ECONSTOR

A Service of 2BW

Conference Paper
 The Perks of Being in the Smaller Team: Incentives in Overlapping Contests

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie und Marktwirtschaft - Session: Experimental Economics I, No. A06-V2

Provided in Cooperation with:

Verein für Socialpolitik / German Economic Association

Suggested Citation: March, Christoph; Sahm, Marco (2019) : The Perks of Being in the Smaller Team: Incentives in Overlapping Contests, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie und Marktwirtschaft - Session: Experimental Economics I, No. A06-V2, ZBW - Leibniz-Informationszentrum Wirtschaft, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/203509

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

The Perks of Being in the Smaller Team: Incentives in Overlapping Contests

Christoph March ${ }^{\ddagger}$
Marco Sahm**

This version: January 6, 2019

Abstract

We investigate overlapping contests in multi-divisional organizations in which an individual's effort simultaneously determines the outcome of several contests on different hierarchical levels. We show that individuals in larger units are disadvantaged in the grand (organization-wide) contest for two reasons: First, the incentive to freeride is larger in inter-divisional contests. Second, competition in the intra-divisional contest is fiercer. Both effects lower the marginal utility of effort provision. We test our model in a laboratory experiment and confirm its main predictions. Our results have important consequences for the provision of incentives in organizations and the design of sports competitions.

Keywords: Contest; Rent-seeking; Hierarchy; Teams; Experiment

JEL classification: C72, C92, D72

[^0]
1 Introduction

Contests are situations in which individuals compete for a prize by spending non-refundable effort which increases the likelihood of winning but does not guarantee victory (see e.g. Konrad, 2009). In this sense, many everyday situations may be described as a contest. Indeed, individuals are usually involved in several contests at once. Some of these contests may overlap meaning that they take place on different levels of a given hierarchy and the same effort is relevant (to some extent) for the outcome of each of these contests.

Take sports as a classical example. In the Olympic games, in addition to individual victories, media attention is frequently drawn to the medal table which counts the success of the different nations. Similarly, the Tour de France honors the best team in addition to the best cyclists. In these situations, athletes simultaneously face a grand contest and an inter-team contest between teams partitioning the field. In addition, an athlete's success relative to the other athletes of the same nation may determine her chances of receiving funding in the next season or taking part in a subsequent competition. ${ }^{1}$

Similar situations arise at the workplace where workers may not only struggle to be promoted within the organization, but may simultaneously fight for relative standing within their own division or standing and funding of the division within the entire organization. It is then not always possible to distinguish tasks most relevant for the organization-wide contest from tasks more relevant for the inter- or intra-divisional contests.

In this paper, we investigate overlapping contests in which an individual's effort simultaneously determines the outcome of several contests taking place at different levels of a given hierarchy. We show that individuals in larger divisions have a disadvantage in the organization-wide contest. This result is driven by two effects: First, larger divisions induce larger incentives to free-ride in inter-divisional contests (see e.g. Konrad, 2009). Second, the intra-divisional contest is fiercer the larger the division. Both effects lower the marginal utility of effort provision. Though the effects are well-known per se, this paper is, to the best of our knowledge, the first to investigate their impact when intra- or inter-divisional contests overlap with an organization-wide contest.

Our results have important implications for contest design: First, maintaining similar chances in the organization-wide contest requires the prize in the intra-divisional contest to rise in the size of the division, and larger divisions may be forced to spend more per capita than smaller divisions. Second, assuming that larger divisions are more likely to involve the person with the highest talent implies that introducing an additional interdivisional contest may be used to increase competitive balance in the organization-wide contest. In contrast, a contest designer interested in effort provision should devote all resources to the organization-wide contest.

[^1]We complement our theoretical analysis with a laboratory experiment to investigate the predictive power of the model. In our experimental setup, subjects are assigned to groups of six players and divided in two teams of two and four players, respectively. In each round each subject simultaneously competes in a group-wide (grand) Tullock contest and either an inter-team contest with winnings divided equally among the members of the winning team, or an intra-team contest. While groups are randomly formed in each repetition, subjects are consistently assigned either to the small or to the large team. Given the prizes we choose for the contests, our model predicts that subjects in the smaller team invest twice (1.25 times) as much as subjects in the larger team and are thus twice (1.25 times) as likely to win, if they simultaneously face a grand contest and an inter-team (intra-team) contest. Though we find, like many other studies, that subjects substantially overinvest, members of the small team invest 42% (23%) more than members of the large team, if simultaneously facing the grand and the inter-team (intra-team) contest. As a consequence, subjects assigned to the small team achieve substantially higher earnings in both treatments.

The paper relates to a wide and growing theoretical literature starting with Tullock (1980). Nitzan (1991) was the first to study contests between teams and highlight the free-riding problem. Several other papers have extended this literature by investigating the combination of an inter-team contest with the corresponding intra-team contest which ensues in the winning team over the realized winnings. Most papers study the sequential version of this problem (see e.g. Katz and Tokatlidu, 1996, Wärneryd, 1998, Inderst et al., 2007). Recently, Münster (2007) and Münster and Staal (2012), among others, have started investigating the simultaneous inter- and intra-team contest for a given prize where subjects choose how to distribute their effort between the inter- and the intra-team contest and a production task. In contrast, the focus of this paper is on simultaneous contests with separate prizes whose outcomes are determined by a single effort choice for each player. Moreover, we focus on the combination of a grand contest with inter- and intra-team contests.

The paper also contributes to a large and growing experimental literature on contests between individuals (see Dechenaux et al., 2015, Sheremeta, 2013, for recent surveys) and between teams (see Sheremeta, 2018). In particular, Ke et al. (2013) and Ke et al. (2015) study the interaction of a team contest and a subsequent individual contest within the winning team. To the best of our knowledge, no experimental study has yet tested overlapping contests in which the same effort simultaneously determines the outcome.

Finally, our results may contribute to the literature on internal labor markets and promotion determinants (see Lazear, 1999, 2018).

The paper is organized as follows: The general model is presented in Section 2 and analyzed in Section 3. The experimental setup is introduced in Section 4. Section 5
contains the experimental results. A discussion and conclusion is provided in Section 6. The appendix contains the proofs and complementary results.

2 Model

We consider a winner-take-all contest between n players divided into 2 teams $g=1,2$. Team g comprises m_{g} players where $m_{2}=n-m_{1}$ players and we assume that $m_{2}>m_{1} \geq$ 2. All players compete in a grand contest for the prize $A>0$. In addition, players may compete in an inter-team contest for prize $B \geq 0$ and in intra-team contests for prizes $C_{1} \geq 0$ and $C_{2} \geq 0$, respectively.

