
Strittmatter, Anthony

Conference Paper

What is the Value Added by using Causal Machine
Learning Methods in a Welfare Experiment Evaluation?

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie
und Marktwirtschaft - Session: Labor Economics VIII, No. E09-V1

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Strittmatter, Anthony (2019) : What is the Value Added by using Causal Machine
Learning Methods in a Welfare Experiment Evaluation?, Beiträge zur Jahrestagung des Vereins für
Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie und Marktwirtschaft - Session: Labor Economics
VIII, No. E09-V1, ZBW - Leibniz-Informationszentrum Wirtschaft, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/203499

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/203499
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


What is the Value Added by using Causal Machine
Learning Methods in a Welfare Experiment

Evaluation?

Anthony Strittmatter
University of St. Gallen

First Draft: September 17, 2018

December 16, 2018

Abstract

I investigate causal machine learning (CML) methods to estimate effect
heterogeneity by means of conditional average treatment effects (CATEs). In
particular, I study whether the estimated effect heterogeneity can provide evi-
dence for the theoretical labour supply predictions of Connecticut’s Jobs First
welfare experiment. For this application, Bitler, Gelbach, and Hoynes (2017)
show that standard CATE estimators fail to provide evidence for theoreti-
cal labour supply predictions. Therefore, this is an interesting benchmark to
showcase the value added by using CML methods. I report evidence that the
CML estimates of CATEs provide support for the theoretical labour supply
predictions. Furthermore, I document some reasons why standard CATE es-
timators fail to provide evidence for the theoretical predictions. However, I
show the limitations of CML methods that prevent them from identifying all
the effect heterogeneity of Jobs First.
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Anthony.Strittmatter@unisg.ch, www.anthonystrittmatter.com.

1

ar
X

iv
:s

ub
m

it/
25

10
89

5 
 [

ec
on

.E
M

] 
 1

6 
D

ec
 2

01
8

mailto:Anthony.Strittmatter@unisg.ch
www.anthonystrittmatter.com


1 Introduction

Many empirical studies pursue the estimation of heterogeneous policy effects with re-

spect to exogenous covariates. Often, we call these effects conditional average treat-

ment effects (CATEs). Recently, it has been proposed to use causal machine learning

(CML) methods to estimate CATEs (see, e.g., Athey, 2018, Belloni, Chernozhukov,

and Hansen, 2014, for reviews of the CML literature). A possible advantage of using

CML methods is that they are able to incorporate many covariates that are poten-

tially responsible for effect heterogeneity. Using relatively flexible CML methods to

deal with these covariates makes it less likely that effect heterogeneity will be over-

looked (e.g., with respect to interactions between covariates) compared to manual

modelling. However, CML methods are to a large extent black-box approaches. It is

unclear how much value CML methods can add to economic applications compared

to more standard estimation methods.

In this study, I revisit the effects of Connecticut’s Jobs First welfare experiment

on the labour supply. Well-established labour supply theory gives us clear predic-

tions about the heterogeneity margins of this experiment (see, e.g., Kline and Tartari,

2016, for a comprehensive summary). However, Bitler, Gelbach, and Hoynes (2017)

document the limitations of a standard CATE estimator in terms of its ability to

provide evidence for these theoretical predictions. This is puzzling because Bitler,

Gelbach, and Hoynes (2006) show that quantile treatment effects (QTEs) can un-

cover evidence for the theoretical labour supply model. It appears that the Jobs

First data contains relevant information that can support labour supply theory, but

it is not straightforward how to uncover the appropriate heterogeneity by means of

standard CATE estimators.1

This study contributes to the aforementioned literature in at least four ways.

First, I investigate whether CML methods can reveal more effect heterogeneity than

standard CATE estimators. Second, I verify whether the revealed effect heterogene-

ity provides evidence for the theoretical labour supply predictions of the Jobs First

programme. Third, I reveal some modelling restrictions that prevent the standard

CATE estimators from revealing more effect heterogeneity. Fourth, I test whether

the estimates of the CATEs and QTEs are nested.

Bitler, Gelbach, and Hoynes (2017) consider local constant models, which are one

of the workhorse methods used to estimate CATEs in empirical economics. Local

constant models stratify the sample in different groups defined by the covariates and

report subgroups’ average treatment effects. Local constant models uncover effect

heterogeneity across groups but report constant effects within groups. There are

1Moreover, the surveys of Grogger and Karoly (2005) and Michalopoulos and Schwartz (2001) doc-
ument that several other welfare programme evaluations, that rely on standard CATE estimators,
find only little effect heterogeneity.
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three potential reasons why local constant models fail to support labour supply the-

ory.2 First, the choice of the subgroups could be suboptimal. Second, constant effects

within groups do not accurately approximate the (possibly continuous) treatment

effects. Third, the covariates used in the local constant models may be insufficient

for explaining effect heterogeneity. Suitable CML methods can overcome all three

possible disadvantages of local constant models. It is essential to understand why

local constant models fail to support theoretical predictions in the Jobs First case

because they are widely used and the unreliability of local constant models may

carry over to other applications.

My main analysis is based on the double machine learning approach proposed

in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).

This is a generic approach that can incorporate many different machine learning

estimators, which means it can be used to compare machine learning estimators with

different modelling restrictions. I consider off-the-shelf machine learning estimators

that can be used with standard personal computers. Accordingly, these machine

learning estimators can be accessed by a widespread audience. Furthermore, no

special IT infrastructure is required, in contrast to machine learning methods that

require cloud computing infrastructure (e.g., TensorFlow). This could be useful

when dealing with confidential data, such as the MDRC data, because it is often

easier to comply with data security regulations and laws using a personal computer

than using applications on the cloud.

In particular, I consider the ”tree” and the ”random forest” machine learning es-

timators (see, e.g., Hastie, Tibshirani, and Friedman, 2009). Tree estimators split

the data into mutually exclusive groups defined by the covariates and report effect

heterogeneity by means of subgroups’ average treatment effects. Similar to local

constant models, tree estimators uncover effect heterogeneity across groups but re-

port constant effects within groups. However, tree estimators employ data driven

algorithms to select the subgroups, whereas subgroups have to be manually selected

for local constant models. Both methods could, in principle, incorporate many co-

variates. However, it is more convenient to use tree estimators when the covariate

space becomes large. Random forest estimators are ensemble methods. They esti-

mate many trees based on different subsets of the data and covariates, and then,

they report the average of the different tree estimates. This implies, random forest

estimators relax additionally the restriction of constant effects within subgroups.

Accordingly, the tree and random forest estimators are suitable for relaxing, in a

stepwise fashion, the modelling restrictions of local constant models.

2I assume that the theoretical predictions are at least good approximations of the labour supply
effects and measurement errors or other data problems do not prevent us from finding empirical
support for the labour supply predictions.
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My results suggest that tree and random forest estimators can provide evidence

for the theoretical labour supply model when they incorporate at least a decent selec-

tion of covariates. This suggests including many relevant covariates is an important

ingredient to establish the match between theoretical prediction and empirical re-

sults in the Jobs First application. Solely using data driven ways to select subgroups,

without incrementing the considered relevant covariates, does not seem to improve

the match. In particular, the way how Bitler, Gelbach, and Hoynes (2017) manually

stratify the sample in groups cannot be outperformed by the CML algorithms that

are based on the same covariates. The random forests show more stable results than

the tree estimators.

