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Preface to ”Alternative Assets and Cryptocurrencies”

This book collects high profile research papers on the innovative topic of alternative assets

and cryptocurrencies. It aims at providing a guideline and inspiration for both researchers and

practitioners in financial technology. Alternative assets such as fine art, wine or diamonds have

become popular investment vehicles in the aftermath of the global financial crisis. Triggered by low

correlation with classical financial markets, diversification benefits arise for portfolio allocation and

risk management. Cryptocurrencies share many features of alternative assets, but are hampered by

high volatility, sluggish commercial acceptance, and regulatory uncertainties.

The papers comprised in this special issue address alternative assets and cryptocurrencies from

economic, financial, statistical, and technical points of view. It gives an overview of the current state

of the art and helps to understand their properties and prospects using innovative approaches and

methodologies. The timeliness of this collection is apparent from the view and download statistics of

the journal’s website, where at the time of this writing most of the papers are in the top ten over the

last year or more, which highlights the general interest in the topic.

A first challenge is the analysis of time series properties such as volatility, including financial

applications. Conrad, Custovic and Ghysels study long and short term volatility components and

find that Bitcoin volatility is closely linked to indicators of global economic activity. Henriques and

Sadorsky use multivariate GARCH-type models to show that there is an economic value for risk

averse investors to replace gold by Bitcoin in investment portfolios. Kjaerland, Khazal, Krogstad,

Nordstrøm and Oust identify dynamic pricing factors for Bitcoin using autoregressive distributed

lags (ADL) and GARCH. They find that the Google search indicator and returns on the S&P 500 stock

index are significant pricing factors.

A second block of papers deals with high frequency data for cryptocurrencies, meaning

minute-stamped or transaction data. A common theme is predictability, which is confirmed in

several papers, and which would violate classical concepts of market efficiency. Fischer, Krauss and

Deinert use a specific trading strategy to show that there are statistical arbitrage opportunities in

the cross-section of cryptocurrencies. In a deep learning framework, Shintate and Pichl propose

a so-called random sampling method for trend prediction classification, applied to high frequency

Bitcoin prices. Catania and Sandholdt find predictability at high frequencies up to six hours,

but not at higher aggregation levels, while realized volatility is characterized by long memory

and leverage effects. Schnaubelt, Rende and Krauss study the properties of Bitcoin limit order

books. Their findings suggest that, while many features are similar to classical financial markets,

the distributions of trade sizes and limit order prices are rather distinct, and liquidity costs are

relatively high.

Third, a few papers deal with peculiarities of cryptocurrencies such as initial coin offerings,

proof-of-work protocols and sentiment indices. Ante, Sandner, Fiedler investigate blockchain-based

initial coin offerings (ICOs) and find that they exhibit similarities to classical crowdfunding and

venture capital markets, including the determinants of success factors. Bocart proposes a new

proof-of-work protocol to establish consensus about transactions to be added to the blockchain,

arguing that the availability of alternatives to the classical SHA256 algorithm used by Bitcoin reduces

the risk of attacks against particular proof-of-work protocols. Finally, Chen and Hafner use a publicly

available crypto-market sentiment index as an explanatory variable for locally explosive behavior of

crypto prices and volatility. In a smooth transition autoregressive model, they identify bubble periods

ix



for Bitcoin and the CRIX, a crypto market index.

Last, but not least, we have indeed a paper that deals with a “classical” alternative asset, that

is, diamonds. Jotanovic and D’Ecclesia show that, perhaps counterintuitively, investing in diamond

mining stocks is not a valid alternative to investing in diamonds commodity directly. Moreover,

diamond stock returns are not driven by diamond price dynamics, but rather by local market stock

indices.

All of the above papers cover many diverse aspects of alternative assets and cryptocurrencies

that we hope will contribute to the already rich literature and become useful resources and

inspirations for anyone working in the exciting new field of financial technology.

Christian Hafner

Special Issue Editor
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Abstract: We use the GARCH-MIDAS model to extract the long- and short-term volatility components
of cryptocurrencies. As potential drivers of Bitcoin volatility, we consider measures of volatility
and risk in the US stock market as well as a measure of global economic activity. We find that
S&P 500 realized volatility has a negative and highly significant effect on long-term Bitcoin volatility.
The finding is atypical for volatility co-movements across financial markets. Moreover, we find
that the S&P 500 volatility risk premium has a significantly positive effect on long-term Bitcoin
volatility. Finally, we find a strong positive association between the Baltic dry index and long-term
Bitcoin volatility. This result shows that Bitcoin volatility is closely linked to global economic activity.
Overall, our findings can be used to construct improved forecasts of long-term Bitcoin volatility.

Keywords: Baltic dry index; Bitcoin volatility; digital currency; GARCH-MIDAS; pro-cyclical
volatility; volume

JEL Classification: C53; C58; F31; G15

“After Lehman Brothers toppled in September 2008, it took 24 days for US stocks to slide more than
20 per cent into official bear market territory. Bitcoin, the new age cryptocurrency that has been
breaking bull market records, did the same on Wednesday in just under six hours”

Financial Times—30 November 2017—Bitcoin swings from bull to bear and back in one day

1. Introduction

Bitcoin is surely not short on publicity as its rise, subsequent decline and volatile swings have
drawn the attention from academics and business leaders alike. There are many critics. For example,
Nobel laureate Joseph Stiglitz said that Bitcoin ought to be outlawed whereas fellow Nobel laureate
Robert Shiller said the currency appeals to some investors because it has an anti-government,
anti-regulation feel. Many business leaders, including Carl Icahn and Warren Buffett, characterized its
spectacular price increases as a bubble. Jamie Dimon, CEO of JP Morgan called it a fraud, and implicitly
alluding to bubbles that ultimately burst, predicted that it eventually would blow up. Along similar
lines, Goldman Sachs CEO Lloyd Blankfein is on the record for saying that the currency serves as a
vehicle for perpetrating fraud, although he acknowledged that the currency could have potential if
volatility drops.

Cryptocurrencies has its defenders and enthusiasts as well. The CME Group listed Bitcoin
futures in mid-December 2017 and Nasdaq plans to launch Bitcoin futures this year. The currency
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also has many supporters in Silicon Valley. The listing of Bitcoin futures and the proliferation of
cryptocurrencies in general has generated a growing literature on the topic.

Most of the existing studies focus on Bitcoin returns. For example, Baur et al. (2017) show
that Bitcoin returns are essentially uncorrelated with traditional asset classes such as stocks or
bonds, which points to diversification possibilities. Others investigate the determinants of Bitcoin
returns. The findings of Li and Wang (2017), among others, suggest that measures of financial and
macroeconomic activity are drivers of Bitcoin returns. Kristoufek (2015) considers financial uncertainty,
Bitcoin trading volume in Chinese Yuan and Google trends as potential drivers of Bitcoin returns.
The inclusion of Google trends as some sort of proxy for sentiment or interest is fairly common within
the literature (see, for example, Polasik et al. (2015)). A recurrent theme in the literature is the question
to which asset class Bitcoin belongs, with many comparing it to gold, others to precious metals or to
speculative assets (see, among others, Baur et al. (2017); or Bouri et al. (2017)). Some have classified Bitcoin
as something in between a currency and a commodity (see, for example, Dyhrberg (2016)). For other
recent contributions, see Cheah et al. (2018); Khuntia and Pattanayak (2018); and Koutmos (2018).

A second strand of literature tries to model Bitcoin volatility. Among the first papers is
Balcilar et al. (2017), who analyze the causal relation between trading volume and Bitcoin returns
and volatility. They find that volume cannot help predict the volatility of Bitcoin returns. Dyhrberg (2016)
explores Bitcoin volatility using GARCH models. The models estimated in Dyhrberg (2016) suggest that
Bitcoin has several similarities with both gold and the dollar. Bouri et al. (2017) find no evidence for
asymmetry in the conditional volatility of Bitcoins when considering the post December 2013 period and
investigate the relation between the VIX index and Bitcoin volatility. Al-Khazali et al. (2018) consider
a model for daily Bitcoin returns and show that Bitcoin volatility tends to decrease in response to
positive news about the US economy. Finally, Katsiampa (2017) explores the applicability of several
ARCH-type specifications to model Bitcoin volatility and selects an AR-CGARCH model as the
preferred specification. Although Katsiampa (2017) suggests that Bitcoin volatility consists of long-
and short-term components, he does not investigate the determinants of Bitcoin volatility.

We use the GARCH-MIDAS model of Engle et al. (2013) for investigating the economic
determinants of long-term Bitcoin volatility. While all the previous studies considered Bitcoin
returns/volatility as well as their potential determinants at the same (daily) frequency, the MIxed Data
Sampling (MIDAS) technique offers a unique framework to investigate macroeconomic and financial
variables that are sampled at a lower (monthly) frequency than the Bitcoin returns as potential drivers
of Bitcoin volatility. Specifically, the two-component GARCH-MIDAS model consists of a short-term
GARCH component and a long-term component. The model allows explanatory variables to enter
directly into the specification of the long-term component.

As potential drivers of Bitcoin volatility, we consider macroeconomic and financial variables,
such as the Baltic dry index and the VIX, but also Bitcoin specific variables, such as trading volume.
In addition, we analyze the drivers of the volatility of the S&P 500, the Nikkei 225, gold and copper.
This allows for a comparison of the effects on the different assets and provides further useful insights
for a classification of Bitcoin as an asset class.

Our main findings can be summarized as follows: First, Bitcoin volatility is negatively related
to US stock market volatility. This observation is consistent with investors who consider Bitcoin as
a safe-haven. Second, in contrast to stock market volatility, Bitcoin volatility behaves pro-cyclical,
i.e., increases with higher levels of global economic activity. Third, the response of Bitcoin volatility
to higher levels of US stock market volatility is the opposite of the response of gold volatility.
This questions the meaningfulness of comparisons between Bitcoin and gold. Finally, while most
previous studies focused on short-term relationships using exclusively daily data, our results highlight
the importance of also investigating the relationship between long-term Bitcoin volatility and its
economic drivers.
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In Section 2, we introduce the GARCH-MIDAS model as it is applied in the current setting.
Section 3 describes the data. The empirical results are presented in Section 4. Section 5 concludes
the paper.

2. Model

We model Bitcoin volatility as a GARCH-MIDAS processs. Engle et al. (2013) discuss the technical
details of this class of models where the conditional variance is multiplicatively decomposed into a
short-term (high-frequency) and a long-term (low-frequency) component. The long-term component is
expressed as a function of observable explanatory variables. This allows us to investigate the financial
and macroeconomic determinants of Bitcoin volatility. In the empirical application, we consider daily
Bitcoin returns and monthly explanatory variables.

We define daily Bitcoin returns as ri,t = 100 · (ln(Pi,t − ln(Pi−1,t)), where t = 1, . . . , T denotes
the monthly frequency and i = 1, . . . , Nt the number of days within month t. We assume that the
conditional mean of Bitcoin returns is constant, i.e.,

ri,t = μ + εi,t, (1)

with
εi,t =

√
hi,tτtZi,t. (2)

The innovation Zi,t is assumed to be i.i.d. with mean zero and variance one. hi,t and τt denote the
short- and long-term component of the conditional variance, respectively. The short-term component
hi,t varies at the daily frequency and follows a unit-variance GARCH(1,1) process

hi,t = (1 − α − β) + α
ε2

i−1,t

τt
+ βhi−1,t, (3)

where α > 0, β ≥ 0 and α + β < 1. The long-term component varies at the monthly frequency and is
given by

τt = m +
K

∑
k=1

ϕk(ω1, ω2)Xt−k, (4)

where Xt denotes the explanatory variable and ϕk(ω1, ω2) a certain weighting scheme. We opt for the
Beta weighting scheme, which is given by

ϕk(ω1, ω2) =
(k/(K + 1))ω1−1 · (1 − k/(K + 1))ω2−1

∑K
j=1 (j/(K + 1))ω1−1 · (1 − j/(K + 1))ω2−1 . (5)

By construction, the weights ϕk(ω1, ω2) ≥ 0, k = 1, . . . , K, sum to one. In the empirical application,
we impose the restriction that ω1 = 1, which implies that the weights are monotonically declining.
Following Conrad and Loch (2015), we employ three MIDAS lag years, i.e., we choose K = 36 for
the monthly explanatory variables. Our empirical results show that this choice is appropriate in the
sense that the estimated weights approach zero before lag 36. As in Engle et al. (2013), we estimate
the GARCH-MIDAS models by quasi-maximum likelihood and construct heteroscedasticity and
autocorrelation consistent (HAC) standard errors.

3. Data

Our analysis utilizes cryptocurrency specific data, measures of financial conditions, and measures
of macroeconomic activity from May 2013 to December 2017. Data are collected from a number of
sources and are described in more detail in what follows.
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3.1. Data Descriptions

Daily Bitcoin prices and trading volumes were taken from bitcoinity.1 The monthly realized
volatility for Bitcoin was constructed using daily squared returns. The Bitcoin (BTC) trading volume
by currency is simply the sum of all BTC traded in a selected period in specific currencies. It is
worth noting, however, that traders are able to trade in any currency they choose, regardless of
geographic location.

The financial measures used consist of the following: commodity ETFs, a luxury goods index,
monthly realized volatility and daily returns for the S&P 500 and the Nikkei 225, the VIX index, and the
Variance Risk Premium. For the luxury goods index, we use the S&P Global Luxury Index (Glux).
This offers exposure to over 80 luxury brands in a number of countries. For our commodities, we use
SPDR Gold Shares ETF (GLD) and iPath Bloomberg Copper ETF (JJC).

The S&P 500 monthly realized volatility is constructed using the daily realized variances,
RVarSP

i,t , based on 5-min intra-day returns from the Oxford-Man Institute of Quantitative Finance.
The daily realized variances are then used to construct annualized monthly realized volatility as

RVolSP
t =

√
12 · ∑Nt

i=1 RVarSP
i,t . The Nikkei 225 monthly realized volatility is constructed analogously.

The VIX index, from the Chicago Board of Options Exchange (Cboe), is computed from a panel of
options prices and is a “risk-neutral” implied volatility measure of the stock market. It is frequently
referred to as a “fear index” and is a gauge of perceived volatility, in both directions. The Variance Risk
Premium, VRPt, is calculated as the difference between the squared VIX and the expected realized
variance. Assuming the realized variance is a random walk, this is then a purely data-driven measure
of the risk premium.

The measure of macroeconomic activity used consists of the Baltic dry index (BDI), retrieved from
Quandl.2 BDI is an economic indicator issued by the Baltic Exchange based in London and was
first released in January 1985. The BDI is a composite of the following four different Baltic indices:
the Capesize, Handysize, Panamax, and Supramax. Everyday, a panel submits current freight cost
estimates on various routes. These rates are then weighted by size to create the BDI. The index covers
a range of carriers who transport a number of commodities and provides a cost assessment of moving
raw materials by water. It is frequently thought of as a good indicator of future economic growth
and production.

