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Abstract

This paper analyses the forecasting performance of monetary policy reaction functions
using U.S. Federal Reserve’s Greenbook real-time data. The results indicate that artificial
neural networks are able to predict the nominal interest rate better than linear and nonlin-
ear Taylor rule models as well as univariate processes. While in-sample measures usually
imply a forward-looking behaviour of the central bank, using nowcasts of the explanatory
variables seems to be better suited for forecasting purposes. Overall, evidence suggests

that U.S. monetary policy behaviour between 1987-2012 is nonlinear.
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1 Introduction

The federal funds rate as the main monetary policy instrument of the Fed is the most
important interest rate for the U.S. economy. Changes in the policy rate can have real ef-
fects via different transmission channels, e.g. the interest rate, the asset price and wealth,
and the exchange rate channel. Hence, the federal funds rate is of particular interest for
various market participants. In order to base today’s decisions affecting future outcomes
(investments, bank lending etc.) on it, reliable forecasts of the federal funds rate are
necessary. Moreover, the Fed itself is interested in how people form expectations about
monteary policy since forward-guidance provides an additional tool for central banks to
reach its inflation and/ or output targets. To facilitate markets’ expectation formation,
central bankers often refer to the extraction of their reaction function from the data’.
Hence, many studies were undertaken to find the most appropriate form. The idea of a
rules-based monetary policy dates back to Taylor (1993). He proposed a reaction function
where the nominal interest rate depends linearly on the gaps between actual and targeted
values of inflation and output. This simple “Taylor rule” was shown to match federal
reserve actual interest setting behaviour between 1987 and 1992 very well. Moreover,
Svensson (1997) provided a theoretical model which supports a linear reaction function
as the solution to a central banker’s optimization problem of minimizing the deviations
of inflation and output from their desired values. However, the result depends on the
assumptions of a quadratic loss function reflecting symmetric preferences and a linear
Phillips curve. Clarida et al. (1998, 2000) added lagged values of the federal funds rate ex-
plained by an interest rate smoothing motive and manifested the forward-looking version
of the Taylor rule, in which the central bank focuses on expected inflation and output gap
instead of past or current values. Assuming asymmetric preferences (see e.g. Nobay and
Peel (2003); Cukierman and Muscatelli (2008); Ruge-Murcia (2004)), a convex aggregate
supply curve (Schaling (2004); Dolado et al. (2004)) or both (Dolado et al. (2005)) yields
a nonlinear policy rule. The majority of studies on nonlinear Taylor rules employs smooth
transition models (amongst others) to capture asymmetric preferences of the central bank.
While Kim et al. (2005), Qin and Enders (2008) and Castro (2011) do not find evidence of
nonlinearities over the periods 1979-2000, 1987-2005 and 1982-2007, respectively, Petersen
(2007) suggests asymmetric behaviour of the Fed depending on the level of inflation during
the period 1985-2005.

The paper at hand is closely related to these studies in the sense that its model compari-

!See e.g. Yellen (2017) and Draghi (2018)



son includes smooth transition functions with different activation functions and threshold
specifications. Moreover, it extends the nonlinear model list by so-called artifical neural
networks (ANNs). The ANN has the property of being an universal approximator, i.e.
it can fit in-sample data to any degree. Even though it does not provide a structural
interpretation of the estimated parameters, ANNs can serve as a useful forecasting tool
for time series?. Hence, the paper focuses on comparing (pseudo-) out-of-sample perfor-
mances across models, which also accounts for the fact that nonlinear models are prone
to overfitting problems. To my knowledge, there exists only one paper by Malliaris and
Malliaris (2009) considering ANNs in the context of monetary policy reaction functions.
They find that the ANN outperforms a linear Taylor rule and a random walk only when
the data is split based on the current value of the federal funds rate, but not when it
is time-based. However, their forecasted periods are randomly drawn from subsamples,
which lacks a realistic forecasting simulation in a time-series context. This paper provides
that analysis by performing expanding window regressions and explicitly considering only
information that was available at the time the forecast was made. Orphanides (2001) al-
ready emphasized the importance of using real-time data in a Taylor rule framework since
inflation and output gap ez post measures might be different due to revision processes
yielding misleading reaction functions.

This paper contributes to the literature in three ways. First, by introducing artifical neural
networks with a clear specification scheme, it adds a powerful tool for forecasting monetary
policy. Second, thanks to better real-time data availabilty, forecasts are solely based on
data that were in the Fed’s information set at that time. Thus, it provides a more realistic
forecasting situation than comparable studies. Third, it offers additional evidence for a
nonlinear reaction function for the era since Greenspan.

The paper is organized as follows. Section 2 introduces the different model specifica-
tions considered in the empirical analysis and describes the data. In Section 3 the mod-
els’ pseudo-out-of-sample forecasting performance is compared including Diebold-Mariano

forecast accuracy tests. Section 4 discusses the results and Section 5 concludes.

2 The Models and Data

This section presents all model specifications used for forecasting the federal funds rate.

The models differ in two dimensions - the functional form (i.e. linear, smooth transition or

2See e.g. Teridsvirta et al. (2005) and Gonzalez (2000) for succesful applications of ANNs in a macroeconomic
time-series forecasting context.



ANN) and the input dimension (i.e. within-quarter, backward- or forward-looking). The
latter refers to the timing of the exogenous variables inflation and output gap. While the
within-quarter (WQ) specification uses nowcasts of inflation and the output gap given the
information set at time ¢, i.e. 7y, and yy;, respectively, the backward-looking (BW) version
includes lagged values, i.e. m,_y); and y;_q;. The forward-looking (FW) specification uses
the one-quarter-ahead forecasts w1, and y; ;- Besides the linear and nonlinear models,
the comparison also includes two univariate processes. The employed data is described at

the end of this section.

2.1 Linear Models

The linear models are all modifications of the original version of the Taylor (1993) rule
including policy inertia in the lines of Clarida et al. (1998) with two lagged interest rate
terms. They only differ in the timing of the explanatory variables inflation and the output

gap, i.e. m and y, respectively.