Furthermore, I provide evidence that the CML estimates of the CATEs and QTEs

provide disparate sets of information for evaluating the Jobs First case. This suggests

the estimated CATEs do not uncover all the inherent effect heterogeneity of the

Jobs First experiment. Both CATEs and QTEs have advantages and disadvantages.

CATEs could be useful to design tailor made welfare schemes that optimise the

labour supply response of specific target groups or to create assignment rules. QTEs

enable to study responses on the entire labour supply distribution (in a fully flexible

way), but it is difficult to assign these responses to specific groups.

In the next section, I provide some background information about the Jobs First

welfare experiment. In Section 3, I introduce the MDRC data. In Section 4, I de-

scribe the empirical framework of this study. In Section 5, I document the empirical

results. In Section 6, I discuss the relations between CATEs and QTEs. The final

section concludes. The Online Appendices A-F provide supplementary descriptive

statistics and results.

2 The Jobs First welfare programme

In 1996, Connecticut replaced the Aid for Families with Dependent Children (AFDC)

with the Jobs First programme. The Jobs First programme created work incentives

for people on assistance that differed from those offered by the AFDC programme.

Figure 1 shows the earnings and welfare transfers in a stylised way. The max-

imum welfare payment W is similar under both welfare schemes, but additional

earnings lead to different welfare payment deductions. AFDC recipients had a fixed

earnings disregard B of $120 per month during the first 12 months of employment

while on assistance and $90 per month afterwards. Furthermore, 51% of any ad-

ditional earnings was disregarded during the first four months of employment and

27% of any additional earnings afterwards. In contrast, the Jobs First programme

disregarded all earnings below the federal poverty line (FPL). Earnings above the

poverty line would terminate all the welfare benefit payments of the Jobs First pro-

4



gramme (which is like a cliff in the benefit payment scheme). The Jobs First and

AFDC programmes differ in other aspects besides the financial work incentives. The

additional changes are summarised in Online Appendix A.

Figure 1 around here

Bitler, Gelbach, and Hoynes (2006) use a static labour supply model to develop

four hypotheses. First, the Jobs First programme deducts less earnings from welfare

payments than the AFDC programme. Thus, Jobs First should have a positive ef-

fect on the extensive margin of the labour supply. Second, the Jobs First recipients

with relatively low earnings (between B and E in Figure 1) can keep more of their

additional income than AFDC recipients. This should create positive work incen-

tives when the substitution effects dominate the income effects. Third, the FPL is

considerably higher than the earnings amount E, at which participants lose their

eligibility for AFDC welfare benefit payments. Accordingly, this provides a lump-

sum transfer to Jobs First welfare recipients with earnings between E and the FPL.

This reduces the optimal earnings in the presence of negative income effects. Fur-

thermore, the cliff construction of the Jobs First payment scheme creates incentives

to reduce earnings to just below the FPL, which might increase income or leisure

time. Fourth, for recipients sufficiently above the FPL, the AFDC and Jobs First

programmes provide the same labour supply incentives.

To summarize, static labour supply theory predicts that Jobs First assignment

has (a) positive effects on the extensive margin of labour supply, (b) positive effects

far below the FPL, (c) negative effects slightly below and above the FPL, and (d)

no effects far above the FPL. Accordingly, the two welfare programmes create a mix

of positive and negative work incentives which makes it hard to empirically address

effect heterogeneity.

3 Experimental data

The Connecticut Department of Social Services required the MDRC to conduct a

randomized control trial to evaluate the Jobs First programme. Experimental partic-

ipants were single-parent welfare applicants and recipients who lived in Manchester

or New Haven. Between January 1996 and February 1997, 4,803 experimental par-

ticipants were randomly assigned to either the AFDC (control group) or Jobs First

(treatment group) programmes.3

3I drop one experimental participant that had extraordinary high earnings. However, this did not
change the point estimates much but makes the estimation of the confidence intervals more stable.
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3.1 Variable definitions

The MDRC’s public use files for the Jobs First programme contain baseline data

on demographic and family composition variables merged with longitudinal admin-

istrative information on welfare and food stamps payments and earnings provided

by the state unemployment insurance system. The outcome variable is earnings per

quarter in US dollars.4 The treatment is assignment to the Jobs First programme. I

follow 4,802 experimental participants for seven quarters after RA to the Jobs First

programme or the AFDC programme. The total sample contains 33,614 observa-

tions.

Being above or below the FPL is one of the major factors that drives effect het-

erogeneity according to the theoretical considerations. Similar to previous Jobs First

studies, I cannot observe the administrative assistance unit size, which determines

the FPL of the experimental participant. Following the suggestions of Kline and

Tartari (2016), I calculate the assistance unit size based on the number of children

at RA.5 This may lead to the underestimation of the FPL because mothers can

have more children during the seven quarters after RA. To account for this potential

disadvantage, I inflate the number of children by one for all mothers as a robustness

check (in the following, I call this calculation of the FPL ”extra child”).

I distinguish between three sets of covariates which I use for the heterogeneity

analysis. I label them ”baseline”, ”decent”, and ”kitchen sink” covariates. Table 1

summarizes the different covariate categories. The baseline covariates contain the

elapsed quarters since RA and the earnings seven quarters prior to RA. The selection

of the baseline covariates follows Bitler, Gelbach, and Hoynes (2017). They use these

two covariates in some of their main results.

Table 1 around here

The decent covariates include 13 variables. In addition to the baseline variables,

they include age, education, information about children, and more information about

the earnings and welfare history. This is still a relatively small set of covariates;

however, it may be difficult to consider even these relatively few variables with a

basic estimator when including many non-linearities and interactions between the

covariates.

The kitchen sink covariates include 68 variables. I include all exogenous covari-

ates for which data are available from the MDRC and that possibly matter for effect

4I do not observe the earnings that are reported by the experimental participants to the welfare
agency, which could matter when misreporting is a major practice (see discussion in, e.g., Kline
and Tartari, 2016).

5I cannot calculate the assistance unit size for 160 experimental participants because the number
of children is not reported.
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heterogeneity. The kitchen sink covariates include different measures of the vari-

ables that are already included in the decent covariates. The additional variables

are ethnicity, marital status, information about the residence, information on previ-

ous participation in education or labour market programmes, and more information

on the earnings and welfare history.

3.2 Descriptive statistics

Table 2 reports the descriptive statistics of the main variables. The mean earnings

do not differ greatly between the Jobs First and AFDC participants. Thus, the

average effects of the Jobs First experiment do not differ significantly from zero

(see, e.g., Bitler, Gelbach, and Hoynes, 2006). However, fewer participants in the

Jobs First programme are unemployed compared to the participants in the AFDC

programme. More participants in the Jobs First programme have employment with

earnings below the FPL than the participants in the AFDC programme. The group

of participants with earnings above the FPL is relatively small regardless of whether

I inflate the number of children used to calculate the FPL or not. The share of

participants with earnings above the FPL does not differ much between the Jobs

First and AFDC participants.

Table 2 documents the standardised difference in the baseline and decent co-

variates between the Jobs First and AFDC participants.6 Table B.1 in the Online

Appendix B shows the descriptive statistics of the kitchen sink covariates. If the

RA to the Jobs First and AFDC programmes was appropriate, then we expect that

all pre-RA covariates are balanced. Table 2 shows that there are no large differ-

ences between the pre-RA covariates. However, there are some small differences.

Jobs First participants have slightly more children, less previous earnings, and have

received more welfare than AFDC recipients.