Since Bitcoin has been receiving more attention in the news, we follow Kristoufek (2015) and
utilize Google Trend data to see how this may contribute to the volatility of Bitcoin. We use monthly
indexes constructed by Google Trends for all web searches and monthly indexes for news searches only.
The spikes in the indices coincide with big events, both positive and negative. Moreover, we were able
to match large weekly swings in the index to specific events throughout the sample period. Periods in
the sample where Bitcoin did not have any major events take place had low, constant interest index
values. Hence, we believe that the Google Trends index is a fair proxy for large events, both positive
and negative, that may affect the volatility of Bitcoin.

3.2. Summary Statistics

Table 1 provides summary statistics. Panel A presents descriptive statistics for the Bitcoin
returns as well as returns on the S&P 500, Nikkei 225, Gold and Copper. The average daily Bitcoin
return is 0.271% during our sample period. On an annualized basis, this corresponds to a return of
approximately 68%, which is much higher than for the other assets (e.g., 11.34% for the S&P 500).
However, the minimum and maximum of daily Bitcoin returns are also much more extreme than
for the other assets. This is also reflected in a kurtosis of 11.93 (vs. 5.99 for the S&P 500). Note that

1 All data on data.bitcoinity.org is retrieved directly from exchanges through their APIs and is regularly updated for accuracy.
2 Note, Quandl’s data source for the BDI is Lloyd’s List.
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Bitcoins are traded seven days per week while the other assets are not traded over the weekend
or on bank holidays, which explains the variation in the number of observations across the assets.
The extraordinary price development of the Bitcoin is depicted in Figure 1. In particular, the price
action in 2017 is dramatic: from January 2017 to December 2017 the Bitcoin price increased by 1318%!

Table 1. Descriptive statistics.

Variable Mean Min Max SD Skew. Kurt. Obs.

Panel A: Daily return data
Bitcoin 0.271 −26.620 35.745 4.400 −0.139 11.929 1706

S&P 500 0.045 −4.044 3.801 0.748 −0.423 5.985 1176
Nikkei 225 0.043 −8.253 7.426 1.389 −0.391 7.817 1145

Gold −0.012 −5.479 4.832 0.967 0.022 5.873 1177
Copper −0.004 −5.126 6.594 1.323 0.018 4.812 1177

Panel B: Monthly realized volatilities (annualized)
RV-Bitcoin 73.063 21.519 224.690 42.349 1.414 5.472 56

RV-S&P 500 10.879 4.219 28.435 4.825 1.263 4.909 56
RV-Nikkei 225 19.701 6.336 41.969 9.328 0.981 3.039 56

RV-Gold 14.519 8.026 30.734 5.014 1.052 3.735 56
RV-Copper 20.132 8.265 36.396 6.037 0.493 2.930 56

RV-Glux 12.469 4.087 31.537 5.114 1.359 5.536 56

Panel C: Monthly explanatory variables
VIX 14.684 9.510 28.430 3.602 1.424 5.832 56
VRP 9.819 −8.337 20.299 5.837 −0.463 4.538 56

Baltic dry index 983.150 306.905 2178.059 383.597 0.774 3.613 56
RV-Glux 12.469 4.087 31.537 5.114 1.359 5.536 56

Panel D: Monthly Bitcoin specific explanatory variables
Google Trends (all) 7.661 2.000 100.000 14.395 5.156 32.147 56

Google Trends (news) 10.625 2.000 100.000 15.304 4.056 22.532 56
US-TV 2,308,314 603,946 4,947,777 1,047,524 0.573 2.686 56

CNY-TV 24,897,595 4693 173,047,579 42,509,087 2.180 7.056 56

Notes: The sample covers the 2013M05–2017M12 period. The reported statistics include the mean, the
minimum (Min) and maximum (Max), standard deviation (SD), Skewness (Skew.), Kurtosis (Kurt.), and the
number of observations (Obs.).

Figure 1. Bitcoin price development in the 2013:M5 to 2017:M12 period.

The monthly realized volatilities (RV) are presented in Panel B. Clearly, Bitcoin realized volatility
stands out as by far the highest. The average annualized Bitcoin RV is 73% as compared to 11% for
the S&P 500. Figure 2 shows the times series of annualized monthly realized volatilities. During the
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entire sample period Bitcoin realized volatility by far exceeds realized volatility in all other assets.
Specifically, the year 2017 was characterized by unusually low volatility in stock markets: in 2017,
the Cboe’s volatility index, VIX, fell to the lowest level during the last 23 years and realized volatility
in US stock markets was the lowest since the mid-1990s. In sharp contrast, Bitcoin volatility was
increasing over almost the entire year.

Figure 2. Annualized monthly realized volatilities.

Panels C and D provide summary statistics for the macro/financial and Bitcoin specific
explanatory variables. Prior to the estimation, all explanatory variables are standardized.

Table 2 presents the contemporaneous correlations between the realized volatilities of the different
assets. While there is a strong co-movement between the realized volatilities of the S&P 500 and
the Nikkei 225 as well as a very strong correlation of both RVs with the realized volatility of the
luxury goods index, Bitcoin realized volatility is only weakly correlated with the RV of all other assets.
Although the contemporaneous correlations are close to zero, the correlation between RVolBit

t and
RVolSP

t−1 is −0.1236 and between RVolBit
t and RVolSP

t−2 is −0.2623. This suggests that lagged S&P 500
realized volatility may be a useful predictor for future Bitcoin volatility.

In the empirical analysis, we use the explanatory variables in levels. This is justified because
the persistence of the explanatory variables is not too strong at the monthly frequency. For example,
the first order autocorrelation of the Baltic dry index and trading volume in US dollars is 0.79 and 0.48,
respectively. Nevertheless, we also estimated GARCH-MIDAS models using the first difference of the
explanatory variables. All our results were robust to this modification.

Table 2. Contemporaneous correlations between monthly realized volatilities.

RV-Bitcoin RV-S&P 500 RV-Nikkei 225 RV-Gold RV-Copper RV-Glux

RV-Bitcoin 1.000 −0.074 −0.048 0.059 −0.080 −0.179
RV-S&P 500 1.000 0.636 0.369 0.252 0.818

RV-Nikkei 255 1.000 0.634 0.333 0.743
RV-Gold 1.000 0.220 0.469

RV-Copper 1.000 0.367
RV-Glux 1.000

Notes: The sample covers the 2013M05-2017M12 period. The table reports the contemporaneous correlations
between the various realized volatilities.
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4. Empirical Results

4.1. Macro and Financial Drivers of Long-Term Bitcoin Volatility

In this section, we analyze the determinants of long-term Bitcoin volatility. In general, once the
long-term component is accounted for, the short-term volatility component is well described by a
GARCH(1,1) process. As potential drivers of Bitcoin volatility, we consider measures of volatility and
risk in the US stock market as well as a measure of global economic activity. These measures have
been shown to be important drivers of US stock market volatility in previous studies (see, among
others, (Engle et al. 2013; Conrad and Loch 2015; and Conrad and Kleen 2018)). Bouri et al. (2017)
found only weak evidence for a relation between US stock market volatility and Bitcoin volatility.
However, their analysis was based on daily data and focused on short-term effects. In contrast,
the GARCH-MIDAS model allows us to investigate whether US stock market volatility has an effect
on long-term Bitcoin volatility. For comparison, we also present how these measures are related to the
volatility of the S&P 500, the Nikkei 225 and the volatility of gold and copper.3

As a benchmark model, we estimate a simple GARCH(1,1) for the Bitcoin returns. The parameter
estimates are presented in the first line of Table 3. The constant in the mean as well as the two
GARCH parameters are highly significant. The sum of the estimates of α and β is slightly above one.
Therefore, the estimated GARCH model does not satisfy the condition for covariance stationarity.
This result is likely to be driven by the extreme swings in Bitcoin volatility and suggests that a
two-component model may be more appropriate.4 We also estimated a GJR-GARCH and—in line with
Bouri et al. (2017)—found no evidence for asymmetry in the conditional volatility.

The remainder of Table 3 presents the parameter estimates for the GARCH-MIDAS models. For those
models, the estimates of α and β satisfy the condition for covariance stationarity, i.e., accounting for
long-term volatility reduces persistence in the short-term component. First, we use S&P 500 realized
volatility as an explanatory variable for long-term Bitcoin volatility. Interestingly, we find that RVolSP

t has
a negative and highly significant effect on long-term Bitcoin volatility. Since the estimated weighting
scheme puts a weight of 0.09 on the first lag, our parameter estimates imply that a one standard
deviation increase in RVolSP

t this month predicts a decline of 17% in long-term Bitcoin volatility
next month. The finding that RVolSP

t is negatively related to Bitcoin volatility is in contrast to the
usual findings for other markets. For comparison, Tables 4 and 5 present parameters estimates for
GARCH-MIDAS models applied to the S&P 500 and the Nikkei 225. As expected, higher levels of
RVolSP

t predict increases in S&P 500 long-term volatility as well as increases in the long-term volatility
of the Nikkei 225.

Second, we find that the VIX and RV-Glux are negatively related to long-term Bitcoin volatility.
Since both measures are positively related to RVolSP

t (see Table 2), this finding is not surprising.
Again, Tables 4 and 5 show that the opposite effect is true for the two stock markets.

Third, Table 3 implies that the VRP has a significantly positive effect on long-term Bitcoin volatility.
A high VRP is typically interpreted either as a sign of high aggregate risk aversion (Bekaert et al. (2009))
or high economic uncertainty (Bollerslev et al. (2009)). We observe the same effect for the Nikkei 225
(see Table 5) but no such effect for the S&P 500 (see Table 4).

Fourth, we find a strong positive association between the Baltic dry index and long-term
Bitcoin volatility. The finding of a pro-cyclical behavior of Bitcoin volatility is noteworthy, since it
contrasts with the counter-cyclical behavior usually observed for financial volatility (see Schwert (1989);
or Engle et al. (2013)).

3 Fang et al. (2018) investigate whether global economic policy uncertainty predicts long-term gold volatility. We are not
aware of any applications of the GARCH-MIDAS to copper returns.

4 Similarly, Katsiampa (2017) estimates a non-stationary GARCH(1,1) for Bitcoin returns (see his Table 1). See also Chen et al. (2018)
for GARCH estimates of Bitcoin volatility.
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Table 3. GARCH-MIDAS for Bitcoin: financial and macroeconomic explanatory variables.

Variable μ α β m θ ω2 LLF AIC BIC

GARCH(1,1) 0.1730 ���

(0.0674)
0.1470 ���

(0.0472)
0.8560 ���

(0.0507)
0.3319 ���

(0.2643)
- - −4738.71 5.4608 5.4734

RV-S&P 500 0.1656 ��

(0.0661)
0.1607 ���

(0.0445)
0.8087 ���

(0.0550)
2.7211 ���

(0.3775)
−2.1114 ���

(0.7576)
3.4269 ���

(0.8575) −4618.47 5.4182 5.4374

VIX 0.1734 ���

(0.0670)
0.1526 ���

(0.0540)
0.8236 ���

(0.0691)
2.4882 ���

(0.4579)
−2.3137 �

(1.2905)
3.5195 ���

(1.0696) −4627.25 5.4285 5.4477

RV-Glux 0.1813 ���

(0.0648)
0.1688 ���

(0.0428)
0.7951 ���

(0.0530)
2.5390 ���

(0.3701)
−1.7776 ���

(0.5208)
5.2603 ���

(1.5561) −4620.62 5.4208 5.4399

VRP 0.1205 �

(0.0669)
0.1939 ���

(0.0390)
0.7710 ���

(0.0432)
4.8269 ���

(0.5759)
6.6860 ���

(1.9478)
5.3861 ���

(0.8519) −4613.61 5.4126 5.4317

Baltic 0.1946 ���

(0.0650)
0.1707 ���

(0.0354)
0.7464 ���

(0.0431)
3.4942 ���

(0.2503)
1.5342 ���

(0.3257)
18.3834 ��

(7.8759) −4597.37 5.3935 5.4127

Notes: The table reports estimation results for the GARCH-MIDAS-X models including 3 MIDAS lag years
(K = 36) of a monthly explanatory variable X. The sample period is 2013M05-2017M12. The conditional
variance of the GARCH(1,1) is specified as hi,t = m + αε2

i−1,t + βhi−1,t. The numbers in parentheses are HAC
standard errors. ���, ��, � indicate significance at the 1%, 5%, and 10% level. LLF is the value of the maximized
log-likelihood function. AIC and BIC are the Akaike and Bayesian information criteria.

Table 4. GARCH-MIDAS for S&P 500.

Variable μ α β m θ ω2 LLF AIC BIC

RV-S&P 500 0.0673 ���

(0.0171)
0.1835 ���

(0.0396)
0.6818 ���

(0.0552)
−0.4549 ���

(0.1493)
0.8907 ���

(0.3283)
6.9532 ���

(2.6901) −1191.81 2.0371 2.0630

VIX 0.0647 ���

(0.0169)
0.1717 ���

(0.0381)
0.6663 ���

(0.0560)
−0.2394
(0.1554)

1.1889 ���

(0.3138)
8.7747 ���

(3.3672) −1185.90 2.0270 2.0529

RV-Glux 0.0675 ���

(0.0171)
0.1897 ���

(0.0418)
0.7046 ���

(0.0560)
−0.3969 ��

(0.1985)
0.6072�
(0.3308)

9.1559 ���

(2.2863) −1194.99 2.0425 2.0684

VRP 0.0625 ���

(0.0169)
0.1763 ���

(0.0460)
0.7376 ���

(0.0620)
−0.3678
(0.3327)

0.8226
(1.0205)

42.9597
(103.8718) −1193.83 2.0405 2.0664

Baltic 0.0662 ���

(0.0174)
0.1876 ���

(0.0435)
0.7275 ���

(0.0548)
−0.7358 ���

(0.2314)
−0.3833
(0.3218)

34.5626
(40.4420) −1196.75 2.0455 2.0714

Notes: See Table 3.

Table 5. GARCH-MIDAS for Nikkei 225.

Variable μ α β m θ ω2 LLF AIC BIC

RV-N225 0.0733 ��

(0.0319)
0.1435 ���

(0.0287)
0.8118 ���

(0.0407)
0.6529
(0.4419)

0.5956 ��

(0.2388)
8.5433 ���

(2.3603) −1854.00 3.2489 3.2753

RV-S&P 500 0.0804 ���

(0.0307)
0.1256 ���

(0.0270)
0.8120 ���

(0.0387)
0.9172 ���

(0.2233)
2.6059 ��

(1.1214)
2.5956 ��

(1.1835) −1845.16 3.2335 3.2599

VIX 0.0823 ���

(0.0306)
0.1194 ���

(0.0266)
0.8058 ���

(0.0408)
1.2615 ���

(0.2406)
2.6210 ���

(0.6460)
3.1827 ���

(0.7872) −1841.19 3.2265 3.2530

RV-Glux 0.0775 ��

(0.0307)
0.1314 ���

(0.0269)
0.8240 ���

(0.0364)
1.1043 ���

(0.3341)
1.4996 �

(0.8430)
4.7827
(4.2353) −1850.32 3.2425 3.2689

VRP 0.0772 ��

(0.0310)
0.1259 ���

(0.0308)
0.8494 ���

(0.0379)
1.6757 ��

(0.7000)
4.1277 ��

(1.7917)
2.7717 ��

(1.2418) −1851.00 3.2437 3.2701

Baltic 0.0741 ��

(0.0301)
0.1398 ���

(0.0282)
0.8522 ���

(0.0356)
1.0786
(3.0334)

−1.0354
(0.8642)

10.4773 ��

(5.2701) −1853.51 3.2480 3.2745

Notes: See Table 3.

