spurious zero returns caused by quote or trade price duplicates.

2.2 Dynamic Nelson-Siegel approach

The goal of this paper is to inspect whether there exists a possibility how to satisfactorily

describe the realized volatility term structure by limited number of factors, having preferably

also certain informative value. Due to its favourable properties for this task, we decided to apply

dynamic version of Nelson-Siegel (DNS) as reformulated by Diebold and Li (2006). Therefore,

we take advantage from the DNS model to perform cross-sectional and dynamic fit of realized

volatility term structure and decompose the realized volatility term structure to long-term,

medium-term and short-term factors. Our motivation to employ dynamic Nelson-Siegel model

in realized volatility term structure modeling is threefold. First, as concluded among others

also by Sarker et al. (2006), dynamic Nelson-Siegel proved to outperform other classes of term

structure models (no-arbitrage or affine) in terms of ability to model jointly cross-sectional
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and time-series dimensions of yield curves while preserving also solid forecasting performance.

Second, even though its functional specification is rather compact, the dynamic Nelson-Siegel

model can fit wide variety of term structure shapes (increasing, decreasing or humped curves).

And finally, the factors being the ultimate outcome of the model are, compared to other methods

of term structure modeling, rather straightforward to interpret.

In the framework introduced by Diebold and Li (2006) for yield curves, the dynamics of the

term structure Treasury futures realized volatility can be described by:

medRVt(τ) = β0t + β1t

(
1− e−λtτ

λtτ

)
+ β2t

(
1− e−λtτ

λtτ
− e−λtτ

)
(2)

where medRVt(τ) is median realized volatility at time t = 1, ..., T with time to maturity τ . Co-

efficents β0t, β1t, and β2t are in the literature interpreted as level (being long-term component),

slope (being short-term component as it decays exponentially at rate λt), and curvature (being

medium-term component as it increases for medium term maturities and then decays for longer

maturities), respectively.

As might be observed in Figure 1, loading on the level factor is equal to one and does not

change with maturity. Therefore, change of β0t means horizontal shift of the entire curve. Load-

ing on the slope factor decreases from one to zero for infinite maturity (note that medRVt(∞) -

medRVt(0) = −β1). Finally, loading on curvature factor converges to 0 with maturity going to

zero or infinity, reaching its maximum at maturity equal to 1
λ . It is worth noting, that loading

on slope factor is higher than curvature loading for shorter maturities, and therefore, affecting

volatility of shorter-maturity Treasury futures relatively more. Finally, β2 is interpreted as the

curvature factor due to its zero limit loading for the maturity going to zero and infinity.

Figure 1: Nelson-Siegel factor loadings for λ = 0.1379
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2.2.1 Decay parameter λ

Next to beta coefficients described above, fitting Nelson-Siegel model also requires to deal with

the decay parameter λ. Practically, determining λt means solving of the trade-off between

fitting the term structure for short or long maturities. There is no clear consensus in the

relevant literature about any concrete value of the parameter to be used or about an approach

how to derive its optimal value(s).

In principle, there are two ways how to treat λ parameter determining also whether the

curve fitting task will be of linear or non-linear nature. As the ultimate task of this paper is to

investigate, whether Nelson-Siegel approximation of the volatility term structure is applicable,

we will empirically inspect all approaches presented below.

First, λ may be estimated together with the β coefficients, implying nonlinear (and therefore

computationally much more demanding) nature of the estimation task of the Equation (2).

Summarized, this option entails non-linear least squares estimation of β0t, β1t, β2t, and λt for

all t. Existing literature of yield curve modeling using Nelson-Siegel model often treats the non-

linearity of the initial task by inclusion of grid search techniques in order to find the optimal λt

for each period. It can be anticipated, that such an approach will probably generate very good

fit to the data. However, possible instability of λ would most probably cause deterioration of

predictive power of the factors as concluded by Vela (2013) in case of yield curve modeling.

Second option is to fix the value of λ, which leaves us with linear least squares estimation. In

literature of dynamic Nelson-Siegel model applications, there are two most common approaches

of fixing the decay parameter. First, most authors rely on argumentation provided by Diebold

and Li (2006), who simply derived the value from setting medium maturity at 30 months,

implying λ = 0.0609 (or λ = 0.7173 for maturity expressed in years). Alternatively, we can

pursue an optimization task in order to find the optimal λ minimizing the errors of the Nelson-

Siegel approximation over the whole period.