Table 2 around here

6The standardized difference in variable X between samples A and B is defined as

SD =
|X̄A − X̄B |√

1
2 (V ar(XA) + V ar(XB))

· 100,

where X̄A denotes the mean of sample A and X̄B denotes the mean of sample B. Rosenbaum and
Rubin (1983) consider an absolute standardized difference higher than 20 to be ”large.”
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4 Empirical approach

4.1 Estimation target

The binary dummyDi equals one when an experimental participant is assigned to the

Jobs First programme and zero when she is assigned to the AFDC welfare scheme.

Following Rubin’s (1974) potential outcome framework, Yit(1) denotes the potential

earnings outcome under Jobs First for individual i in quarter t (for i = 1, . . . , N and

t = 1, ..., 7). Correspondingly, Yit(0) denotes the potential earnings outcome under

AFDC for individual i in quarter t. Each individual can either receive welfare under

the Jobs First or AFDC programmes but not simultaneously under both welfare

schemes. This implies that only one potential outcome is observable. Under the

stable unit treatment value assumption (SUTVA), the observed outcome equals

Yit = Yit(1)Di + Yit(0)(1−Di). (1)

Individual i’s causal effect of being assigned to the Jobs First programme instead

of the AFDC welfare scheme on earnings is

δit = Yit(1)− Yit(0).

We cannot identify individual causal effects without assumptions that are implausi-

ble in many applications (e.g., the assumption of effect homogeneity). Nevertheless,

group averages of δit may be identifiable under plausible assumptions. For exam-

ple, the identification of the average treatment effect (ATE), ρ = E[δit], and the

average treatment effect on the treated (ATET), θ = E[δit|Di = 1], are standard in

policy evaluations (see, e.g., Imbens and Wooldridge, 2009). CATEs can potentially

uncover effect heterogeneity based on exogenous pretreatment variables Xit. The

CATEs are

δ̄(x) = E[δit|Xit = x].

Under the random treatment assignment and SUTVA, the CATEs

δ̄(x) = E[Yit|Di = 1, Xit = x]− E[Yit|Di = 0, Xit = x],

are identified from observable data on (Yit, Di, Xit).

The CATEs are often labelled individualised or personalised treatment effects.

This is to some extend misleading because these labels might suggest that the CATEs

can get very close to the individual causal effects. To achieve this, the individual

causal effects have to be (almost) deterministic and we have to observe all relevant

determining variables. In many applications, those requirements are incredible. Nev-
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ertheless, even when the CATEs are not equal to the individual causal effects, they

have the potential to give a more complete picture about the effect heterogeneity

than the ATEs or ATETs.

4.2 CML approach

Several CML approaches to model effect heterogeneity have been proposed in the

literature (see, e.g., Chen, Tian, Cai, and Yu, 2017, Imai and Ratkovic, 2013, Knaus,

Lechner, and Strittmatter, 2018a, Nie and Wager, 2017, among others). In this

study, I use the efficient score

Y eff
it = µ1(Xit)− µ0(Xit) +

Di(Yit − µ1(Xit))

p(Xit)
− (1−Di)(Yit − µ0(Xit))

1− p(Xit)
,

proposed in Robins and Rotnitzky (1995). The efficient score includes the three nui-

sance parameters µ1(Xit) = E[Yit|Di = 1, Xit], µ0(Xit) = E[Yit(0)|Xit] = E[Yit|Di =

0, Xit], and p(Xit) = E[Di|Xit]. Each of these nuisance parameters can be esti-

mated with methods that are suited to make predictions, such as machine learning

estimators. The expected value of the efficient score is the ATE, ρ = E[Y eff
it ]. Be-

cause of orthogonality properties of the efficient score, estimates of the ATE remain

consistent even when either µ0(x) and µ1(x) or p(x) is misspecified. This double

robustness to misspecification could be crucial in the case of overfitting.

Chernozhukov et al. (2018) call this the double machine learning (DML) ap-

proach, because it combines first step auxiliary predictions of nuisance parameters

to estimate the ATE in the second step. They discuss how we can obtain
√
N -

consistent and asymptotically normal estimates of the ATE. One important finding

is, that even if the estimates of the nuisance parameter have a slow convergence rate,

the ATE estimates can still converge with
√
N . However, when it comes to the func-

tion of the efficient score, such as the CATEs δ̄(Xit) = E[Y eff
it |Xit], we know much

less about the asymptotic properties of the DML approach. Lee, Okui, and Whang

(2017) show that the consistency results maintain for functionals, but they have to

impose restrictive assumptions about the estimation of the nuisance parameters.

Another popular CML approach is the causal forest estimator (see Athey, Tib-

shirani, and Wager, 2018, Wager and Athey, 2018). Under certain conditions, we

know that causal forest estimators remain consistent and asymptotically normal even

for the estimation of CATEs. The DML and causal forest approaches have similar

good finite sample properties for estimating CATEs (see, e.g., Knaus, Lechner, and

Strittmatter, 2018b, and references therein). I use the DML approach in the main

specifications. Additionally, I show that the results do not change considerably when

considering the causal forest estimator.
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Chernozhukov et al. (2018) suggest using a cross-fitting procedure to estimate

the nuisance parameters. To implement this procedure, I partition the data in two

random samples. I use the first sample to estimate the nuisance parameters. I ex-

trapolate the fitted values of the nuisance parameters for the second sample. Then,

I use the second sample to estimate the CATEs.7 For the forest estimators, I addi-

tionally switch the first and second samples and repeat the cross-fitting procedure.

Then, I report the average CATEs obtained from the first and second sample.

4.3 Machine learning estimators

Many different machine learning estimators can be combined with the DML ap-

proach. These machine learning estimators include regularized regression (e.g., lasso,

ridge, and elastic net), boosting, (deep) neural nets, and Bayesian learners (see, e.g.,

Hastie, Tibshirani, and Friedman, 2009, for an overview). I focus on classification

and regression tree (CART) and random forest estimators (e.g., Breiman, 2001) be-

cause they mimic the modelling restrictions of the local constant model. I use the

R-packages rpart and grf to implement these estimators.

4.3.1 Tree estimator

CARTs partition the sample into mutually exclusive leaves. Let π = {l1, ..., l#(π)}
be a specific tree or sample partition, let lj ≡ lj(x, π) be the respective leaf (for

j = 1, . . . ,#(π)), and let #(π) be the number of leaves in tree π. The leaf lj(x, π)

of tree π is a function of the covariate space of Xit such that x ∈ lj. For an

explicit example, consider that Xit contains only a binary indicator for gender.

Then, we can choose between two possible trees; either we make no sample split,

π′ = {l1} = {men,women}, or we partition men and women into two separate leaves,

π′′ = {l1, l2} = {{men}, {women}}.
Given tree π, we can estimate the CATEs by

ˆ̄δ(x, π) =
1∑N

i=1

∑7
t=1 1{Xit ∈ lj(x, π)}

N∑
i=1

7∑
t=1

1{Xit ∈ lj(x, π)} · Ŷ eff
it ,

where Ŷ eff
it is the estimate of Y eff

it , which I extrapolate from the retained cross-fitting

sample. CARTs are built with a greedy algorithm, i.e., by recursively adding leaves

to the tree that minimise the mean-squared-error (MSE) (e.g., Breiman, Friedman,

Stone, and Olshen, 1984). Accordingly, CARTs aim to partition the sample into

leaves with homogeneous outcomes. I select the optimal tree π∗ and δ̄tree(x) =

7In the clustered bootstrap procedure that I use to compute confidence intervals, I make sure that
each individual can only enter one cross-fitting sample, but never both.
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δ(x, π∗) based on the out-of-sample MSE, which I calculate with a 10-fold cross-

validation procedure. To stabilise the trees, I impose the restriction that each leave

should contain at least 50 observations.