According to the Akaike and Bayesian information criteria, the preferred GARCH-MIDAS model
for Bitcoin volatility is based on the Baltic dry index (see Table 3). The left panel of Figure 3 shows
the estimated long- and short-term components from this specification. About 65% percent of the
variation in the monthly conditional volatility can be explained by movements in long-term volatility.
For comparison, the right panel shows the long- and short-term components for the model based on
the volatility of the luxury goods index. Clearly, the comparison of graphs confirms that the Baltic dry
index has more explanatory power for Bitcoin volatility than RV-Glux.
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Figure 3. The figure shows the annualized long-term (bold red line) and short-term (black line)
volatility components as estimated by the GARCH-MIDAS models with the Baltic dry index (left) and
the realized volatility of the luxury goods index (right) as explanatory variables.

Finally, Table 6 presents the GARCH-MIDAS estimates for gold and copper. In the table,
we include only explanatory variables for which the estimate of θ is significant. We find that the
GARCH persistence parameter, β, is high for both Gold and Copper across all models. Long-term gold
volatility is positively related to realized volatility in the S&P 500, the VIX and realized volatility in
the luxury goods index. Interestingly, there is a strongly negative relation between long-term copper
volatility and the baltic dry index. Elevated levels of global economic activity go along with high
demand for copper and, hence, an increasing copper price and low volatility.

Table 6. GARCH-MIDAS for Gold and Copper.

Variable μ α β m θ ω2 LLF AIC BIC

Panel A: Gold

RV-S&P 500 −0.0079
(0.0251)

0.0217 ��

(0.0085)
0.9653 ���

(0.0169)
0.1068
(0.1900)

2.1937 ���

(0.7128)
1.9838 ���

(0.6000) −1567.17 2.6732 2.6990

VIX −0.0078
(0.0250)

0.0214 ��

(0.0091)
0.9551 ���

(0.0217)
0.3289 ��

(0.1672)
1.9879 ���

(0.4169)
2.3936 ���

(0.5787) −1564.76 2.6691 2.6949

RV-Glux −0.0072
(0.0251)

0.0234 ���

(0.0083)
0.9689 ���

(0.0136)
0.1612
(0.3205)

1.4024 ��

(0.5529)
2.0356�
(1.1250) −1570.45 2.6788 2.7046

Panel B: Copper

RV-S&P 500 −0.0038
(0.0349)

0.0247 ���

(0.0083)
0.9640 ���

(0.0113)
0.5844 ���

(0.1753)
0.2444��
(0.0998)

386.9946 ���

(0.0165) −1965.14 3.3494 3.3753

Baltic −0.0086
(0.0353)

0.0262 ��

(0.0119)
0.9369 ���

(0.0384)
0.1945
(0.1732)

−0.7006 ���

(0.2647)
8.1959 ��

(3.4636) −1965.09 3.3493 3.3752

Notes: See Table 3.

In summary, we find that the behavior of long-term Bitcoin volatility is rather unusual.
Unlike volatility in the two stock markets and volatility of gold/copper, Bitcoin volatility decreases
in response to higher realized or expected volatility in the US stock market. A potential explanation
might be that Bitcoin investors may have lost faith in institutions such as governments and central
banks and consider Bitcoin as a safe-haven.5 Furthermore, while stock market volatility and copper
volatility behave counter-cyclically, Bitcoin volatility appears to behave strongly pro-cyclically. This
is an interesting result that distinguishes Bitcoin from stocks but also from commodities or precious
metals. Since Bitcoin neither has an income stream (as compared to stocks) nor an intrinsic value (as
compared to commodities), it is often compared to precious metals such as gold. However, our results

5 For example, in a Reuters article from 11 April 2013, it is argued that the Bitcoin “currency has gained in prominence amid
the euro zone sovereign debt crisis as more people start to question the safety of holding their cash in the bank. Bitcoins shot
up in value in March when investors took fright at Cyprus’ plans to impose losses on bank deposits.”
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suggest that the link between Bitcoin volatility and macro/financial variables is very different from
the link between those variables and stocks/copper/gold.

4.2. Bitcoin Specific Explanatory Variables

Next, we consider Bitcoin specific explanatory variables. The parameter estimates are presented
in Table 7. As expected, we find that both Google Trend measures (all web searches and monthly news
searches) are significantly positively related to Bitcoin volatility. That is, more attention in terms of
Google searches predicts higher levels of long-term volatility.6 Finally, we estimate two models that
include Bitcoin trading volume in US dollar (US-TV) and Chinese yuan (CNY-TV), respectively. In both
cases, we find a significantly negative effect of trading volume. We conjecture that increasing trading
volume goes along with higher levels of “trust” or “confidence” in Bitcoin as a payment system and,
hence, predicts lower Bitcoin volatility. Recall that Balcilar et al. (2017) analyze the causal relation
between trading volume and Bitcoin returns and volatility. They find that volume cannot help predict
the volatility of Bitcoin returns. It appears therefore that separating out long-term components is
important in finding significant patterns between volatility and trading volume.

Table 7. GARCH-MIDAS for Bitcoin specific explanatory variables

Variable μ α β m θ ω2 LLF AIC BIC

Google Trends (all) 0.1833 ���

(0.0665)
0.1691 ���

(0.0357)
0.7863 ���

(0.0450)
2.5337 ���

(0.3240)
0.0927 ��

(0.0422)
17.7833
(14.9715) −4628.06 5.4295 5.4486

Google Trends (news) 0.1924 ���

(0.0666)
0.1870 ���

(0.0367)
0.7558 ���

(0.0428)
2.4217 ���

(0.3154)
0.0622 ���

(0.0207)
53.9053
(42.3308) −4614.86 5.4140 5.4331

US-TV 0.1804 ���

(0.0685)
0.1598 ���

(0.0365)
0.8079 ���

(0.0429)
3.4516 ���

(0.3102)
−1.9630 ��

(0.8046)
2.1127 ���

(0.6752) −4457.43 5.4234 5.4431

CNY-TV 0.1651 ��

(0.0721)
0.1840 ���

(0.0321)
0.7731 ���

(0.0386)
2.9714 ���

(0.3101)
−0.4701 �

(0.2677)
11.0465 ���

(3.5819) −3387.81 5.1774 5.2011

Notes: See Table 3.

5. Conclusions

Cryptocurrency is a relatively unexplored area of research and the fluctuations of Bitcoin prices are
still poorly understood. As cryptocurrencies appear to gain interest and legitimacy, particularly with
the establishment of derivatives markets, it is important to understand the driving forces behind market
movements. We tried to tease out what are the drivers of long-term volatility in Bitcoin. We find that
S&P 500 realized volatility has a negative and highly significant effect on long-term Bitcoin volatility
and that the S&P 500 volatility risk premium has a significantly positive effect on long-term Bitcoin
volatility. Moreover, we find a strong positive association between the Baltic dry index and long-term
Bitcoin volatility and report a significantly negative effect of Bitcoin trading volume.

It is worth noting that there are a number of series we considered—such as crime-related
statistics—which did not really seem to explain Bitcoin volatility, despite the popular press coverage
on the topic. We also experimented with a flight-to-safety indictor suggested in Engle et al. (2012) and
found that long-term Bitcoin volatility tends to decrease during flight-to-safety periods. This result
squares with our finding of a negative relation between Bitcoin volatility and risks in the US
stock market.

Since our findings suggest that Bitcoin volatility forecasts based on the GARCH-MIDAS model are
superior to forecasts based on simple GARCH models, our results can be used, for example, to construct
improved time-varying portfolio weights when building portfolios of Bitcoins and other assets such as
stocks and bonds. Our results may also be useful for the pricing of Bitcoin futures, since they allow us
to anticipate changes in Bitcoin volatility at longer horizons. Finally, the GARCH-MIDAS model can be

6 There is already some evidence that Google searches can be used to forecast macroeconomic variables such as the
unemployment rate (see D’Amuri and Marcucci (2017)).
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used to simulate Bitcoin volatility based on alternative scenarios for the development of the US stock
market or global economic activity. We look forward to sort out these possibilities in future research.

Nevertheless, we would like to emphasize that all our results are based on a relatively short
sample period. It will be interesting to see whether our results still hold in longer samples and when
the Bitcoin currency has become more mature.
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Abstract: Bitcoin is an exciting new financial product that may be useful for inclusion in investment
portfolios. This paper investigates the implications of replacing gold in an investment portfolio
with bitcoin (“digital gold”). Our approach is to use several different multivariate GARCH models
(dynamic conditional correlation (DCC), asymmetric DCC (ADCC), generalized orthogonal GARCH
(GO-GARCH)) to estimate minimum variance equity portfolios. Both long and short portfolios are
considered. An analysis of the economic value shows that risk-averse investors will be willing to pay
a high performance fee to switch from a portfolio with gold to a portfolio with bitcoin. These results
are robust to the inclusion of trading costs.
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1. Introduction

Bitcoin is an exciting new financial product that has the potential to disrupt existing economic
payment systems. Bitcoin is a peer-to-peer digital cryptocurrency that was launched in 2009 based
on an open source project developed by Nakamoto (2008). As of 15 March 2018, a single bitcoin was
worth $8014.92, the daily transaction volume was approximately 165,142 and the supply of bitcoins
on the network (i.e., have been “mined”) was 16,923,238.1 As a decentralized protocol, Bitcoin is not
controlled by any organization or government, but its supply has been set in advance at 21 million
bitcoins. The total supply of bitcoin in circulation grows at a predictable rate and is set to reach
21 million by September 2140 (Zohar 2015; Hendrickson et al. 2016).

Bitcoin has on occasion been called digital gold (Popper 2015a, 2015b). Gold is often advocated
as a hedge against inflation, a safe haven investment and a way to increase portfolio diversification
(Eichengreen 1992). Gold, a mined asset, has been used as a form of currency for much of the history
of civilization (Michaud et al. 2006). Interestingly, Bitcoin also uses the mining terminology to describe
what “miners” receive once they provide proof-of-work associated with the verification of a transaction
and the completion of a block in blockchain (i.e., the decentralized ledger). Bitcoin is possible due
to blockchain technology which enables secure electronic transactions without needing a centralized
ledger and preventing users from replicating the payment for other uses, also known as the double
spending problem (Kiviat 2015; Zohar 2015). The units awarded can be used to make a transaction
or invest.

The notion that Bitcoin can replace gold as a hedge against inflation has especially interested
people in countries where governments were struggling with hyperinflation. In the mid-2000s for
example, Argentine businesses, entrepreneurs and citizens seeking to protect the value of their currency

1 Daily data are available at https://blockchain.info/charts. By convention, we use Bitcoin with a capital “B” to denote the
Bitcoin network and “bitcoin” with a small “b” to denote the unit of account.
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were helpless as inflation rose and the government imposed greater and greater currency controls on
the Argentine peso. Although Bitcoin adoption was slow in North America, the same could not be
said for Latin America where currency controls were impeding transactions and Bitcoin adoption was
growing as people sought both a cheaper way of moving money across international borders and a
safe store of value (Popper 2015b). In fact, in a comparison of 16 different currencies, Kim (2017) found
bitcoin currency exchange transaction costs to be lower than the retail foreign exchange transaction
costs. As a result, Bitcoin has experienced a rapid rise in popularity over the past several years and in
December 2017, the CME Group launched bitcoin futures contracts.

Our objective is to examine the impact that replacing gold with bitcoin would have on investment
portfolio characteristics and returns. Eliminating a safe haven asset such as gold from an investment
portfolio will have implications for risk and return trade-offs, because it reduces diversification. In fact,
there is a large literature showing the effectiveness of gold in diversifying portfolio risk (Baur and
Lucey 2010; Hillier et al. 2006; Jaffe 1989; Reboredo 2013a, 2013b; Baur and McDermott 2010; Ciner
et al. 2013; Beckmann et al. 2015). Gold divestment, therefore, may reduce returns and increase risk.
Substituting bitcoin for gold, however, may increase returns and reduce risk. To address whether this
is the case, a rigorous empirical analysis using modern portfolio theory is required.

This paper makes three important contributions to the literature. First, we investigate the financial
implications of replacing gold in an investment portfolio with bitcoin, using modern portfolio theory.
We compare two portfolios: (1) A portfolio that includes gold, and (2) a portfolio that replaces gold
with bitcoin. Second, to compare optimal weights for minimum variance equity portfolios subject to a
target return, we use three different multivariate GARCH models: dynamic conditional correlation
(DCC), asymmetric dynamic conditional correlation (ADCC), and generalized orthogonal GARCH
(GO-GARCH). While many papers use DCC and ADCC to estimate optimal portfolio weights, few use
GO-GARCH. Given the volatile nature of bitcoin, an analysis that provides more accurate volatility
estimates is needed. GO-GARCH not only incorporates persistence in volatility and correlation,
as well as time-varying correlation (as do DCC and ADCC), but also allows for spill-over effects in
volatility and is closed under linear transformation. Comparing weights computed from three different
models demonstrates the robustness of our portfolio results to the choice of GARCH model. Third,
we calculate optimal portfolio weights using a fixed-width rolling window, which mitigates the effects
of changing dynamics, parameter heterogeneity, and structural change.

The paper is organized as follows. We first present a brief literature review of Bitcoin and its
investment potential. We then present our modern portfolio model followed by the methodology,
description of the data, empirical results and some robustness analyses. We conclude the paper with
some important implications for investors who seek to include bitcoin in their investment portfolios.

2. What Is Bitcoin—Currency or Asset?

The core of Bitcoin’s innovation is blockchain, which forms “an incremental log of all transactions
that have ever occurred since the creation of Bitcoin, starting with the “Genesis Block”—the first block
in the chain” (Zohar 2015, p. 107). This allows transactions to be processed over a distributed network
using public-private key technology, where the sender and the receiver of a transaction use a private
key and everyone else on the network uses a public key to verify the legitimacy of the transaction.
The public verification system is known as “mining”. Böhme et al. (2015) view the verification system
in which users are encouraged to keep the transaction record operational and updated as a public good.
Unfortunately, public goods are underprovided unless there are incentives (McNutt 2002). To encourage
user participation, users who solve a computationally intensive and random mathematical puzzle
associated with the pre-existing contents of a block, known as proof-of-work, are awarded newly
minted bitcoins (Böhme et al. 2015). As there is a finite number of bitcoins, the puzzles become more
computationally difficult over time.

The advantages of using bitcoin are: (1) as a purely digital currency, Bitcoin allows payments
to be sent nearly instantly over the internet for very low fees (Zohar 2015), (2) like cash, bitcoin is
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nearly anonymous and irreversible once committed, and (3) as there is no controlling organization
(private or public), Bitcoin is less open to regulatory oversight (Böhme et al. 2015). The disadvantages
of Bitcoin are associated with the fact that it functions outside the purview of financial institutions,
governments and without regard to national borders; users of the system are identifiable only by their
virtual addresses (Hendrickson et al. 2016). Early adopters of Bitcoin were individuals and businesses
who were attracted to the anonymity of the system and the lack of government oversight. Böhme et al.
(2015) cite the online sale of narcotics, and gambling as the two of the largest adopters of Bitcoin.

