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Abstract

We investigate overlapping contests in multi-divisional organizations in which an

individual’s effort simultaneously determines the outcome of several contests on dif-

ferent hierarchical levels. We show that individuals in larger units are disadvantaged

in the grand (organization-wide) contest for two reasons: First, the incentive to free-

ride is larger in inter-divisional contests. Second, competition in the intra-divisional

contest is fiercer. Both effects lower the marginal utility of effort provision. We

test our model in a laboratory experiment and confirm its main predictions. Our

results have important consequences for the provision of incentives in organizations

and the design of sports competitions.
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1 Introduction

Contests are situations in which individuals compete for a prize by spending non-refundable

effort which increases the likelihood of winning but does not guarantee victory (see e.g.

Konrad, 2009). In this sense, many everyday situations may be described as a contest.

Indeed, individuals are usually involved in several contests at once. Some of these contests

may overlap meaning that they take place on different levels of a given hierarchy and the

same effort is relevant (to some extent) for the outcome of each of these contests.

Take sports as a classical example. In the Olympic games, in addition to individual

victories, media attention is frequently drawn to the medal table which counts the success

of the different nations. Similarly, the Tour de France honors the best team in addition to

the best cyclists. In these situations, athletes simultaneously face a grand contest and an

inter-team contest between teams partitioning the field. In addition, an athlete’s success

relative to the other athletes of the same nation may determine her chances of receiving

funding in the next season or taking part in a subsequent competition.1

Similar situations arise at the workplace where workers may not only struggle to be pro-

moted within the organization, but may simultaneously fight for relative standing within

their own division or standing and funding of the division within the entire organization.

It is then not always possible to distinguish tasks most relevant for the organization-wide

contest from tasks more relevant for the inter- or intra-divisional contests.

In this paper, we investigate overlapping contests in which an individual’s effort si-

multaneously determines the outcome of several contests taking place at different levels

of a given hierarchy. We show that individuals in larger divisions have a disadvantage in

the organization-wide contest. This result is driven by two effects: First, larger divisions

induce larger incentives to free-ride in inter-divisional contests (see e.g. Konrad, 2009).

Second, the intra-divisional contest is fiercer the larger the division. Both effects lower

the marginal utility of effort provision. Though the effects are well-known per se, this

paper is, to the best of our knowledge, the first to investigate their impact when intra- or

inter-divisional contests overlap with an organization-wide contest.

Our results have important implications for contest design: First, maintaining similar

chances in the organization-wide contest requires the prize in the intra-divisional contest

to rise in the size of the division, and larger divisions may be forced to spend more per

capita than smaller divisions. Second, assuming that larger divisions are more likely to

involve the person with the highest talent implies that introducing an additional inter-

divisional contest may be used to increase competitive balance in the organization-wide

contest. In contrast, a contest designer interested in effort provision should devote all

resources to the organization-wide contest.

1For example, in the 2018 Olympic winter games German luger Felix Loch by losing the gold medal
in the final run, also lost the chance to compete in the subsequent team contest.

2



We complement our theoretical analysis with a laboratory experiment to investigate

the predictive power of the model. In our experimental setup, subjects are assigned to

groups of six players and divided in two teams of two and four players, respectively. In

each round each subject simultaneously competes in a group-wide (grand) Tullock contest

and either an inter-team contest with winnings divided equally among the members of

the winning team, or an intra-team contest. While groups are randomly formed in each

repetition, subjects are consistently assigned either to the small or to the large team.

Given the prizes we choose for the contests, our model predicts that subjects in the smaller

team invest twice (1.25 times) as much as subjects in the larger team and are thus twice

(1.25 times) as likely to win, if they simultaneously face a grand contest and an inter-team

(intra-team) contest. Though we find, like many other studies, that subjects substantially

overinvest, members of the small team invest 42% (23%) more than members of the large

team, if simultaneously facing the grand and the inter-team (intra-team) contest. As a

consequence, subjects assigned to the small team achieve substantially higher earnings in

both treatments.

The paper relates to a wide and growing theoretical literature starting with Tullock

(1980). Nitzan (1991) was the first to study contests between teams and highlight the

free-riding problem. Several other papers have extended this literature by investigating

the combination of an inter-team contest with the corresponding intra-team contest which

ensues in the winning team over the realized winnings. Most papers study the sequential

version of this problem (see e.g. Katz and Tokatlidu, 1996, Wärneryd, 1998, Inderst et

al., 2007). Recently, Münster (2007) and Münster and Staal (2012), among others, have

started investigating the simultaneous inter- and intra-team contest for a given prize

where subjects choose how to distribute their effort between the inter- and the intra-team

contest and a production task. In contrast, the focus of this paper is on simultaneous

contests with separate prizes whose outcomes are determined by a single effort choice for

each player. Moreover, we focus on the combination of a grand contest with inter- and

intra-team contests.

The paper also contributes to a large and growing experimental literature on contests

between individuals (see Dechenaux et al., 2015, Sheremeta, 2013, for recent surveys)

and between teams (see Sheremeta, 2018). In particular, Ke et al. (2013) and Ke et al.

(2015) study the interaction of a team contest and a subsequent individual contest within

the winning team. To the best of our knowledge, no experimental study has yet tested

overlapping contests in which the same effort simultaneously determines the outcome.

Finally, our results may contribute to the literature on internal labor markets and

promotion determinants (see Lazear, 1999, 2018).

The paper is organized as follows: The general model is presented in Section 2 and

analyzed in Section 3. The experimental setup is introduced in Section 4. Section 5
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contains the experimental results. A discussion and conclusion is provided in Section 6.

The appendix contains the proofs and complementary results.

2 Model

We consider a winner-take-all contest between n players divided into 2 teams g = 1, 2.