Linear-WQ: iy = (1 —p)(a+0my + Byyr) + prie—1 + p2ir—2 + & (1)
Linear-BW: it = (L= p)(a+0m_q¢ + BYr—1p) + prie—1 + p2i—2 + & (2)
Linear-FW: it = (1= p)(a+0m iy + BYrraye) + prie—1 + p2iz—2 + & (3)

with p = p1 + p2. Model (1) uses the nowcast of the explanatory variables, while model
(2) includes previous period’s values of inflation and the output gap. In model (3), the

interest rate depends on one-quarter ahead expected values of both.3

2.2 Nonlinear Models
Smooth Transition Models

Smooth transition (STR) models are one of the most popular nonlinear models and mostly
used in the context of nonlinear Taylor rules since they allow for regime-switching (asym-

metric) central bank behaviour. The general structure is defined as follows:

it = ooy +ogi— 1 Fagii—o+G(7, ¢, 5¢) - (Bo+ Bime+ Bays + B3it—1 4 Baii—2) +&.

3 All models are estimated by nonlinear least squares (NLLS) with HAC standard errors (Bartlett Kernel, Newey-
West fixed bandwidth) in EViews 10.



It consists of a linear part cg+ a1 T+ a0y +asii—1 +aqi;—o and a nonlinear part G(7, ¢, s¢)-
(Bo + Bime + Boye B3ie—1 + Pair—2), where G(7, ¢, s¢) is a continuous and bounded (between
0 and 1) transition function, with slope v, threshold parameter(s) ¢ and a transition
variable s;. The slope 7, also known as the smoothness parameter, indicates the speed of
the transition from 0 to 1. Transition functions considered in this paper are the logistic

(LSTR), the logistic-quadratic (L2STR) and the exponential (ESTR):

LSTR-WQ: it = ap+ oamy + aoyy + asiz—1 + aatp—2 + (4)
{1+ exp[— (st — )]} (Bo + Brmye + Bayuye + Biv—1 + Baiv—2) + &
ESTR-WQ: it = Qo+ oy + QoY + asii—1 + Qaiz—2 + (5)
{1 — expl—y(s: — ¢)’1}(Bo + Brmyyy + Bayye + Bsiv—1 + Bair—2) + &
L2STR-WQ: it = o+ oy + QoY + agli—1 + Qati—2 + (6)

{1+ exp[—y(st — c1)(st — c2)]} " (Bo + Bumype + Boeye + Bsir—1 + Bair—2) + &

with v > 0. The logistic transition function of model (4) is monotonically increasing in the
threshold variable s;. Hence, the central banks reacts differently for high and low values
of s; representing asymmetric preferences. Model (5) relies on an exponential transition
function, that is increasing in absolute deviations of s; from the ¢, indicating symmetric
behaviour around the point s; = ¢. For v — 0, both models become linear. While for
v — 00, the LSTR model approaches the discrete 2-regime threshold model, the ESTR
model becomes linear since G(-) — 1. The L2STR model (6) nests a 3-regime discrete
threshold model since G(-) — 1 for s; < ¢ and s; > ¢ and G(-) — 0 for s; in-between.
For v — oo, it becomes linear. The L2STR model allows the central bank to target a band
instead of a single point of the threshold variable.

Note that models (4)-(6) are stated in the within-quarter version. The backward- and
forward-looking versions, where {7, yy|¢} is replaced by {7y, y4—1)¢} and {7y 116, Yeg1pe )
respectively, are considered as well in the empirical analysis. Moreover, for all specifications
the threshold variable is allowed to be either inflation (7rt|t/7rt,1|t/7rt+1|t) or the output gap

(yt\t/yt—1|t/yt+1\t) since both variables are targeted by the Fed?.

Artificial Neural Networks

The idea of ANNs as an application to artificial intelligence already dates back to the

1940s. However, it has become more popular in the late 90s due to the massively increased

4Results are only reported for the threshold variable with the better forecasting performance. It is not necessarily
the one that minimizes the residual sum of squares in-sample.



processing power of computers (see e.g. Haykin (1999)). The ANN considered in this paper

is a so-called “single-hidden-layer” recurrent neural network with the following form:

q
i = o+ Z v G(Bjze + aj) + e, (7)
j=

where z¢ is the vector of inputs, i.e. autoregressive and exogenous explanatory variables.

The parameters to be estimated are Bj and v;, j =1,...,¢ (also called “weights”) and a,

i=0,...,q (also known as “biases”). Furthermore, G(-) is a bounded and monotonically

increasing transfer function similar to the STR models. More specifically, the one used
ef—e” "

in this analysis is the hyperbolic tangent sigmoid function tanh(z) = &7, that maps

on the interval [—1,1].> The overall structure is described graphically by means of Figure 1.
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Figure 1: Single-hidden-layer neural network with ¢ = 2 hidden units.

The “single-hidden-layer” neural network consists of three layers in total. The input layer
contains the explanatory variables, while the dependent variable combined with a simple
linear transfer function builds the output layer. The “hidden-layer” comprises g (here
q = 2 for simplicity) so-called “hidden units” or “neurons” representing a transfer function

G, where each is connected with all inputs via the weights ;; (i.e. the connection from

5The hyperbolic tangent as a symmetric sigmoid function is often used because of faster convergence rates in
comparison to the standard logistic function (see e.g. LeCun et al. (2012)).



input ¢ to neuron j) . The output value of each neuron is the hyperbolic tangent function
G evaluated at the value of the sum of the weighted inputs plus a bias term o;. All neuron
output values are then weighted again by <; and another bias term o is added. Stuck
together in the linear output transfer function yields one final value for the interest rate .
Consequently, the ANN-WQ (equivalently, the ANN-BW and ANN-FW) reaction function

looks as follows:
q
ANN-WQ:  ir=ao+ Y v Glay + Bijmys + Bajyese + Bajir—1 + Bagir—2) + &1, (8)
j=1

where G(-) denotes the hyperbolic tangent sigmoid transfer function. Since it is assumed
that the federal funds rate depends on lags of itself as well as on inflation and the output
gap, the network type considered here is the “nonlinear autoregressive network with ex-
ogenous inputs” (NARX).