Today, however, businesses are beginning to view Bitcoin as a method to reduce their credit card
transaction fees. Such fees can range from 1.65 to 2.71% of transaction sales (Canadian Federation of
Independent Business 2018). As of January 2018, companies and organizations such as Overstock.com,
KFC Canada, Microsoft, CheapAir.com, Newegg.com, Zynga, Save the Children, and Universidad de
las Americas Puebla—just to name a few—accept bitcoin.2 As more and more merchants adjust their
payment systems to accept bitcoin, Bitcoin as a method of payment will grow. Consumers, however,
may be less inclined to use bitcoin as traditional financial accounts payments can be reversed if an
error were to occur whereas it cannot be reversed with bitcoin due to the pseudonymous exchange
(Hendrickson et al. 2016).

The question remains as to whether Bitcoin should be considered a currency. Lo and Wang (2014)
examine whether Bitcoin can serve as an alternative form of money by evaluating Bitcoin against the
three properties of money, namely its ability to act as a medium of exchange, a unit of account and a
store of value. In the case of Bitcoin’s ability to act as a medium of exchange, the authors note that
bitcoin is not backed by any sovereign entity and therefore its success will be based on its acceptance by
private agents. As Bitcoin’s transaction confirmation times decrease (it now takes less than 10 min) and
its fees are less than those of other financial intermediaries such as banks and credit card companies,
more agents will view this as potential medium of exchange.

Using bitcoin as a unit of account, however, appears to be a problem due to its remarkable
volatility. Lo and Wang (2014) argue that despite merchants accepting bitcoin as payment, they
continue to post their prices in standard currencies due to bitcoin’s volatility. The store of value
function of money, on the other hand, is based on agents’ acceptance that bitcoin’s value will be
accepted in the future. Volatility and speculative holdings in bitcoin have suggested that bitcoin may
be in a state of speculative play (Glaser et al. 2014). This volatility is catching the attention of market
participants who seek to profit from such volatility. This has led to the discussion of the creation of
Bitcoin futures contracts (Hopkins 2017) and in December 2017 The CME Group launched bitcoin
futures contracts.

Although Bitcoin is seen as a digital currency that can provide a secure, low-cost platform for
digital payments (Hendrickson et al. 2016), Glaser et al. (2014) argue that most users of Bitcoin treat
their bitcoin investment as a speculative asset rather than as a means of payment. Financial assets allow
an investor to diversify her portfolio. An asset can act as a safe haven, a hedge, and/or a diversifier.
Bitcoin is highly volatile and (Dyhrberg 2016a) found that bitcoin can be classified somewhere between
a currency and a commodity with the associated financial advantages. Dyhrberg (2016b) also suggests
that Bitcoin can act as a hedge between UK equities and the US dollar.

Bouri et al. (2017) examine whether bitcoin can be used as a safe haven, diversifier or hedge using
daily and weekly data. From a risk perspective, including an asset that is negatively correlated with
another decreases risk; the authors, using dynamic conditional correlation models, find that bitcoin
can be used as an effective diversifier for most of the cases examined. Using bitcoin as a safe haven,
however, was not evidenced in daily movements due perhaps to bitcoin’s speculative nature (Ciaian et
al. 2016; Bouri et al. 2017). Zhu et al. (2017) use a vector error correction model to study the dynamic
interaction between bitcoin and important economic variables like the US dollar index, stock prices, the

2 See https://99bitcoins.com/who-accepts-bitcoins-payment-companies-stores-take-bitcoins/.
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Federal Funds Rate, and gold prices. They find that all variables have a long-term influence on bitcoin
prices, but the US dollar index has the largest impact, while gold prices have the least. These authors
recommend that bitcoin should be treated as a speculative asset rather than a credit currency. Guesmi
et al. (2018) use GARCH models to study the usefulness of using Bitcoin to hedge investments in gold,
oil and emerging market stocks. All portfolios are two-asset portfolios that include Bitcoin and one
other asset. For an emerging market (global market) portfolio, the average optimal portfolio weight for
Bitcoin is 0.051 (0.033). Evidence is also presented showing that Bitcoin is a useful hedging instrument.

The question remains as to bitcoin’s contribution to an investor’s portfolio. Is bitcoin an asset that
should be added to an investor’s portfolio? Does bitcoin live up to its name as digital gold (Popper
2015b) and can it be a good gold replacement? These are some of the questions we wish to address.

3. Empirical Model

Using modern portfolio theory (Elton and Gruber 1997), we consider an investor who wants to
determine the optimal portfolio weights for a minimum variance equity portfolio subject to a target
return of μTR. The optimal portfolio weights are found by solving the following optimization problem:

min
wt

w′
t ∑

t
wt s.t. w′

t ι = 1, w′
t μ = μTR (1)

In Equation (1), ∑t is the variance-covariance matrix, μ is a vector of mean returns and wt are
the portfolio weights. There are no restrictions on short sales. The solution to Equation (1) gives the
expression for the optimal portfolio weights:

wt =
μTR ∑−1

t μ

μ′ ∑−1
t μ

(2)

The optimal portfolio weights depend upon the covariance matrix and the mean returns.
The covariance matrix is estimated using three types of multivariate GARCH models. Sample mean
returns are used to estimate μ (Fleming et al. 2001).

A GARCH model consists of a mean equation and a variance equation. A vector of n × 1 asset
returns is denoted rt. An AR(1) process for the asset returns, rt, conditional on the information set It−1

is written as:
rt = μ+ art−1 + εt (3)

The residuals are modelled as:
εt = H1/2

t zt (4)

where Ht is the conditional covariance matrix of rt and zt is a n × 1 i.i.d. random vector of errors.
One popular and easy approach to estimating optimal portfolio weights is to use a DCC GARCH

model to estimate the variance-covariance matrix. Engle (2002) proposed a two-step methodology to
estimate dynamic conditional correlations. In the first step, the GARCH parameters are estimated using
single equation GARCH models. In the second step, the conditional correlations are estimated using:

Ht = DtRtDt (5)

Ht is a n × n conditional covariance matrix, Rt is the conditional correlation matrix, and Dt is a
diagonal matrix with time-varying standard deviations on the diagonal.

Dt = diag
(

h1/2
1,t , . . . h1/2

n,t

)
(6)

Rt = diag
(

q−1/2
1,t , . . . q−1/2

n,t

)
Qt diag

(
q−1/2

1,t , . . . q−1/2
n,t

)
(7)
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The expressions for h are univariate GARCH models (H is a diagonal matrix). For the GARCH(1,1)
model, the elements of Ht can be written as:

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 (8)

Qt is a symmetric positive definite matrix.

Qt = (1 − θ1 − θ2)Q + θ1zt−1z′
t−1 + θ2Qt−1 (9)

Q is the n × n unconditional correlation matrix of the standardized residuals zi,t (zi,t = εi,t/
√

hi,t).
The parameters θ1 and θ2 are non-negative. These parameters are associated with the exponential
smoothing process that is used to construct the dynamic conditional correlations. The DCC model is
mean reverting as long as θ1 + θ2 < 1. The correlation estimator is:

ρi,j,t =
qi,j,t√qi,i,tqj,j,t

(10)

The second approach to is to use the ADCC GARCH model of Cappiello et al. (2006) to estimate
the variance-covariance matrix. This approach, building upon the work of Glosten et al. (1993),
contains an asymmetric term in the variance equation.

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 + diε

2
i,t−1 I(εi,t−1) (11)

The indicator function I(εi,t−1) is equal to one if εi,t−1 < 0 and 0 otherwise. A positive value for d
means that negative residuals tend to increase the variance more than positive returns. The asymmetric
effect, which is sometimes referred to as the “leverage effect”, is designed to capture an often-observed
characteristic of financial assets that an unexpected drop in asset prices tends to increase volatility
more than an unexpected increase in asset prices of the same magnitude. This can be interpreted as
bad news increasing volatility more than good news.

For the ADCC model, the dynamics of Q are given by:

Qt =
(

Q − A′QA − B′QB − G′Q−G
)
+ A′zt−1z′

t−1 A + B′Qt−1B + G′z−t z
′−
t G (12)

In the above equation, A, B and G are n × n parameter matrices and z−t are zero-threshold
standardized errors, which are equal to zt when less than zero and zero otherwise. The matrices Q and
Q− are the unconditional matrices of zt and z−t , respectively.

The third approach to estimating optimal portfolio weights is to use a GO-GARCH model to
estimate the variance-covariance matrix (Van Der Weide 2002). The GO-GARCH model maps a set of
asset returns, rt, onto a set of uncorrelated components, zt, using a mapping Z.

rt = Zyt (13)

The unobserved components, yt, are normalized to have unit variance. Each component of yt

can be described by a GARCH process. For example, consider a standard GARCH(1,1) process with a
normal distribution.

yt ∼ N(0, Ht) (14)

Ht = diag(h1,t, . . . , hn,t) (15)

hi,t = ωi + αiy2
i,t−1 + βih2

i,t−1 (16)

The index i runs from 1 to n. The unconditional covariance matrix of yt is H0 = I. The conditional
covariance matrix of rt is:

Vt = ZHtZ′ (17)
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The matrix Z maps the uncorrelated components yt to the observed returns rt. There exists an
orthogonal matrix U such that:

Z = PΛ1/2U′ (18)

The matrices P and Λ can be obtained from singular value decomposition on the unconditional
variance matrix V. For example, P contains the orthonormal eigenvectors of ZZ′ = V and Λ contains
the eigenvalues. The matrix U can be obtained from the conditional variance matrix Vt. Recent work
on GO-GARCH is concentrated on finding different ways to parameterize and estimate the matrix U.
Boswijk and van der Weide (2006) provide a more detailed discussion of these efforts.

The GO-GARCH model assumes that (1) Z is time invariant, and (2) Ht is a diagonal matrix.
An orthogonal GARCH (OGARCH) model is the result when Z is restricted to be orthogonal (Alexander
2001). The OGARCH model can be estimated using principle components on the normalized data
and GARCH models estimated on the principle components. This corresponds to U being an identity
matrix. In the original formation of the GO-GARCH model, Van Der Weide (2002) uses a 1-step
maximum likelihood approach to jointly estimate the rotation matrix and the dynamics. This method,
however, is impractical for many assets because the maximum likelihood estimation procedure may
fail to converge. The matrix U can also be estimated using nonlinear least squares (Boswijk and van
der Weide 2006) and method of moments (Boswijk and van der Weide 2011), both of which involve
two-step and three-step estimation procedures. More recently, it has been proposed that U can be
estimated by independent component analysis (ICA) (Broda and Paolella 2009; Zhang and Chan 2009)
and is the method employed in this paper3.

Asset returns are characterized by autocorrelation, volatility clustering and distributions that are
asymmetric and have fat tails. This suggests an AR(1) mean equation for each GARCH model and
a distribution that takes into account fat tails. In particular, the DCC and ADCC are each estimated
with multivariate Student t (MVT) distributions. The GO-GARCH is estimated with the multivariate
affine normal inverse Gaussian (MANIG) distribution. These distributions are useful for modelling
data with heavy tails. All estimation is done in R (R Core Team 2015; Ghalanos 2015).

The use of DCC warrants some additional comments. DCC is a very popular multivariate GARCH
model. Typing “Dynamic conditional correlation” into Google Scholar on 1 August 2018 returned
about 8200 results. Despite the popularity of DCC, there is criticism that DCC is not a true model
because it lacks specific technical details (Caporin and McAleer 2013; Aielli 2013). DCC is stated rather
than derived, has no moments, does not have testable regularity conditions, and has no asymptotic
properties. Caporin and McAleer (2013) argue against the use of DCC as a model because of the lack of
moment conditions and asymptotic properties but recommend that DCC may be used as a filter, like
EWMA, or as a diagnostic check. Viewed in the context of a filter, DCC may be useful for forecasting
dynamic conditional covariances and correlations. We caution, however, that in the absence of any
valid moment conditions or asymptotic properties, DCC forecasts may be imprecise and this may
affect the estimates of the portfolio returns and any resulting statistical analysis.

Rolling window estimation is used to estimate the GARCH models and construct the portfolio
weights. One period ahead conditional expected return and volatility forecasts are required to
compute the optimal portfolio weights. For example, consider the case of a fixed window length of
1200 observations. The first 1200 observations are used to estimate the GARCH models and make one
period forecasts of the variance-covariance matrix. One period ahead mean values for the returns are
calculated from 1200 sample observations. The in sample mean values are used as a naïve forecast for
the next period (Fleming et al. 2001). The mean values and covariance matrix are used to construct
the one period ahead portfolio weights. Then the process is rolled forward one period by adding on

3 The rotation matrix U needs to be estimated. For all but a few factors, maximum likelihood is not feasible. For a larger
number of factors, alternative estimation methods must be used. ICA is a fast statistical technique for estimating hidden
factors in relation to observable data.
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observation and dropping the first observation so that the next estimation period is for observations
2 to 1201. This process is rolled through the data set producing a sequence of one period forecasts for
the GARCH variance-covariance matrices, mean values, and portfolio weights. The portfolio weights
are used in the construction of equity portfolios.

Equity portfolios are compared using standard risk-return measures like Sharpe Ratios, Omega
Ratios, Sortino Ratios, and Information Ratios (Feibel 2003). The Sharpe Ratio measures excess returns
relative to risk when risk is measured as the standard deviation. Excess returns are measured relative
to a time-independent benchmark. Sharpe value at risk (VaR) and Sharpe expected shortfall (ES)
are calculated at 5%. The Sortino Ratio measures excess returns relative to downside semi-variance.
The Omega Ratio measures the ratio of probability weighted gains to losses relative to a threshold or
benchmark value. Unlike the Sharpe Ratio, which only takes into account the first two moments of a
distribution (mean, variance), the Omega Ratio includes information on the mean, variance, skewness,
and kurtosis and is therefore well suited for investments with non-normal distribution. The Sharpe
Ratio, Sortino Ratio and Omega ratio are estimated using a benchmark value of 1% on an annualized
basis. The Information Ratio is similar to the Sharpe Ratio but is calculated as the ratio of the active
premium to the tracking error relative to a time-dependent benchmark, which in this paper is the yield
on a three-month US T-bill. Statistical significance of Sharpe Ratios are tested using the block bootstrap
method of by Ledoit and Wolf (2008).

The performance fee (Δ) approach is used to estimate the economic value of switching between
portfolios (Fleming et al. 2001). This approach measures the economic value of different asset
allocations. The performance fee, Δ, represents the management fee an investor with a mean variance
utility function would be willing to pay to switch from a benchmark portfolio that includes gold to an
alternative portfolio that replaces gold for bitcoin without being made worse off in terms of utility.
The performance fee is found by solving the following nonlinear equation:

T−1

∑
t=0

[(
ra

p,t+1 − Δ
)
− γ

2(1 + γ)

(
ra

p,t+1 − Δ
)2
]
=

T−1

∑
t=0

[(
rb

p,t+1

)
− γ

2(1 + γ)

(
rb

p,t+1

)2
]

(19)

The sample size is T, the portfolio return is rp, the superscripts a and b denote the alternative
portfolio and the benchmark portfolio, respectively, and γ denotes the degree of risk relative
risk aversion.