Team g comprises mg players where m2 = n−m1 players and we assume that m2 > m1 ≥
2. All players compete in a grand contest for the prize A > 0. In addition, players may

compete in an inter-team contest for prize B ≥ 0 and in intra-team contests for prizes

C1 ≥ 0 and C2 ≥ 0, respectively.

The outcome of all contests is assumed to be simultaneously determined by a single

effort choice of each player. Each player has a sufficiently large initial wealth endowment

e ∈ R+. Let xgi ≥ 0 denote the effort chosen by player i in team g and let x−gi denote

the vector of efforts of all other players. To keep the analysis tractable, we assume that

chances of winning are given by the contest-success function (CSF) proposed by Tullock

(1980),2 effort costs are linear, and players are risk-neutral. Accordingly, the expected

payoff of player i in team g is given by

Eπgi (xgi,x−gi) :=
xgi∑

h

∑
j xhj

A +

∑
j xgj∑

h

∑
j xhj

f (mg) B +
xgi∑
j xgj

Cg − xgi (1)

where the fractions are assumed equal to 1/2 if all efforts in the denominator are zero.

The function f : N→ [0, 1] captures the fraction f (mg) of the prize B in the inter-team

contest that each member of the successful team g receives. This depends on the nature of

the prize and the team’s sharing rule. For example, f (mg) ≡ 1 if B is a public good such

as fame. In contrast, f (mg) = 1/mg, if B is a private good and shared equally among

the team members. Finally, the example f (mg) = 1/m2
g may apply if B is a private good

and subject to conflict within the winning team.3 As rivalry and competition are usually

fiercer in larger teams, we assume f to be non-increasing. We refer to the above game as

the joint contest.

Let X =
∑

h

∑
j xhj and Xg =

∑
j xgj for each g ∈ {1, 2}. Maximizing (1) with respect

to xgi yields the FOC

X − xgi
X2

A +
X − Xg

X2
f (mg) B +

Xg − xgi
X2

g

Cg = 1. (2)

We focus on the symmetric-within-teams Nash equilibrium in which players of the same

team spend the same effort. Accordingly, xgi = Xg/mg for each i ∈ g and the equilibrium

2Tullock’s contest success function is a special case of the CSF axiomatized by Skaperdas (1996).
3The corresponding subsequent intra-team contest is not modeled explicitly here.
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conditions are given by[
A

mg

+ f (mg) B

]
Xg − f (mg) B X − mg − 1

mg

Cg
X2

Xg

= X A − X2 (3)

for each g = 1, 2.

3 Theoretical Predictions

We first discuss the cases (i) B > 0, C1 = C2 = 0 and (ii) B = 0, C1, C2 > 0 in turn

before returning to the general model.

3.1 The Impact of Inter-Team Competition

We first assume that Cg = 0 for each g to focus on the impact of simultaneous inter-team

competition on the grand contest. (3) may thus be rewritten as

A

mg

Xg − f (mg) B Xh = X A − X2 (4)

for each g ∈ {1, 2} where h 6= g. This yields the equilibrium condition for relative team

efforts
X2

X1

=
m2

m1

· A + m1 f (m2) B

A + m2 f (m1) B
. (5)

Plugging (5) into (4) yields the following result:

Lemma 1. Absent intra-team conflict (C1 = C2 = 0), the joint contest has a unique

symmetric-within-teams Nash equilibrium given by x∗gi = X∗
g/mg for each g ∈ {1, 2} and

each i ∈ g where

X∗
g =

mg A + m1 m2 Bg

(m1 +m2) A + m1 m2 (B1 +B2)

[
A +

m1 m2 B1 B2 − A2

(m1 +m2) A + m1 m2 (B1 +B2)

]
. (6)

and Bg = f (mg) ·B for g = 1, 2.

Equation (5) implies that the larger team provides the larger team effort, if[
1

m1

− 1

m2

]
A > [f (m1)− f (m2)] B.

To provide some examples, this holds, if (i) B is a public good, or (ii) B is a private good

and the grand contest is sufficiently important.4

4Concretely, the condition is A > B, if winnings from the inter-team contest are shared equally within
the winning team, and A/B > (m1 +m2) / (m1m2), if winnings are contested within the winning team.
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Second, as f is non-increasing, (5) also implies that each member of the smaller team

provides the higher effort and thus has the better chance of winning in the grand contest

(i.e. X2/m2 < X1/m1). To summarize:

Proposition 1. In the symmetric-within-teams Nash equilibrium of the joint contest with-

out intra-team conflict:

(a) Members from the smaller team have the higher chance of winning in the grand

contest.5

(b) The smaller team provides the larger team effort, if and only if (i) f (m1) > f (m2)

and (ii) the prize in the inter-team contest is sufficiently larger than the prize in the

grand contest.

The intuition for these results is simple. The free-riding problem in the inter-team

contest is more severe in larger teams since more players may potentially contribute to

the team effort. Given that the same effort determines chances in the grand contest,

incentives to free-ride spill over to the grand contest and lower a large team member’s

chances of winning.

The consequences may be substantial. Assuming A = B, a player in a two-player

team is three times as likely to win the grand contest as a player from a second team with

eight players, if B is a public good (f (mg) ≡ 1), and she is four times as likely to win if

B is a private good shared equally within the winning team (f (mg) = 1/mg). Hence, the

need to share the team winnings among a larger number of players exacerbates the effect.

On the other hand, the player in the two-player team is only 2.9 times as likely to win as

a player in the eight-player team, if B is a private good that is contested in the winning

team (f (mg) = 1/m2
g). Accordingly, fighting over team winnings may help members of

the larger team. Notice however that the relative odds of each team (Xg/Xh for team

g where h 6= g) are increasing in the expression f(mg). Hence, in a model with team-

dependent functions f1 and f2, each team prefers an equal distribution of team winnings

over fighting over them.