Based on the argumentation above, we believe, that fixing the decay parameter to the

optimal value based on the procedure described in detail in Section 4 is the most appropriate

method of treating λ as also challenged by various authors to be rather the non-transparent

and abstract component of the Nelson-Siegel approximation. When discussing the results of

the empirical analysis pursued in this paper, we will refer to this method being the primary for

treating the decay parameter, however, the results applying the remaining two methodologies

will be presented as well in order to inspect robustness of our conclusions.

To summarize, three approaches to realized volatility term structure modeling will be in-

spected:

Model 1: Fixed optimized λ∗

• Estimation: Fixing λ value in the DNS model to a constant equal to the optimized

value λ∗ being output of minimization of SSE (Equation 3) will leave us with linear

problem to be solved by ordinary least squares.

• Output: Time series of three parameters β̂0, β̂1, and β̂2.

Model 2: Time-varying λt
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• Estimation: Time-varying λt found by grid search allowing for linear estimation of

beta coefficients.1

• Output: Time series of four parameters β̂0, β̂1, β̂2, and λ̂.

Model 3: Fixed λDL

• Estimation: Fixing λ value in the DNS model to a constant equal to the value used

by Diebold and Li (2006) will leave us with linear problem to be solved by ordinary

least squares.

• Output: Time series of three parameters β̂0, β̂1, and β̂2.

3 Data

3.1 Data description

When referring to volatility term structure throughout this paper, we speak about a term

structure of volatility of US Treasury futures (front contract) logarithmic returns. As we are

using continuous time series of front contract futures prices, the term structure is formed by

maturities of the underlying assets, i.e. US government notes/bonds of 2-year, 5-year, 10-year

and 30-year maturity. In order to construct a realized volatility measure, medRV, as described

above, we use 1-minute US Treasury futures data (active contracts) from Tick Data, Inc.2

database. We examine contracts for each US Treasury benchmark tenors, i.e. 2-year (CME

global ticker: TU), 5-year (CME global ticker: FV), 10-year (CME global ticker: TY) and

30-year (CME global ticker: US).

There are multiple reasons why to analyze futures instead of cash market in order to model

realized volatility term structure. First, as long as this paper applies data-driven methodology,

immediate availability of clean 1-minute high-frequency futures data from renowned database

is extremely beneficial. Second, observing situation on US bond market in past decade, futures

market has been gaining relative importance to the cash market3. Third, due to delivery

mechanism of US Treasury futures contracts, futures prices are tightly linked to underlying

bond prices (and yields), and moreover, also due to lower transaction costs, futures market was

detected to be dominant to cash market in reaction to news and price discovery process (see

e.g. Brandt et al. (2007), Andersen et al. (2007) or Engle (1998)). Panzarino et al. (2016) found

that volatility on the futures market tends to spread to cash market, whereas the reverse flow

is rather much weaker.

For our analysis we restrict ourselves to futures price observations in the period from

1/2/2001 to 12/31/2015. The selection of the inspected timeframe is beneficial, as long as

throughout the entire period the futures contracts have consistent specifics and delivery condi-

tions especially in terms of annual coupon rate of the underlying bond contract which changed

to 6% in 2000. We believe that 15 years of 1-minute high-frequency observations covering

1We benefit from Nelson.Siegel function in R included in YieldCurve package by Sergio Guirreri (https:
//cran.r-project.org/web/packages/YieldCurve/YieldCurve.pdf).

2http://www.tickdata.com/
3See The New Treasury Market Paradigm, CME Group, June 2016, available at

https://www.cmegroup.com/education/files/new-treasury-market-paradigm.pdf.
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also turbulent period of recent financial crisis represent wide variety possible situations on the

respective markets reflected in various shapes of volatility term structures.

Figure 2 presents time series of US Treasury futures prices in the period from January 2001

to December 2015.

Figure 2: US Treasury futures prices development

The data show diverging futures prices, especially in case of the longest 30-year tenor. As the

bond prices are inversely related to yield levels, the significant growth price of the 30-year bond

future relatively to the shorter tenors reflect the flattening of the US yield curve (measured by

decreasing spread between 30-year and 2-year bonds) observable on the market since the global

financial crisis. General rise in the Treasury futures prices due to low-interest policy pursued

by the Federal Reserve (and associated uncertainty and speculations of the potential policy

change) impacted the long-term contracts more due to their inherent higher sensitivity to the

interest rates changes.