Portfolio turnover is used to measure the number of trades per time period and calculate trading
costs. Following DeMiguel et al. (2009), the portfolio turnover is calculated as:

Turnover =
1

T − τ − 1

T−1

∑
t=τ

N

∑
j=1

(
| wi

j,t+1 − wi
j,t |

)
(20)

where wi
j,t is the portfolio weight in asset j chosen at time t using strategy i and wi

j,t+1 is the portfolio
weight in asset j chosen at time t + 1 after rebalancing using strategy i. The portfolio turnover is equal
to the sum of the absolute value of the rebalancing trades across the N assets and over the T − τ − 1
trades, normalized by the total number of trading days.

4. Data

Daily stock price data are collected on five exchange traded funds (ETFs) and the price of bitcoin.
The ETFs consist of US equities (SPY), US bonds (TLT), US real estate (VNQ), Europe and Far East
equities (EFA), and gold (GLD). Ticker symbols are listed in parentheses. These are widely traded
ETFs and form the basis of many portfolio allocation strategies. GLD is an ETF backed by physical
gold and movements in the price of GLD are meant to reflect movements in the price of gold bullion.
ETF data is downloaded from Yahoo Finance and bitcoin prices (BIT) are downloaded from Coindesk.
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The daily data cover the period of 4 January 2011 to 31 October 20174. The starting period is chosen
based on the start of bitcoin trading. Time series plots clearly show that VNQ, TLT, SPY, and EFA
display similar upward trending patterns, while GLD has been trending down and BIT displays an
exponential growth pattern (Figure 1).

Figure 1. Time series plots of assets.

Summary statistics for daily returns indicate that, except for GLD, each series has a positive mean
and median value (Table 1)5. BIT has the highest average return, while GLD has the lowest. Consistent
with the findings of Fry and Cheah (2016), BIT has the highest standard deviation. The coefficient
of variation, which is meaningful for positive values, shows that BIT has the least variation, while
EFA has the most. Each series has skewness and kurtosis and rejects the null hypothesis of normality,
indicating that distributions that take into account fat tails are likely to provide a better fit than a
normal distribution. Unit root tests (not reported) indicate that each series is stationary. Correlation
coefficients show that SPY, VNQ, and EFA correlate highly with each other (Table 2). TLT correlates
negatively with VNQ, SPY, EFA, and BIT, but positively with GLD. Notice that BIT has very low
correlation with the other assets, indicating the possible usefulness of bitcoin in diversifying risk.
QQ plots show that each series has fat tails, which is common with asset price returns (Figure 2).
In Figure 2, the black line is the theoretical quantiles and the circle line is the sample quantiles.

4 Bitcoin price data was from 18 July 2010, but there was not much price variability over the first few months.
5 Summary statistics are computed using continuously compounded daily returns. Portfolio weights are estimated using

discrete returns because discrete returns are additive across assets. The resulting portfolio returns are then converted to
continuous returns for the calculation of portfolio summary statistics.
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Table 1. Summary statistics for daily percent returns.

VNQ GLD TLT SPY EFA BIT

median 0.083 0.024 0.076 0.061 0.052 0.247
mean 0.037 −0.008 0.028 0.049 0.022 0.582

SE.mean 0.026 0.025 0.022 0.022 0.028 0.154
CI.mean.0.95 0.052 0.050 0.042 0.042 0.054 0.301

var 1.193 1.100 0.799 0.805 1.316 40.537
std.dev 1.092 1.049 0.894 0.897 1.147 6.367
coef.var 29.151 −134.32 32.012 18.296 53.190 10.934

skewness −0.364 −0.610 −0.121 −0.572 −0.778 0.148
skew.2SE −3.080 −5.165 −1.023 −4.843 −6.591 1.251
kurtosis 7.349 5.915 1.696 5.182 6.711 9.633
kurt.2SE 31.142 25.066 7.188 21.961 28.439 40.822

normtest.W 0.934 0.948 0.986 0.938 0.930 0.843
normtest.p 0.000 0.000 0.000 0.000 0.000 0.000

Daily data from 4 January 2011 to 31 October 2017 (1719 observations). Ticker symbols: VNQ (US REITs), GLD (gold),
TLT (US long bonds), SPY (US equities), EFA (Europe and Far East equities), BIT (bitcoin).

Figure 2. QQ plots of asset returns.

Table 2. Correlation coefficients for daily percent returns.

VNQ GLD TLT SPY EFA BIT

VNQ 1 0.07 * −0.19 * 0.73 * 0.66 * 0.07 *
GLD 0.07 * 1 0.2 * −0.03 0.06 * 0.02
TLT −0.19 * 0.2 * 1 −0.5 * −0.47 * −0.02
SPY 0.73 * −0.03 −0.5 * 1 0.88 * 0.04
EFA 0.66 * 0.06 * −0.47 * 0.88 * 1 0.03
BIT 0.07 * 0.02 −0.02 0.04 0.03 1

Pairwise Pearson correlations. * Denotes significant at the 5% level of significance.
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5. Results

Table 3 shows the average value and standard deviation of the optimal portfolio weights calculated
from the BIT and GLD portfolio6. The BIT portfolio consists of SPY, TLT, VNQ, EFA and BIT. The GLD
portfolio consists of SPY, TLT, VNQ, EFA and GLD. Portfolio weights are constructed using three
GARCH models (DCC, ADCC, and GO). There are no restrictions on short sales. For each GARCH
model, portfolios are estimated for a global minimum variance portfolio and annual target returns
of 13%, 15%, and 17%. For most assets, portfolio weights calculated from GO have lower standard
deviation than those of DCC or ADCC.

Table 3. Optimal portfolio weights.

BIT
Mean Sd

VNQ TLT SPY EFA BIT VNQ TLT SPY EFA BIT

DCC-13 −0.073 0.457 0.602 −0.003 0.017 0.067 0.074 0.204 0.119 0.009
DCC-15 −0.073 0.441 0.653 −0.050 0.028 0.068 0.079 0.224 0.133 0.010
DCC-17 −0.072 0.425 0.704 −0.096 0.039 0.069 0.084 0.248 0.152 0.011

DCC-GMV −0.071 0.464 0.570 0.022 0.015 0.066 0.071 0.192 0.114 0.012
ADCC-13 −0.061 0.439 0.629 −0.022 0.015 0.084 0.081 0.238 0.132 0.010
ADCC-15 −0.061 0.423 0.680 −0.068 0.026 0.086 0.085 0.255 0.145 0.011
ADCC-17 −0.060 0.407 0.731 −0.115 0.037 0.088 0.090 0.277 0.162 0.012

ADCC-GMV −0.059 0.446 0.595 0.006 0.012 0.084 0.081 0.235 0.134 0.012
GO-13 −0.126 0.483 0.654 −0.028 0.017 0.087 0.055 0.122 0.064 0.007
GO-15 −0.127 0.468 0.702 −0.072 0.028 0.086 0.063 0.141 0.087 0.008
GO-17 −0.128 0.453 0.751 −0.116 0.040 0.087 0.072 0.167 0.113 0.010

GO-GMV −0.124 0.495 0.606 0.011 0.012 0.087 0.048 0.120 0.048 0.013

GOLD
Mean Sd

VNQ GLD TLT SPY EFA VNQ GLD TLT SPY EFA

DCC−13 −0.058 −0.021 0.432 0.890 −0.244 0.089 0.066 0.100 0.187 0.078
DCC−15 −0.047 −0.089 0.447 1.049 −0.360 0.103 0.081 0.116 0.208 0.088
DCC−17 −0.036 −0.157 0.461 1.208 −0.476 0.119 0.097 0.132 0.231 0.105

DCC−GMV −0.074 0.123 0.393 0.580 −0.021 0.065 0.044 0.063 0.192 0.105
ADCC−13 −0.045 −0.024 0.422 0.875 −0.228 0.107 0.082 0.120 0.214 0.091
ADCC−15 −0.033 −0.093 0.435 1.033 −0.343 0.123 0.099 0.139 0.245 0.107
ADCC−17 −0.020 −0.161 0.449 1.190 −0.458 0.141 0.116 0.158 0.277 0.129

ADCC−GMV −0.064 0.115 0.381 0.597 −0.030 0.073 0.047 0.068 0.228 0.120
GO−13 −0.087 −0.004 0.436 0.948 −0.293 0.075 0.044 0.058 0.177 0.066
GO−15 −0.076 −0.076 0.456 1.104 −0.408 0.082 0.055 0.063 0.191 0.072
GO−17 −0.065 −0.149 0.476 1.260 −0.523 0.092 0.067 0.071 0.207 0.081

GO−GMV −0.103 0.168 0.383 0.591 −0.038 0.078 0.052 0.070 0.118 0.049

Summary statistics on optimal portfolio weights calculated for various target returns (13%, 15%, and 17%) and
global minimum variance (GMV).

Table 4 provides a comparison between the BIT portfolio and the GLD portfolio. For the
bitcoin portfolio, and a particular target return, ADCC portfolios have higher risk adjusted measures.
For example, for a target return of 15%, DCC-15, ADCC-15, and GO-15 produce Sharpe ratios of 2.089,
2.246, and 2.239, respectively. A similar pattern is observed for the gold portfolio.

One of the strongest results from Table 4 is that for a particular target return and GARCH model,
the highest risk adjusted returns are observed for the BIT portfolio, indicating that on a risk adjusted
basis, the BIT portfolio is preferred over the GLD portfolio. For example, consider the case of estimating

6 GARCH models are estimated using 1200 observations, and 519 one step forecasts are generated using rolling window
estimation. The estimation window of 1200 observations is chosen based on a Monte Carlo comparison of RMSE. GARCH
models are refitted every 60 observations. The portfolio results are robust to refits between 40 and 120 observations.
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portfolio weights using DCC-13. The BIT portfolio has Sortino, Omega, and Information values of
0.170, 0.365, and 1.849, respectively. These values are larger than their corresponding values for the
GLD portfolio of 0.156, 0.346, and 1.683, respectively. The results in Table 4 are important in showing
that for a particular target return (or minimum variance portfolio) and using a GARCH estimation
technique, the bitcoin portfolio is preferred over the gold portfolio.

Equity curves are shown in Figure 3a,b. The bitcoin equity curves for target return portfolios look
very similar. Notice that, as expected, portfolios calculated using a target return of 17% have larger
final values then portfolios calculated using other target returns. Global minimum variance portfolios
have larger drawdowns, which is consistent with the drawdown statistics in Table 4. A similar pattern
is observed for the gold portfolio equity curves.

A statistical comparison between the Sharpe Ratio for the BIT portfolio and the GLD portfolio
reveals no statistically significant difference between the Sharpe Ratios (Table 5). Sharpe Ratios,
however, focus on the first two moments of the portfolio return distribution and do not take into
account other factors like performance fees.

The performance fees indicate that the economic value an investor places on switching from a
GLD portfolio to the BIT portfolio is substantial (Table 6). For example, in the case of a relative risk
aversion of 5, the performance fees for GARCH models range between slightly above 28 basis points
(DCC-13) to over 400 (GO-17). Performance fees are higher for portfolios with higher target returns.

In order to make the portfolio comparison more realistic, values for portfolio turnover are
constructed (Table 7). Turnover is expressed as the average number of trades per day. For example,
for the bitcoin portfolio estimated using DCC-13, a turnover of 0.125 indicates that on average
0.125 trades are made per day. The GO portfolios produce the least turnover. Turnover can be
used to estimate trading costs. The turnover values can be annualized by multiplying by 252 to get the
number of trades per year and the result multiplied by the trading costs in dollars per trade. These
costs are expressed as a percentage of a $1,000,000 portfolio and converted to basis points. As the
results in Table 7 show, even with relatively high trading costs of $20 per trade, the total trading costs
are less than the performance fee, indicating the benefits of switching to a bitcoin-based portfolio.
Notice that portfolios constructed using GO have less transaction costs, which is consistent with GO
optimal portfolio weights, for most assets, having a lower standard deviation compared to optimal
portfolio weights constructed using either DCC or ADCC.
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6. Robust Analysis: Long Only Portfolios

The preceding analysis has been conducted assuming short sales are allowed. This section reports
on results obtained by assuming long portfolios only. Since the average returns of gold and bitcoin are
so different, we only present results on global minimum variance portfolios.

For a particular type of GARCH model, the portfolio with bitcoin produces higher risk-adjusted
returns compared to the portfolio with gold (Table 8). Performance fees, the amount an investor would
be willing to pay to switch from a portfolio with gold to one with bitcoin are positive and fairly large
(Table 9). Transaction costs are smaller than performance fees, indicating that even after adjusting for
transaction costs, a risk adverse investor would be willing to pay a fee to switch from a portfolio with
gold to one with bitcoin (Table 10). These results for long only portfolios are consistent with our results
that allow for short sales.

Table 8. Portfolio comparisons: Long only.

BIT GLD

DCC-GMV ADCC-GMV GO-GMV DCC-GMV ADCC-GMV GO-GMV

Mean 10.557 10.475 11.088 8.316 8.778 8.785
Sd 6.405 6.231 6.440 6.191 6.056 6.146

Sharp 1.620 1.652 1.693 1.314 1.419 1.400
SharpeVaR 1.052 1.074 1.103 0.843 0.914 0.901
SharpeES 0.828 0.845 0.867 0.665 0.721 0.710

Sortino 0.146 0.152 0.156 0.119 0.131 0.131
Omega 0.324 0.329 0.337 0.257 0.277 0.269

Information 1.623 1.656 1.706 1.285 1.398 1.378
Drawdown 0.081 0.071 0.065 0.093 0.082 0.077

Table 9. Performance fees: Long only.

DCC-GMV ADCC-GMV GO-GMV

γ = 1 224.177 169.771 230.425
γ = 5 218.885 165.505 223.109
γ = 10 212.250 160.155 213.935

The values represent the management fee, in annualized basis points, an investor would be willing to pay to switch
from a portfolio with gold to a portfolio with bitcoin. The γ values represent the degree of relative risk aversion.

Table 10. Turnover and trading costs: Long only.

DCC-GMV ADCC-GMV GO-GMV

BIT 0.088 0.086 0.037
Gold 0.081 0.084 0.033

TC = $5
BIT 1.104 1.088 0.465

Gold 1.019 1.055 0.410

TC = $10
BIT 2.208 2.177 0.930

Gold 2.037 2.111 0.819

TC = $20
BIT 4.415 4.353 1.860

Gold 4.075 4.221 1.638

Turnover is the average number of trades per day. Trading costs in annual basis points based on a $1,000,000 portfolio
with trading costs (TC) in dollars per trade.
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7. Conclusions and Implications

Bitcoin is an exciting new financial product that may be useful for inclusion in investment
portfolios. There has been discussion that bitcoin may even by a useful substitute for gold. The purpose
of this paper is to investigate the portfolio implications of switching from a portfolio with gold to a
portfolio with bitcoin. Given the current interest in Bitcoin investing, this is an important and timely
topic to study. Our approach is to use multivariate GARCH models to estimate minimum variance
equity portfolios subject to a target return for a US benchmark portfolio that includes gold and a
portfolio that substitutes gold for bitcoin. The benchmark portfolio includes US equities, US bonds,
US real estate, EAFE equities, and gold. A comparison between these portfolios helps to gain a better
understanding of the economic value of substituting bitcoin for gold in an investment portfolio.