One crucial task in estimating ANNs is the determination of the number of hidden units
q. The strategy how it is chosen in this paper follows these steps: First, the estimation
sample is split into a training and a validation set. In order to preserve the time series
structure, the former consists of the first 80% and the latter of the last 20% of the observa-
tions. Second, the ANN is trained, i.e. estimated, looping over ¢ = 1,...,10 hidden units
with 30 different randomly chosen® initial weights and biases each”. Estimation is done in
Matlab 2017Rb by the Levenberg-Marquardt algorithm (LMA), a non-linear least squares
solver that combines the Gauss-Newton algorithm with the gradient descent method, to-
gether with an “early stopping” procedure. The latter ensures that training stops if the
network performance, i.e. the mean squared error, fails to improve or remains the same for
6 consecutive epochs. Thus, the validation set only prevents overfitting and is not used for
estimation. Third, the number of hidden units that minimizes the resulting mean squared
error in the validation set averaged over the 30 trials is chosen to be the optimal one ggp;.
Fourth, holding g, fixed, the trial with the lowest validation mean squared error serves
as the optimal initial weights and biases.

The use of ANN models is motivated by the universal approximator property first shown
by Hornik et al. (1989). It states that any unknown function H (under mild regularity
assumptions) can be approximately arbitrarily close by a linear combination of activation
functions G, i.e. |H(z) — zq:l ij(ﬁ;-zt)| < ¢ with finite ¢ and 0 € Rso. Thus, the main

j=

advantage of ANNs is that one does not need to specify a specific functional form since

6The used Matlab default is the Nguyen-Widrow method for weights initialization. The seed was set to 100.
"See Aras and Kocakog (2016) for a similar model selection strategy.



its specification is data-driven. However, it involves the drawbacks of being only locally
identified and that parameters lack economic interpretation. Hence, its purpose is mainly
forecasting, which suffices for the task of predicting monetary policy while neglecting

deeper structural interpretations of the Fed’s behaviour.

2.3 Univariate Models

Besides the multivariate models, two univariate models are included in the model com-
parison as well. Specifically, the AR(2) and ARIMA(1,1,0) are used for forecasting the

federal funds rate®.

AR(2): it = oo + Oélitfl + 0627:7572 + &t (9)

ARIMA(]_,]_,O) Al = ag+ a1 Adi_q + &4 (10)

For a list of all individual 17 model specifications considered in the forecasting comparison

plus a forecast combination model see Table 8 in the Appendix.

2.4 The Data

The Federal Reserve Greenbook, which is produced in preparation of each meeting of the
Federal Open Market Commitee, serves as the data source for inflation in this study. It
provides real-time back-, now- and forecasts reaching from four quarters back up to nine
quarters ahead. Moreover, there is a real-time data set on output gaps available, that
was not included in the Greenbook, but was constructed and employed by the Board of
Governors staff’. It covers projections of the output gap from eight quarters back up to
nine quarters ahead. The use of these real-time data sets ensures that only information is
used in the forecasts that was actually available by the Fed at the time they set the interest
rate. It circumvents the potential problem of estimating misleading reaction functions due
to the use of revised data as pointed out by Orphanides (2001). The sample covers the
periods 1987:Q3-2012:Q4, where the starting period corresponds to the appointment of
Alan Greenspan as the Fed’s chairman, and the ending period is due to fact that the data
is published only after a lag of five years. It covers a time span where inflation targeting
was implicitly practiced (see Goodfriend (2004)) and explicitly defined (see Bernanke and
Boivin (2003)).

8Experiments with different lag lengths did not improve the results.
Yhttps://www.philadelphiafed.org/research-and-data/real-time-center /greenbook-data/gap-and-financial-data-
set



The federal funds rate is obtained from FRED Economic Data and transformed to a quar-
terly average. The inflation rate is measured by the growth rate of the Core Consumer
Price Index (CCPI), because the real-time data set on the Core Personal Comsumption
Expenditure (CPCE) Price Index starts only in 2000:Q1.1% The output gap is defined as
the difference between actual and potential output expressed as a percentage of poten-
tial output. Concerning timing, data from the middle month (or, the first month if not

available) of the respective quarter is applied.

3 Forecasting Results

In this section, the forecasting performance of the above described models is analysed.
Specifically, expanding window regressions are employed, i.e. after estimating the first
window covering the first T observations, data from T + 1 is added for the estimation
of the second window and so forth. After each window regression, one-, two-, three- and
four-step-ahead forecasts are calculated. Thereby the recursive approach is used. For
example, consider the case k = 3: 4443 depends on i;yo and ;1 due to the autoregessive
structure inherent in all models. For the forecast i;,3; however, i112 and 441 are replaced
by the prior forecasts ;o and i;4q);. With respect to the exogenous variables inflation
and output gap, available real-time forecasts are substituted corresponding to the three

input timing versions:

WQ: it+kz|t = f(it+k—1|tv it+k—2|t7 T4kt yt+k|t)
BW: it+k:|t = f(it+l<:—1|tv it+k—2|tv Tt k—1|t yt+k—l|t)
FW: iy = fiph—1)ts Gegh—2]t> Tith1]t> Yerht1]t)s

with k= 1,...,4.

The initial estimation window comprises the periods 1987:Q3-2000:QQ2. Before a forecast
is made, it is used to determine the number of hidden units in the artifical neural network
in the way described in Section 2.2. The chosen numbers of hidden units are 4, 1 and 2 for
the within-quarter, the backward-looking and the forward-looking version, respectively.
Concerning the smooth transition models, inflation as well as the output gap are allowed

to be the transition variable. Table 1 only reports results for the better out-of-sample

10The Fed’s prefered inflation measure actually changed from CPI to PCE in 2000 and from PCE to CPCE in
2004. Orphanides and Wieland (2008) ,however, show that these switches of the inflation concept do not have
a substantial effect on the reaction functions’ estimates.



performing version. There are only four cases were the output gap is chosen to be the
threshold variable. These are the within-quarter and the forward-looking logistic and ex-
ponential smooth transition models. For simplicity, all models are non-adaptive in the
sense that their structures are not re-optimized after each estimation window; only the
coefficients are re-estimated.

Since the actual values of the federal funds rate are available for all periods, this “pseudo-
out-of-sample” analysis allows the computation and comparison of root mean squared
forecast errors (RMSFE).

As explained in e.g. Terésvirta et al. (2010), the multi-step-ahead forecasts from the STR
and the ANN models cannot be obtained recursively. Therefore, the Monte Carlo method
(see Terdsvirta et al. (2010, Ch. 14.2.2)) (with 1000 replications for each forecast) is em-
ployed for the multi-step-ahead forecasts from the STR models. However, the differences
to their so-called “naive” method were neglectable. Hence, the ANN model forecasts rely
on the “naive” method in order to keep computational burden low. Table 1 reports the
forecasting performance results in terms of RMSFEs. It also includes the performance of
the combined forecast, which is simply the mean of the individual forecasts'.