The outcome of all contests is assumed to be simultaneously determined by a single effort choice of each player. Each player has a sufficiently large initial wealth endowment $e \in \mathbb{R}_{+}$. Let $x_{g i} \geq 0$ denote the effort chosen by player i in team g and let $\boldsymbol{x}_{-g i}$ denote the vector of efforts of all other players. To keep the analysis tractable, we assume that chances of winning are given by the contest-success function (CSF) proposed by Tullock $(1980),{ }^{2}$ effort costs are linear, and players are risk-neutral. Accordingly, the expected payoff of player i in team g is given by

$$
\begin{equation*}
E \pi_{g i}\left(x_{g i}, \boldsymbol{x}_{-g i}\right):=\frac{x_{g i}}{\sum_{h} \sum_{j} x_{h j}} A+\frac{\sum_{j} x_{g j}}{\sum_{h} \sum_{j} x_{h j}} f\left(m_{g}\right) B+\frac{x_{g i}}{\sum_{j} x_{g j}} C_{g}-x_{g i} \tag{1}
\end{equation*}
$$

where the fractions are assumed equal to $1 / 2$ if all efforts in the denominator are zero. The function $f: \mathbb{N} \rightarrow[0,1]$ captures the fraction $f\left(m_{g}\right)$ of the prize B in the inter-team contest that each member of the successful team g receives. This depends on the nature of the prize and the team's sharing rule. For example, $f\left(m_{g}\right) \equiv 1$ if B is a public good such as fame. In contrast, $f\left(m_{g}\right)=1 / m_{g}$, if B is a private good and shared equally among the team members. Finally, the example $f\left(m_{g}\right)=1 / m_{g}^{2}$ may apply if B is a private good and subject to conflict within the winning team. ${ }^{3}$ As rivalry and competition are usually fiercer in larger teams, we assume f to be non-increasing. We refer to the above game as the joint contest.

Let $X=\sum_{h} \sum_{j} x_{h j}$ and $X_{g}=\sum_{j} x_{g j}$ for each $g \in\{1,2\}$. Maximizing (1) with respect to $x_{g i}$ yields the FOC

$$
\begin{equation*}
\frac{X-x_{g i}}{X^{2}} A+\frac{X-X_{g}}{X^{2}} f\left(m_{g}\right) B+\frac{X_{g}-x_{g i}}{X_{g}^{2}} C_{g}=1 \tag{2}
\end{equation*}
$$

We focus on the symmetric-within-teams Nash equilibrium in which players of the same team spend the same effort. Accordingly, $x_{g i}=X_{g} / m_{g}$ for each $i \in g$ and the equilibrium

[^2]conditions are given by
\[

$$
\begin{equation*}
\left[\frac{A}{m_{g}}+f\left(m_{g}\right) B\right] X_{g}-f\left(m_{g}\right) B X-\frac{m_{g}-1}{m_{g}} C_{g} \frac{X^{2}}{X_{g}}=X A-X^{2} \tag{3}
\end{equation*}
$$

\]

for each $g=1,2$.

3 Theoretical Predictions

We first discuss the cases (i) $B>0, C_{1}=C_{2}=0$ and (ii) $B=0, C_{1}, C_{2}>0$ in turn before returning to the general model.

3.1 The Impact of Inter-Team Competition

We first assume that $C_{g}=0$ for each g to focus on the impact of simultaneous inter-team competition on the grand contest. (3) may thus be rewritten as

$$
\begin{equation*}
\frac{A}{m_{g}} X_{g}-f\left(m_{g}\right) B X_{h}=X A-X^{2} \tag{4}
\end{equation*}
$$

for each $g \in\{1,2\}$ where $h \neq g$. This yields the equilibrium condition for relative team efforts

$$
\begin{equation*}
\frac{X_{2}}{X_{1}}=\frac{m_{2}}{m_{1}} \cdot \frac{A+m_{1} f\left(m_{2}\right) B}{A+m_{2} f\left(m_{1}\right) B} . \tag{5}
\end{equation*}
$$

Plugging (5) into (4) yields the following result:
Lemma 1. Absent intra-team conflict ($C_{1}=C_{2}=0$), the joint contest has a unique symmetric-within-teams Nash equilibrium given by $x_{g i}^{*}=X_{g}^{*} / m_{g}$ for each $g \in\{1,2\}$ and each $i \in g$ where

$$
\begin{equation*}
X_{g}^{*}=\frac{m_{g} A+m_{1} m_{2} B_{g}}{\left(m_{1}+m_{2}\right) A+m_{1} m_{2}\left(B_{1}+B_{2}\right)}\left[A+\frac{m_{1} m_{2} B_{1} B_{2}-A^{2}}{\left(m_{1}+m_{2}\right) A+m_{1} m_{2}\left(B_{1}+B_{2}\right)}\right] . \tag{6}
\end{equation*}
$$

and $B_{g}=f\left(m_{g}\right) \cdot B$ for $g=1,2$.
Equation (5) implies that the larger team provides the larger team effort, if

$$
\left[\frac{1}{m_{1}}-\frac{1}{m_{2}}\right] A>\left[f\left(m_{1}\right)-f\left(m_{2}\right)\right] B .
$$

To provide some examples, this holds, if (i) B is a public good, or (ii) B is a private good and the grand contest is sufficiently important. ${ }^{4}$

[^3]Second, as f is non-increasing, (5) also implies that each member of the smaller team provides the higher effort and thus has the better chance of winning in the grand contest (i.e. $X_{2} / m_{2}<X_{1} / m_{1}$). To summarize:

Proposition 1. In the symmetric-within-teams Nash equilibrium of the joint contest without intra-team conflict:
(a) Members from the smaller team have the higher chance of winning in the grand contest. ${ }^{5}$
(b) The smaller team provides the larger team effort, if and only if (i) $f\left(m_{1}\right)>f\left(m_{2}\right)$ and (ii) the prize in the inter-team contest is sufficiently larger than the prize in the grand contest.

The intuition for these results is simple. The free-riding problem in the inter-team contest is more severe in larger teams since more players may potentially contribute to the team effort. Given that the same effort determines chances in the grand contest, incentives to free-ride spill over to the grand contest and lower a large team member's chances of winning.

The consequences may be substantial. Assuming $A=B$, a player in a two-player team is three times as likely to win the grand contest as a player from a second team with eight players, if B is a public good $\left(f\left(m_{g}\right) \equiv 1\right)$, and she is four times as likely to win if B is a private good shared equally within the winning team $\left(f\left(m_{g}\right)=1 / m_{g}\right)$. Hence, the need to share the team winnings among a larger number of players exacerbates the effect. On the other hand, the player in the two-player team is only 2.9 times as likely to win as a player in the eight-player team, if B is a private good that is contested in the winning team $\left(f\left(m_{g}\right)=1 / m_{g}^{2}\right)$. Accordingly, fighting over team winnings may help members of the larger team. Notice however that the relative odds of each team (X_{g} / X_{h} for team g where $h \neq g$) are increasing in the expression $f\left(m_{g}\right)$. Hence, in a model with teamdependent functions f_{1} and f_{2}, each team prefers an equal distribution of team winnings over fighting over them.

We finally turn to the incentives of a contest designer who is able to set the prizes for the grand and the inter-team contest subject to the constraint $A+B \leq R$. It is immediate that a designer interested in a close grand contest will not combine it with an inter-team contest, i.e. select $B=0$. On the other hand, a close inter-team contest generally requires to combine the two contests. Finally, a contest designer maximizes total effort by putting all resources into the grand contest. We summarize our results on contest design in the following corollary.

[^4]Corollary 1. A contest designer with budget $R>0$ who maximizes
(a) total equilibrium effort $X^{*}=\sum_{g} \sum_{i} x_{g i}^{*}$, will select $A=R$ and $B=0$;
(b) closeness of the grand contest $C_{G C}:=-\max _{g, i}\left|x_{g i}^{*} / X^{*}-1 / n\right|$, will select $A=R$ and $B=0$;
(c) closeness of the inter-team contest $C_{T C}:=-\max _{g}\left|X_{g}^{*} / X^{*}-1 / 2\right|$, will select A and $B=R-A$ such that $A / B=m_{1} \cdot m_{2} \cdot\left[f\left(m_{1}\right)-f\left(m_{2}\right)\right] /\left[m_{2}-m_{1}\right]$.