Three different multivariable GARCH models (DCC, ADCC, and GO) are used to estimate the
optimal portfolio weights. Comparing weights computed from different models demonstrates the
robustness of the portfolio results to the choice of GARCH model. Optimal portfolio weights are
estimated using rolling window analysis. This mitigates the effects of changing dynamics, parameter
heterogeneity, and structural change. For most assets, the optimal portfolio weights estimated from
GO have lower standard deviation than those from DCC or ADCC.

Our results show that portfolios with bitcoin rank highest according to risk-adjusted measures
such as the Sharpe, Sortino, Omega, and Information ratios. This result is robust to the choice of
GARCH model (DCC, ADCC, or GO) used to compute optimal portfolio weights. An analysis of
the economic value shows that risk-averse investors will be willing to pay a high performance fee to
switch from a portfolio with gold to a portfolio with bitcoin. These results are robust to the inclusion of
trading costs. We find that it is possible for an investor to substitute bitcoin for gold in an investment
portfolio and achieve a higher risk adjusted return.

While our results on bitcoin investing are encouraging, there are certain limitations that require
future research. First, we only have six years of data and more data will be required to test the voracity
of our results. Second, in the absence of any valid moment conditions or asymptotic properties DCC
forecasts may be imprecise and this may affect the estimates of the portfolio returns and any resulting
statistical analysis. Third, as with any new financial asset, the level of widespread adoption will be
crucial to its acceptance. Currently, bitcoin is viewed by many investors as a speculative asset and this
limits its widespread acceptability. Fourth, bitcoin is in its infancy and the choice of cryptocurrencies is
growing. It is not clear if bitcoin will be the preferred cryptocurrency in the future.
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Abstract: This paper aims to enhance the understanding of which factors affect the price development
of Bitcoin in order for investors to make sound investment decisions. Previous literature has covered
only a small extent of the highly volatile period during the last months of 2017 and the beginning
of 2018. To examine the potential price drivers, we use the Autoregressive Distributed Lag and
Generalized Autoregressive Conditional Heteroscedasticity approach. Our study identifies the
technological factor Hashrate as irrelevant for modeling Bitcoin price dynamics. This irrelevance is
due to the underlying code that makes the supply of Bitcoins deterministic, and it stands in contrast
to previous literature that has included Hashrate as a crucial independent variable. Moreover,
the empirical findings indicate that the price of Bitcoin is affected by returns on the S&P 500 and
Google searches, showing consistency with results from previous literature. In contrast to previous
literature, we find the CBOE volatility index (VIX), oil, gold, and Bitcoin transaction volume to
be insignificant.

Keywords: Bitcoin; cryptocurrency; Hashrate

JEL Classification: C10; G15

1. Introduction

The purpose of this study is to identify the factors that have an impact on the price of Bitcoin.
The market value of Bitcoin has grown tremendously in 2017. As the market values of cryptocurrencies
grow, it is reasonable to assume that they will start having an effect on certain economies. By estimating
the price drivers during the period ranging from 2013 to 2018, this paper will assist investors in
making sound investment decisions and aid in the understanding of what drives this phenomenon’s
price fluctuations.

Cryptocurrencies are decentralized digital currencies that use encryption to verify transactions.
In 2008, Nakamoto (2008) released his paper describing Bitcoin. In January of the following year,
Nakamoto released the software that launched the Bitcoin network. As of 2018, Bitcoin is the most
commonly known and used cryptocurrency. Since its founding in 2009, the price of Bitcoin has risen
from USD 0.07 to an all-time high of USD 20,089 on 17 December 2017 (Quandl.com). At this point in
time, its market capitalization was approximately USD 336.4 Billion.

From January 2017 through December, Bitcoin increased by 1270%, and the total cryptocurrency
trading volume passed USD 5 billion a day. Interest from the mainstream media, regulators, and the
public and financial markets accelerated so much that some call this period Bitcoin’s “IPO moment”
(Forbes.com 2017). During 2017, Bitcoin garnered more focus from institutional money, hedge funds,
and public funds. Its success culminated with the approval and introduction of Bitcoin derivatives.
Due to the exponential rise in attention, we have included two sub-periods to test if the factors have
been the same before and after 2017.
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We believe that it is important to understand the underlying factors affecting the price of
such a highly volatile financial phenomenon. Just as the price of Bitcoins has had an exponential
rise in the past year, the academic literature on Bitcoin and cryptocurrencies has experienced a
similar increase. Previous literature has used macro-economic, technological, and publicity factors in
Bitcoin models (Aalborg et al. 2018; Bouoiyour and Selmi 2016; Ciaian et al. 2016; Garcia et al. 2014;
Kristoufek 2013, 2015; Kjærland et al. 2018). However, few academic studies include data that reflect
the price fluctuations that Bitcoin experienced in 2017 and 2018. This paper addresses this gap in the
literature by assessing what variables drive the price of Bitcoin. As Kristoufek (2015) noted, “because of
the dynamic nature of Bitcoin and its rapid price fluctuations, it is logical that the drivers behind the price will
vary over time.” Therefore, we have chosen to analyze the drivers yet again.

To estimate the short- and long-term effects of potential price drivers on Bitcoin, an Autoregressive
Distributed Lag (ARDL) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
model is estimated. We find Hashrate to be an irrelevant variable due to the deterministic feature of
the Bitcoin supply. The supply of Bitcoins are not dependent on price, as a normal good, but instead
the supply of Bitcoins are given by the Bitcoin code and solely dependent on time. Consistent with the
previous literature, we find that the S&P 500, Google searches and last week’s return on Bitcoin to be
significant explanatory variables, while gold, oil, CBOE volatility index (VIX), and Bitcoin transaction
volume are found to be insignificant in the estimation period.

This paper is organized as follows. Section 2 contains a literature review, Section 3 includes a
description of the data and econometric methods, Section 4 presents the results, and Section 5 includes
a discussion of the results and provides the conclusions.

2. Background and Literature Review

2.1. Introduction to Cryptocurrencies and Bitcoin

Several studies focus on the key concepts of cryptocurrencies and particularly
Bitcoin (Becker et al. 2013; Brandvold et al. 2015; Dwyer 2015; Nica et al. 2017; Segendorf 2014).
According to Dwyer (2015), the major innovation in Bitcoin is its decentralized technology. Instead of
storing transactions on a single or set of servers, the database is distributed across a network of
participating computers (Böhme et al. 2015). This database is what is called a Blockchain. Blocks are
added to the chain in the process of mining Bitcoins. The process of mining revolves around solving
complex computational puzzles, and the incentive for miners to participate are transaction fees and
Bitcoin rewards. To solve these puzzles, miners need computational power, which is measured
by the Hashrate. The Hashrate is the speed at which a computer can complete an operation in
the Bitcoin code, while the mining difficulty refers to the level of complexity in the computational
puzzles and is directly correlated with the Hashrate. As the Hashrate, either increases or decreases,
the underlying Bitcoin algorithm adjusts the mining difficulty so that the supply of Bitcoins follows
a predetermined path.1 New coins are generated approximately every 10 min independent of the
current price, meaning that the Bitcoin supply is inelastic and time-dependent, as shown in Figure 1.
Since the supply is solely dependent on time, we choose to classify the Bitcoin supply as deterministic.

1 Bitcoin rewards are currently at 12.5 coins per block, but the protocol requires that the reward is halved every 210,000 mined
blocks. Mining 210,000 blocks takes approximately four years. Given the current level of network processing power, the next
halving will take place around early June 2020, bringing the mining reward down to 6.25 coins.
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Figure 1. Bitcoin deterministic supply.

2.2. Literature Review

Several authors have attempted to describe Bitcoin as a currency, stock, or asset. Yermack (2013)
argues that Bitcoin appears to behave more similar to a speculative store of value rather than a currency.
Dwyer (2015), on the other hand, describes Bitcoin as an electronic currency that can be used to trade
and store in a personal balance sheet. Dwyer’s argument is supported by Polasik et al. (2015), who adds
that Bitcoin can operate as a medium of exchange alongside other payment technologies.

An increasing number of researchers have focused on the existence of a fundamental value of
Bitcoin, and some have studied whether or not it is a bubble. Garcia et al. (2014) finds that Bitcoin is a
financial bubble because of the difference between the exchange rate and fundamental value of Bitcoin.
He argues for a fundamental value given the cost of mining. Similarly, Hayes (2015, 2018) proposed a
specific cost of production model for valuating Bitcoin. Additionally, Cheah and Fry (2015) conclude
that Bitcoin is a speculative bubble and that the fundamental value of Bitcoin is zero. Unlike earlier
studies, Corbet et al. (2017) found that there is no clear evidence of a bubble in Bitcoin. While these
authors discuss if Bitcoin is a bubble or not, Bouri et al. (2017b) found that Bitcoin could be used as an
effective diversifier and, in some periods, also display safe-haven and hedge properties.

Some studies have been dedicated to determining the factors that drive the price of Bitcoin.
Bouoiyour and Selmi (2015) argue that long-term fundamentals are likely to be major contributors
to Bitcoin price variations. Among others, they also found technical factors to be a positive driver of
Bitcoin prices (Bouoiyour and Selmi 2015; Ciaian et al. 2016; Garcia et al. 2014; Georgoula et al. 2015;
Hayes 2015; Kristoufek 2015). Specifically, Georgoula et al. (2015) and Hayes (2015) found the technical
factor Hashrate to be a significant positive price driver. Bouoiyour and Selmi (2016), Garcia et al. (2014),
Kristoufek (2015), Kjærland et al. (2018), and Sovbetov (2018) have all used Hashrate as a variable in
their respective models.

Other scholars also argue for the significance of fundamental factors such as exchange-trade,
equity market indices, currency exchange rates, commodity prices, and transaction volume
(Balcilar et al. 2017; Bouri et al. 2018a; Bouoiyour and Selmi 2016; Bouoiyour et al. 2016;
Ciaian et al. 2016; Dyhrberg 2016; Kristoufek 2013; Yermack 2013). In contrast to Bouoiyour and
Selmi (2015), Polasik et al. (2015) states that an increase in the transaction volume will lead to higher
prices and that global economic factors do not seem to be an important driver. Ciaian et al. (2016)
also found that supply and demand factors have strong impacts on price and that standard economic
currency models can partly explain price fluctuations.

Kristoufek (2013, 2015) analyzed the frequency of online searches on Bitcoin, found them to be
a good proxy for interest and popularity, and discovered that the relationship between the price of
Bitcoin and online popularity is bidirectional. Ciaian et al. (2016) also found a positive relationship
between Wikipedia searches and Bitcoin. Others argue along the same lines as Kristoufek in that it is
primarily popularity and investor attractiveness that drive price movements (Bouoiyour et al. 2016).
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2.3. Theoretical Foundation

2.3.1. Stock Price Theories and Momentum Theory

Santoni (1987) considers two theories that potentially explain stock prices: the Efficient Market
Hypothesis and the Greater Fool theory. The efficient market hypothesis tells us that all relevant
information is contained in current stock prices and that prices only change when investors receive
new information about fundamentals (Fama 1976). If this theory holds, past price changes contain
no useful information about future price changes. The Greater Fool theory says that investors regard
fundamental information as irrelevant. An investor buys shares on the belief that some bigger fool will
buy them from him at a higher price in the future. This scheme is all about speculation and anticipation
of continuing price increases due only to the fact that it has increased in the past.

Momentum in the financial market is an empirically observed trend for rising asset prices
to rise further and that decreasing asset prices lead to further decreases. Momentum theory
shows that stocks with strong past performance will outperform stocks that have a weak past
performance (Jegadeesh and Titman 1993, 2001). This theory relies on short-term movements rather
than fundamentals. In financial theory, the cause of momentum is known to be cognitive bias and
investors behaving irrationally.2

2.3.2. Volatility

Global financial turmoil impacts economies, assets, and currencies around the world.
Financial turmoil also affects the market participants and their investment decisions. During periods
of crisis, investors are more inclined to redistribute their investments to assets that are considered
to be safe-havens, including currencies. A currency is considered a safe-haven asset if international
investors invest in it to minimize losses during periods of financial turmoil. Because of its impact on
the development of currency exchange rates, financial turmoil, measured in volatility, is important to
include in an exchange rate model.

While there is evidence of negative shocks to equities generating more volatility than positive
shocks (Glosten et al. 1993), Baur and McDermott (2012) found that the volatility of gold returns
reacts inversely to negative shocks. According to Baur and McDermott (2012), this volatility relation
is due to the safe-haven properties of gold. Investors interpret rising gold prices as an increase in
macroeconomic uncertainty. Rising uncertainty increases the volatility of gold prices. However,
a study by Bouri et al. (2016) find no evidence of an asymmetric return-volatility relation in the
Bitcoin market–which in contrast support a safe haven property of Bitcoin. On the other side,
Kjærland et al. (2018) have the opposite finding.

3. Research Design

3.1. Data

The dependent variable to be explained by the models is the exchange rate between Bitcoin and
the US dollar. The original data are daily spot rates for BTC/USD for the period between 1 January
2013 and 20 February 2018.

To avoid potential issues related to autocorrelation, the daily data are modified into weekly
averages. As Bitcoin is traded every day of the week, we filter the data so that only common
observations are used. Days when some of the variables have missing values have been removed.
The data are gathered from various sources on 21 February 2018. The dependent variable and
independent explanatory variables are summarized in Table 1. These are chosen based on previous
literature and what we believe affects the price of Bitcoin.

2 Cognitive biases are errors in thinking that affect the decisions and judgments that people make.
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Table 1. Variable Overview.

Variable Description Source

BTC exchange rate between Bitcoin and the US Dollar Quandl

Hashrate the estimated number of giga hashes per second the Bitcoin
network is performing Quandl

Volume total output volume of Bitcoin Quandl
S&P 500 S&P 500 is an index of the 500 largest US listed Corporations Thomson Reuters Eikon

Gold Goldman Sachs Commodity Index Gold Thomson Reuters Eikon
Oil WTI Crude Oil Spot Price in USD per barrel Thomson Reuters Eikon

VIX implicit volatility of options on the S&P 500, a measure of the
expected market volatility the next 30 days Thomson Reuters Eikon

Google normalized weekly statistics on the search term “Bitcoin”,
corrected for trends Google Trend

In accordance with the previous literature, we have included the S&P 500 and CBOE Volatility
Index (VIX). The S&P 500 is a good indicator of how financial markets are doing, and the VIX is
intended to provide an instantaneous measure regarding how much the market believes that the S&P
500 will fluctuate in the next 30 days. By including these two variables, we consider both the numerical
returns and risks in the financial markets. Furthermore, we have included the prices of WTI Oil and
Gold in our model. Both are considered to be important global commodities whose prices have impacts
on almost all economies around the world. These variables are all weekly observations obtained from
Thomson Reuters.