3.2 Data processing

The raw high-frequency data on US Treasury futures prices are clean and validated by TickData

in-house system. However, we need to perform several more steps in order to acquire solid and

representative time series for meaningful calculation of realized volatility.

First step is to exclude non-active days such as weekends or public holidays in the USA.

We also drop days having only a single unique futures price observation during the trading day.

This procedure leaves us with 3,814 days.

In order to inspect trading activity on US Treasury futures market we plot intra-day dis-

tribution of trading volume by calculating mean over the entire period of volumes traded in a

given minute (see Figure 3). We observe that largest activity is present during Chicago Mer-

cantile Exchange trading hours, i.e. 07:20 to 14:00 CT. However, due to operation of trading

electronic platform CME Globex, significant trading activity is observable also outside the CME

trading hours. Therefore, we decide to extend the interval for purposes of realized volatility

calculation by two hours on each pole and to define the trading day for our realized volatility

calculation purposes from 05:20 CT to 16:00 CT in order to include all significant activity to

our calculations (see the shaded area in Figure 3). Moreover, this window includes the regular
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announcements issued by Federal Reserve System and other relevant authorities which represent

significant determinants of changes on the US Treasury market (Andersen and Benzoni, 2010).

Figure 3: Trading activity: sum of mean trading volumes for TU, FV, TY and US

Based on the findings in the relevant literature (summarized in e.g. Liu et al. (2015), Hansen

and Lunde (2006)), we aggregate our data to 5-minutes sampling interval in order to benefit

from optimal trade-off between bias and variance, which leaves us with final number of 491,981

observations.

4 Fitting the realized volatility term structure

Having the data processed using the procedure described in the preceding section, the fitting

starts with calculation of log-returns which are presented together with their descriptive statis-

tics presented in the Appendix (Figure 12 and Table 1).

As presented in the Section 2.1., we use medRV estimator introduced by Andersen et al.

(2012). Figure 4 sets forth the resulting time series of realized volatility of US Treasury futures

log returns for four tenors - 2-year, 5-year, 10-year and 30-year. Before moving to the fitting

procedure, we consider highly beneficial to discuss the discovered properties of realized volatility

term structures estimated over the sample as to our knowledge the number of works empirically

examining the properties of the US Treasury (futures) realized volatility in relation to time to

maturity is very limited.

Generally, volatility of bond futures prices depend on the volatility of the respective yield

to maturity of the underlying asset and on their duration. Therefore, in case that the yield

volatility is stable across maturities, then the futures bond price volatility will be upward

sloping because of the increasing duration. Consistently with this key market principle, both in

terms of the mean and median during the inspected period, realized volatility is higher for longer

maturities, which implies the term structure of the realized volatility to be on average upward

sloping. Also variability (in terms of standard deviation) of realized volatility in case of longer

maturities is relatively higher compared to shorter maturities. Moreover, realized volatility for

all the maturities showed to be highly persistent (with relatively higher persistence in case of

short end of the term structure). Significant differences of the behaviour of short-end and long-

end of the realized volatility term structure support the suitability of multi-factor modeling
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(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 4: Realized volatility of Treasury futures log-returns

techniques.

The fact that the mean realized volatility term structure is (at least for our sample) upward-

sloping is illustrated on Figure 5 showing the mean term structure as implied by observations

on 2-year, 5-year, 10-year and 30-year maturity along with the respective standard deviation

band. It appears that a basic statistical analysis of the rich sample of 3,814 term structures

confirms the the intuition that longer time to maturity is associated with higher risk measured by

realized volatility, and that the volatility term structure contains potentially valuable additional

information as it probably exhibits fundamentally different properties at its short and long-end.

Further details on descriptive statistics of the realized volatility series are summarized in the

Appendix (Table 7 and Figure 13).