We finally turn to the incentives of a contest designer who is able to set the prizes for

the grand and the inter-team contest subject to the constraint A+B ≤ R. It is immediate

that a designer interested in a close grand contest will not combine it with an inter-team

contest, i.e. select B = 0. On the other hand, a close inter-team contest generally requires

to combine the two contests. Finally, a contest designer maximizes total effort by putting

all resources into the grand contest. We summarize our results on contest design in the

following corollary.

5This holds for any non-increasing f . It also holds, if f is increasing, but strictly concave.

6



Corollary 1. A contest designer with budget R > 0 who maximizes

(a) total equilibrium effort X∗ =
∑

g

∑
i x

∗
gi, will select A = R and B = 0;

(b) closeness of the grand contest CGC := −maxg,i

∣∣x∗gi/X∗ − 1/n
∣∣, will select A = R

and B = 0;

(c) closeness of the inter-team contest CTC := −maxg

∣∣X∗
g/X

∗ − 1/2
∣∣, will select A and

B = R− A such that A/B = m1 ·m2 · [f (m1)− f (m2)] / [m2 −m1].

3.2 The Impact of Intra-Team Competition

We assume next that B = 0 and analyze the impact of simultaneous intra-team compe-

tition on the grand contest. The equilibrium conditions (3) imply that

A

m1

X1 −
m1 − 1

m1

C1
(X1 +X2)

2

X1

=
A

m2

X2 −
m2 − 1

m2

C2
(X1 +X2)

2

X2

(7)

which may be rewritten as

0 = X3
1

{
m1 − 1

m1

C1 z
3 +

[
A

m2

+ 2
m1 − 1

m1

C1 −
m2 − 1

m2

C2

]
z2

−
[
A

m1

+ 2
m2 − 1

m2

C2 −
m1 − 1

m1

C1

]
z − m2 − 1

m2

C2

} (8)

where z = X2/X1. The polynomial on the RHS has exactly one positive real-valued root

under the assumptions made, which we denote by z∗∗ = z∗∗ (A,C1, C2,m1,m2) henceforth

(we omit the arguments for the sake of readability).6 From this we immediately obtain

the following result.

Lemma 2. Absent inter-team conflict (B = 0), the joint contest has a unique symmetric-

within-teams Nash equilibrium given by x∗∗gi = X∗∗
g /mg for each g ∈ {1, 2} and each i ∈ g

where

X∗∗
1 =

m1 − 1

m1

A

(1 + z∗∗)2
+

z∗∗

(1 + z∗∗)2
A +

m1 − 1

m1
C1

and X∗∗
2 = z∗∗ ·X∗∗

1 .

The properties of z∗∗ yield the following additional results.

Proposition 2. In the symmetric-within-teams Nash equilibrium of the joint contest with-

out inter-team conflict:

(a) Members from the smaller team have the higher chance of winning in the grand con-

test if and only if C1/C2 >
(

m1

m2

)2
m2−1
m1−1

or equivalently if C1/m1 >
m1

m2

m2−1
m1−1

(C2/m2).

6The explicit expression for z∗∗ (A,C1, C2,m1,m2) is available from the authors upon request.
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Accordingly, ceteris paribus, the prize C2 in the intra-team contest required to main-

tain parity in the grand contest increases (approximatively linearly) in the team size

m2.

(b) The smaller team provides the larger team effort, if and only if C1 >
m1

m2

m2−1
m1−1

C2 +
m2 − m1

m2 (m1−1)
A
4

.

Again, the intuition for the results is simple. The intra-team contest is more severe in

larger teams and expected winnings for each dollar prize money are lower. As before these

incentives spill over to the grand contest, lowering the chances of winning for members

of the larger team. In this case, however, it is likely that the prize money for the intra-

team contest (intra-team prize henceforth) is determined independently by each team.

Each team (or the corresponding contest designer) may therefore increase the prize in the

inter-team contest sufficiently to avoid the disadvantage for its members. The proposition

makes these conditions explicit. We discuss them in turn below.

Consider first the players’ chances of winning the grand contest. As shown in the first

part of Proposition 2, a member of the small team has a higher chance of winning the

grand contest than a member of the large team, if the prize in the small team’s intra-team

contest is sufficiently large compared to the prize in the large team’s intra-team contest.

Indeed, the prize per capita must be slightly larger in the small than in the large team, but

the difference vanishes as the small (large) team’s size increases (decreases). For example

with m1 = 11, it suffices that the prize per capita in the intra-team contest is 10 percent

larger in the small than in the large team to give memebr of the small team a better

chance in the grand contest.

We now turn to the team efforts in equilibrium. Notice that the team effort directly

translates into the chance that any member from the team wins the grand contest, and

may therefore be an important objective for the designer of the intra-team contest. Absent

the intra-team contests, the smaller team provides a lower team effort simply due to its

size. Accordingly, the smaller team needs to set the intra-team prize sufficiently high to

overcome this disadvantage: The lower bound for C1 is strictly positive even if C2 = 0.

Furthermore, the lower bound is decreasing in the smaller team’s size, increasing in the

larger team’s size, and approaches a limit equal to A/ [4 · (m1 − 1)] as m2 grows large.

Hence, regardless of the team sizes, setting up an additional intra-team contest with a prize

of at least one quarter of the grand prize is sufficient to outweigh the initial disadvantage

of the smaller team.