Following the suggestions of Athey and Imbens (2016), I use the so-called honest

inference procedure, which means I split the sample in two parts of equal size. Then,

I use the first partition to build the tree (training sample) and the second partition

to estimate the CATEs (estimation sample).8

4.3.2 Generalised random forest estimator

Generalised random forests are assembled out of G decorrelated honest trees δ(x, πg)

(for g = 1, ..., G). The decorrelated honest trees are estimated using different sub-

samples of the data and subsets of the covariates. The random forest estimator of

the CATEs is the average of these honest trees,

ˆ̄δRF (x) =
1

G

G∑
g=1

ˆ̄δtree(x, πg).

The honest trees of a random forest are often build deep (i.e., with small terminal

leaves). This means we no longer try to optimize the leaf size of the trees with the

cross-validation procedure. Instead, we build many deep honest trees, which have a

small bias but a large variance. The averaging across different honest trees reduces

the variance (this is often called ”bagging”). Athey, Tibshirani, and Wager (2018)

explore the consistency and asymptotic normality of generalised random forests.

I build random forests with 1,000 decorrelated trees, each having a minimum leaf

size of 10 observations.9 In each subsample, I select randomly 50% of the individuals

and a random selection of two-thirds of the covariates.

5 Results

5.1 Baseline results

To create a benchmark, I first document some of the findings from the local constant

model. Following one of the main specifications in Bitler, Gelbach, and Hoynes

(2017), I stratify the data by previous earnings and elapsed quarters since RA. I

classify the previous earnings seven quarters before RA into zero earnings (earn0),

8In the clustered bootstrap procedure that I use to compute confidence intervals, I make sure that
each individual can either enter the training or estimation sample, but never both.

9The number of trees G is an important tuning parameter for random forests. Table C.1 in the
Online Appendix C shows that the out-of-sample MSE improves when we increase the number of
trees. However, with 100 trees, the prediction power of random forests is already almost saturated,
and the MSE improvements are marginal.
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earnings below the median among those with positive earnings (earn1), and earn-

ings above the median (earn2). Furthermore, I create dummies for each elapsed

quarter since RA (q1, ..., q7). Then, I interact these dummy variables (including

their interactions) with the treatment dummy (D), such that the model

Y =
3∑

k=0

7∑
t=1

γkt · earnk · qt +
3∑

k=0

7∑
t=1

δkt ·D · earnk · qt,

is fully stratified. The CATEs are δkt.

It would be complex to report CATEs for every group, especially when I use many

covariates. Therefore, I reduce the dimension of the CATEs. Figure 2 documents

the CATEs of the local constant model by earnings percentile τ under AFDC. This is

ω(τ) = E[δ̄(Xit)|cfloor(τ) ≤ Yit(0) < cceil(τ)] with the percentile interval delimited

by cfloor(τ) and cceil(τ). A closely related approach is endogeneous stratification

which estimates ω∗(τ) = E[Yit(1) − Yit(0)|cfloor(τ) ≤ E[Yit(0)|Xit] < cceil(τ)] (e.g.,

Alberto, Chingos, and West, 2018). While this approach uses variation in Xit to

extrapolate Yit(0) to the treated observations, I use the variation in Xit to estimate

the CATEs directly. Using the entire data to estimate δ̄(Xit), but only the control

observations to estimate ω(τ) prevents me from the additional extrapolation step.

Figure 2 starts at the 55th percentile because of the mass point at zero earnings

(Figure B.1 in the Online Appendix B reports the cumulative potential earnings

distributions). The two vertical lines report the location of the minimum and maxi-

mum FPL of the individuals in the sample. The theoretical predictions suggest that

the CATEs are positive far below the FPL and negative above the FPL. The point

estimates of the local constant model support these theoretical predictions, but we

are unable to statistically distinguish the effects from zero.

Figure 2 around here

5.2 Results of the CML approach

5.2.1 Estimation of the nuisance parameters

For the estimation of the nuisance parameters, I always use the random forest es-

timator with the kitchen sink covariates. In this way, the results of the different

CATE estimators do not depend on the specification of the nuisance parameters.

Figure B.2 in the Online Appendix B documents the histogram of the estimated

Jobs First assignment probability. Under RA, we would expect no variation in the

assignment probability. The assignment probability varies between 41% and 61%,

with an average assignment probability of 50%. Even though the range of the es-
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timated treatment probability is narrow, it is far from homogeneous. However, the

DML approach accounts for the differences in the treatment probabilities. Fur-

thermore, we do not have to worry about common support problems, because the

propensity score is far away from zero and one (see discussion in, e.g., Lechner and

Strittmatter, 2017).

Figure B.3 in the Online Appendix B reports the density of the estimated earn-

ings under the AFDC and Jobs First programmes. The estimated earnings are

always higher than zero, i.e., we fail to estimate the mass points at zero earnings

(see Figure B.1 in the Online Appendix B).

5.2.2 Tree estimates

Figure 3 documents the findings of the tree estimator with the baseline covariates.

At all percentiles, the CATEs do not differ significantly from zero. This results

suggests that the data-driven way to stratify the sample does not necessarily improve

the match between the theoretical predictions and empirical results.

Figure 3 around here

For the CATEs in Figures 4 and 5, I stepwise increase the number of considered

covariates. When I include at least the decent selection of covariates, the estimated

effects have the sign that is predicted by the labour supply theory. I find positive

effects far below the FPL and negative effects slightly below and above the FPL.

However, the tree estimates are very unstable, and the point estimates are not

centred in the confidence interval.

Figures 4 and 5 around here

In Figures C.1, C.2, and C.3 in the Online Appendix C, I report the relative

MSE of the cross-validation samples. For the tree with the baseline controls, the

relative MSE is almost flat. Regardless of how the tree estimator stratifies the

sample, it never significantly outperforms the benchmark of homogeneous effects.

The selected tree minimises the MSE with 26 final leaves or 25 splits (as opposed

to 21 groups in the local constant model). Figure C.4 in the Online Appendix C

shows the structure of the tree with baseline controls. Of the 25 splits, 24 splits

are based on the previous earnings and only one is based on the elapsed quarters.

The relative MSE of the trees with the decent and kitchen sink covariates is never

saturated (see Figures C.2 and C.3 in the Online Appendix C). Eventually, the tree

estimators do not add additional leaves because I impose the restriction that each

leaf must have 50 observations. This is an indication that the modelling restriction

of the within-group constant effects is not appropriate in the Jobs First case. Figures
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C.5 and C.6 in the Online Appendix C show the complex structure of the trees with

the decent and kitchen sink covariates. The earnings and welfare history, as well as

information about the children, are important split variables.

5.2.3 Random forest estimates

Figure 6 documents the results of the random forest estimator with the baseline

controls. In comparison to the tree estimators, the confidence intervals are narrower

and the point estimates more in the centre of the confidence intervals. The random

forest finds positive effects far below the FPL, which aligns with the labour supply

theory. However, the results lack clear evidence for negative CATEs above the FPL.