3.2 The Impact of Intra-Team Competition

We assume next that $B=0$ and analyze the impact of simultaneous intra-team competition on the grand contest. The equilibrium conditions (3) imply that

$$
\begin{equation*}
\frac{A}{m_{1}} X_{1}-\frac{m_{1}-1}{m_{1}} C_{1} \frac{\left(X_{1}+X_{2}\right)^{2}}{X_{1}}=\frac{A}{m_{2}} X_{2}-\frac{m_{2}-1}{m_{2}} C_{2} \frac{\left(X_{1}+X_{2}\right)^{2}}{X_{2}} \tag{7}
\end{equation*}
$$

which may be rewritten as

$$
\begin{align*}
0=X_{1}^{3} & \left\{\frac{m_{1}-1}{m_{1}} C_{1} z^{3}+\left[\frac{A}{m_{2}}+2 \frac{m_{1}-1}{m_{1}} C_{1}-\frac{m_{2}-1}{m_{2}} C_{2}\right] z^{2}\right. \tag{8}\\
& \left.-\left[\frac{A}{m_{1}}+2 \frac{m_{2}-1}{m_{2}} C_{2}-\frac{m_{1}-1}{m_{1}} C_{1}\right] z-\frac{m_{2}-1}{m_{2}} C_{2}\right\}
\end{align*}
$$

where $z=X_{2} / X_{1}$. The polynomial on the RHS has exactly one positive real-valued root under the assumptions made, which we denote by $z^{* *}=z^{* *}\left(A, C_{1}, C_{2}, m_{1}, m_{2}\right)$ henceforth (we omit the arguments for the sake of readability). ${ }^{6}$ From this we immediately obtain the following result.

Lemma 2. Absent inter-team conflict ($B=0$), the joint contest has a unique symmetric-within-teams Nash equilibrium given by $x_{g i}^{* *}=X_{g}^{* *} / m_{g}$ for each $g \in\{1,2\}$ and each $i \in g$ where

$$
X_{1}^{* *}=\frac{m_{1}-1}{m_{1}} \frac{A}{\left(1+z^{* *}\right)^{2}}+\frac{z^{* *}}{\left(1+z^{* *}\right)^{2}} A+\frac{m_{1}-1}{m_{1}} C_{1}
$$

and $X_{2}^{* *}=z^{* *} \cdot X_{1}^{* *}$.
The properties of $z^{* *}$ yield the following additional results.
Proposition 2. In the symmetric-within-teams Nash equilibrium of the joint contest without inter-team conflict:
(a) Members from the smaller team have the higher chance of winning in the grand contest if and only if $C_{1} / C_{2}>\left(\frac{m_{1}}{m_{2}}\right)^{2} \frac{m_{2}-1}{m_{1}-1}$ or equivalently if $C_{1} / m_{1}>\frac{m_{1}}{m_{2}} \frac{m_{2}-1}{m_{1}-1}\left(C_{2} / m_{2}\right)$.

[^5]Accordingly, ceteris paribus, the prize C_{2} in the intra-team contest required to maintain parity in the grand contest increases (approximatively linearly) in the team size m_{2}.
(b) The smaller team provides the larger team effort, if and only if $C_{1}>\frac{m_{1}}{m_{2}} \frac{m_{2}-1}{m_{1}-1} C_{2}+$ $\frac{m_{2}-m_{1}}{m_{2}\left(m_{1}-1\right)} \frac{A}{4}$.

Again, the intuition for the results is simple. The intra-team contest is more severe in larger teams and expected winnings for each dollar prize money are lower. As before these incentives spill over to the grand contest, lowering the chances of winning for members of the larger team. In this case, however, it is likely that the prize money for the intrateam contest (intra-team prize henceforth) is determined independently by each team. Each team (or the corresponding contest designer) may therefore increase the prize in the inter-team contest sufficiently to avoid the disadvantage for its members. The proposition makes these conditions explicit. We discuss them in turn below.

Consider first the players' chances of winning the grand contest. As shown in the first part of Proposition 2, a member of the small team has a higher chance of winning the grand contest than a member of the large team, if the prize in the small team's intra-team contest is sufficiently large compared to the prize in the large team's intra-team contest. Indeed, the prize per capita must be slightly larger in the small than in the large team, but the difference vanishes as the small (large) team's size increases (decreases). For example with $m_{1}=11$, it suffices that the prize per capita in the intra-team contest is 10 percent larger in the small than in the large team to give memebr of the small team a better chance in the grand contest.

We now turn to the team efforts in equilibrium. Notice that the team effort directly translates into the chance that any member from the team wins the grand contest, and may therefore be an important objective for the designer of the intra-team contest. Absent the intra-team contests, the smaller team provides a lower team effort simply due to its size. Accordingly, the smaller team needs to set the intra-team prize sufficiently high to overcome this disadvantage: The lower bound for C_{1} is strictly positive even if $C_{2}=0$. Furthermore, the lower bound is decreasing in the smaller team's size, increasing in the larger team's size, and approaches a limit equal to $A /\left[4 \cdot\left(m_{1}-1\right)\right]$ as m_{2} grows large. Hence, regardless of the team sizes, setting up an additional intra-team contest with a prize of at least one quarter of the grand prize is sufficient to outweigh the initial disadvantage of the smaller team.

As a consequence, to achieve a higher equilibrium team effort than the small team, the large team must also set up an intra-team contest whose prize must in general be comparable to the prize offered in the small team's intra-team contest. This holds especially, if both teams are large. For instance, for two teams with 50 and 100 players, respectively,
the large team must offer at least 98 percent of the small team's prize money in its own intra-team contest. The smaller (larger) the size of the small (large) team, the lower this prize money may be. Regardless of the team sizes, the large team must offer at least $C_{1} / 2-A / 8$.

3.3 The Joint Impact of Inter- and Intra-Team Competition

The above sections show that a simultaneous inter- or intra-team competition each lowers the chances of winning in the grand contest for members of the larger team. We finally show that the combination of the two may imply that the larger team must spend more prize money per capita in the intra-team contest to guarantee parity for its members in the grand contest. To see this, consider the equilibrium conditions (3) for $g=1,2$. Combining the two yields

$$
\frac{A}{m_{1}} X_{1}-B_{1} X_{2}-\hat{C}_{1} \frac{\left(X_{1}+X_{2}\right)^{2}}{X_{1}}=\frac{A}{m_{2}} X_{2}-B_{2} X_{1}-\hat{C}_{2} \frac{\left(X_{1}+X_{2}\right)^{2}}{X_{2}}
$$

where $B_{g}=f\left(m_{g}\right) \cdot B$ and $\hat{C}_{g}=\left[\left(m_{g}-1\right) / m_{g}\right] \cdot C_{g}$ for $g=1,2$. Multiplying with X_{1} and X_{2} and rearranging terms yields

$$
\begin{equation*}
0=X_{1}^{3}\left\{\hat{C}_{1} z^{3}+\left[\frac{A}{m_{2}}+B_{1}+2 \hat{C}_{1}-\hat{C}_{2}\right] z^{2}-\left[\frac{A}{m_{1}}+B_{2}+2 \hat{C}_{2}-\hat{C}_{1}\right] z-\hat{C}_{2}\right\} \tag{9}
\end{equation*}
$$

where $z=X_{2} / X_{1}$. Again, the equation has a unique positive solution which we denote henceforth by $z^{* * *} \equiv z^{* * *}\left(A, B, C_{1}, C_{2}, m_{1}, m_{2} ; f\right)$ (we omit the arguments for the sake of readability). ${ }^{7}$ We obtain the following extension of Lemma 2.