As a consequence, to achieve a higher equilibrium team effort than the small team, the

large team must also set up an intra-team contest whose prize must in general be compa-

rable to the prize offered in the small team’s intra-team contest. This holds especially, if

both teams are large. For instance, for two teams with 50 and 100 players, respectively,
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the large team must offer at least 98 percent of the small team’s prize money in its own

intra-team contest. The smaller (larger) the size of the small (large) team, the lower this

prize money may be. Regardless of the team sizes, the large team must offer at least

C1/2− A/8 .

3.3 The Joint Impact of Inter- and Intra-Team Competition

The above sections show that a simultaneous inter- or intra-team competition each lowers

the chances of winning in the grand contest for members of the larger team. We finally

show that the combination of the two may imply that the larger team must spend more

prize money per capita in the intra-team contest to guarantee parity for its members

in the grand contest. To see this, consider the equilibrium conditions (3) for g = 1, 2.

Combining the two yields

A

m1

X1 − B1 X2 − Ĉ1
(X1 +X2)

2

X1

=
A

m2

X2 − B2 X1 − Ĉ2
(X1 +X2)

2

X2

where Bg = f (mg) · B and Ĉg = [(mg − 1) /mg] · Cg for g = 1, 2. Multiplying with X1

and X2 and rearranging terms yields

0 = X3
1

{
Ĉ1 z

3 +

[
A

m2
+ B1 + 2 Ĉ1 − Ĉ2

]
z2 −

[
A

m1
+ B2 + 2 Ĉ2 − Ĉ1

]
z − Ĉ2

}
(9)

where z = X2/X1. Again, the equation has a unique positive solution which we denote

henceforth by z∗∗∗ ≡ z∗∗∗ (A,B,C1, C2,m1,m2; f) (we omit the arguments for the sake of

readability).7 We obtain the following extension of Lemma 2.

Lemma 3. The joint contest has a unique symmetric-within-teams Nash equilibrium given

by x∗∗∗gi = X∗∗∗
g /mg for each g ∈ {1, 2} and each i ∈ g where

X∗∗∗
1 =

m1−1
m1

+ z∗∗∗

(1 + z∗∗∗)2
A +

z∗∗∗

(1 + z∗∗∗)2
f (m1) B +

m1 − 1

m1

C1

and X∗∗
2 = z∗∗∗ ·X∗∗∗

1 .

Notice that both the free-riding problem in the inter-team contest and the more severe

competition in the intra-team contest negatively affect the large team members’ chances

of winning in the grand contest. As before, assuming that each team has the freedom

to set the prize in the intra-team contest offers a potential remedy. The properties of

z∗∗∗ then imply that the large team may need to spend more prize money per capita to

maintain its members’ chances of winning in the grand contest.

7The explicit expression is available from the authors upon request.
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Proposition 3. In the symmetric-within-teams Nash equilibrium of the joint contest:

(a) Members from the smaller team have the higher chance of winning in the grand

contest if and only if the prizes per capita in the intra-group contest satisfy

C1

m1

>
m1

m2

m2 − 1

m1 − 1

C2

m2

− m1

m1 − 1

m2 f (m1) − m1 f (m2)

(m1 + m2)
2 B.

Accordingly, the larger team must offer a higher prize per capita in the intra-team

contest than the small team to guarantee its members equal chances of winning in

the grand contest, if

C1

m1

<
m1 m2

(m1 + m2)
2

m2 f (m1) − m1 f (m2)

m2 − m1

B. (10)

(b) The smaller team provides the larger team effort, if and only if

C1 >
m1

m2

m2 − 1

m1 − 1
C2 +

m2 −m1

(m1 − 1) m2

A

4
− [f (m1) − f (m2)] B.

The most important additional insight from considering the combination of all three

contests is that the effects of the inter- and the intra-team contests on the outcome of

the grand contest reinforce each other. Accordingly, the advantage of the small team

is larger, and the large team may need to spend more prize money per capita in the

intra-team contest than the small team to counteract this effect. This holds whenever

the prize in the small team’s intra-team contest is not too large. The upper bound, given

in equation (eq:MaxSmallPrize), is increasing in the prize for the inter-team contest, B,

and it increases, as the difference between f (m1) and f (m2) gets larger. Hence, the

more important the inter-team contest and the more severe the conflict which ensues over

winnings in the inter-team contest, the more the large team needs to offer in the intra-

team contest to maintain its members’ chances in the grand contest. In addition, we also

find that the upper bound on C1/m1 increases (decreases) in the size of the small (large)

team for the examples f(m) = 1, f(m) = 1/m, and f(m) = 1/m2.

Finally, in the presence of an inter-team contest, the small team needs to spend less

money in the intra-team contest to achieve a higher team effort in equilibrium than the

large team.

4 Experimental Design and Procedures

We test the theoretical predictions derived in Section 3 with the help of an experiment.

Indeed, various factors not accounted for in the model may affect behavior and thus coun-

teract the effects identified above. For example, subjects may care mainly about the grand
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contest which limits the degree to which properties of the inter- or intra-team contest(s)

spill over to the grand contest. And subjects in the larger team may feel an entitlement

to win in the grand contest and thus compete more fiercely. An experiment enables us

to investigate such potential deviations from the theory in a controlled environment. In

this section, we describe the design and procedures of the experiment. The experimental

results are presented in Section 5.

4.1 General Features

Our experiment consists of two treatments and six sessions. In each session, subjects

play 20 repetitions (henceforth rounds) of a six-player Tullock contest overlapping with

either an inter-team contest (treatment BETWEEN ) or an intra-team contest (treatment

WITHIN ). The two teams constituting the group comprise two and four subjects, respec-

tively. Throughout rounds, we fix whether a subject is assigned to the small or the large

team. In contrast, we randomly assign the subjects to the groups in each round to avoid

repeated-game effects.