Figure 6 around here

Figure 7 reports the random forest estimated with the decent covariates. These

findings clearly support the theoretical labour supply model. We find negative effects

far below the FPL and positive effects above the FPL. Furthermore, the CATEs turn

negative between the minimum and maximum FPL. Figure 8 indicates that the point

estimates are very similar when we consider the kitchen sink covariates. However,

it appears that the results are slightly less volatile when we use the kitchen sink

covariates instead of the decent covariates. Overall, the random forest estimates are

much more stable than the tree estimates.

Figures 7 and 8 around here

While the results in Figures 4, 5, 7, and 8 provide some evidence for the labour

supply model, they do not provide support for all aspects of the model. In particular,

these figures do not show positive effects on the extensive margin because of the mass

point at zero (see Figure B.1 in the Online Appendix B). Furthermore, these figures

do not provide evidence for negative effects slightly below the FPL and zero effects

far below the FPL because the FPL is different for each individual.

5.2.4 Sorted CATEs

To go one step further, I report the sorted CATEs by different earnings categories.

For this purpose, I follow the sorted predicted effects (SPEs) approach of Cher-

nozhukov, Fernández-Val, and Luo (2018). The SPEs (κ(τ) = Qδ̄(X)(τ)) report the

quantiles τ of the CATEs. The SPE is the minimum CATE value such that at

least the share τ of the CATE distribution lies below this value. In the following,

I focus on the random forest estimator with the kitchen sink controls because this

specification has shown the best performance until now.
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Figure 9 shows the SPEs for the entire sample. The CATEs vary between -$600

and $400 from the 1% to the 99% quantile. Approximately 25% of the experimen-

tal participants have negative CATEs. Kline and Tartari (2016) estimate that at

least 20% of the experimental participants opt into welfare under the Jobs First

programme by decreasing their labour supply below the FPL. The CATE estimates

are consistent with their findings.

Figure 9 around here

Figure 10 reports the SPEs of the CATEs for participants with zero earnings

under AFDC. Accordingly, this figure enables us to investigate the effects on the

extensive margin of the labour supply. The CATEs are dominantly positive for the

experimental participants who would have zero earnings under AFDC. Consistent

with the theory, this result suggests positive effects on the extensive margin of the

labour supply. However, there is a very small percentage of individuals with negative

CATEs, which lead to predicted negative earnings. Furthermore, it appears that the

group with no effects on the extensive margin is too small. The potential earnings

distributions in Figure B.1 in the Online Appendix B suggest that the share of

people without an extensive margin response is much larger. It could be that we

overlook important effect heterogeneity, because we do not have any covariates for

labour demand. Possibly, the share of Jobs First participants who want to provide

labour is larger than the share that actually finds a job.

Figure 10 around here

Figure 11 documents the SPEs for participants with positive earnings below the

FPL under AFDC. For this group, the labour supply model predicts a mix of positive

and negative CATEs. The empirical findings support the theoretical predictions.

Figure 11 around here

Figure 12 reports the SPEs of the CATEs for participants with earnings above

the FPL under AFDC. Consistent with labour supply theory, the empirical results

suggest negative and non-significant effects for this group. There is also a small

fraction of experimental participants with positive CATEs. It could be that we find

positive effects because we mismeasure the FPL. Therefore, Figure D.1 in the Online

Appendix D reports additional results, which use the inflated the number of children

per mother to calculate the FPL. The share of people with positive effects declines,

but they do not disappear completely.

Figure 12 around here
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To summarize, the CML approaches provide evidence for the labour supply

model, but we have to incoprporate at least a decent selection of covariates. Further-

more, the random forests appear more stable than the tree estimates. The results

suggest positive effects on the extensive margin of the labour supply. The CATEs are

positive far below the FPL, negative below and above the FPL, and zero above the

FPL, which is consistent with the intensive margin effects predicted by the labour

supply model. However, the CML approach reports a few CATEs that are definitely

out of bounds. Furthermore, the results probably overestimates the effects on the

extensive margin of the labour supply.

5.2.5 Additional results

Figure D.2 in the Online Appendix D reports the CATEs obtained from the causal

forest estimator (e.g., Athey, Tibshirani, and Wager, 2018) with the kitchen sink

controls. The results do not differ strongly from the estimates of the DML approach

with the random forest.

The early CML literature suggests that the modified outcome method (without

covariate adjustments)

Y ∗it =
Di − Pr(Di = 1)

Pr(Di = 1)Pr(Di = 0)
Yit

is sufficient to estimate the CATEs, δ(Xit) = E[Y ∗i |Xit], in randomised experiments.

Figure D.3 in the Online Appendix D documents that the modified outcome method

(without covariate adjustments) fails to provide evidence for the theoretical predic-

tions, even for the random forest estimator and kitchen sink controls. This finding is

consistent with previous studies that document the poor properties of the modified

outcome method (e.g., Athey and Imbens, 2016).

6 Relation between CATEs and QTEs

Bitler, Gelbach, and Hoynes (2006) use a QTE approach to evaluate the Jobs First

programme. Their results also support the theoretical labour supply predictions

(Figure D.4 in the Online Appendix D replicates their findings). This raises the

following question: do CATEs and QTEs contain the same information?
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6.1 Empirically testable conditions

In contrast to the CATEs, QTEs do not identify heterogeneity by subgroups of

the population but rather on the potential earnings distributions.10 The potential

outcome distributions are defined by

FY (1)(y) = Pr(Yit(1) ≤ y) = Pr(Yit(0) + δit ≤ y), and

FY (0)(y) = Pr(Yit(0) ≤ y) = Pr(Yit(1)− δit ≤ y),
(2)

with Yit(1) = Yit(0) + δit. The potential quantile QY (d)(τ) is the minimum value of

Yit(d) such that at least the share τ of the earnings distribution lies below this value.

QTEs are defined as

δQTE(τ) = QY (1)(τ)−QY (0)(τ),

the difference between the potential quantiles.

Bitler, Gelbach, and Hoynes (2017) propose the simulated potential outcome

distributions,

F S
Y (1)(y) = Pr(Yit(0) + δ̄(Xit) ≤ y), and

F S
Y (0)(y) = Pr(Yit(1)− δ̄(Xit) ≤ y).

(3)

When

F S
Y (1)(y) = FY (1)(y), and (4)

F S
Y (0)(y) = FY (0)(y), (5)

then CATEs and QTEs carry the same information and just differ in how they report

the effects.11 I exploit conditions (4) and (5) to determine whether CATEs and QTEs

are nested. Moreover, (4) and (5) are necessary (but not sufficient) conditions for

δit = δ̄(Xit), as can be observed when comparing (2) and (3).

Bitler, Gelbach, and Hoynes (2017) exploit conditions (4) and (5) to test the

null of within-group constant treatment effects, that vary across a limited number

of observable subgroups. They suggest a testing procedure based on within-group

permutations. This procedure cannot be applied to the random forest estimator,

because it does not have a clear group structure. Therefore, I test (4) and (5) across

all subgroups using a bootstrap based testing procedure. This procedure enables us

to test the null hypothesis that CATEs and QTEs are nested. I provide the details

10Under very strong assumptions, the effects on the potential outcome distribution coincide with the
individual causal effects. These assumption imply that individuals do not systematically change
their rank in the potential outcome distributions as a result of the treatment status (see discussion
in, e.g., Chernozhukov and Hansen, 2005, Firpo, 2007).

11When CATEs and QTEs are nested, then it is always possible to calculate the QTEs from the
CATEs using the simulated potential outcome distributions. However, it is not necessarily possible
to calculate CATEs from QTEs.
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of the distributional Kolmogorov-Smirnov (KS) test in the Online Appendix E.