Lemma 3. The joint contest has a unique symmetric-within-teams Nash equilibrium given by $x_{g i}^{* * *}=X_{g}^{* * *} / m_{g}$ for each $g \in\{1,2\}$ and each $i \in g$ where

$$
X_{1}^{* * *}=\frac{\frac{m_{1}-1}{m_{1}}+z^{* * *}}{\left(1+z^{* * *}\right)^{2}} A+\frac{z^{* * *}}{\left(1+z^{* * *}\right)^{2}} f\left(m_{1}\right) B+\frac{m_{1}-1}{m_{1}} C_{1}
$$

and $X_{2}^{* *}=z^{* * *} \cdot X_{1}^{* * *}$.
Notice that both the free-riding problem in the inter-team contest and the more severe competition in the intra-team contest negatively affect the large team members' chances of winning in the grand contest. As before, assuming that each team has the freedom to set the prize in the intra-team contest offers a potential remedy. The properties of $z^{* * *}$ then imply that the large team may need to spend more prize money per capita to maintain its members' chances of winning in the grand contest.

[^6]Proposition 3. In the symmetric-within-teams Nash equilibrium of the joint contest:
(a) Members from the smaller team have the higher chance of winning in the grand contest if and only if the prizes per capita in the intra-group contest satisfy

$$
\frac{C_{1}}{m_{1}}>\frac{m_{1}}{m_{2}} \frac{m_{2}-1}{m_{1}-1} \frac{C_{2}}{m_{2}}-\frac{m_{1}}{m_{1}-1} \frac{m_{2} f\left(m_{1}\right)-m_{1} f\left(m_{2}\right)}{\left(m_{1}+m_{2}\right)^{2}} B .
$$

Accordingly, the larger team must offer a higher prize per capita in the intra-team contest than the small team to guarantee its members equal chances of winning in the grand contest, if

$$
\begin{equation*}
\frac{C_{1}}{m_{1}}<\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \frac{m_{2} f\left(m_{1}\right)-m_{1} f\left(m_{2}\right)}{m_{2}-m_{1}} B . \tag{10}
\end{equation*}
$$

(b) The smaller team provides the larger team effort, if and only if

$$
C_{1}>\frac{m_{1}}{m_{2}} \frac{m_{2}-1}{m_{1}-1} C_{2}+\frac{m_{2}-m_{1}}{\left(m_{1}-1\right) m_{2}} \frac{A}{4}-\left[f\left(m_{1}\right)-f\left(m_{2}\right)\right] B .
$$

The most important additional insight from considering the combination of all three contests is that the effects of the inter- and the intra-team contests on the outcome of the grand contest reinforce each other. Accordingly, the advantage of the small team is larger, and the large team may need to spend more prize money per capita in the intra-team contest than the small team to counteract this effect. This holds whenever the prize in the small team's intra-team contest is not too large. The upper bound, given in equation (eq:MaxSmallPrize), is increasing in the prize for the inter-team contest, B, and it increases, as the difference between $f\left(m_{1}\right)$ and $f\left(m_{2}\right)$ gets larger. Hence, the more important the inter-team contest and the more severe the conflict which ensues over winnings in the inter-team contest, the more the large team needs to offer in the intrateam contest to maintain its members' chances in the grand contest. In addition, we also find that the upper bound on C_{1} / m_{1} increases (decreases) in the size of the small (large) team for the examples $f(m)=1, f(m)=1 / m$, and $f(m)=1 / m^{2}$.

Finally, in the presence of an inter-team contest, the small team needs to spend less money in the intra-team contest to achieve a higher team effort in equilibrium than the large team.

4 Experimental Design and Procedures

We test the theoretical predictions derived in Section 3 with the help of an experiment. Indeed, various factors not accounted for in the model may affect behavior and thus counteract the effects identified above. For example, subjects may care mainly about the grand
contest which limits the degree to which properties of the inter- or intra-team contest(s) spill over to the grand contest. And subjects in the larger team may feel an entitlement to win in the grand contest and thus compete more fiercely. An experiment enables us to investigate such potential deviations from the theory in a controlled environment. In this section, we describe the design and procedures of the experiment. The experimental results are presented in Section 5.

4.1 General Features

Our experiment consists of two treatments and six sessions. In each session, subjects play 20 repetitions (henceforth rounds) of a six-player Tullock contest overlapping with either an inter-team contest (treatment BETWEEN) or an intra-team contest (treatment WITHIN). The two teams constituting the group comprise two and four subjects, respectively. Throughout rounds, we fix whether a subject is assigned to the small or the large team. In contrast, we randomly assign the subjects to the groups in each round to avoid repeated-game effects.

In each round, each subject makes a single effort choice which simultaneously determines her chances of winning in the grand contest and either the inter- or the intra-team contest. To do so, each subjects is endowed with $E=400$ points in each round. The prizes for the contests are selected such that the predicted efforts for members of the small and the large team are sufficiently different. Concretely, all subjects compete for a prize of size $A=600$ points in the grand contest. Subjects in treatment BETWEEN additionally compete in an inter-team contest for a prize of size $B=300$ points which is split equally among the members of the winning team. Each subject in treatment WITHIN additionally competes with her team members in an intra-team contest for a prize of size $C_{t}=300$ points where $t \in\{A, B\}, m_{A}=2$, and $m_{B}=4$.

The experiment enables us to control for factors potentially influencing subjects' effort choices. One factor that has been found to considerably affect behavior in contests is risk aversion. We therefore measure risk preferences at the beginning of the experiment. ${ }^{8}$ We employ a multiple price list format (see e.g. Holt and Laury, 2002). Each subject is presented with a table of ten ordered decisions between a safe amount of 180 points and a risky lottery which offers either 400 points or 0 points. Across the table, the likelihood of receiving the 400 points increases from 0.1 in the first row to 1.0 in the last row in steps of 0.1 (hence, the probability of receiving the 400 points in row k equals $k / 10) .{ }^{9}$ Subjects are required to select one of the options in each row (we did not allow for indifference). For a subject who maximizes expected utility and has a strictly increasing utility function,

[^7]there exists a unique row such that the subject chooses the risky lottery in this and all subsequent rows and the safe amount in all previous rows. The subject's risk preferences may thus be summarized by the number of times she chooses the safe lottery.

In addition to risk preferences we collect several demographics (age, gender, academic major, and mother tongue) as well as self-assessments of certain characteristics with the help of a questionnaire at the end of each session. ${ }^{10}$

4.2 Procedures

Three sessions were conducted for each treatment. The sessions took place at the experimental laboratory of the University of Bamberg in July and November 2018. Students from the University of Bamberg were invited using the ORSEE recruitment system (Greiner, 2015). 18 subjects participated in each session. The experiment was programmed in zTree (Fischbacher, 2007).

Each experimental session was partitioned into two parts. Upon arrival at the lab, subjects were randomly assigned to cubicles that did not allow for any visual communication between them. Subjects were immediately asked to read the basic instructions provided in their cubicle which informed subjects about the general rules for behaviour in the laboratory, that there were going to be two parts, and that the corresponding instructions were going to be distributed at the beginning of each part. ${ }^{11}$

In the first part, we elicited subjects risk preferences using the multiple price list format as described above. Subjects first received paper instructions and were given time to read them at their own pace. Instructions were then read aloud and subjects were permitted to ask questions. Afterwards, each subject was presented with the table of ten decisions on the computer screen and asked to submit her choices via the computer. We made clear to subjects that only one of the ten decisions would be payoff-relevant, and that it would be selected by a random draw at the end of the experiment.