4.1 Model 1: Fixed optimized λ∗

As presented in the Section 2, one of the options how to treat the decay parameter λ is to fix

the coefficient to a constant value based on a criteria representing the quality of the fit. In this

respect, we decided to find the optimal λ by minimizing the sum of square errors:

λ∗ = arg min
λ∈Θ

T∑
t=1

4∑
i=1

(RVt(τi)− R̂Vt(τi;β0t, β1t, β2t, λ))2 (3)

Solving Equation 3 provides us with the solution for optimal lambda λ∗ = 0.1379. At the
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Figure 5: Mean realized volatility terms structure of US Treasury futures

first sight, calculated λ∗ differs from the one used by Diebold and Li (2006), who fixed the value

at 0.7173 (for maturity in years). Let us inspect, at what maturity the calculated λ∗ maximized

the loading on the curvature factor from Equation 2. Maximum loading of the curvature factor

for λ = λ∗ (CMAX) equals 0.2984 (see Figure 1), therefore the respective medium-term maturity

shall be the solution to the following:

1− e−λ∗τmedium

λ∗τmedium
− e−λ∗τmedium = CMAX (4)

The single satisfactory (i.e. non-negative) solution of Equation 4 determines the medium-

term time to maturity to be approx. 7.5 years. As often pronounced by practitioners4, usually

5 to 10 years is considered as medium-term horizon in case of bond markets, which fully corre-

sponds to our result.

Fitting of Model 1 is expressed by the following equation:

medRVt(τ) = β0t + β1t

(
1− e−λ∗τ

λ∗τ

)
+ β2t

(
1− e−λ∗τ

λ∗τ
− e−λ∗τ

)
(5)

Results of the ordinary least squares estimation of the Equation 5 are shown in the Figure

6. Similarly to conclusions presented by Guo et al. (2014) for implied volatility estimation, we

observe also in case of realized volatility increased instability of the factors during the period

of the financial crisis (September 2008 - December 2009).

Level factor β̂0 is always positive throughout the period and is nearly perfectly negatively

correlated with the slope factor β̂1. Moreover, as presented in Figure 1 in Section 2, loading

on the slope factor decreases to zero with maturity going to infinity whereas the loading on the

level factor remains constant, which means that for long maturities the fitted realized volatility

corresponds to the value of the level factor. On the contrary, for short maturities, due to the

nearly perfect negative correlation between β̂0 and β̂1, the relative importance of the level factor

is more limited as it becomes to a large extent offset by the slope factor. Moreover, level factor is

the most stable of the three factors supporting the idea that level factor resembles the long-term

volatility component.

4See for example https://www.investopedia.com/terms/m/mediumterm.asp
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In order to inspect stationarity of the estimated factors we performed the augmented Dickey-

Fuller (ADF) test. In case of all three coefficients, the ADF test strongly rejects the null

hypothesis of unit root presence in the series. Results of the test together with summary of

descriptive statistics of the three estimated coefficients are presented in Appendix (Table 2).

(a) Level

(b) Slope

(c) Curvature

Figure 6: Model 1: Estimated β coefficients with fixed optimized λ∗ = 0.1379 for 2001 - 2015

4.2 Model 2: Time-varying λt

Allowing for time-varying λt coefficient requires either non-linear least square for estimation of

the model formulated in the Equation 2 or optimizing an optimal value of λt for each period

prior linear estimation. In order to avoid the complexity of the non-linear estimation we proceed

with a grid search for optimal λt. As already mentioned, the estimation results in four fitted

time series, which are presented in Figure 7. Consistently with the Model 1, the β̂0 coefficient

remains positive throughout the sample period. However, in case of time-varying lambda, the

β̂0 coefficient is more persistent and more stable than β̂1 and β̂2. Correlation of the coefficients

show the similar patterns as in the previous case, most importantly, the β̂0 and β̂1 are nearly

perfectly negatively correlated. Such similarity in properties of the estimated factors might be

assigned to the fact that median value of λt equals 0.156 and is rather close to the optimized

λ∗ (0.138). Also in this case the ADF test rejected the null hypothesis of unit root presence.