In each round, each subject makes a single effort choice which simultaneously deter-

mines her chances of winning in the grand contest and either the inter- or the intra-team

contest. To do so, each subjects is endowed with E = 400 points in each round. The

prizes for the contests are selected such that the predicted efforts for members of the small

and the large team are sufficiently different. Concretely, all subjects compete for a prize

of size A = 600 points in the grand contest. Subjects in treatment BETWEEN addition-

ally compete in an inter-team contest for a prize of size B = 300 points which is split

equally among the members of the winning team. Each subject in treatment WITHIN

additionally competes with her team members in an intra-team contest for a prize of size

Ct = 300 points where t ∈ {A,B}, mA = 2, and mB = 4.

The experiment enables us to control for factors potentially influencing subjects’ effort

choices. One factor that has been found to considerably affect behavior in contests is risk

aversion. We therefore measure risk preferences at the beginning of the experiment.8

We employ a multiple price list format (see e.g. Holt and Laury, 2002). Each subject is

presented with a table of ten ordered decisions between a safe amount of 180 points and a

risky lottery which offers either 400 points or 0 points. Across the table, the likelihood of

receiving the 400 points increases from 0.1 in the first row to 1.0 in the last row in steps of

0.1 (hence, the probability of receiving the 400 points in row k equals k/10).9 Subjects are

required to select one of the options in each row (we did not allow for indifference). For

a subject who maximizes expected utility and has a strictly increasing utility function,

8Obviously, this design feature relies on the assumption that risk-preferences are not context-
dependent.

9In the experimental instructions, probabilities are explained in terms of throws of a ten-sided dice.
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there exists a unique row such that the subject chooses the risky lottery in this and all

subsequent rows and the safe amount in all previous rows. The subject’s risk preferences

may thus be summarized by the number of times she chooses the safe lottery.

In addition to risk preferences we collect several demographics (age, gender, academic

major, and mother tongue) as well as self-assessments of certain characteristics with the

help of a questionnaire at the end of each session.10

4.2 Procedures

Three sessions were conducted for each treatment. The sessions took place at the ex-

perimental laboratory of the University of Bamberg in July and November 2018. Stu-

dents from the University of Bamberg were invited using the ORSEE recruitment system

(Greiner, 2015). 18 subjects participated in each session. The experiment was pro-

grammed in zTree (Fischbacher, 2007).

Each experimental session was partitioned into two parts. Upon arrival at the lab,

subjects were randomly assigned to cubicles that did not allow for any visual commu-

nication between them. Subjects were immediately asked to read the basic instructions

provided in their cubicle which informed subjects about the general rules for behaviour

in the laboratory, that there were going to be two parts, and that the corresponding

instructions were going to be distributed at the beginning of each part.11

In the first part, we elicited subjects risk preferences using the multiple price list

format as described above. Subjects first received paper instructions and were given time

to read them at their own pace. Instructions were then read aloud and subjects were

permitted to ask questions. Afterwards, each subject was presented with the table of ten

decisions on the computer screen and asked to submit her choices via the computer. We

made clear to subjects that only one of the ten decisions would be payoff-relevant, and

that it would be selected by a random draw at the end of the experiment.

The contests were run in the second part of the experiment. Paper instructions for

the second part were distributed once all subjects had submitted their ten decisions in

the first part. Subjects were again given time to read them at their own pace before the

instructions were read aloud. Instructions for part 2 were followed by a short quiz to check

subjects’ understanding. The experimenters controlled subjects’ answers and explained

mistakes in private if necessary. Afterwards, the 20 rounds of part 2 were run. Subjects

10Concretely, we elicit self-assessments on risk, generosity, ambition, frequency of participation in
games of chance and board games, importance of winning either contest, and importance of the final
payment on a 7 point Likert scale. In addition, we ask subjects which team they think is advantaged in
this experiment (small, large, or none), and which contest affected their effort choices the most (grand
contest, team contest, or both equally).

11The experimental instructions were originally given in German. They are provided in a separate
online appendix which includes also an English translation as well as the screenshots of the computer-
assisted experiment.
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BETWEEN WITHIN
Team Size Small Large Small Large
Individual Efforts (Points) 150 75 168 134
Team Efforts (Points) 300 300 336 537
Pr(Win): Grand Contest 0.250 0.125 0.192 0.153
Pr(Win): Inter-Team Contest 0.500 0.500 — —
Pr(Win): Intra-Team Contest — — 0.500 0.250
Expected Payoff (Points) 550 475 497 433

Table 1 Predictions for the laboratory games.

submitted their efforts using the computer. To assist them in their decision-making, the

computer interface also offered subjects the opportunity to enter a fictitious effort for

themselves as well as fictitious average efforts for the other members of their own team

and the members of the other team. The interface then displayed the resulting likelihoods

of winning and losing each of the two contests and the corresponding number of points

at the end of the round. We paid only two randomly selected rounds for the second part,

one round each from the first and the last ten rounds.

Upon completion of the second part, one of the subjects was selected to role a ten-sided

dice four times. The first and second throw determined, respectively, the payoff-relevant

row and the payoff of the corresponding risky lottery in the first part of the experiment.

The third and fourth throw determined the payoff-relevant rounds in the second part of

the experiment. Subjects then filled out the questionnaire, retrieved their earnings in

private and left.

Sessions lasted 90 minutes on average. Points were converted into cash at the rate 1

point = e 0.01 and added to a show-up fee of e 4.00. The average payment was e 15.02

in treatment BETWEEN, and e 14.95 in treatment WITHIN. Overall, we collected 2,160

effort choices submitted by 108 subjects.

4.3 Hypotheses

Table 1 presents predicted efforts, winning probabilities, and expected payoffs by team

size for the two games played, respectively, in treatment BETWEEN and WITHIN. From

these results, we derive the following hypotheses:

Hypothesis 1. In both treatments, members of the smaller team invest more than mem-

bers of the larger team. The difference is larger in treatment BETWEEN.