The contests were run in the second part of the experiment. Paper instructions for the second part were distributed once all subjects had submitted their ten decisions in the first part. Subjects were again given time to read them at their own pace before the instructions were read aloud. Instructions for part 2 were followed by a short quiz to check subjects' understanding. The experimenters controlled subjects' answers and explained mistakes in private if necessary. Afterwards, the 20 rounds of part 2 were run. Subjects

[^8]| | BETWEEN | | | WITHIN | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Team Size | | | Small | Large | | Large |
| Individual Efforts (Points) | 150 | 75 | | 168 | 134 | |
| Team Efforts (Points) | 300 | 300 | | 336 | 537 | |
| Pr(Win): Grand Contest | 0.250 | 0.125 | | 0.192 | 0.153 | |
| Pr(Win): Inter-Team Contest | 0.500 | 0.500 | | - | - | |
| Pr(Win): Intra-Team Contest | - | - | | 0.500 | 0.250 | |
| Expected Payoff (Points) | 550 | 475 | | 497 | 433 | |

Table 1 Predictions for the laboratory games.
submitted their efforts using the computer. To assist them in their decision-making, the computer interface also offered subjects the opportunity to enter a fictitious effort for themselves as well as fictitious average efforts for the other members of their own team and the members of the other team. The interface then displayed the resulting likelihoods of winning and losing each of the two contests and the corresponding number of points at the end of the round. We paid only two randomly selected rounds for the second part, one round each from the first and the last ten rounds.

Upon completion of the second part, one of the subjects was selected to role a ten-sided dice four times. The first and second throw determined, respectively, the payoff-relevant row and the payoff of the corresponding risky lottery in the first part of the experiment. The third and fourth throw determined the payoff-relevant rounds in the second part of the experiment. Subjects then filled out the questionnaire, retrieved their earnings in private and left.

Sessions lasted 90 minutes on average. Points were converted into cash at the rate 1 point $=€ 0.01$ and added to a show-up fee of $€ 4.00$. The average payment was $€ 15.02$ in treatment BETWEEN, and $€ 14.95$ in treatment WITHIN. Overall, we collected 2,160 effort choices submitted by 108 subjects.

4.3 Hypotheses

Table 1 presents predicted efforts, winning probabilities, and expected payoffs by team size for the two games played, respectively, in treatment BETWEEN and WITHIN. From these results, we derive the following hypotheses:

Hypothesis 1. In both treatments, members of the smaller team invest more than members of the larger team. The difference is larger in treatment BETWEEN.

Hypothesis 2. The team effort of the smaller team is smaller than the team effort of the larger team in treatment WITHIN, but not in treatment BETWEEN.

Hypothesis 3. In both treatments, members of the smaller team have a better chance of winning the grand contest and achieve a higher payoff than members of the larger team.

Figure 1 Average efforts across rounds by treatment and role.

5 Experimental Results

Figure 1 plots average individual efforts across rounds where the left (right) panel contains the results for treatment BETWEEN (WITHIN), and in each panel, the solid blue (orange) line depicts results for members of the small (large) team. ${ }^{12}$ We also include dashed lines (of corresponding color) to highlight the theoretical predictions.

We find serious overbidding in treatment BETWEEN. Across all (the last ten) rounds, members of the small team invest on average 192 (196) points and thus significantly more than the equilibrium prediction of 150 points (one-sided t-test, $p<0.001$). Similarly, members of the large team invest on average 136 (124) points across all (the last ten) rounds, significantly more than the predicted 75 points (one-sided t-test, $p<0.001$). In contrast, average efforts in treatment WITHIN are not significantly larger than the equilibrium prediction for members of both teams when considering the last ten rounds (177 vs. 168 and 139 vs. 134 for the small and large team, respectively), and only marginally so when considering all rounds (177 vs. $168, p=0.069$ for the small team; 144 vs. $134, p=0.012$ for the large team). Accordingly, we (only) partially confirm the recurrent finding in the literature that subjects overbid in contest experiments.

Turning to our first hypothesis, figure 1 suggests that subjects in the small team invest more than subjects in the large team in both treatments. To statistically test this impression, we estimate random-effect Tobit models of effort choices. ${ }^{13}$ We include as explanatory variables a dummy for the large team, a dummy for the first ten rounds, and the interaction between the two. In further specifications, we also control for the number of safe choices in the first part of the experiment as well as demographics and self-assessments elicited through the questionnaire. The results are presented in Table 2.

[^9]| Treatment | BETWEEN | | | WITHIN | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | (1) | (2) | (3) | (4) | (5) | (6) |
| Constant | $\begin{gathered} 197.55^{* * *} \\ (25.42) \end{gathered}$ | $\begin{gathered} 334.72^{* * *} \\ (64.69) \end{gathered}$ | $\begin{gathered} 282.17^{* * *} \\ (55.16) \end{gathered}$ | $\begin{gathered} 174.69^{* * *} \\ (26.21) \end{gathered}$ | $\begin{gathered} 288.47^{* * *} \\ (62.87) \end{gathered}$ | $\begin{aligned} & 189.17^{*} \\ & (97.11) \end{aligned}$ |
| Large | $\begin{gathered} -81.13^{* * *} \\ (31.18) \end{gathered}$ | $\begin{gathered} -88.15^{* * *} \\ (29.97) \end{gathered}$ | $\begin{gathered} -112.80^{* * *} \\ (24.96) \end{gathered}$ | $\begin{aligned} & -46.86 \\ & (32.03) \end{aligned}$ | $\begin{gathered} -56.11^{*} \\ (31.37) \end{gathered}$ | $\begin{gathered} 6.90 \\ (30.88) \end{gathered}$ |
| First10 | $\begin{aligned} & -12.40 \\ & (12.06) \end{aligned}$ | $\begin{aligned} & -12.38 \\ & (12.06) \end{aligned}$ | $\begin{aligned} & -12.42 \\ & (12.07) \end{aligned}$ | $\begin{gathered} 2.76 \\ (12.45) \end{gathered}$ | $\begin{gathered} 2.75 \\ (12.45) \end{gathered}$ | $\begin{gathered} 2.81 \\ (12.45) \end{gathered}$ |
| First10 \times Large | $\begin{gathered} 41.91^{* * *} \\ (14.85) \end{gathered}$ | $\begin{gathered} 41.86^{* * *} \\ (14.86) \end{gathered}$ | $\begin{gathered} 42.00^{* * *} \\ (14.87) \end{gathered}$ | $\begin{gathered} 12.49 \\ (15.16) \end{gathered}$ | $\begin{gathered} 12.52 \\ (15.16) \end{gathered}$ | $\begin{gathered} 12.54 \\ (15.16) \end{gathered}$ |
| NbS | | $\begin{gathered} -24.93^{* *} \\ (10.89) \end{gathered}$ | $\begin{aligned} & -5.02 \\ & (7.24) \end{aligned}$ | | $\begin{gathered} -20.34^{* *} \\ (10.28) \end{gathered}$ | $\begin{aligned} & -11.61 \\ & (9.34) \end{aligned}$ |
| Further Controls | No | No | Yes | No | No | Yes |
| Freq. Gambling | | | $\begin{gathered} 15.32^{* *} \\ (7.47) \end{gathered}$ | | | $\begin{gathered} 7.00 \\ (10.12) \end{gathered}$ |
| Generosity | | | $\begin{gathered} 16.93^{* * *} \\ (6.49) \end{gathered}$ | | | $\begin{gathered} -4.08 \\ (10.44) \end{gathered}$ |
| Imp. Payment | | | $\begin{gathered} -26.43^{* * *} \\ (6.96) \end{gathered}$ | | | $\begin{gathered} -2.87 \\ (9.81) \end{gathered}$ |
| Imp. GC | | | $\begin{gathered} 25.88^{* * *} \\ (7.30) \\ \hline \end{gathered}$ | | | $\begin{gathered} 35.05^{* * *} \\ (10.97) \\ \hline \end{gathered}$ |
| Log-likelihood | -5,552.3 | -5,549.8 | -5,516.9 | -5,499.3 | -5,497.4 | -5,478.9 |
| Wald χ^{2} | $16.61{ }^{* * *}$ | $22.21^{* * *}$ | $152.02^{* * *}$ | 4.85 | 8.88* | $62.99^{* * *}$ |