First of all, looking at the RMSFEs, the within-quarter version of the artifical neural net-
work outperforms all other models at all forecasting horizons. Especially, it dominates
the univariate models and the combined forecasts as well. Interestingly, it’s superiority
is increasing in the length of the forecasting horizon. The backward-looking linear model
performs better than the univariate specifications at horizons 3 and 4 and it has lower
RMSFEs compared to the STR models at horizons 1-3. Within the class of STR models,
the backward-looking version of the logistic-quadratic model performs best at horizons 1
and 2, while the within-quarter version of the exponential (with the output gap being the
threshold variable) dominates for k = 3,4. The within-quarter logistic and exponential
STR model outperform the backward-looking linear model and the univariate ones at fore-
cast horizon 4. However, they come off badly compared to the artifical neural network.
The forward-looking version performs poorly over all functional forms and the backward-

looking version seems to be particularly unsuited for the artificial neural network.

Table 2 summarizes the forecasting comparison results by reporting the average rank of
each model over the four forecast horizons according to the RMSFE. The ANN-WQ model
is ranked first for all forecasting horizons. The combined and univariate forecasts are listed

on two to four with an average rank of five. The Linear-BW model follows in front of the

1 Combining forecasts by taking the median forecast did not improve the result
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Forecasting results (RMSFE)

Model k=1 k=2 k=3 k=4

Linear WQ 0.3994 0.7947 1.1877 1.5851
BW 0.3807 0.7251 1.0807 1.4604
FW 04506 0.9255 1.4057 1.8872

LSTR WQ 0.3852 0.7427 1.0927 1.4527
BW 0.3834 0.7514 1.1293 1.5496
FW  0.3994 0.7619 1.1036 1.4488

ESTR WQ 0.3836 0.7477 1.0945 1.4429
BW 0.3853 0.7511 1.1425 1.5553
FW  0.4072 0.7764 1.1352 1.5341

L2STR WQ 0.3982 0.7572 1.1031 1.4471
BW 0.3836 0.7385 1.1169 1.5202
FW  0.4242 0.7948 1.1697 1.5579

ANN WQ 0.3572 0.6579 0.9486 1.2540
BW 0.5535 1.1508 1.7289 2.2494
FW  0.4860 0.9176 1.2762 1.6042

AR(2) 0.3703 0.7120 1.0867 1.4936
ARIMA(1,1,0) 0.3692 0.7114 1.0916 1.5135
Mean 0.3667 0.6981 1.0316 1.3868

Table 1: Root mean squared forecasting errors (RMSFEs) for forecasting horizons k = 1,...,4
after expanding window regressions. The initial estimation period is 1987:Q3-2000:Q2. The
structure of the WQ-/ BW-/ FW-ANN consists of 4, 1 and 2 hidden units, respectively. LSTR-
WQ, ESTR-WQ, LSTR-FW and ESTR-FW use the output gap as the threshold variable; while
all other STR models use inflation.

STR models. Surprisingly, there is no forward-looking model within the Top 10, although,
literature shows broad consensus on monetary policy being forward-looking. However,
the majority of these studies focuses on the comparison of in-sample fit measures. It
seems to be the case, that the forward-looking version dominates in-sample!'?, while being
less suited for forecasting exercises. The fact that interest rate forecasts of the forward-

looking model rely on forecasts of the exogenous explanatory variables that reach further

12This is also found in own in-sample comparisons, that are not reported here.
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in the future compared to the within-quarter or backward-looking model could explain this
phenomenom. While the backward-looking and the within-quarter models need m; 11y,
Yirk—1|¢ a0 Ty p)ss Yeyk|e> Tespectively in order to forecast 4,1y, the forward-looking model
uses Tyypy1)e and Ypypy1e, £ = 1,..., 4. Using the within-quarter version or the backward-
looking one might simply produce better interest rate forecasts due to smaller forecast

errors on the input variables side.

Forecasting ranks

Model Average rank
ANN-WQ 1
Mean 2
ARIMA(1,1,0) 5
AR(2) 5
LINEAR-BW 5
ESTAR-WQ 6.25
LSTAR-WQ 7
L2STAR-WQ 8.5
L2STAR-BW 8.5
LSTAR-BW 9.75
LSTAR-FW 9.75
ESTAR-BW 11.25
ESTAR-FW 12,5
LINEAR-WQ 14
L2STAR-FW 14.5
ANN-FW 16.25
LINEAR-FW 16.75
ANN-BW 18
Table 2: Average forecasting ranks over the forecasting horizons h = 1,...,4 according to the

root mean squared forecasting error (RMSFE).

Figure 2 plots the forecasts from selected models (ANN-WQ, ARIMA(1,1,0), Linear-
BW and ESTR-WQ) together with the actual federal funds rate. Subfigures a), b), ¢)
and d) show the results for kK = 1,...,4, respectively. For the lowest forecasting horizon
(k = 1), all models perform quite well. The longer the horizon, the more distinguished are

the forecasts. Interestingly, the ARIMA(1,1,0) and the Linear-BW model over-predict,

12
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while the nonlinear models under-predict the federal funds rate prior to the crisis drop

beginning in 2007. Moreover, all models fail to incorporate the zero lower bound since

they predict negative interest rates since 2009. For the ARIMA(1,1,0) model, the negative

peak is especially large, while the ANN-WQ model only marginally falls below zero. The

latter is also the only model that shortly over-predicts the federal funds rate between

2009-2010. Owerall, the ANN-WQ is characterized by a smoother course with less over-

and undershooting compared to the other models.
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Figure 2: Forecasts of ANN-WQ, ARIMA(1,1,0), Linear-BW and ESTR-WQ and actual federal
funds rate for forecasting horizons k =1,...,4. .




Modified Diebold-Mariano (MIDM) Tests

Looking at the RMSFEs and the graphs, the ANN-WQ seems to be the best forecasting
model for the federal funds rate. In the following, a test for equal predictive accuracy by
Diebold and Mariano (1995) is employed in order to investigate the statistical significance
of this result.