6.2 Test results

Figure 13 reports the simulated earnings distribution using the random forest es-

timator with the kitchen sink covariates. The simulated earnings distributions are

sometimes above and sometimes below the potential earnings distributions. How-

ever, there are two striking differences. First, the simulated distributions cannot

detect the mass point at zero. Second, the simulated earnings for the lower ranks

are negative. These issues are disadvantages of the CATEs compared to QTEs,

that by construction cannot have these problems. Figures F.1-F.7 in the Online

Appendix F report the simulated distributions of all other CML estimators.

Figure 13 around here

Table 3 shows the results of a Kolgomorv-Smirnov test for the equality of the

potential and simulated earnings distributions. KS1 tests condition (4), KS0 tests

condition (5), and KSmax tests both conditions jointly. For all tests and all es-

timators, we have to reject the null that the two distributions are equal, which

suggests that the QTEs and CATEs contain different information. Furthermore,

this is evidence that the CATEs do not equal the individual causal effects.

Table 3 around here

Whether it is more appropriate to use CATEs or QTEs depends on the concrete

research questions. For example, CATEs are more appropriate for developing assign-

ment rules for programmes. QTEs are more appropriate for investigating earnings

inequality when we are not concerned about the exact location of specific individuals

in the earnings distribution.

7 Conclusions

I study the value added by using CML methods in a case study style using the exam-

ple of Connecticut’s’ Jobs First randomised welfare experiment. In this application,

standard CATE estimators fail to find supporting evidence for the theoretical labour

supply predictions. I provide evidence that CML methods can overcome this disad-

vantage of standard CATE estimators. Accordingly, CML methods add value to the

welfare evaluation, in the sense that they provide evidence for the theoretical labour

supply predictions. However, this works only when the CML methods incorporate

many important heterogeneity variables. The random forest estimator show more
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stable results than the tree estimator.

However, the CML methods are not able to uncover the entire effect heterogeneity

of the Jobs First programme. Furthermore, CML methods have two shortcomings

compared to QTEs. First, CML methods cannot detect mass points in the earnings

distributions. Second, CML methods predict negative earnings for a small group.

These shortcomings open directions for the further development of CML methods.
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Figures

Figure 1: Earnings and welfare transfer under AFDC and Jobs First.

Note: Unemployed persons receive the welfare amount W under AFDC and Jobs First. AFDC welfare recipients
have a fixed earnings disregard B. Any earnings above B reduce the welfare amount proportionally. The welfare is
completely terminated at earnings E. Under Jobs First, all earnings below the FPL are disregarded. Any earnings
above the FPL terminates welfare payments completely.

Figure 2: Local constant model CATEs by earnings percentile under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach. The gray
area reports the 99%-confidence interval based on the percentile method. I control for the baseline variables following
the sample stratification proposed in Bitler, Gelbach, and Hoynes (2017).
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Figure 3: Tree CATEs (baseline controls) by earnings percentile under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.

Figure 4: Tree CATEs (decent controls) by earnings percentile under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.
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Figure 5: Tree CATEs (kitchen sink controls) by earnings percentile under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.

Figure 6: Random forest CATEs (baseline controls) by earnings percentile under
AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.

24



Figure 7: Random forest CATEs (decent controls) by earnings percentile under
AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.

Figure 8: Random forest CATEs (kitchen sink controls) by earnings percentile under
AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach with 2,000
replications. The gray area reports the 99%-confidence interval based on the percentile method.
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Figure 9: Sorted predicted effects of the CATEs.

Note: I estimate the 99%-confidence interval (gray area) using the bootstrap Algorithm 2.1 of Chernozhukov,
Fernández-Val, and Luo (2018) with 2,000 replications.

Figure 10: Sorted predicted effects of the CATEs for participants with zero earnings
under AFDC.

Note: I estimate the 99%-confidence interval (gray area) using the bootstrap Algorithm 2.1 of Chernozhukov,
Fernández-Val, and Luo (2018) with 2,000 replications.
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Figure 11: Sorted predicted effects of the CATEs for participants with positive
earnings below the FPL under AFDC.

Note: I estimate the 99%-confidence interval (gray area) using the bootstrap Algorithm 2.1 of Chernozhukov,
Fernández-Val, and Luo (2018) with 2,000 replications.

Figure 12: Sorted predicted effects of the CATEs for participants with earnings
above the FPL under AFDC.

Note: I estimate the 99%-confidence interval (gray area) using the bootstrap Algorithm 2.1 of Chernozhukov,
Fernández-Val, and Luo (2018) with 2,000 replications.
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Figure 13: Potential and simulated earnings distributions obtained from the random
forest estimator and kitchen sink controls.

(a) Under AFDC

(b) Under Jobs First
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Tables

Table 1: List of covariates.

Baseline: elapsed quarters since RA, earnings seven quarters prior to RA
Decent: age, education, number of children, age of the youngest child,

amount of AFDC assistance received seven quarters prior to RA,
amount of food stamps received seven quarters prior to RA,
dummy variable indicating a positive amount of earnings in at
least one of the seven quarter prior to RA, dummy variable indi-
cating a positive amount of AFDC assistance received in at least
one of the seven quarters prior to RA, dummy variable indicat-
ing a positive amount of food stamps in at least one of the seven
quarters prior to RA

Kitchen sink: ethnicity, marital status, city of residence, information on living
in a publicly subsidised home, information on relocations, par-
ticipation in different types of education and labour market pro-
grammes in the 12 months prior to RA (e.g., English as a Sec-
ondary Language (ESL), Adult Basic Education (ABE), General
Education Development (GED), job readiness skills, work expe-
rience, vocational education, post secondary education, and high
school), earnings for each of the seven quarters prior to the RA,
amount of AFDC assistance received for each of the seven quar-
ters prior to the RA, amount of food stamps received for each
of the seven quarters prior to RA, the number of quarters on
AFDC, dummy variable indicating whether the family received
AFDC during childhood, dummy variable indicating whether work
was never recorded, dummy variable indicating whether work was
recorded at RA

Note: The decent covariates also include the baseline covariates. The kitchen sink covariates also include the decent
covariates. I include dummies for missing values whenever necessary (see Table B.2 in the Online Appendix B for
details).
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Table 2: Descriptive statistics of the main variables.

Jobs First AFDC SD
Mean St. Dev. Mean St. Dev.