Hypothesis 2. The team effort of the smaller team is smaller than the team effort of the

larger team in treatment WITHIN, but not in treatment BETWEEN.

Hypothesis 3. In both treatments, members of the smaller team have a better chance of

winning the grand contest and achieve a higher payoff than members of the larger team.

13
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Figure 1 Average efforts across rounds by treatment and role.

5 Experimental Results

Figure 1 plots average individual efforts across rounds where the left (right) panel con-

tains the results for treatment BETWEEN (WITHIN ), and in each panel, the solid blue

(orange) line depicts results for members of the small (large) team.12 We also include

dashed lines (of corresponding color) to highlight the theoretical predictions.

We find serious overbidding in treatment BETWEEN. Across all (the last ten) rounds,

members of the small team invest on average 192 (196) points and thus significantly more

than the equilibrium prediction of 150 points (one-sided t-test, p < 0.001). Similarly,

members of the large team invest on average 136 (124) points across all (the last ten)

rounds, significantly more than the predicted 75 points (one-sided t-test, p < 0.001).

In contrast, average efforts in treatment WITHIN are not significantly larger than the

equilibrium prediction for members of both teams when considering the last ten rounds

(177 vs. 168 and 139 vs. 134 for the small and large team, respectively), and only

marginally so when considering all rounds (177 vs. 168, p = 0.069 for the small team;

144 vs. 134, p = 0.012 for the large team). Accordingly, we (only) partially confirm the

recurrent finding in the literature that subjects overbid in contest experiments.

Turning to our first hypothesis, figure 1 suggests that subjects in the small team

invest more than subjects in the large team in both treatments. To statistically test this

impression, we estimate random-effect Tobit models of effort choices.13 We include as

explanatory variables a dummy for the large team, a dummy for the first ten rounds,

and the interaction between the two. In further specifications, we also control for the

number of safe choices in the first part of the experiment as well as demographics and

self-assessments elicited through the questionnaire. The results are presented in Table 2.

12Recall that subjects consistently belong either to the small or to the large team across rounds.
13There are several choices at the boundary of the choice set. We obtain similar results when running

standard Tobit regression with standard errors clustered at the session level.
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Treatment BETWEEN WITHIN
Model (1) (2) (3) (4) (5) (6)

Constant 197.55∗∗∗ 334.72∗∗∗ 282.17∗∗∗ 174.69∗∗∗ 288.47∗∗∗ 189.17∗

(25.42) (64.69) (55.16) (26.21) (62.87) (97.11)
Large -81.13∗∗∗ -88.15∗∗∗ -112.80∗∗∗ -46.86 -56.11∗ 6.90

(31.18) (29.97) (24.96) (32.03) (31.37) (30.88)
First10 -12.40 -12.38 -12.42 2.76 2.75 2.81

(12.06) (12.06) (12.07) (12.45) (12.45) (12.45)
First10 × Large 41.91∗∗∗ 41.86∗∗∗ 42.00∗∗∗ 12.49 12.52 12.54

(14.85) (14.86) (14.87) (15.16) (15.16) (15.16)
NbS -24.93∗∗ -5.02 -20.34∗∗ -11.61

(10.89) (7.24) (10.28) (9.34)

Further Controls No No Yes No No Yes
Freq. Gambling 15.32∗∗ 7.00

(7.47) (10.12)
Generosity 16.93∗∗∗ -4.08

(6.49) (10.44)
Imp. Payment -26.43∗∗∗ -2.87

(6.96) (9.81)
Imp. GC 25.88∗∗∗ 35.05∗∗∗

(7.30) (10.97)

Log-likelihood -5,552.3 -5,549.8 -5,516.9 -5,499.3 -5,497.4 -5,478.9
Wald χ2 16.61∗∗∗ 22.21∗∗∗ 152.02∗∗∗ 4.85 8.88∗ 62.99∗∗∗

Notes: There are 137 (152) left-censored, 859 (849) uncensored, and 84 (79) right-censored observations
in models 1–3 (4–6). Standard errors in parentheses. Significance levels: ∗∗∗ (1%), ∗∗ (5%), ∗ (10%).
Continuous demographic variables (age, number of siblings, grade in math) and questionnaire variables
measured on a Likert scale are normalized as differences from the median.

Table 2 Random-effects Tobit models for individual effort choices.

Coefficients of the questionnaire variables are only shown, if they are significantly different

from zero in at least one of the treatments.

The results for treatment BETWEEN clearly show that members of the large team

invest significantly less than members of the small team. In contrast, the difference is

marginally significant in treatment WITHIN, and disappears completely once we control

for demographics and other results from the questionnaire. Additional findings reveal

that the latter result (or lack thereof) is mainly driven by certain subgroups of subjects.

In particular, students of the social sciences and humanities invest significantly more as

members of the large team than as members of the small team. We summarize these

findings as follows:

Result 1. In line with the theoretical predictions, members of the small team invest sig-

nificantly more than members of the large team in treatment BETWEEN. In contrast, the

result only holds for an (identifiable) subgroup of the subjects in treatment WITHIN.