Analogically with the previous model, the coefficients report lower volatility in the pre-crisis

period (prior September 2008).
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(a) Level

(b) Slope

(c) Curvature

(d) Lambda

Figure 7: Model 2: Estimated β coefficients with time-varying λt for 2001 - 2015

4.3 Model 3: Fixed λDL

Model 3 relies on the adoption of the value of the decay parameter as determined by Diebold

and Li (2006) at λDL = 0.7173 (for maturity expressed in years). Significant difference in the

value of the decay parameter λDL compared to decay parameters applied (or estimated) in the

former models is reflected in selected statistical properties of the estimated factors. First, the

level factor consistently with the former models remains positive and the most stable of the

three factors. The most notable difference is reported in correlation of β̂0 and β̂1 where the

absolute value of the correlation coefficient is significantly lower than in the previous two cases.

ADF tests against reject the null hypothesis of unit root in all series.
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(a) Level

(b) Slope

(c) Curvature

Figure 8: Model 3: Estimated β coefficients with fixed λDL = 0.7173 for 2001 - 2015

5 Results

The Nelson-Siegel modeling approaches used by the literature for yield curves as presented

above differ in quality of the fit. Figure 9 shows the fit generated by each of the models of the

average realized volatility term structure.

(a) Model 1 (b) Model 2 (c) Model 3

Figure 9: Average term structure fit

From mere visual assessment is obvious that Model 3 (adopting the fixed decay parameter

as determined by Diebold and Li (2006)) generates the worst fit, whereas the fit of the Model

1 (fixed optimized decay parameter) and Model 2 (time-varying decay parameter) succeeded to

approximate the curve more accurately.
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(a) Model 1

(b) Model 2

(c) Model 3

Figure 10: Mean square error of realized volatility term structure fit for 2001 - 2015

Figure 10 plots time series of mean square errors of the term structure fit for each model.

In terms of MSE of all maturities, Model 3 has been clearly outperformed by the other two

models. As expected, the estimation allowing for time-varying decay parameter (Model 2)

fitted the realized volatility term structure the most accurately.

Both in case of Model 1 (relying on the optimized value of the decay parameter) and Model

2 (allowing for time-varying decay parameter), the models are especially successful in modeling

the closest (2-year) and the furthest (30-year) tails of the term structure.

When assessing the MAE, MSE and RMSE of the entire term structure fit, Model 2 (time-

varying λt) reports the lowest errors, closely followed by Model 1 (fixed optimal λ∗). Model 3

outperforms the competing models only in case of the 2-year maturity. In the medium horizon,

Model 2 reports the lowest errors across the measures. In case of the farthest end of the realized

volatility term structure (30-year), the conclusion is not unambiguous as according to MSE (and

RMSE) Model 1 reports the lowest errors5. Recalling the properties of the decay parameter

λ, it is worth noting that lower decay parameter is reflected in better fit of the curve at long

maturities, and vice versa, large λ favors the fit at short maturities.

As stated earlier, dynamic Nelson-Siegel model is capable to fit a wide spectrum of the

curve shapes with high degree of accuracy (Diebold and Li, 2006). Figure 11 sets forth three

examples of the realized volatility term structure observed on the respective date together with

the curve fitted by Model 1 (fixed optimal λ∗). Figure 11a shows the term structure on August

22, 2013, where the Model 1 fit reported the lowest MSE (6.7e−12) in the inspected period.

5According to MAE, Model 2 reports the lowest error.
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On the contrary, the highest MSE (0.01349) was reported in case of the realized volatility term

structure observed on November 6, 2002 which is presented in Figure 11b. In line with the

literature inspecting application of DNS model for various asset classes (e.g. Diebold and Li

(2006), Hansen and Lunde (2013)), we confirm that DNS model exhibits lower accuracy in case

of dispersed observations with interior extremes. Ability of Model 1 to fit also humped curves

is presented in Figure 11c which captures the term structure as of December 24, 2008.

(a) August 22, 2013 (b) November 6, 2002 (c) December 24, 2008

Figure 11: Fitted vs. observed volatility term structure
Model 1: Fixed optimal λt

6 Conclusion

In this paper, we have extended the existing scarce literature inspecting the properties of realized

volatility term structure of US government bond (futures) prices. Benefiting from large sample

of high-frequency data, we have found that the term structure is on average clearly upward

sloping which corresponds to the general principles of volatility-maturity relationship on the

bond market.

To our knowledge, this paper is pioneering the decomposition of the realized volatility term

structure using dynamic Nelson-Siegel model as formulated by Diebold and Li (2006). In order

to perform the initial technical inspection of this topic, we have examined three modifications

of the dynamic Nelson-Siegel model and we conclude that the Model 1 with fixed optimal decay

parameter λ∗ provides the best balance of high accuracy, straightforward interpretation and

promising potential for forecasting tasks.