The approach consists of pairwise forecast comparisons testing the null hypothesis Hy :
MSFE,, > MSFE; , i.e. model m’s forecasting performance is not superior to the one
of model j. The test is based on the difference of squared errors Dy,j; = (iy — ftm))2 -

(i — ft(j))Q. Here, the modified test statistic of Harvey et al. (1997) is employed:

T

1
Tl-2k+tk(k—1) T2Dmn
MDMk_\/ + +T ( ) t=1 (11)

T . /12 ’

T7YD
where T is the number of observations in the forecast series, k is the forecasting horizon
and 4p is an estimate of the long-run variance of D,,j;. p-values are taken from the Stu-

dent’s t-distribution with (7' — 1) degrees of freedom to account for possible small sample

size issues.

Actually, the Diebold-Mariano test was intended for comparing model-free forecasts as
pointed out by Diebold (2015). Comparing econometric models via pseudo-out-of-sample
forecasts complicates the test’s asymptotics. West (2006) and Clark and McCracken (2001,
2013) show that the limiting distribution might be non-normal depending on the models’
structures and estimation designs, e.g. nested or non-nested models and rolling/ expand-
ing/ fixed estimation scheme. As the pairwise comparisons here include cases where models
are nested (e.g. all STR models nest the univariate AR(2) model), their critique applies.
However, Clark and McCracken (2011) find that standard normal critical values often ap-
proximate the precise distribution very well. Hence, I follow the lines of Diebold (2015)
by sticking to the Gaussian limiting distribution and testing the validity of the sufficient
assumption of covariance stationary loss differentials ijt.13 Note, that a rejection of the
null hypothesis of equal predicticy accuracy implies that it will also reject with an even
smaller p-value if an asymptotic valid test is used (see West (2006, Table 3C, 1.b.)). Tables

9-12 in the Appendix report Augmented-Dickey-Fuller test results with the null hypothesis

I3Following the exact route would require bootstrapping since the conditions for using critical values from Mec-
Cracken (1999) are not met (see West (2006, Table 3C, 1.)).
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of nonstationary loss differentials D,,;; for k = 1,...,4, respectively. The unit root null
hypothesis is rejected at conventional significance levels for most of the pairwise model
combinations. The cases where it cannot be rejected are of minor importance since the
difference of the respective MSFEs is of such magnitude that it is clear which model is more
appropriate. The general validity of the covariance stationary loss differentials assumption
allows to continue with the modified Diebold-Mariano test. Since the ANN-WQ model
has the lowest MSFEs, it is of particular interest, if it’s forecast superiority is statistically
significant. Therefore, Tables 3 and 4 report p-values of the modified Diebold-Mariano
test with the ANN-WQ chosen as model m and j, respectively, for all forecasting horizons.
The p-values of all other pairwise tests are listed in Tables 13-16 in the Appendix.

The MDM p-values support the first impression, that the ANN-WQ’s forecasting supe-
riority is increasing with the forecasting horizon. The number of pair-wise forecasting
comparisons where the MSFEnN_w( is statistically lower at o = 10% than the one of
model j almost doubles ( 7 vs. 13) from k = 1 to 4. There are only four models, where the
null hypothesis cannot be rejected at conventional significance levels, irrespective of the
forecasting horizon. These are the Linear-BW, the AR(2), the ARIMA(1,1,0) models as
well as the Mean forecast combination. Compared to these models’ forecasts, the ANN-
WQ’s forecast is not statistically superior. However, if the null hypothesis is switched to
MSFE,, > MSFEsNN-wq , Table 4 shows that it can never be rejected as well. Taking
a look at the previously mentioned four models, we notice that the p-values are much
larger compared to the respective p-values from Table 3. Hence, one would rather reject
the null hypothesis that the ANN-WQ’s forecast is not superior to the others than the

other way around, speaking in favour of the ANN-WQ model.

In order to obtain an overall significance level, the N = 18 individual null hypothesis are
combined to an overall null hypothesis Ho : Ho1NHp2N...NHp18. The idea of this p-value
combination dates back to Fisher (1954). Here, p-values are combined by Hartung’s (1999)
approach, which builds on the inverse normal method. It relies on the so-called probits
7 = ® 1(p;), where p; corresponds to the individual p-values. Linear combining the

N
probits, i.e. Y A7, with A1..., Ay, yields a normally distributed test statistic. Hartung

i=1
(1999) accounts for a constant correlation r between these probits, which is estimated by
N
P = max(— 57, ) with # = 1 — 1= > (Ti— 7)2, where T represents the mean over the

=1
probits. It yields the test statistic (with equal weights A\; = 1):

15



Modified Diebold-Mariano Test Results for m=ANN-WQ

j k=1 k=2 k=3 k=4
Linear-WQ  0.0762%  0.0440%*  0.0305**  0.0260**
Linear-BW  0.2042 01817  0.1607  0.1432

Linear-FW  0.0065%% 0.0334*%*  0.0257%%  0.0213%*
LSTAR-WQ  0.1723  0.0769%  0.0586%  0.0467**
LSTAR-BW  0.1447  0.1076  0.0875%  0.0665*
LSTAR-FW  0.0353%%  0.0204**  0.0168%*  0.0217%
ESTAR-WQ  0.1457  0.0315™  0.0266**  0.0300%*
ESTAR-BW  0.1302  0.0813*  0.0628*  0.0516*
ESTAR-FW  0.0254%%  0.0434%*  0.0256**  0.0216%*
L2STAR-WQ  0.1183  0.0535%  0.0373*%*  0.0385**
L2STAR-BW  0.1636  0.1122  0.0831%  0.0659*
L2STAR-FW  0.0153%%  0.0337%%  0.0210%*  0.0193**
ANN-BW 0.0001%%  0.0034%*%  0.0077%%%  0.0219%*
ANN-FW 0.0003%%% 0.0044%*% 0.0095%** 0.0313**
AR(2) 02795  0.1666  0.1327  0.1071

ARIMA(1,1,0) 0.3419  0.1745  0.1381  0.1037

Mean 0.3210  0.1929  0.1588  0.1418

Table 3: The table reports p-values of the MDM test with Hy: MSFEsyn-wq > MSFE;.
* JHk 1% denote rejection of the null hypothesis at a = 10%/5%/1%, respectively.

N
S
Har = =1

)

\/N + [N2 = NJ[f* + 0.2y / 525 (1 — 7))

which is compared to critical values from the standard normal distribution. Hy is rejected
for too small values of the test statistic. The overall significance level is hence given by
®(Har). Table 5 presents the combined p-values of the overall null hypothesis that the
ANN-WQ is not the best forecasting model. As can be seen, the null hypothesis can be
rejected at o = 5% for all forecasting horizons. Hence, there is statistical evidence that

the ANN-WQ serves as the best forecasting tool'?.