To test if publicity and attention given to Bitcoin has an impact on price changes, we include
Google Trends. Google search data show normalized weekly statistics that are corrected for trends on
searches mentioning the term “Bitcoin” (Google Trends Help) 3. We also test for traditional supply
and demand effects by including Bitcoin transaction volume as a variable in this study. Finally,
the technological factor Hashrate is included. Volume and Hashrate are weekly data obtained from
Quandl.com.

3.2. Descriptive Statistics

Table 2 shows the descriptive statistics of the variables. Figures 2–9 display the changes in selected
variables over the estimated period.

Table 2. Descriptive statistics.

Variable Obs. Mean Std. Dev. Min. Max.

BTC 267 1372.9 2836.016 13.47221 17,612.51
Hashrate 267 2,132,903 3,936,302 20.80583 2.26 × 107

Volume 267 238,664.5 85,023.81 73,429.4 558,364.4
S&P 500 267 2053.9 296.3 1462.5 2844.4

Gold 267 1270.8 114.3 1063.0 1685.2
Oil 267 66.7 24.7 28.5 108.9
VIX 267 14.4 3.6 9.3 31.5

Google 267 7.3 13.4 1 100

3 Google does not differentiate between the upper- and lowercase letters, meaning that searches made on “Bitcoin” or “bitcoin”
are considered the same.
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Figure 2. Bitcoin Market Price (USD), Quandl.

Figure 3. Bitcoin Hashrate, Quandl.

Figure 4. Bitcoin Transaction Volume, Quandl.

Figure 5. S&P 500 Index, Thomson Reuters.
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Figure 6. Gold Index (USD), Thomson Reuters.

Figure 7. Crude Oil-WTI Spot, Thomson Reuters.

Figure 8. CBOE Volatility Index, Thomson Reuters.

Figure 9. Google Search “Bitcoin,” Google Trends.
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3.3. Econometric Method

3.3.1. Autoregressive Distributed Lag Model

According to Im et al. (2003), the ARDL technique is used to estimate short- and long-term
relationships between a group of variables by including lags for both the dependent and independent
variables. The ARDL model is estimated using ordinary least squares (OLS), where the only difference
is the inclusion of lags. As long as the OLS assumptions are fulfilled, the ARDL approach will yield
consistent estimates. This procedure is also followed by Ciaian et al. (2016) and Bouri et al. (2018b).

To find the appropriate lag length for each of the underlying variables in the ARDL model,
we used the modified Akaike information criteria (AIC), since this criterion is known for having a
theoretical advantage over other information criteria (Enders 2009). The model with the lowest AIC
and highest R-squared is considered the best. We put in dummy variables for the minimum and
maximum observations, in order to tackle the outliers. Using these dummy variables in the regression
enhances the reliability of the model (Hansen 2001).

To test for stationarity in a single time series, we use an augmented Dickey–Fuller (ADF) test.
If the ADF test shows signs of non-stationarity, the variables can be transformed into first differences,
and the test is reapplied. To address possible structural breaks in the time series, we combine the ADF
test with a Zivot–Andrews (ZA) test. If structural breaks are identified, the ZA test can be used since it
takes structural breaks into account (Vogelsang and Perron 1998).

3.3.2. The Generalized Autoregressive Conditional Heteroscedasticity Model

Regarding the GARCH, in order to control for homoscedasticity, we test the unconditional
variance of the regression. Breaking this assumption means that the Gauss–Markov theorem does not
hold and that the OLS estimators are not BLUE. Even though the unconditional variance is stable,
the conditional variance may not be constant over time. Engle (1982) developed the Autoregressive
Conditional Heteroskedasticity (ARCH) model that recognizes the difference between unconditional
and conditional variance and lets the conditional variance change over time as a function of previous
periods’ error terms. This technique has the ability to capture the effect of volatility clustering, but it
requires a model with a relatively long lag structure, which makes estimation difficult. To make this
task easier, Bollerslev (1986) proposed the GARCH model that enables a reduction in the number of
parameters by imposing nonlinear restrictions. The GARCH model can predict unconditional variance
and requires fewer parameters. In a GARCH model, the most recent observations have greater impacts
on the predicted volatility.

3.4. Model Estimation

By using OLS, we present three ARDL models. The testing of the models has also been done
over different in-sample periods, from 2013, Week 1, to 2016, Week 52, and from 2017, Week 1, to 2018,
Week 7. These periods have been chosen to assess the potential changes in what variables affects the
price of Bitcoins. The extreme price development in 2017 is also the background for this choice.

Model 1:

ΔlnBTCt = α + β1ΔlnBTCt−1 + β2ΔlnVolumet + β3ΔlnSP500t +
n
∑

p=1
β4ΔlnOilt−p

+
n
∑

p=1
β5ΔlnGoldt−p + β6ΔlnVIXt +

n
∑

p=2
β7ΔlnGooglet−p + Trend + εt.

(1)

Model 2:

ΔlnBTCt = α + β1ΔlnBTCt−1 + β2ΔlnVolumet + β3ΔlnSP500t +
n
∑

p=2
β5ΔlnGooglet−p

+ Trend + εt.
(2)
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Model 3:

ΔlnBTCt = α + β1ΔlnBTCt−1 + β2ΔlnHashratet + β3ΔlnVolumet + β4ΔlnSP500t

+
n
∑

p=1
β5ΔlnOilt−p +

n
∑

p=1
β6ΔlnGoldt−p + β7ΔlnVIXt

+
n
∑

p=2
β8ΔlnGooglet−p + Trend + εt.

(3)

A number of post-estimation tests were performed to consider if all the assumptions of OLS are
fulfilled. The data set contains of 267 observations. OLS prerequisites were handled by the logarithmic
transformation of the data. The post-estimation test results for both the ARDL- and GARCH model
can be found in Tables A3–A5.4

4. Empirical Results

4.1. Main Model (Model 1)

Tables 3 and 4 present the results of the ARDL and GARCH models. The first model is our main
model that includes all variables, while the second model is a reduced version of Model 1 that includes
only the significant variables of Model 1 for both the ARDL and GARCH. Table 5 presents the third
regression model that includes the variable Hashrate. In the following sections, we will present the
results from the main period 2013, Week 1, to 2018, Week 7.

Table 3. Results of ARDL & GARCH models (Model 1).

ARDL GARCH

Time Period (1) (2) (3) (1) (2) (3)

ΔlnBTCt−1
0.19

(2.23) **
0.222

(2.14) **
0.206
(1.04)

0.225
(5.43) ***

0.329
(6.44) ***

0.293
(4.98) ***

ΔlnVolumet
−0.042
(1.41)

−0.027
(0.79)

−0.134
(2.33) **

−0.046
(2.61) ***

−0.022
(1.26)

−0.15
(0.62)

ΔlnSP500t
1.772

(2.16) **
2.55

(2.69) ***
−1.707
(1.04)

1.038
(1.59)

1.272
(1.85) *

1.318
(1.90) *

ΔlnOilt
−0.072
(0.50)

−0.075
(0.47)

−0.141
(0.40)

−0.001
(0.00)

0.021
(0.17)

0.005
(0.04)

ΔlnOilt−1
0.142
(0.95)

0.147
(0.87)

0.341
(0.77)

0.023
(0.18)

0.027
(0.22)

0.005
(0.04)

ΔlnGoldt
0.552
(1.06)

0.546
(0.92)

1.135
(1.08)

−0.013
(0.06)

−0.006
(0.003)

−0.063
(0.27)

ΔlnGoldt−1
−0.415
(0.62)

−0384
(0.49)

−0.337
(0.35)

0.049
(0.18)

0.068
(0.24)

0.048
(0.17)

ΔlnVIXt
0.029
(0.34)

0.126
(1.34)

−0.279
(1.92) *

0.008
(0.12)

−0.039
(0.56)

−0.186
(0.93)

ΔlnGooglet
0.109

(3.60) ***
0.102

(2.84) ***
0.140

(3.16) ***
0.045

(2.85) ***
0.030
(1.61)

0.022
(1.18)

ΔlnGooglet−1
0.105

(3.46) ***
0.093

(2.58) **
0.176

(4.04) ***
0.088

(4.27) ***
0.081

(4.34) ***
0.076

(3.86) ***

4 The following post-estimation tests have been conducted for OLS-assumptions: Ramsey RESET test, Durbin–Watson,
Variance Inflation Factors (VIF), and Adjusted Dickey–Fuller. For GARCH: Ljung Box Q-statistics.
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Table 3. Cont.

ARDL GARCH

Time Period (1) (2) (3) (1) (2) (3)

ΔlnGooglet−2
0.082

(2.18) **
0.088

(1.98) **
0.022
(0.39)

0.053
(2.76) ***

0.062
(3.35) ***

0.057
(3.00) ***

ARCH Effect 0.562
(3.52) ***

0.771
(3.42) ***

0.599
(3.62) ***

GARCH Effect 0.315
(2.42) **

0.214
(1.61)

0.374
(3.00) ***

Adjusted R2 0.29 0.23 0.54
Observations 264 205 56 264 205 56

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. (1) = 2013w1–2018w7, (2) = 2013w1–2016w25, and (3) = 2017w1–2018w7.

Table 4. Results of ARDL & GARCH models (Model 2).

ARDL GARCH

Time Period (1) (2) (3) (1) (2) (3)

ΔlnBTCt−1
0.187

(2.05) **
0.226

(2.05) **
0.065
(0.46)

0.215
(5.24) ***

0.318
(6.05) ***

0.293
(5.01) ***

ΔlnSP500t
1.411

(3.45) ***
1.364

(2.99) ***
1.59

(1.62)
0.926

(2.76) ***
0.873

(2.62) ***
0.779

(2.27) **

ΔlnGooglet
0.105

(3.50) ***
0.099

(2.79) ***
0.100

(1.82) *
0.033

(2.43) **
0.023
(1.5)

0.09
(0.99)

ΔlnGooglet−1
0.097

(3.18) ***
0.089

(2.43) **
0.122
(2.82)

0.083
(4.66) ***

0.08
(4.68) ***

0.075
(3.91) ***

ΔlnGooglet−2
0.077

(2.01) **
0.084

(1.88) *
0.061
(1.06)

0.047
(2.63) ***

0.06
(3.35) ***

0.055
(2.84) ***

ARCH Effect 0.581
(3.58) ***

0.696
(3.59) ***

0.497
(3.59) ***

GARCH Effect 0.324
(2.64) ***

0.269
(2.05) **

0.426
(3.53) ***

Adjusted R2 0.29 0.23 0.50
Observations 264 205 56 264 205 56

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. (1) = 2013w1–2018w7, (2) = 2013w1–2016w25, and (3) = 2017w1–2018w7.

Table 5. Results of ARDL and GARCH models including Hashrate (Model 3).

ARDL GARCH

Time Period (1) (2) (3) (1) (2) (3)

ΔlnBTCt−1
0.19

(2.25) **
0.222

(2.10) **
0.206
(1.66)

0.225
(5.28) ***

0.329
(6.28) ***

0.258
(3.89) ***

ΔlnHashratet
0.067
(0.96)

0.22
(0.26)

0.274
(2.51) ***

0.031
(0.50)

−0.005
(0.08)

−0.039
(0.57)

ΔlnVolumet
−0.041
(1.36)

−0.027
(0.78)

−0.139
(2.51) **

0.04
(2.64) ***

−0.022
(1.27)

−0.139
(0.34)

ΔlnSP500t
1.725

(2.11) **
2.532

(2.68) ***
−1.952
(1.33)

1.023
(1.55)

1.274
(1.86) *

1.472
(1.98) **

ΔlnOilt
−0.069
(2.11) **

−0.075
(0.47)

−0.073
(0.22)

0.008
(0.06)

0.02
(0.16)

−0.012
(0.10)

ΔlnOilt−1
0.137
(0.92)

0.145
(0.85)

0.324
(0.77)

0.019
(0.15)

0.028
(0.22)

0.067
(0.53)

ΔlnGoldt
0.53

(1.01)
0.537
(0.90)

0.918
(0.87)

−0.03
(0.13)

−0.004
(0.02)

−0.061
(0.24)
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Table 5. Cont.

ARDL GARCH

Time Period (1) (2) (3) (1) (2) (3)

ΔlnGoldt−1
−0.404
(0.60)

−0.38
(0.49)

−0.393
(0.41)

0.04
(0.15)

0.068
(0.23)

0.020
(0.08)

ΔlnVIXt
0.023
(0.27)

0.123
(1.32)

−0.294
(2.19) **

0.004
(0.07)

0.04
(0.57)

−0.234
(1.17)

ΔlnGooglet
0.108

(3.58) ***
0.102

(2.84) ***
0.118

(2.53) **
0.046

(2.83) ***
0.03

(1.57)
0.021
(1.09)

ΔlnGooglet−1
0.104

(3.41) ***
0.093

(2.56) **
0.165

(3.96) ***
0.088

(4.68) ***
0.081

(4.32) ***
0.076

(3.41) ***

ΔlnGooglet−2
0.081

(2.17) **
0.088

(1.98) **
0.014
−0.25

0.056
(2.87) ***

0.062
(3.35) ***

0.055
(2.87) ***

ARCH Effect 0.547
(3.64) ***

0.768
(3.41) ***

0.436
(3.72) ***

GARCH Effect 0.345
(2.76) ***

0.214
(1.6)

0.538
(5.43) ***

Adjusted R2 0.29 0.23 0.54
Observations 264 205 56 264 205 56

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. (1) = 2013w1–2018w7, (2) = 2013w1–2016w25, and (3) = 2017w1–2018w7.

4.1.1. ARDL (1)

As shown in Table 3, the lag of Bitcoin seems to have a significant positive effect on the price of
Bitcoin at the 5% level. If last week’s return of Bitcoin is higher by 1%, it is estimated that the return of
Bitcoin this week will be higher by 0.19%.

The first difference of S&P 500 is significant at the 5% level and has a positive sign. When the S&P
500 increases by 1%, the price of Bitcoins increases by 1.77%. In contrast, VIX, Oil, Gold, and Volume
do not seem to have any significant impact on the price of Bitcoin in the estimated period.

The first difference in the Google Trends variable and its lag are significant at the 1% level.
The short-term effects show that, when Google trends increases by 1%, the Bitcoin price is expected
to increase by 0.11%. By including the lag of Google, the short-term effect that Google search has
on Bitcoin price is 0.22%. Additionally, by including the second lag of Google, which is significant
at the 5% level, the total short-term effect that Google search has on Bitcoin price is 0.30%. Lastly,
the long-term effect of Google trends on Bitcoin price is 0.37%.5

4.1.2. GARCH (1)

In the GARCH model, the lag of Bitcoin has an almost identical effect as in the ARDL model and
is significant at the 1% level. Google and its two lags are significant at the 1% level, which is almost the
same as in the ARDL model, although the coefficient for both the first difference and the two lags has
decreased. Furthermore, the S&P 500 is found to be insignificant, while it was found significant in the
ARDL model. Similar to the ARDL model, VIX, oil, and gold are insignificant. Volume is significant at
the 1% level, which is inconsistent with the ARDL model.