In the first place, the model resulting in a simple linear representation of the term structure

proved to be able to fit the extensive sample of realized volatility term structure shapes with

high accuracy. Even though it was generally outperformed by the model allowing for time-

varying λt, we believe the other benefits of the model to fully justify the preference. It is

worth noting, that one of the main advantages of the general Nelson-Siegel decomposition is the

dimension reduction of the term structure. We have demonstrated that the realized volatility

term structure can be precisely described by three factors (β̂0, β̂1, and β̂2). Further, fixing the

decay parameter prior the series of cross-sectional regressions allows for consistent interpretation

of the factors as level (being the long-term component), slope (being the short-term component),

and curvature (being the medium-term component). Moreover, the fixed optimal value of λ∗
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turned out to be in perfect line with the market conditions on the bond market implying 7.5

years to represent the medium time to maturity. Keeping in mind the obvious next stage of the

presented research, i.e. forecasting, the fixed decay parameter prevents the deterioration of the

predictive power of the individual factors as often argued in the literature.

We have shown that the volatility term structure can be accurately decomposed to factors

with versatile interpretation (being short-, long-, medium-term) with promising potential to

contain valuable information for exploring the risk-return tradeoff in this asset class.

Apart from that, the immediate extension consists in exploring the quality of forecasts pur-

suant the Nelson-Siegel decomposition. Inspired by Diebold et al. (2008), the fact that the

determined factors have concrete interpretation and specific properties opens opportunity also

for future research investigating links between these factors of volatility term structure of gov-

ernment bonds (or bills) in the world.
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Appendix

(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 12: Treasury futures log-returns in percent

20



I. Basic statistics

TU FV TY US
Maturity 2 years 5 years 10 years 30 years
N 491,981 491,981 491,981 491,981
Min -0.937 -1.956 -1.974 -2.210
Median 0.000 0.000 0.000 0.000
Mean 0.000 0.000 0.000 0.000
Max 1.187 1.896 2.251 9.492
Standard deviation 0.011 0.026 0.037 0.060

II. Correlations

TU FV TY US
TU 1.000
FV 0.718 1.000
TY 0.628 0.883 1.000
US 0.481 0.728 0.824 1.000

III. Augmented Dickey-Fuller test

TU FV TY US
Test statistic -80.188 -78.664 -77.989 -77.832
P-value <0.01 <0.01 <0.01 <0.01

Table 1: Descriptive statistics of US Treasury futures log-returns (expressed in percent)
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(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 13: Autocorrelation of daily realized volatility
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I. Basic statistics β0 β1 β2

N 3,814 3,814 3,814
Min 0.036 -5.680 -3.801
Median 0.659 -0.650 -0.025
Mean 0.710 -0.705 -0.011
Max 5.706 -0.087 3.115
Standard deviation 0.277 0.287 0.410
ρ(10) 0.390 0.410 0.418
ρ(50) 0.284 0.307 0.304
ρ(100) 0.181 0.193 0.234

II. Correlations β0 β1 β2

β0 1.000
β1 -0.988 1.000
β2 -0.277 0.207 1.000

III. Augmented Dickey-Fuller test β0 β1 β2

Test statistic -6.075 -5.889 -6.762
p-value < 0.01 < 0.01 <0.01

Table 2: Descriptive statistics of the estimated factors
Model 1: fixed optimal λ∗
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I. Basic statistics β0 β1 β2 λ

N 3,814 3,814 3,814 3,814
Min 0.001 -7.680 -7.387 0.060
Median 0.657 -0.638 -0.004 0.156
Mean 0.728 -0.708 -0.139 0.190
Max 7.648 3.209 6.357 0.897
Standard deviation 0.340 0.376 0.516 0.126
ρ(10) 0.373 0.327 0.168 0.150
ρ(50) 0.268 0.238 0.143 0.117
ρ(100) 0.168 0.162 0.092 0.097