Notes: There are 137 (152) left-censored, 859 (849) uncensored, and 84 (79) right-censored observations in models $1-3(4-6)$. Standard errors in parentheses. Significance levels: ${ }^{* * *}(1 \%),{ }^{* *}(5 \%),{ }^{*}(10 \%)$. Continuous demographic variables (age, number of siblings, grade in math) and questionnaire variables measured on a Likert scale are normalized as differences from the median.

Table 2 Random-effects Tobit models for individual effort choices.

Coefficients of the questionnaire variables are only shown, if they are significantly different from zero in at least one of the treatments.

The results for treatment BETWEEN clearly show that members of the large team invest significantly less than members of the small team. In contrast, the difference is marginally significant in treatment WITHIN, and disappears completely once we control for demographics and other results from the questionnaire. Additional findings reveal that the latter result (or lack thereof) is mainly driven by certain subgroups of subjects. In particular, students of the social sciences and humanities invest significantly more as members of the large team than as members of the small team. We summarize these findings as follows:

Result 1. In line with the theoretical predictions, members of the small team invest significantly more than members of the large team in treatment BETWEEN. In contrast, the result only holds for an (identifiable) subgroup of the subjects in treatment WITHIN.

The results from the Tobit regressions also reveal distinct dynamics of effort choices in the two treatments and for the two roles. In treatment BETWEEN, members of the small

	BETWEEN				WITHIN	
Team Size	Small	Large		Small	Large	
Average Individual Efforts (Points)	192.2	135.8		177.0	144.1	
Average Team Efforts (Points)	384.3	543.2		354.0	576.3	
Theoret. Pr(Win): Grand Contest	0.209	0.146		0.198	0.151	
Empirical Pr(Win): Grand Contest	0.228	0.136		0.208	0.146	
Theoret. Pr(Win): Inter-Team Contest	0.417	0.583		-	-	
Empirical Pr(Win): Inter-Team Contest	0.400	0.600		-	-	
Realized Payoffs: Part 2	$€ 9.56$	$€ 8.34$		$€ 10.05$	$€ 8.46$	
Realized Payoffs: Overall	$€ 11.64$	$€ 10.70$		€11.89	€10.48	

Table 3 Experimental results by treatment and team size.
team slightly increase their efforts over time, and members of the large team substantially and significantly decrease their efforts over time. As a consequence, the difference between small and large teams widens over time. In treatment WITHIN, only members of the large team slightly decrease their efforts over time whereas members of the small team keep investing similar amounts across rounds.

We now turn to team efforts and our second hypothesis. In treatment BETWEEN, we find that the average team effort of the small team equals 384 points and is thus substantially smaller than the average team effort of the large team (543 points). Similarly, the average team effort of the small team in treatment WITHIN equals 354 points compared to an average team effort of the large team equal to 576 points. These results are in line with theoretical predictions for the latter but not the former treatment. To summarize:

Result 2. In both treatments, the team effort of the small team is substantially smaller than the team effort of the large team.

The average effort choices summarized above have serious consequences for probabilities of winning the grand contest, and earnings. Following table 1 , table 3 provides an overview of the experimental results for the last ten rounds. The first two rows restate the results regarding individual and team efforts we discussed above. The third row presents the average probabilities of winning the grand contest calculated from the effort choices of our subjects. These results reflect the findings for effort choices: In both treatments, members of the small team are more likely to win the grand contest. The fourth row shows that the empirical frequencies calculated from the actually observed contest outcomes exhibit a similar pattern. In treatment BETWEEN (WITHIN), the grand contest was won 82 (75) times by a member of the small team and 98 (105) times by a member of the large team. Dividing these numbers by the total number of contests and the team size yields the entries in the fourth row of the table. A similar exercise for the inter-team contest in treatment BETWEEN reveals that the members of the small team were less successful in this contest than members of the large team. These results are presented in
the fifth and sixth row. ${ }^{14}$ Finally, the last two rows reveal the payoff consequences of the contest design. In both treatments, subjects assigned to the small teams earn about one euro more than subjects assigned to the large teams.

We summarize the consequences for our final two hypotheses in the following result:
Result 3. In both treatments, members of the smaller team win the grand contest more often than members of the larger team, and they achieve higher earnings.

6 Discussion and Conclusion

In many everyday situations such as at the workplace or in sports competitions, subjects are simultaneously involved in multiple contests whose outcome depends on the same effort choice of an individual. This paper shows that such overlapping contests adversely affect the chances of winning in the grand contest for members of larger teams. First, the free-riding problem is more severe in an additional contest between teams. Second, competition in an additional intra-team contest is tougher in larger teams. Both effects spill over on the grand contest with the given interdependent incentive structure.

The results of the paper have important consequences for the design of overlapping contests, and also hierarchies. In particular, if an intra-team contest is desired but not supposed to affect chances of winning in the grand contest, prizes in each team should be set proportional to the team size. In addition, an organization may insist that winnings in the inter-team contest must be contested in each team to lower the impact of the inter-team contest on the grand contest.

The paper offers several avenues for future research. One question is whether, in the presence of intra-team contests, larger teams anticipate the potential disadvantage and set the prize for the intra-team contest sufficiently high to maintain the chances of their members. Ultimately, this yields a meta-game between teams in which each team attempts to maximize the chances of its members by choosing the optimal prize for the intra-team contest. It would be interesting to study the outcome of this game both theoretically and experimentally.

In addition, our findings also raise empirical questions to be answered in the field. In particular, one may ask whether, controlling for all other factors, employees in smaller units of firms have a better chance of being promoted.

[^10]
Appendix. Proofs

Proof of Lemma 1. Let $z_{1} \equiv \frac{m_{2} A+m_{1} m_{2} f\left(m_{2}\right) B}{m_{1} A+m_{1} m_{2} f\left(m_{1}\right) B}$. Plugging (4) into (5) yields

$$
\frac{A}{m_{1}} X_{1}-f\left(m_{1}\right) B z X_{1}=(1+z) X_{1} A-(1+z)^{2} X_{1}^{2}
$$

and thus

$$
(1+z) X_{1}=A+\frac{z}{1+z} f\left(m_{1}\right) B-\frac{1}{1+z} \frac{A}{m_{1}}
$$

The desired expressions for X_{1}^{*} and $X_{2}^{*}=z \cdot X_{1}^{*}$ immediately follow. To prove existence of the equilibrium, we show that (i) $X_{g}^{*}>0$ and (ii) $E \pi_{g i}\left(X_{g}^{*} / m_{g}, X_{h}^{*} / m_{h}\right)>0$ where $h \neq g$. The first condition is easily seen since

$$
(1+z) A+z f\left(m_{1}\right) B-A / m_{1}=\frac{m_{1}-1}{m_{1}} A+z A+z f\left(m_{1}\right) B>0
$$

To prove (ii), notice that

$$
\begin{aligned}
E \pi_{g i}\left(X_{g} / m_{g}, X_{h} / m_{h}\right) & =\frac{X_{g}}{X_{g}+X_{h}} \frac{A}{m_{g}}+\frac{X_{g}}{X_{g}+X_{h}} f\left(m_{g}\right) B-\frac{X_{g}}{m_{g}} \\
& =\frac{1}{m_{g}} \frac{X_{g}}{X_{g}+X_{h}}\left[A+m_{g} f\left(m_{g}\right) B-\left(X_{g}+X_{h}\right)\right] .
\end{aligned}
$$

Hence, it suffices to show that

$$
A+m_{g} f\left(m_{g}\right) B>X_{g}+X_{h}=A+\frac{m_{1} m_{2} f\left(m_{1}\right) f\left(m_{2}\right) B^{2}-A^{2}}{\left(m_{1}+m_{2}\right) A+m_{1} m_{2}\left[f\left(m_{1}\right)+f\left(m_{2}\right)\right] B}
$$

which is straightforward.