The results from the Tobit regressions also reveal distinct dynamics of effort choices in

the two treatments and for the two roles. In treatment BETWEEN, members of the small
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BETWEEN WITHIN
Team Size Small Large Small Large
Average Individual Efforts (Points) 192.2 135.8 177.0 144.1
Average Team Efforts (Points) 384.3 543.2 354.0 576.3
Theoret. Pr(Win): Grand Contest 0.209 0.146 0.198 0.151
Empirical Pr(Win): Grand Contest 0.228 0.136 0.208 0.146
Theoret. Pr(Win): Inter-Team Contest 0.417 0.583 — —
Empirical Pr(Win): Inter-Team Contest 0.400 0.600 — —
Realized Payoffs: Part 2 e 9.56 e 8.34 e 10.05 e 8.46
Realized Payoffs: Overall e 11.64 e 10.70 e 11.89 e 10.48

Table 3 Experimental results by treatment and team size.

team slightly increase their efforts over time, and members of the large team substantially

and significantly decrease their efforts over time. As a consequence, the difference between

small and large teams widens over time. In treatment WITHIN, only members of the large

team slightly decrease their efforts over time whereas members of the small team keep

investing similar amounts across rounds.

We now turn to team efforts and our second hypothesis. In treatment BETWEEN, we

find that the average team effort of the small team equals 384 points and is thus substan-

tially smaller than the average team effort of the large team (543 points). Similarly, the

average team effort of the small team in treatment WITHIN equals 354 points compared

to an average team effort of the large team equal to 576 points. These results are in line

with theoretical predictions for the latter but not the former treatment. To summarize:

Result 2. In both treatments, the team effort of the small team is substantially smaller

than the team effort of the large team.

The average effort choices summarized above have serious consequences for probabil-

ities of winning the grand contest, and earnings. Following table 1, table 3 provides an

overview of the experimental results for the last ten rounds. The first two rows restate the

results regarding individual and team efforts we discussed above. The third row presents

the average probabilities of winning the grand contest calculated from the effort choices

of our subjects. These results reflect the findings for effort choices: In both treatments,

members of the small team are more likely to win the grand contest. The fourth row

shows that the empirical frequencies calculated from the actually observed contest out-

comes exhibit a similar pattern. In treatment BETWEEN (WITHIN ), the grand contest

was won 82 (75) times by a member of the small team and 98 (105) times by a member

of the large team. Dividing these numbers by the total number of contests and the team

size yields the entries in the fourth row of the table. A similar exercise for the inter-team

contest in treatment BETWEEN reveals that the members of the small team were less

successful in this contest than members of the large team. These results are presented in
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the fifth and sixth row.14 Finally, the last two rows reveal the payoff consequences of the

contest design. In both treatments, subjects assigned to the small teams earn about one

euro more than subjects assigned to the large teams.

We summarize the consequences for our final two hypotheses in the following result:

Result 3. In both treatments, members of the smaller team win the grand contest more

often than members of the larger team, and they achieve higher earnings.

6 Discussion and Conclusion

In many everyday situations such as at the workplace or in sports competitions, subjects

are simultaneously involved in multiple contests whose outcome depends on the same

effort choice of an individual. This paper shows that such overlapping contests adversely

affect the chances of winning in the grand contest for members of larger teams. First,

the free-riding problem is more severe in an additional contest between teams. Second,

competition in an additional intra-team contest is tougher in larger teams. Both effects

spill over on the grand contest with the given interdependent incentive structure.

The results of the paper have important consequences for the design of overlapping

contests, and also hierarchies. In particular, if an intra-team contest is desired but not

supposed to affect chances of winning in the grand contest, prizes in each team should be

set proportional to the team size. In addition, an organization may insist that winnings

in the inter-team contest must be contested in each team to lower the impact of the

inter-team contest on the grand contest.

The paper offers several avenues for future research. One question is whether, in the

presence of intra-team contests, larger teams anticipate the potential disadvantage and

set the prize for the intra-team contest sufficiently high to maintain the chances of their

members. Ultimately, this yields a meta-game between teams in which each team attempts

to maximize the chances of its members by choosing the optimal prize for the intra-team

contest. It would be interesting to study the outcome of this game both theoretically and

experimentally.

In addition, our findings also raise empirical questions to be answered in the field. In

particular, one may ask whether, controlling for all other factors, employees in smaller

units of firms have a better chance of being promoted.

14Obviously, we cannot repeat this exercise for the intra-team contest.
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Appendix. Proofs

Proof of Lemma 1. Let z1 ≡ m2 A+m1 m2 f(m2) B
m1 A+m1 m2 f(m1) B

. Plugging (4) into (5) yields

A

m1

X1 − f (m1) B z X1 = (1 + z) X1 A − (1 + z)2 X2
1

and thus

(1 + z)X1 = A +
z

1 + z
f (m1) B −

1

1 + z

A

m1

The desired expressions for X∗
1 and X∗

2 = z ·X∗
1 immediately follow. To prove existence

of the equilibrium, we show that (i) X∗
g > 0 and (ii) Eπgi

(
X∗

g/mg, X
∗
h/mh

)
> 0 where

h 6= g. The first condition is easily seen since

(1 + z) A + z f (m1) B − A/m1 =
m1 − 1

m1

A + z A + z f (m1) B > 0.

To prove (ii), notice that

Eπgi (Xg/mg, Xh/mh) =
Xg

Xg +Xh

A

mg

+
Xg

Xg +Xh

f (mg) B −
Xg

mg

=
1

mg

Xg

Xg +Xh

[A + mg f (mg) B − (Xg +Xh)] .

Hence, it suffices to show that

A + mg f (mg) B > Xg + Xh = A +
m1 m2 f (m1) f (m2) B

2 − A2

(m1 +m2) A + m1 m2 [f (m1) + f (m2)] B

which is straightforward.

Proof of Corollary 1. Ad (i): From equation (6) we obtain that total equilibrium effort

is given by

X∗ = A +
m1 m2 B1 B2 − A2

(m1 +m2) A + m1 m2 (B1 +B2)
.