14Bonferroni-type tests, along the lines of Simes (1986), which are not reported here, also support this result.
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Modified Diebold-Mariano Test Results for j=ANN-WQ

m k=1 k=2 k=3 k=4

Linear-WQ 0.9238 0.9231 0.9695 0.9740
Linear-BW 0.7958 0.8924 0.8393 0.8568
Linear-F'W 0.9935 0.9666 0.9743 0.9787
LSTAR-WQ 0.8277 0.9231 0.9414 0.9533
LSTAR-BW 0.8553 0.8924 0.9125 0.9335
LSTAR-FW 0.9647 0.9796 0.9832 0.9783
ESTAR-WQ 0.8543 0.9685 0.9734 0.9700
ESTAR-BW 0.8698 0.9187 0.9372 0.9484
ESTAR-FW 0.9746 0.9566 0.9744 0.9784
L2STAR-WQ  0.8817 0.9465 0.9627 0.9615
L2STAR-BW  0.8364 0.8878 0.9169 0.9341
L2STAR-FW  0.9847 0.9663 0.9790 0.9807

ANN-BW 0.9999 0.9966 0.9923 0.9781
ANN-FW 0.9997 0.9956 0.9905 0.9687
AR(2) 0.7205 0.8334 0.8673 0.8929
ARIMA(1,1,0) 0.6581 0.8255 0.8619 0.8963
Mean 0.6790 0.8071 0.8412 0.8582

Table 4: The table reports p-values of the MDM test with Hy: MSFE,, > MSFEsnN-wq-

Hartung Test Results

\k:1 k=2 k=3 k=4

Prar | 0.0001 0.0324 0.0317 0.0377

Table 5: The table reports combined p-values of the Hartung (1999) approach testing the overall
null hypothesis that the ANN-WQ is not the superior forecasting model for forecasting horizons
k=1,...,4.
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4 Discussion

4.1 Crisis Analysis

The forecasted sample from 2001:Q2-2012:Q4 includes crisis periods where the federal
funds rate was stuck at the so-called zero lower bound (ZLB). In order to check the results’
robustness, the forecasted sample is splitted here in pre-crisis and post-crisis periods
with the latter starting in 2007:Q3. Table 6 reports the forecasting rankings for the two
subperiods according to the RMSFEs for forecasting horizons k£ = 1,...,4 and the rank
differences (Pre-Post rank). The insights from this analysis are threefold. First, the
superior forecasting performance of the ANN-WQ model is robust with respect to the
sample under investigation. Except for the one-quarter ahead forecasts in the pre-crisis
sample, where the ANN-WQ model is ranked on place three'd, it is always ranked first
irrespective of the crisis or non-crisis periods. It’s dominance is also increaging in the
forecasting horizon for both subsamples, which can be seen from the RMSFEs which are
available upon request. Second, the ANN-FW model is the one that improves the most
switching from pre- to post-crisis periods. Third, the models with the largest losses in
terms of rank differences between the two periods are mainly linear models. That possibly

reflects a higher degree of nonlinearity since the crisis, also due to the zero lower bound.

4.2 Data separation

As explained in Section 2.2, the configuration and estimation of the ANNs requires data
separation into a training and a validation set. The latter serves two purposes. On the
one hand, the mean squared error in the validation set is used to determine the number of
hidden units in the network and the initial weights endogenously. On the other hand, it
provides an early stopping criteria for the Levenberg-Marquardt algorithm. In the baseline
framework, the first 80% of the “in-sample”!6 data assemble the training and the last 20%
the validation set. There is no distinct rule on how to choose the data splitting percent-
ages, but usually the validation set consists of 10-30% of the data. Obviously, choosing
a different data base may lead to different model specifications. For this application, the
80/20% splitting performed best for determining the number of neurons and initial weights.
Keeping this configuration fixed, the results are robust with respect to different splittings

for the early stopping procedure. Table 7 presents the RMSFEs for the other splittings,

15The differences of the RMSFEs between the AR2, the Linear-BW and the ANN-WQ model are very small
though.
16 After holding out the last 50% of the total sample for pseudo-out-of-sample forecasts.
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Forecasting Ranks Pre- and Post-Crisis

k=1 k=2 k=3 k=4
Model Pre Post Diff. Pre Post Diff. Pre Post Diff. Pre Post Difl.
Linear-WQ 5 14 -9 5 16 -11 3 16 -13 5 16 -11
Linear-BW 2 13 -11 3 11 -8 6 9 -3 7 9 -2
Linear-FW 10 17 -7 9 17 -8 7 17 -10 8 17 -9
LSTAR-WQ 12 6 6 13 4 9 14 4 10 13 3 10
LSTAR-BW 9 10 -1 12 10 2 15 10 5 16 10 6
LSTAR-FW 16 7 9 15 8 7 10 8 2 10 7 3
ESTAR-WQ 13 3 10 14 7 7T 11 6 5 11 5 6
ESTAR-BW 8 11 -3 10 13 -3 16 13 3 15 12 3
ESTAR-FW 11 15 -4 8 14 -6 5 14 -9 3 14 -11
L2STAR-WQ 14 9 5 16 6 10 13 7 6 9 6 3
L2STAR-BW 4 12 -8 6 12 -6 9 12 -3 12 11 1
L2STAR-FW 15 16 -1 11 15 -4 8 15 -7 6 15 -9
ANN-WQ 3 1 2 1 1 0 1 1 0 1 1 0
ANN-BW 18 18 0 18 18 0 18 18 0 18 18 0
ANN-FW 17 5 12 17 5 12 17 3 14 17 2 15
AR(2) 1 8 -7 2 9 -7 4 11 -7 4 13 -9
ARIMA(1,1,0) 6 4 2 7 3 4 12 5 7 14 8 6
Mean 7 2 5 4 2 2 2 2 0 2 4 -2

Table 6: Forecasting ranks for pre- (2001:Q2-2007:QQ2) and post-crisis (2007:Q3-2012:Q4) for
the forecasting horizons h = 1,...,4 according to the root mean squared forecasting errors
(RMSFEs). Diff. denotes the rank differences between the two periods (Pre-Post rank).
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keeping the hidden units configuration based on the 80/20% separation constant. The
RMSFEs of the ANN-WQ model are slightly larger with the different data splittings com-
pared to the 80/20% benchmark. However, it still yields the best forecasting performance
over all models'”. Using the 90/10% splitting, the ANN-BW and the ANN-FW models
can improve slightly over the benchmark case. However, it does not change their relative

performance to the other models.
Forecasting Results (RMSFEs) for Different Data Splittings