(1) (2) (3) (4) (5)
Earnings per quarter (in $) 1173 1789 1125 1868 2.6
Share of participants with

no earnings 0.49 0.50 0.55 0.50 13.3
earn. below FPL 0.39 0.49 0.31 0.46 17.0
earn. above FPL 0.13 0.33 0.14 0.35 4.1
earn. above FPL (extra child) 0.09 0.28 0.10 0.30 4.4

Baseline covariates
Quarters since RA 4.0 2.0 4.0 2.0 0.0
Earnings in pre-Q7 (in $) 682 1552 774 1781 5.5

Decent covariates
Age categories

< 20 years 0.09 0.28 0.09 0.28 1.2
20-24 years 0.20 0.40 0.21 0.41 2.7
25-34 years 0.41 0.49 0.42 0.49 1.5
35-45 years 0.25 0.43 0.23 0.42 4.1
> 44 years 0.05 0.22 0.06 0.23 1.2

Education categories
No degree 0.33 0.47 0.31 0.46 3.8
High school 0.55 0.50 0.57 0.50 3.2
More than high school 0.06 0.24 0.06 0.23 1.9

Age youngest child (in years) 4.6 4.7 4.5 4.8 2.2
Number of children 1.6 1.0 1.5 1.0 6.0
AFDC pre-Q7 (in $) 920 925 865 896 6.0
Food stamps pre-Q7 (in $) 306 319 293 301 4.4
Any earnings pre-Q1/7 0.33 0.37 0.36 0.38 7.9
Any AFDC pre-Q1/7 0.57 0.45 0.54 0.45 6.5
Any food stamps pre-Q1/7 0.61 0.44 0.60 0.43 2.1
Participants 2,396 2,406
Observations 16,772 16,842

Note: The last column reports the standardised difference (SD). Earnings in pre-Q7 refers to earnings in the seven
quarters before RA. Any earnings pre-Q1/7 is a dummy variable indicating that earnings were positive in at least
one of the seven quarters prior to RA. FPL (extra child) means that I inflate the number of children per mother by
one when calculating the assistance unit size.
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Table 3: Kolgomorov-Smirnov test for equality between potential and simulated
earnings distributions.

KSmax KS1 KS0

test stat. p-value test stat. p-value test stat. p-value
(1) (2) (3) (4) (5) (6)

Baseline 0.412 0.000 0.364 0.000 0.412 0.000
Tree

Baseline 0.467 0.010 0.438 0.020 0.412 0.000
Decent 0.301 0.000 0.270 0.000 0.309 0.000
Kitchen sink 0.311 0.000 0.243 0.000 0.311 0.000

Random forest
Baseline 0.464 0.000 0.432 0.000 0.463 0.000
Decent 0.405 0.000 0.404 0.000 0.329 0.000
Kitchen sink 0.452 0.000 0.452 0.000 0.375 0.000

Causal forest
Kitchen sink 0.443 0.000 0.443 0.000 0.418 0.000

Note: See the details of the test in the Online Appendix E. The p-values are bootstrapped with 2,000 replications.
KS1 tests condition (4), KS0 tests condition (5), and KSmax tests both conditions jointly.
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Online Appendix to ”What is the Value Added by
using Causal Machine Learning Methods in a

Welfare Experiment Evaluation?”

Anthony Strittmatter
University of St.Gallen

Sections:

A. Additional changes of Jobs First

B. Additional descriptive statistics

C. Specification of the tuning parameters

D. Similarity between CATEs and QTEs

E. Simulated earnings distributions
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A Additional changes of Jobs First

The Jobs First and AFDC programmes differ in other aspects besides the financial

work incentives. AFDC participants receive welfare benefits for an unlimited amount

of time, whereas the lifetime benefit duration of Jobs First recipients is limited to

21 months. However, Bloom, Scrivener, Michalopoulos, Morris, Hendra, Adams-

Ciardullo, Walter, and Vargas (2002) document that extensions of this time limit

were possible and common. To account for possible time limit differences, I focus

on the short-term effects of the Jobs First programme on earnings during the first

21 months after random assignment (RA).

The recipients of both the Jobs First and AFDC programmes had work re-

quirements. Unemployed AFDC recipients could meet the work requirements by

participating in an employment-related programme. Bloom et al. (2002) argue

that AFDC work requirements were only casually enforced. Unemployed Jobs First

recipients could meet the work requirements by participating in employment pro-

grammes meant to reduce the time taken for job placement. Moreover, Jobs First

implemented stricter sanction rules in the case of non-compliance with the work

requirement.

Furthermore, Jobs First recipients had different access to child care subsidies and

Medicaid than AFDC recipients. However, Bloom et al. (2002) argue that these

differences had little impact on actual child and health care availability because

contemporaneous state-level programmes compensated for the differences. Finally,

the reform affected how alimony payments from fathers were deducted from welfare

payments but only when the alimony payments were between $50 and $100. Kline

and Tartari (2016) argue that these differences are negligible because they only affect

a small fraction of mothers.
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B Additional descriptive statistics

Table B.1: Descriptive statistics of the kitchen sink covariates.

Jobs First AFDC SD
Mean St. Dev. Mean St. Dev.

(1) (2) (3) (4) (5)
Kitchen sink covariates

Ethnicity
Black 0.37 0.48 0.37 0.48 0.6
White 0.36 0.48 0.35 0.48 2.9
Hispanic 0.21 0.41 0.22 0.41 2.3
Other ethnicity 0.06 0.24 0.06 0.25 0.6

Marital status
Never married 0.62 0.48 0.63 0.48 1.4
Married 0.33 0.47 0.32 0.47 1.4
Separated 0.06 0.23 0.05 0.22 2.5
Divorced 0.11 0.32 0.12 0.33 3.2
Widowed 0.01 0.09 0.01 0.11 3.2

City of residence
New Haven 0.75 0.43 0.76 0.43 0.9
Manchester 0.25 0.43 0.24 0.43 0.9

Housing information
Public housing 0.11 0.31 0.10 0.30 1.4
Subsidised housing 0.23 0.42 0.22 0.42 1.3
Temporary housing 0.01 0.11 0.01 0.10 1.2
Other housing 0.65 0.48 0.66 0.47 2.3

Num. moves last 2 years 0.91 1.23 0.95 1.22 3.0
Any programme or educ. during last
year

0.20 0.40 0.20 0.40 0.8

ESL 0.01 0.08 0.01 0.09 2.9
ABE 0.01 0.08 0.01 0.09 1.4
GED 0.03 0.16 0.03 0.16 0.5
Vocational education 0.03 0.16 0.03 0.17 3.0
Post secondary educ. 0.06 0.23 0.05 0.21 4.8
Job search programme 0.01 0.10 0.01 0.10 0.8
Work experience programme 0.06 0.24 0.07 0.25 3.5
High school 0.02 0.14 0.02 0.14 1.2
Job readiness skills 0.01 0.08 0.01 0.08 0.5

< Table continues on next page. >
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Table B.1 continued.
Jobs First AFDC SD

Mean St. Dev. Mean St. Dev.
(1) (2) (3) (4) (5)

Employment history
Earnings in pre-Q6 727 1932 814 1759 4.7
Earnings in pre-Q5 683 1506 840 1769 9.6
Earnings in pre-Q4 695 1522 845 1776 9.1
Earnings in pre-Q3 682 1440 791 1620 7.1
Earnings in pre-Q2 678 1513 726 1495 3.1
Earnings in pre-Q1 632 1368 689 1399 4.1
Never worked 0.12 0.32 0.11 0.31 2.3
Employed at RA 0.21 0.41 0.23 0.42 5.3

Welfare history
AFDC pre-Q6 916 924 862 904 5.9
AFDC pre-Q5 899 905 837 895 6.9
AFDC pre-Q4 887 879 820 872 7.7
AFDC pre-Q3 862 845 801 824 7.3
AFDC pre-Q2 869 812 822 802 5.8
AFDC pre-Q1 884 786 837 795 6.0
Food stamps pre-Q6 309 326 301 311 2.3
Food stamps pre-Q5 323 337 312 321 3.3
Food stamps pre-Q4 349 351 333 340 4.7
Food stamps pre-Q3 370 361 357 349 3.7
Food stamps pre-Q2 394 366 383 360 3.3
Food stamps pre-Q1 413 360 396 353 4.8
Quarters on AFDC at RA 4.1 2.3 4.1 2.2 3.6
AFDC during childhood 0.23 0.42 0.24 0.43 2.3

Note: The last column reports the standardised difference (SD). Earnings, AFDC and food stamp payments are
measured in US dollars. Earnings in pre-Q6 means earnings six quarters before RA. ESL is the abbreviation for
English Secondary Language. ABE is the abbreviation for Adult Basic Education. GED is the abbreviation for
General Education Development.
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Table B.2: Balance of missing dummies.