Selecting A = (1− θ) ·R and B = θ ·R for 0 ≤ θ ≤ 1 and rewriting yields

X∗ =
m1 m2 f1 f2 θ

2 + (m1 +m2 − 1) (1− θ)2 + m1 m2 (f1 + f2) θ (1− θ)
m1 m2 (f1 + f2) θ + (m1 +m2) (1− θ)

where fg = f (mg). The results follows because the expression is strictly decreasing in

θ. To see this, differentiate with respect to θ and note that the resulting denominator

is positive everywhere whereas the numerator is a quadratic function in θ which has a

18



positive squared term and is negative at θ = 0 and θ = 1.

Ad (ii): Obviously, B = 0 yields x∗gi = n−1
n2 A and thus x∗gi/X

∗ = 1/n for each g and i.

On the other hand, equation (5) implies that x∗2i/x
∗
1j < 1 and thus x∗2i/X

∗ < 1/n for each

player i in team 2.

Ad (iii): Equation (5) implies that X∗
2 = X∗

1 , if and only if f (m1) > f (m2) and

(m2 −m1) A = m1 m2 [f (m1)− f (m2)] B. If f (m1) = f (m2), the RHS of equa-

tion (5) is strictly larger than one and decreasing in B. Hence, the optimal contest

satisfies A = 0 and B > 0.

Proof of Lemma 2. We start by showing that equation (8) has a single positive solution.

This follows since (i) the polynomial obtains a maximum at zmax < 0 or is strictly in-

creasing everywhere, and (ii) the polynomial is strictly negative at z = 0 and grows

unboundedly as z → +∞. The explicit expression for z∗∗ has been obtained using Math-

ematica.

Turning to equilibrium group efforts, we replace X∗∗
2 = z∗∗ ·X∗∗

1 in equation (2) with

g = 1 and B = 0 to obtain

(1 + z∗∗) X1 − 1
m1

X1

(1 + z∗∗)2 X2
1

A +
m1 − 1

m1

X1

X2
1

C1 = 1.

The expression for X∗∗
1 easily follows. Obviously, z∗∗ > 0 implies X∗∗

1 > 0. Moreover,

Eπ1i (X∗∗
1 /m1, X

∗∗
2 /m2) =

X∗∗
1 /m1

(1 + z∗∗) X∗∗
1

A +
C1

m1

− X∗∗
1

m1

implies that Eπ1i (X∗∗
1 /m1, X

∗∗
2 /m2) > 0, if and only if

1

1 + z∗∗
A + C1 > X∗∗

1 =

[
m1 − 1

m1

1

(1 + z∗∗)2
+

z∗∗

(1 + z∗∗)2

]
;A +

m1 − 1

m1

C1

which follows from (m1 − 1) /m1 < 1. Similarly, (2) for g = 2 and B = 0 yields

X∗∗
2 =

m2 − 1

m2

A

(1 + v∗∗)2
+

v∗∗

(1 + v∗∗)2
A +

m2 − 1

m2

C2

where v∗∗ = 1/z∗∗. Furthermore, Eπ2i (X∗∗
1 /m1, X

∗∗
2 /m2) > 0, if and only if

1

1 + v∗∗
A + C1 > X∗

2
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which follows from (m2 − 1) /m2 < 1.

Proof of Proposition 2. Ad. (i): A member from the smaller team has a better chance

of winning in the grand contest than a member from the larger team, if she provides the

larger effort. In equilibrium, this happens, if X∗
1/m1 > X∗

2/m2, i.e. if z∗∗ < m2/m1.

This is equivalent to requiring that the polynomial on the RHS of equation (8) is strictly

positive at z = m2/m1. The result follows by re-arranging terms.

Ad. (ii): The small team provides a larger equilibrium team effort than the large team,

if X∗
1 > X∗

2 which is equivalent to requiring that z∗∗ < 1, or that the polynomial on the

RHS of equation (8) is strictly positive at z = 1. Re-arranging terms yields the result.

Proof of Lemma 3. The proof is similar to the proof of Proposition 2. First, equation (9)

has a single positive solution since (i) the polynomial obtains a maximum at zmax < 0 or

is strictly increasing everywhere, and (ii) the polynomial is strictly negative at z = 0 and

grows unboundedly as z → +∞. The explicit expression for z∗∗∗ has been obtained using

Mathematica.

Plugging x∗∗∗2 = z∗∗∗ ·X∗∗∗
1 into (2) for g = 1 yields

(1 + z∗∗∗) X1 − 1
m1

X1

(1 + z∗∗∗)2 X2
1

A +
z∗∗∗ X∗∗∗

1

(1 + z∗∗∗)2 X2
1

f (m1) B +
m1 − 1

m1

X1

X2
1

C1 = 1

and thus immediately the result for X∗∗∗
1 . Furthermore,

Eπ1i (X∗∗∗
1 /m1, X

∗∗∗
2 /m2) =

X∗∗∗
1 /m1

(1 + z∗∗∗) X∗∗∗
1

A +
1

1 + z∗∗∗
f (m1) B +

C1

m1

− X∗∗∗
1

m1

implies that Eπ1i (X∗∗∗
1 /m1, X

∗∗∗
2 /m2) > 0, if and only if

1

1 + z∗∗∗
A

m1

+
1

1 + z∗∗∗
f (m1) B + +

C1

m1

>X∗∗∗
1 /m1 =

m1−1
m1

+ z∗∗∗

(1 + z∗∗∗)2
A

m1

+
z∗∗∗

(1 + z∗∗∗)2
f (m1) B +

m1 − 1

m1

C1

m1

which follows from (m1 − 1) /m1 < 1. The proof for g = 2 is similar using v∗∗∗ = 1/z∗∗∗

and thus omitted.
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Proof of Proposition 3. The proof is similar to the proof of Propostion 2. In particular,

the first (respectively second) part follows from the requirement that the polynomial on

the RHS of equation (9) is strictly positive at z = m2/m1 (resp. z = 1).
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