Proof of Corollary 1. Ad (i): From equation (6) we obtain that total equilibrium effort is given by

$$
X^{*}=A+\frac{m_{1} m_{2} B_{1} B_{2}-A^{2}}{\left(m_{1}+m_{2}\right) A+m_{1} m_{2}\left(B_{1}+B_{2}\right)}
$$

Selecting $A=(1-\theta) \cdot R$ and $B=\theta \cdot R$ for $0 \leq \theta \leq 1$ and rewriting yields

$$
X^{*}=\frac{m_{1} m_{2} f_{1} f_{2} \theta^{2}+\left(m_{1}+m_{2}-1\right)(1-\theta)^{2}+m_{1} m_{2}\left(f_{1}+f_{2}\right) \theta(1-\theta)}{m_{1} m_{2}\left(f_{1}+f_{2}\right) \theta+\left(m_{1}+m_{2}\right)(1-\theta)}
$$

where $f_{g}=f\left(m_{g}\right)$. The results follows because the expression is strictly decreasing in θ. To see this, differentiate with respect to θ and note that the resulting denominator is positive everywhere whereas the numerator is a quadratic function in θ which has a
positive squared term and is negative at $\theta=0$ and $\theta=1$.

Ad (ii): Obviously, $B=0$ yields $x_{g i}^{*}=\frac{n-1}{n^{2}} A$ and thus $x_{g i}^{*} / X^{*}=1 / n$ for each g and i. On the other hand, equation (5) implies that $x_{2 i}^{*} / x_{1 j}^{*}<1$ and thus $x_{2 i}^{*} / X^{*}<1 / n$ for each player i in team 2 .

Ad (iii): Equation (5) implies that $X_{2}^{*}=X_{1}^{*}$, if and only if $f\left(m_{1}\right)>f\left(m_{2}\right)$ and $\left(m_{2}-m_{1}\right) A=m_{1} m_{2}\left[f\left(m_{1}\right)-f\left(m_{2}\right)\right] B$. If $f\left(m_{1}\right)=f\left(m_{2}\right)$, the RHS of equation (5) is strictly larger than one and decreasing in B. Hence, the optimal contest satisfies $A=0$ and $B>0$.

Proof of Lemma 2. We start by showing that equation (8) has a single positive solution. This follows since (i) the polynomial obtains a maximum at $z_{\max }<0$ or is strictly increasing everywhere, and (ii) the polynomial is strictly negative at $z=0$ and grows unboundedly as $z \rightarrow+\infty$. The explicit expression for $z^{* *}$ has been obtained using Mathematica.

Turning to equilibrium group efforts, we replace $X_{2}^{* *}=z^{* *} \cdot X_{1}^{* *}$ in equation (2) with $g=1$ and $B=0$ to obtain

$$
\frac{\left(1+z^{* *}\right) X_{1}-\frac{1}{m_{1}} X_{1}}{\left(1+z^{* *}\right)^{2} X_{1}^{2}} A+\frac{m_{1}-1}{m_{1}} \frac{X_{1}}{X_{1}^{2}} C_{1}=1
$$

The expression for $X_{1}^{* *}$ easily follows. Obviously, $z^{* *}>0$ implies $X_{1}^{* *}>0$. Moreover,

$$
E \pi_{1 i}\left(X_{1}^{* *} / m_{1}, X_{2}^{* *} / m_{2}\right)=\frac{X_{1}^{* *} / m_{1}}{\left(1+z^{* *}\right) X_{1}^{* *}} A+\frac{C_{1}}{m_{1}}-\frac{X_{1}^{* *}}{m_{1}}
$$

implies that $E \pi_{1 i}\left(X_{1}^{* *} / m_{1}, X_{2}^{* *} / m_{2}\right)>0$, if and only if

$$
\frac{1}{1+z^{* *}} A+C_{1}>X_{1}^{* *}=\left[\frac{m_{1}-1}{m_{1}} \frac{1}{\left(1+z^{* *}\right)^{2}}+\frac{z^{* *}}{\left(1+z^{* *}\right)^{2}}\right] ; A+\frac{m_{1}-1}{m_{1}} C_{1}
$$

which follows from $\left(m_{1}-1\right) / m_{1}<1$. Similarly, (2) for $g=2$ and $B=0$ yields

$$
X_{2}^{* *}=\frac{m_{2}-1}{m_{2}} \frac{A}{\left(1+v^{* *}\right)^{2}}+\frac{v^{* *}}{\left(1+v^{* *}\right)^{2}} A+\frac{m_{2}-1}{m_{2}} C_{2}
$$

where $v^{* *}=1 / z^{* *}$. Furthermore, $E \pi_{2 i}\left(X_{1}^{* *} / m_{1}, X_{2}^{* *} / m_{2}\right)>0$, if and only if

$$
\frac{1}{1+v^{* *}} A+C_{1}>X_{2}^{*}
$$

which follows from $\left(m_{2}-1\right) / m_{2}<1$.

Proof of Proposition 2. Ad. (i): A member from the smaller team has a better chance of winning in the grand contest than a member from the larger team, if she provides the larger effort. In equilibrium, this happens, if $X_{1}^{*} / m_{1}>X_{2}^{*} / m_{2}$, i.e. if $z^{* *}<m_{2} / m_{1}$. This is equivalent to requiring that the polynomial on the RHS of equation (8) is strictly positive at $z=m_{2} / m_{1}$. The result follows by re-arranging terms.

Ad. (ii): The small team provides a larger equilibrium team effort than the large team, if $X_{1}^{*}>X_{2}^{*}$ which is equivalent to requiring that $z^{* *}<1$, or that the polynomial on the RHS of equation (8) is strictly positive at $z=1$. Re-arranging terms yields the result.

Proof of Lemma 3. The proof is similar to the proof of Proposition 2. First, equation (9) has a single positive solution since (i) the polynomial obtains a maximum at $z_{\max }<0$ or is strictly increasing everywhere, and (ii) the polynomial is strictly negative at $z=0$ and grows unboundedly as $z \rightarrow+\infty$. The explicit expression for $z^{* * *}$ has been obtained using Mathematica.