II. Correlations β0 β1 β2 λ

β0 1.000
β1 -0.924 1.000
β2 -0.218 -0.040 1.000
λ -0.212 0.312 -0.475 1.000

III. Augmented Dickey-Fuller test β0 β1 β2 λ

Test statistic -6.271 -6.751 -8.707 -8.274
p-value <0.01 <0.01 <0.01 <0.01

Table 3: Descriptive statistics of the estimated factors
Model 2: time-varying λt
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I. Basic statistics β0 β1 β2

N 3,814 3,814 3,814
Min 0.134 -2.355 -15.011
Median 0.550 -0.042 -1.513
Mean 0.596 -0.043 -1.648
Max 3.856 1.516 1.181
Standard deviation 0.225 0.292 0.845
Rho(10) 0.426 0.470 0.452
Rho(50) 0.308 0.361 0.361
Rho(100) 0.220 0.290 0.236

II. Correlations β0 β1 β2

Beta 0 1.000
Beta 1 -0.154 1.000
Beta 2 -0.709 -0.576 1.000

III. Augmented Dickey-Fuller test Beta 0 Beta 1 Beta 2

Test statistic -5.845 -6.319 -5.735
P-value <0.01 <0.01 <0.01

Table 4: Descriptive statistics of the estimated factors
Model 3: Fixed λDL
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I Mean Absolute Error All TU FV TY US

Model 1 0.008043 0.006400 0.014489 0.009686 0.001597
Model 2 0.006161 0.004566 0.010729 0.007755 0.001593
Model 3 0.023989 0.002709 0.024552 0.045270 0.023427

II. Mean Square Error All TU FV TY US

Model 1 0.000159 0.000075 0.000385 0.000172 0.000005
Model 2 0.000114 0.000047 0.000254 0.000145 0.000011
Model 3 0.001066 0.000010 0.000801 0.002724 0.000729

III. Root Mean Square Error All TU FV TY US

Model 1 0.012617 0.008666 0.019620 0.013116 0.002163
Model 2 0.010697 0.006883 0.015928 0.012048 0.003384
Model 3 0.032649 0.003123 0.028303 0.052188 0.027007

Table 5: Selected goodness-of-fit measures
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Model 1 TU FV TY US

Min -0.080 -0.169 -0.121 -0.019
Median -0.004 0.009 -0.006 0.001
Mean -0.004 0.010 -0.006 0.001
Max 0.075 0.181 0.113 0.020
Standard deviation 0.008 0.017 0.011 0.002

Model 2 TU FV TY US

Min -0.075 -0.130 -0.138 -0.036
Median -0.003 0.007 -0.005 0.001
Mean -0.004 0.010 -0.007 0.001
Max 0.061 0.147 0.080 0.076
Standard deviation 0.005 0.012 0.010 0.003

Model 3 TU FV TY US

Min -0.035 -0.092 -0.580 -0.088
Median -0.002 0.023 -0.042 0.022
Mean -0.003 0.024 -0.044 0.023
Max 0.010 0.314 0.170 0.300
Standard deviation 0.002 0.015 0.027 0.014

Table 6: Descriptive statistics of residuals
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(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 14: Time series of residuals for 2001 - 2015
Model 1: fixed optimal λ∗
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(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 15: Time series of residuals for 2001 - 2015
Model 2: time-varying λt
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(a) TU: 2-year (b) FV: 5-year

(c) TY: 10-year (d) US: 30-year

Figure 16: Time series of residuals for 2001 - 2015
Model 3: Fixed λDL
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I. Basic statistics TU FV TY US

Maturity 2 years 5 years 10 years 30 years
N 3,814 3,814 3,814 3,814
Min 0.000 0.000 0.079 0.114
Median 0.074 0.186 0.285 0.499
Mean 0.088 0.208 0.318 0.541
Max 0.478 0.948 1.440 3.529
Standard deviation 0.044 0.098 0.137 0.203
ρ(10) 0.590 0.512 0.478 0.422
ρ(50) 0.456 0.383 0.348 0.302
ρ(100) 0.378 0.326 0.280 0.218

II. Correlations TU FV TY US

TU 1.000
FV 0.862 1.000
TY 0.767 0.934 1.000
US 0.588 0.791 0.904 1.000

III. Augmented Dickey-Fuller test TU FV TY US

Test statistic -5.671 -5.924 -5.813 -5.916
p-value <0.01 <0.01 <0.01 <0.01

Table 7: Descriptive statistics of US Treasury futures realized volatility for 2001 - 2015
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