Jobs First AFDC SD
Mean St. Dev. Mean St. Dev.

(1) (2) (3) (4) (5)
Missing Dummies

Education 0.06 0.23 0.06 0.24 2.5
Children 0.12 0.32 0.14 0.35 7.7
Marital status 0.05 0.21 0.05 0.21 0.3
Num. moves last 2 years 0.05 0.21 0.04 0.21 0.7
programme or educ. during last year 0.06 0.23 0.05 0.22 2.1
Never worked 0.03 0.18 0.03 0.18 0.9
Employed at RA 0.04 0.20 0.05 0.21 1.5
Quarters on AFDC at RA 0.05 0.23 0.05 0.22 1.0
AFDC during childhood 0.07 0.25 0.06 0.25 0.3

Note: The last column reports the standardised difference (SD).

Figure B.1: Cumulative potential earnings distributions under AFDC and Jobs First.
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Figure B.2: Histogram of the estimated treatment probability.

Note: I use the random forest estimator with the kitchen sink covariates.

Figure B.3: Density of estimated earnings under AFDC and Jobs First.
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C Specification of the tuning parameters

Table C.1: MSE by forest size.

Single Tree size of forest
tree 10 50 100 500 1,000 5,000 10,000
(1) (2) (3) (4) (5) (6) (7) (8)

P-score 0.506 0.502 0.500 0.500 0.500 0.500 0.500
Y (0) 1551 1540 1537 1532 1532 1531 1532
Y (1) 1563 1537 1536 1531 1531 1530 1531

Y eff, baseline 3059 3190 3013 3026 3002 3001 2999 3000

Y eff, decent 3252 3228 3015 3029 3002 2999 2997 2998

Y eff, kitchen sink 3353 3221 3013 3024 2995 2995 2991 2992

Figure C.1: Relative MSE for the tree with baseline covariates.
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Figure C.2: Relative MSE for the tree with decent covariates.

Figure C.3: Relative MSE for the tree with kitchen sink covariates.
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Figure C.4: Structure of the tree with baseline covariates.
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Figure C.5: Structure of the tree with decent covariates.
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Figure C.6: Structure of the tree with kitchen sink covariates.
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D Additional results

Figure D.1: Sorted predicted effects of the CATEs for participants with earnings
above the FPL (extra child) under AFDC.

Note: FPL (extra child) means that I inflate the number of children per mother by one when calculating the assistance
unit size. I estimate the 99%-confidence interval (gray area) using the bootstrap Algorithm 2.1 of Chernozhukov,
Fernández-Val, and Luo (2018) with 2,000 replications.
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Figure D.2: Causal forest CATEs (kitchen sink controls) by earnings percentile
under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach. The gray
area reports the 99%-confidence interval based on the percentile method.

Figure D.3: Modified outcome method random forest CATEs (kitchen sink controls)
by earnings percentile under AFDC.

Note: I estimate the distribution of the CATEs using an individual-level clustered bootstrap approach. The gray
area reports the 99%-confidence interval based on the percentile method.
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Figure D.4: Quantile treatment effects (QTEs).

Note: Replication of Bitler, Gelbach, and Hoynes (2006). The gray area shows the 99%-confidence interval.
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E Similarity between CATEs and QTEs

I propose using a bootstrap procedure to compute the p-values for a Kolmogorov-

Smirnov (KS) test for the equality of the potential and simulated outcome distribu-

tions. The potential and simulated outcome distributions

FY (1)(y) = Pr(Yit ≤ y|Di = 1),

FY (0)(y) = Pr(Yit ≤ y|Di = 0),

F S
Y (1)(y) = Pr(Yit + δ(Xit) ≤ y|Di = 0),

F S
Y (0)(y) = Pr(Yit − δ(Xit) ≤ y|Di = 1),

are identified from observable data. The empirical distribution functions are denoted

by F̂Y (1)(y), F̂Y (1)(y), F̂ S
Y (1)(y), and F̂ S

Y (1)(y).

Based on the testable conditions (4) and (5), the possible Kolgomoroff-Smirnov

(KS) test statistics are

K̂S1 = sup
y
|F̂Y (1)(y)− F̂ S

Y (1)(y)|,

K̂S0 = sup
y
|F̂Y (0)(y)− F̂ S

Y (0)(y)|, and

K̂Smax = max(K̂S1, K̂S0),

where Tmax is a joint test of both conditions.

To obtain the critical values for these test statistics, I compute the bootstrap

distributions of the KS test statistics (see, e.g., Giné and Zinn, 1990). I construct B

bootstrap resamples with a procedure that accounts for clustering on the individual

level. Let F̂
(b)
Y (1)(y), F̂

(b)
Y (1)(y), F̂

S(b)
Y (1)(y), and F̂

S(b)
Y (1)(y) denote the respective boot-

strapped distributions of the bootstrap sample b (for b = 1, ..., B). The re-centered

KS test statistics are

K̂S
(b)

1 = sup
y
|F̂ (b)
Y (1)(y)− F̂ S(b)

Y (1)(y)− (F̂Y (1)(y)− F̂ S
Y (1)(y))|,

K̂S
(b)

0 = sup
y
|F̂ (b)
Y (0)(y)− F̂ S(b)

Y (0)(y)− (F̂Y (0)(y)− F̂ S
Y (0)(y))|, and

K̂S
(b)

max = max(K̂S
(b)

1 , K̂S
(b)

0 ).

The estimated p-values α̂(K̂S) for the null hypotheses, that the potential and sim-

15



ulated outcome distributions are equal, are

α̂(K̂S1) =
1

B

B∑
b=1

1
{
K̂S

(b)

1 > K̂S1

}
,

α̂(K̂S0) =
1

B

B∑
b=1

1
{
K̂S

(b)

1 > K̂S1

}
, and

α̂(K̂Smax) =
1

B

B∑
b=1

1
{
K̂S

(b)

max > K̂Smax

}
.
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F Simulated earnings distributions

Figure F.1: Potential and simulated earnings distributions obtained from the local
constant model (baseline specification).

(a) Under AFDC

(b) Under Jobs First
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Figure F.2: Potential and simulated earnings distributions obtained from the tree
estimator and the baseline controls.

(a) Under AFDC

(b) Under Jobs First
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Figure F.3: Potential and simulated earnings distributions obtained from the tree
estimator and the decent controls.

(a) Under AFDC

(b) Under Jobs First
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Figure F.4: Potential and simulated earnings distributions obtained from the tree
estimator and the kitchen sink controls.

(a) Under AFDC

(b) Under Jobs First
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Figure F.5: Potential and simulated earnings distributions obtained from the random
forest estimator and the baseline controls.

(a) Under AFDC

(b) Under Jobs First
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Figure F.6: Potential and simulated earnings distributions obtained from the random
forest estimator and the kitchen sink controls.

(a) Under AFDC

(b) Under Jobs First
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Figure F.7: Potential and simulated earnings distributions obtained from the causal
forest estimator and the kitchen sink controls.

(a) Under AFDC

(b) Under Jobs First
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