Plugging $x_{2}^{* * *}=z^{* * *} \cdot X_{1}^{* * *}$ into (2) for $g=1$ yields

$$
\frac{\left(1+z^{* * *}\right) X_{1}-\frac{1}{m_{1}} X_{1}}{\left(1+z^{* * *}\right)^{2} X_{1}^{2}} A+\frac{z^{* * *} X_{1}^{* * *}}{\left(1+z^{* * *}\right)^{2} X_{1}^{2}} f\left(m_{1}\right) B+\frac{m_{1}-1}{m_{1}} \frac{X_{1}}{X_{1}^{2}} C_{1}=1
$$

and thus immediately the result for $X_{1}^{* * *}$. Furthermore,

$$
E \pi_{1 i}\left(X_{1}^{* * *} / m_{1}, X_{2}^{* * *} / m_{2}\right)=\frac{X_{1}^{* * *} / m_{1}}{\left(1+z^{* * *}\right) X_{1}^{* * *}} A+\frac{1}{1+z^{* * *}} f\left(m_{1}\right) B+\frac{C_{1}}{m_{1}}-\frac{X_{1}^{* * *}}{m_{1}}
$$

implies that $E \pi_{1 i}\left(X_{1}^{* * *} / m_{1}, X_{2}^{* * *} / m_{2}\right)>0$, if and only if

$$
\begin{aligned}
& \frac{1}{1+z^{* * *}} \frac{A}{m_{1}}+\frac{1}{1+z^{* * *}} f\left(m_{1}\right) B++\frac{C_{1}}{m_{1}} \\
> & X_{1}^{* * *} / m_{1}=\frac{\frac{m_{1}-1}{m_{1}}+z^{* * *}}{\left(1+z^{* * *}\right)^{2}} \frac{A}{m_{1}}+\frac{z^{* * *}}{\left(1+z^{* * *}\right)^{2}} f\left(m_{1}\right) B+\frac{m_{1}-1}{m_{1}} \frac{C_{1}}{m_{1}}
\end{aligned}
$$

which follows from $\left(m_{1}-1\right) / m_{1}<1$. The proof for $g=2$ is similar using $v^{* * *}=1 / z^{* * *}$ and thus omitted.

Proof of Proposition 3. The proof is similar to the proof of Propostion 2. In particular, the first (respectively second) part follows from the requirement that the polynomial on the RHS of equation (9) is strictly positive at $z=m_{2} / m_{1}$ (resp. $z=1$).

References

Dechenaux, Emmanuel, Dan Kovenock, and Roman M. Sheremeta, "A survey of experimental research on contests, all-pay auctions and tournaments," Experimental Economics, 2015, 18, 609-669.

Fischbacher, Urs, "z-Tree: Zurich Toolbox for Ready-made Economic Experiments," Experimental Economics, 2007, 10 (2), 171-8.

Greiner, Ben, "Subject pool recruitment procedures: Organizing experiments with ORSEE," Journal of the Economic Science Association, 2015, 1, 114-25.

Holt, Charles A. and Susan K. Laury, "Risk Aversion and Incentive Effects," American Economic Review, December 2002, 92 (5), 1644-1655.

Inderst, Roman, Holger M. Müller, and Karl Wärneryd, "Distributional conflict in organizations," European Economic Review, 2007, 51, 385-402.

Katz, Eliakim and Julia Tokatlidu, "Group competition for rents," European Journal of Political Economy, 1996, 12, 599-607.

Ke, Changxia, Kai A. Konrad, and Florian Morath, "Brothers in arms - An experiment on the alliance puzzle," Games and Economic Behavior, 2013, 77, 61-76.
_ , _ , and _ , "Alliances in the shadow of conflict," Economic Inquiry, 2015, 53, 854871.

Konrad, Kai A., Strategy and Dynamics in Contests, Oxford University Press, New York, 2009.

Lazear, Edward P., "Personnel Economics: Past Lessons and Future Directions," Journal of Labor Economics, 1999, 17 (2), 199-236.
_ , "Compensation and Incentives in the Workplace," Journal of Economic Perspectives, 2018, 32 (3), 195-214.

Münster, Johannes, "Simultaneous inter- and intra-group conflicts," Economic Theory, 2007, 32, 333-352.

- and Klaas Staal, "How organizational structure can reduce rent-seeking," Public Choice, 2012, 150, 579-594.

Nitzan, Shmuel, "Collective Rent Dissipation," Economic Journal, 1991, 101, 15221534.

Sheremeta, Roman M., "Overbidding and Heterogeneous Behavior in Contest Experiments," Journal of Economic Surveys, 2013, 27 (3).
_ , "Behavior in Group Contests: A Review of Experimental Research," Journal of Economic Surveys, 2018, 32 (3), 683-704.

Skaperdas, Stergios, "Contest success functions," Economic Theory, 1996, 7 (2), 283290.

Tullock, Gordon, "Efficient rent seeking," in J. M. Buchanan, R. D. Tollison, and C. Tullock, eds., Towards a Theory of the Rent-seeking Society, College Station: A\& M University Press, 1980, pp. 97-112.

Wärneryd, Karl, "Distributional conflict and jurisdictional organization," Journal of Public Economics, 1998, 69, 435-450.

[^0]: ${ }^{\ddagger}$ Technische Universität München, Arcisstraße 21, D-80333 Munich, Germany; and CESifo, Poschingerstraße 5, D-81679 Munich, Germany. Email: christoph.march@tum.de.
 ${ }^{* *}$ Corresponding Author: University of Bamberg, Department of Economics, Feldkirchenstraße 21, D-96047 Bamberg, Germany; and CESifo, Poschingerstraße 5, D-81679 Munich, Germany. Email: Marco.Sahm@uni-bamberg.de.

[^1]: ${ }^{1}$ For example, in the 2018 Olympic winter games German luger Felix Loch by losing the gold medal in the final run, also lost the chance to compete in the subsequent team contest.

[^2]: ${ }^{2}$ Tullock's contest success function is a special case of the CSF axiomatized by Skaperdas (1996).
 ${ }^{3}$ The corresponding subsequent intra-team contest is not modeled explicitly here.

[^3]: ${ }^{4}$ Concretely, the condition is $A>B$, if winnings from the inter-team contest are shared equally within the winning team, and $A / B>\left(m_{1}+m_{2}\right) /\left(m_{1} m_{2}\right)$, if winnings are contested within the winning team.

[^4]: ${ }^{5}$ This holds for any non-increasing f. It also holds, if f is increasing, but strictly concave.

[^5]: ${ }^{6}$ The explicit expression for $z^{* *}\left(A, C_{1}, C_{2}, m_{1}, m_{2}\right)$ is available from the authors upon request.

[^6]: ${ }^{7}$ The explicit expression is available from the authors upon request.

[^7]: ${ }^{8}$ Obviously, this design feature relies on the assumption that risk-preferences are not contextdependent.
 ${ }^{9}$ In the experimental instructions, probabilities are explained in terms of throws of a ten-sided dice.

[^8]: ${ }^{10}$ Concretely, we elicit self-assessments on risk, generosity, ambition, frequency of participation in games of chance and board games, importance of winning either contest, and importance of the final payment on a 7 point Likert scale. In addition, we ask subjects which team they think is advantaged in this experiment (small, large, or none), and which contest affected their effort choices the most (grand contest, team contest, or both equally).
 ${ }^{11}$ The experimental instructions were originally given in German. They are provided in a separate online appendix which includes also an English translation as well as the screenshots of the computerassisted experiment.

[^9]: ${ }^{12}$ Recall that subjects consistently belong either to the small or to the large team across rounds.
 ${ }^{13}$ There are several choices at the boundary of the choice set. We obtain similar results when running standard Tobit regression with standard errors clustered at the session level.

[^10]: ${ }^{14}$ Obviously, we cannot repeat this exercise for the intra-team contest.