Splitting ANN-WQ ANN-BW ANN-FW

70/30% k=1 0.3781 0.5571 0.4917
k=2 0.7152 1.0734 0.8755
k=3 1.0508 1.5189 1.3160
k=4 1.3980 1.8343 1.6612

90/10% k=1 0.3687 0.5050 0.4575
k=2 0.7013 1.0267 0.8687
k=3 1.0094 1.5143 1.2236
k=4 1.3255 1.9086 1.5559

Table 7: Root mean squared forecasting errors (RMSFEs) for forecasting horizons k = 1,...,4
after expanding window regressions for different early stopping data splittings (training/ val-
idation set). The initial estimation period is 1987:Q3-2000:Q2. The structure of the WQ-/
BW-/ FW-ANN consists of 4, 1 and 2 hidden units, respectively, as determined by the 80/20%
splitting of the benchmark case.

4.3 Linearity tests

To further investigate if U.S. monetary policy is linear or nonlinear, this section performs
different linearity tests on the whole sample from 1987:QQ3-2012:Q4. The tests taken un-
der consideration are the Luukkonen et al. (1988), the Terasvirta (1994) sequential and
Escribano and Jorda (1999) test. All of them test for linearity against STR alternatives
by testing v = 0. Under the null hypothesis, the parameters ¢ and 8 are not identified.
Hence the transition function G(v, ¢, s¢) needs to be replaced by a Taylor series expansion
in order to get the null distribution of the test statistic. Since this expansion depends
on the specific form of G(-), it is possible to discriminate between different transition
functions. Tables 17-19 in the Appendix report the test results for STR-WQ, -BW and
-FW, respectively. The null hypothesis of linearity is rejected for the WQ and the FW

specification, but cannot be rejected for the BW version. Hence, the results indicate that

1"Except for the 70/30% case, where it is beaten by the univariate models for £k = 1 and k = 2.
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using now- or forecasts as explanatory variables already introduces nonlinearity. It may
also explain why the Linear-BW model outperforms all other BW models and why the
ANN-BW model is the worst in the forecasting exercise. The ANN can only be superior if
there is enough nonlinearity, which seems not to be the case when using BW-inputs. For
the WQ and the FW version, the Terédsvirta (1994) test suggests the LSTR model, while
the Escribano-Jorda (1999) test recommends the ESTR model. The fact, that linearity
is rejected for these input versions is in line with the finding that all WQ-STR and FW-
STR models produced better forecasts than their linear counterparts. The differences in

RMSFEs between the specific transition functions are small, though.

5 Conclusion

Using quarterly U.S. real-time data from 1987:Q3-2012:Q4, the paper shows that the
artificial neural network is flexible enough to predict the federal funds rate better than
linear and nonlinear Taylor rules as well as univariate processes. Specifically, it is the
“within-quarter” specification with nowcasts of inflation and the output gap and two lags
of the federal funds rate as explanatory variables that yields the smallest root mean squared
forecast errors over all forecasting horizons (one- to four-quarters ahead). The result is
robust with respect to different time periods indicating that the artificial neural network
is a useful forecasting tool for normal as well as crisis times. It is also robust with respect
to different data splittings in the estimation phase. Linearity tests indicate that using
now- and forecasts of inflation and the output gap introduces nonlinearity, while linearity
cannot be rejected with backcasts of the explanatory variables.

The paper at hand has shown the potential of artificial neural networks as a forecasting
tool for U.S. monetary policy. Future work could include more explanatory variables as e.g.
asset purchases in crisis times or financial stability indicators to check whether the forecasts
can be improved. A similar analysis could be undertaken for monetary policy in the euro
area as well. Generally, the results also suggest the worthiness of real-time forecasts of
the explanatory variables in the reaction function. If the Fed aims at explicit forward
guidance, it might be easier for the market if the Fed publishes its current Greenbook

forecasts without a delay.
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Appendix

List of Models

2

)
)
3)
)

5) LSTR-BW:

6) LSTR-FW:

7) ESTR-WQ:

8) ESTR-BW:

9) ESTR-FW:

1) Linear-WQ:
Linear-BW:
Linear-FW:
4) LSTR-WQ:

10) L2STR-WQ:

11) L2STR-BW:

12) L2STR-FW:

13) ANN-WQ:

14) ANN-BW:

15) ANN-FW:
16) AR(2):
)

17) ARIMA(1,1,0):

18) Mean:

iy = (1 — p)(a + Oxmyy + Byyuye) + priv—1 + pais—1 + &

iy = (1 = p)(a + Oxm1je + Byyi—1jt) + prie—1 + pais—1 + &

ir = (1 = p)(a + Ormegaye + Bylesap) + pris—1 + poie—1 + &

1 = o+ aq Ty + QoY + a3iy1 + Quly o+

{14 exp[—(s — )]} (6o + Biye + oty + B3ie—1 + Bati—2) + €4

i = Qo+ o1 + QY1) + Q31 + it

{14 exp[—v(st — )]} H(Bo + Limi—pe + BoYi—1jt + Bsie—1 + Bair—2) + &

1 = Qo+ Q1 Tyq1)e + QaYpy1)e + Q31 + Quip_2+

{1+ exp[—y(se — )]} (Bo + Bimigaye + BoYisay + Bstie—1 + Bair—2) + &

1 = Qo+ aq Ty + QoY + Qi1 + Qulp 2+

{1 — exp[—~(s; — e)*1}(Bo + Bimee + Bouye + Bsir—1 + Bats—2) + &

1 = Qg + Q11 + QYp—1)¢ + Q3041 + Qyly_o+

{1 — exp[—(st — ¢)*1}(Bo + Bimi—ipe + Bove—1e + Batr—1 + Pats—2) + &4

It = Qo + 0 Tey1)e + Yei1)e + Q3le—1 + Qule—o+

{1 — exp[—y(s: — ¢)’]}(Bo + Bimtsaje + Bolesap + Bsti—1 + Bai—2) + &4

iy = Qo + oy + QoY + asli—1 + aqly o+

{1+ eaxp[—(se — c1)(se — e2)]} 7 (Bo + Biye + Boye + Bste—1 + Batr—2) + &4
i = Qo+ o1 + QY1 + Q3l-1 + i+

{14 exp[—(s; — 1) (st — )]} H(Bo + Brimiaje + Bote—1je + Bsie—1 + Paii—2) + €4
It = Qo + Ty + QY1) + Q3te-1 + Qo+

{1+ exp[—(s; — 1) (st — 2)]} 1 (Bo + Bimusape + Basay + Bsir—1 + Bair—2) + &

q
iv = o+ Y v Gloy + BTy + Bojyu + Bajie—1 + Pajie—2) + &
=1
q
iv =0+ > v - Glay + BT + BojYo1pe + B3jte—1 + Bajir—2) + &
=1
q
i =0+ v - Glay + BuTigae + Bojlesape + B3jte—1 + Bajir—2) + &
=1

1 = Qg + Q1l—1 + Qoli_g + &
Aty = o + Aty + &
Equally weighted average over models 1-17

Table 8: Summary of models used in the forecasting performance comparison. The threshold
variable s; of the STR models is either inflation 7 or the output gap y. In the ANN specifi-
cations, G(-) denotes the hyperbolic tangent transfer function. The choice of ¢ is explained in

section 2.2.
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Linearity Tests for STR-WQ

Taylor series alternatives: by + by - s[+ by - 8% + b3 - 8 + by - 5]
Threshold variable s: Y

Luukkonen, Saikkonen, and Terdsvirta (1988) Linearity Tests

Null Hypothesis F-statistic d.f. p-value
HY: by=by=b3=b, = 0 2.686173 (16, 79) 0.0020
H®: by=by=by = 0 2.967118 (12, 83) 0.0018
H®: by=by =0 3.806184 (8, 87)  0.0006
HY: by =0 6.471353 (4, 91)  0.0001
The Héi) test uses the i-th order Taylor expansion (b; = 0 for all j > 7).

Terdsvirta (1994) Sequential Tests

Null Hypothesis F-statistic d.f. p-value
Hy: by =0 1.080239 (4, 83)  0.3716
Hy: by =0 by =0 1.249922 (4, 87)  0.2960
Hy: by =0 by=bs =0 6.471353 (4, 91)  0.0001

All tests are based on the third-order Taylor expansion (by = 0).
Linear model is rejected at the 5% level using H(§3>.
Recommended model: first-order logistic.

PI‘(Hl) S PI’(HQ)

Escribano-Jorda (1999) Tests

Null Hypothesis F-statistic
H: by=by = 0 1.355888
H: b=y =0 0.893747

All tests are based on the fourth-order Taylor expansion.
Linear model is rejected at the 5% level using HO4.
Recommended model: exponential with nonzero threshold.

Pr(H") < Pr(H®) with Pr(H™) ~= .05

d.f. p-value

(7,79)  0.2358
(6,79)  0.5037

Table 17: Different linearity tests for WQ-input version with smooth transition (STR) model

as alternative. The threshold variable is the output gap y;;.
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Linearity Tests for STR-BW

Taylor series alternatives: by + by - s[+ by - 8% + b3 - 8% + by - 5]

Threshold variable s: CCPI(-1)

Luukkonen, Saikkonen, and Terdsvirta (1988) Linearity Tests

Null Hypothesis F-statistic d.f. p-value
HY: by=by=by=b, = 0 1.000100 (16, 79) 0.4656
H: bi=by=b3 = 0 1.091832 (12, 83) 0.3779
HP: by=by =0 0.886902 (8, 87)  0.5310
HY: b =0 1.418112 (4, 91)  0.2343
The Héi) test uses the i-th order Taylor expansion (b; = 0 for all j > 7).

Terdsvirta (1994) Sequential Tests

Null Hypothesis F-statistic d.f. p-value
Hj: b3 =0 1.463863 (4, 83)  0.2206
Hy: by=0]b3=0 0.393498 (4, 87)  0.8128
Hy: by =0 | by=bs =0 1418112 (4,91)  0.2343
All tests are based on the third-order Taylor expansion (by = 0).

Linear model is not rejected at the 5% level using H(g?’).

Escribano-Jorda (1999) Tests

Null Hypothesis F-statistic d.f. p-value
H": by=b, =0 1.068878 (7, 79)  0.3913
H®): by=by =0 0.643613 (6, 79)  0.6950

All tests are based on the fourth-order Taylor expansion.
Linear model is not rejected at the 5% level using H((]4).

Table 18: Different linearity tests for BW-input version with smooth transition (STR) model

as alternative. The threshold variable is inflation m,_.
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Linearity Tests for STR-FW

Taylor series alternatives: by + by - s[+ by - 8% + bs - 8 + by - 5]
Threshold variable s: Y(+1)

Luukkonen, Saikkonen, and Terésvirta (1988) Linearity Tests

Null Hypothesis F-statistic
HY: by=by=b3=b, = 0 3.618718
HP: by=by=bs =0 4.120081
H®: by=by =0 5.172401
HY: b =0 9.800630

The Héi) test uses the i-th order Taylor expansion (b; = 0 for all j > i).

d.f. p-value

16, 79) 0.0001
12, 83)  0.0000

) 0.0000
4,91)  0.0000

Terdsvirta (1994) Sequential Tests

Null Hypothesis F-statistic
Hjs: b3 =0 1.688143
Hli bl =0 | b2:b3 =0 9.800630

All tests are based on the third-order Taylor expansion (by = 0).

Linear model is rejected at the 5% level using H[(,?’).
Recommended model: first-order logistic.
Pr(H3) < Pr(H,) or Pr(H;) < Pr(H,)

d.f. p-value

(4, 83)  0.1605
(4,87)  0.6067
(4,91)  0.0000

Escribano-Jorda (1999) Tests

Null Hypothesis F-statistic
H: by=by = 0 1.432323
HP: bi=bs =0 0.748925

All tests are based on the fourth-order Taylor expansion.
Linear model is rejected at the 5% level using Hé4).

Recommended model: exponential with nonzero threshold.
Pr(H") < Pr(H{) with Pr(H™) > 0.05

d.f. p-value

(7,79)  0.2043
(6,79)  0.6121

Table 19: Different linearity tests for FW-input version with smooth transition (STR) model

as alternative. The threshold variable is the output gap 41
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