The ARCH effects are positive and significant at the 1% level, which indicates that a shock in the
variance two weeks ago will have an impact of approximately 56.2% on the volatility in the following
week. The GARCH effects are significant at the 5% level. This significance indicates that 31.5% of the
volatility last week has an impact on volatility this week. The sum of the ARCH and GARCH effects
is approximately 87.7%, which shows the persistence of all volatility and shocks last week, and the
impact it has on this week.

5 The long-term effect of a variable is calculated in following way: ßt + ßt−1 + ... + ßt−n/(1 − ß1ΔlnBTCt−1).
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4.2. Reduced Model (Model 2)

4.2.1. ARDL (1)

As shown in Table 4, the relationship between the lag and price of Bitcoin is almost the same as in
Model 1 and is significant at the 5% level. If the price of Bitcoin last week increased by 1%, the effect is
an increase in price this week of 0.19%. Moreover, the S&P 500 seems to have a significant impact on
the price of Bitcoin, similar to Model 1. This variable is significant at the 1% level. When the S&P 500
increases by 1%, Bitcoin is estimated to increase by 1.41%.

Google trends has the same significance level as Model 1 and almost equal coefficients.
The short-term effect of Google searches is 0.11%, and the total short-term effect is 0.21%. The total
long-term effect is 0.34%.

4.2.2. GARCH (1)

The lag of Bitcoin has an almost identical effect as in the ARDL model and is significant at the 1%
level. The S&P 500 index is also found to be significant in the GARCH model, just as the ARDL model,
but with a slightly lower coefficient.

Google and its two lags are significant at the 5% and 1% levels, respectively, which is almost
consistent with the ARDL model. However, the coefficient for both the first difference and the lags
has decreased.

The ARCH effects are positive and significant at the 1% level and has an impact of approximately
58.1% on the volatility in the following week. The GARCH effects are positive and significant at the
1% level. About a third (32.4%) of the volatility last week has an impact on the volatility this week.
The sum of the ARCH and GARCH effects is approximately 90.5%.

4.3. Model Including Hashrate (Model 3)

The model presented in Table 5 includes the variable Hashrate but is otherwise similar to Model 1.
The properties displayed by the variables and their results are also similar to the results of Model 1.
However, the first difference of Hashrate has a positive sign in all the estimated periods but is only
significant in the third period, from 2017, Week 1, to 2018, Week 7.

4.4. Model Assessment

The weekly log-transformed ARDL models have adjusted R-square values of 29% and 31% for
Models 1 and 2, respectively. The ADF test for stationarity indicates that all the variables’ residuals
are stationary.6 Other diagnostic tests are run to examine the models’ goodness of fit, and they are
fulfilled.7 Lastly, to check for misspecification of the models, a Ramsey RESET test was performed.
This test indicates that the models may be misspecified.

5. Discussion and Conclusions

5.1. Discussion

In Model 3, which includes the Hashrate, we observe that the Hashrate has a positive sign in
both the estimated period and in-sample periods. The positive sign is contrary to the law of supply
and demand, considering that increasing the processing power should in theory lead to an increased
supply, which would exert a downward pressure on prices. Due to the deterministic supply of
Bitcoins, adding more processing capacity to mining will not lead to an increase in output. However,
this variable is only significant in the period from Week 1 of 2017 to Week 7 of 2018, a period of

6 For a complete overview of the ADF and ZA tests, see Tables A1 and A2.
7 For a complete overview of diagnostic tests for all models, see Tables A3–A6.
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exponential growth in both Bitcoin and Hashrate. Therefore, we believe that the causality between
Bitcoin and Hashrate is such that it is the Bitcoin price that drives Hashrate, not the other way around.
This outcome is consistent with economic theory since an increase in price will naturally result in
the increased profitability of mining. As profitability increases, new actors will enter the mining
business, and current miners will increase computational power to the point where excess profits are
zero. A price drop will naturally lead to computational power being pulled out of Bitcoin mining.
Thus, we consider it irrelevant to include Hashrate as an explanatory variable in a model describing
Bitcoin’s price drivers or in calculations of fundamental values of Bitcoin. This outcome is in contrast
to previous research that included Hashrate as a variable (Bouoiyour and Selmi 2015; Garcia et al. 2014;
Georgoula et al. 2015; Hayes 2015; Kristoufek 2013, 2015; Kjærland et al. 2018; Sovbetov 2018).

The results from the reported regression models indicate that publicity measured in Google
Trends has a positive impact on the price of Bitcoin. According to our findings, when people’s curiosity
and attention to Bitcoin increase, the demand for Bitcoins also increases. This outcome is consistent
with Kristoufek (2013, 2015) and Ciaian et al. (2016), who found that when Google searches on Bitcoin
increase, the price of Bitcoin also increases.

We find that the S&P 500 has a positive impact on the price of Bitcoin. This is also the independent
variable with the largest coefficient, so it exerts the most influence on the price of Bitcoin in this
regression. The interpretation may be as follows: when optimism in financial markets increases,
investors also display optimism in Bitcoins. Since risk measured in standard deviation is higher in
Bitcoin than that in the S&P 500, Bitcoin investors are likely risk-seeking investors. These findings are
also supported by Yermack (2013) and Dyhrberg (2016) studies in which stock markets have an impact
on the price of Bitcoin. Interestingly, Bouri et al. (2018c) find moderate integration between Bitcoin
and most of the asset classes studied, included MSCI World and gold.

Our results indicate a positive relationship between the Bitcoin price and its lag, which indicates
that the efficient market hypothesis seemingly does not hold. Past returns should be uncorrelated with
present returns, and an investment strategy based on past returns should not be profitable. However,
it is known that the efficient market hypothesis is widely disputed. Some behavioral economists
blame imperfections in financial markets on errors in human reasoning and information processing.
Since most investors probably have limited experience with Bitcoins, the context around it is confusing,
and there is too much new information to consider in too little time; investors must make quick
decisions whether or not to invest. Thus, it is reasonable to assume that investors are affected by the
momentum effect of rising prices and vice versa. Observing the price increase last week fuels demand
and creates a momentum in price. Combined with Momentum theory, one can think along the lines of
the Greater Fool theory in which as the price rapidly increases, investors see get-rich-quick potential
by buying now and selling to a greater fool next week.

The estimated regression shows that fear in financial markets, as measured in VIX, does not have
a significant impact on the price of Bitcoin. However, in the sub-period between 2017 and 2018, we find
a significant negative relationship between VIX and Bitcoin price. During this period, the results
indicate that increasing fear of financial turmoil reduces demand for Bitcoins. Since a currency is
considered a safe-haven if demand rises during periods of financial stress, the abovementioned results
indicate that Bitcoin does not inhibit safe-haven properties, which is inconsistent with the findings of
Bouri et al. (2017a, 2017b) and to some extent, with Bouri et al. (2016).

Additionally, both oil and gold were found to be insignificant in the estimated regression period.
These findings are in contrast to Kristoufek (2015) and Ciaian et al. (2016), who found that gold and
oil have significant positive impacts on Bitcoin prices. This outcome indicates that Bitcoin does not
inhibit commodity properties. In addition, the volatility in the price of Bitcoin is unlike any of the two
commodities, making it difficult to compare. However, our findings are much in line with the recent
study of Bouri et al. (2018b), who find no effects of an aggregate commodity index and gold prices on
the price of Bitcoin.

44



J. Risk Financial Manag. 2018, 11, 63

Volume seems to have an insignificant impact on the price of Bitcoin in the estimated period,
reflecting Kristoufek (2013) findings, which state that the price of Bitcoin cannot be explained by
standard economic theory. However, in the GARCH model, volume seems to be a significant variable
with a negative sign. The reason may be our use of average daily prices or this outcome may be
explained by traditional economic theory regarding supply and demand. When volume increases
and demand is met, the price naturally drops, confirming the findings of Ciaian et al. (2016) and
Polasik et al. (2015) in which volume exerts an impact on the price of Bitcoin.

In the estimated GARCH model, we find that many of the included variables describe both the
return on Bitcoin and volatility. The results of the GARCH model show that the price of Bitcoin is
greatly affected by its own historical volatility. The results of the GARCH model are approximately the
same as those of the ARDL model, indicating that the ARDL model is robust. Similarly, we observe that
our model has approximately the same significant variables during an in-sample period, from Week 1
of 2013 to Week 52 of 2016, the period leading up to the volatile 2017. Although the in-sample period
from Week 1 of 2017 to Week 7 of 2018 exhibits different results, it is questionable whether these results
are reliable given the low number of observations, the high spike and subsequent fall in price during
the period.

5.2. Conclusions

Because of the increase in volatility and the dramatic price fluctuations in 2017, this paper
aims to help investors understand the price dynamics of Bitcoin. The results from the empirical
analysis provide compelling findings, and the estimated model has strong explanatory power with
a high degree of robustness. The primary contribution to Bitcoin research that this study provides
is the conclusion that the technological factor Hashrate should not be included in modeling price
dynamics or fundamental values since it does not affect Bitcoin supply. Based on our full and
reduced model, past price performance, optimism, and Google search volume all play significant
roles in explaining Bitcoin prices. When both optimism in financial markets and attention to Bitcoin
increase, investors’ willingness to allocate funds to more risky assets, such as Bitcoin, increases. Lastly,
we observe that price fluctuations in Bitcoin can be associated with investment theories such as The
Greater Fool and Momentum theory.

Appendix A

Table A1. Results from Adjusted Dickey–Fuller test and Zivot–Andrews on log-transformed variables.

ADF-Test Zivot–Andrews

Variable Lag C, T t-Statistic Result
Structural

Break
Lag t-Statistic Result

BTC 4 C, T −2.095 I(1) 2016w26 2 −3.983 I(1)
Hashrate 8 C, T −3.425 I(0) 2013w49 4 −5.142 ** I(0)
Volume 10 C, T −1.991 I(1) 2014w38 1 −6.059 *** I(0)
S&P 500 6 C, T −2.043 I(1) 2015w34 1 −5.299 ** I(0)

Gold 2 C, T −2.974 I(1) 2016w4 2 −4.748 I(1)
Oil 1 C, T −1.173 I(1) 2014w40 1 −3.767 I(1)
VIX 15 C, T −2.119 I(1) 2015w34 0 −6.133 *** I(0)

Google 1 C, T −2.481 I(1) 2016w25 0 −4.709 I(1)

Note: ** p < 0.05, *** p < 0.01. All variables are in logarithmic form, C = Constant, T = trend, I(1) = unit root
(non-stationarity), and I(0) = no unit root (stationary). The Zivot–Andrews structural break is defined as the lowest
(most negative) t-statistic in the ADF test. Structural breaks are allowed for both the incline and the level of trend.
The Zivot–Andrews critical values are 1% (−5.57), 5% (−5.08), and 10% (−4.82).
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Table A2. Results from Adjusted Dickey–Fuller test and Zivot–Andrews on the first difference
log-transformed variables.

ADF-Test Zivot–Andrews

Variable Lag C, T t-Statistic Result
Structural

Break
Lag t-Statistic Result

BTC 2 C, T −6.899 *** I(0) 2013w50 2 −6.670 *** I(0)
Hashrate 9 C, T −1.812 I(1) 2014w39 4 −6.299 *** I(0)
Volume 15 C, T −5.105 *** I(0) 2014w6 1 −11.382 *** I(0)
S&P 500 3 C, T −8.091 *** I(0) 2016w7 1 −15.302 *** I(0)

Gold 4 C, T −7.399 *** I(0) 2014w12 2 −12.356 *** I(0)
Oil 7 C, T −4.421 *** I(0) 2016w7 1 −12.900 *** I(0)
VIX 15 C, T −5.267 *** I(0) 2017w17 0 −14.305 *** I(0)

Google 1 C, T −12.17 *** I(0) 2013w48 0 −18.273 *** I(0)

Note: *** p < 0.01. All variables are first difference on the logarithmic form; otherwise, see the note to Table A1.

Table A3. Model 1 assessment.

ARDL GARCH

Period (1) (2) (3) (1) (2) (3)

Outliers Yes Yes No Yes Yes No
Dummies Yes Yes No Yes Yes No

Observations 264 205 56 264 205 56
R2 0.32 0.27 0.65

Adjusted R2 0.29 0.23 0.54
AIC −483.83 −359.30 −117.63 −545.39 −432.77 −548.31

Ramsey RESET, p-value 0.0000 0.0000 0.911
Durbin–Watson 2.07 2.13 2.01

Ljung-Box Q Stat 0.4265 0.5193 0.5088
ADF, residual value 0.0002 0.0017 0.0000 0.0000 0.0004 0.0000

Note: (1) = 2013w1–2018w7, (2) = 2013w1–2016w52, and (3) = 2017w1–2018w7.

Table A4. Model 2 assessment.

ARDL GARCH

Period (1) (2) (3) (1) (2) (3)

Outliers Yes Yes No Yes Yes No
Dummies Yes Yes No Yes Yes No

Observations 264 205 56 264 205 56
R2 0.31 0.25 0.56

Adjusted R2 0.29 0.23 0.50
AIC −489.41 −366.10 −117.35 −552.80 −442.78 −554.30

Ramsey RESET, p-value 0.0000 0.0000 0.765
Durbin–Watson 2.08 2.14 1.85

Ljung-Box Q Stat 0.4155 0.5127 0.5041
ADF, residual value 0.0003 0.0024 0.0008 0.0000 0.0005 0.0000

Note: (1) = 2013w1–2018w7, (2) = 2013w1–2016w52, and (3) = 2017w1–2018w7.
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Table A5. Model 3 assessment.

ARDL GARCH

Period (1) (2) (3) (1) (2) (3)

Outliers Yes Yes No Yes Yes No
Dummies Yes Yes No Yes Yes No

Observations 264 205 56 264 205 56
R2 0.33 0.27 0.68

Adjusted R2 0.29 0.22 0.57
AIC −482.70 −357.37 −120.47 −543.71 −430.78 −548.59

Ramsey RESET, p-value 0.0000 0.0000 0.817
Durbin–Watson 2.06 2.13 1.87

Ljung-Box Q Stat 0.4265 0.5187 0.5075
ADF, residual value 0.0001 0.0014 0.0004 0.0000 0.0005 0.0000

Note: (1) = 2013w1–2018w7, (2) = 2013w1–2016w52, and (3) = 2017w1–2018w7.

Table A6. Results of the variance inflation factors: test for autocorrelation.

Model 1 Model 2 Model 3

Variable VIF-Value Variable VIF-Value Variable VIF-Value

lnBTCt−1 1.29 lnBTCt−1 1.26 lnBTCt−1 1.29
lnVolumet 1.11 lnSP500t−1 1.04 lnVolumet 1.11
lnSP500t−1 4 lnGooglet 1.09 lnSP500t−1 4.01

lnOilt 1.24 lnGooglet−1 1.17 lnOilt 1.24
lnGoldt 1.15 lnGooglet−2 1.16 lnGoldt 1.16
lnVIXt 4.03 lnVIXt 4.06

lnGooglet 1.13 lnGooglet 1.14
lnGooglet−1 1.25 lnGooglet−1 1.25
lnGooglet−2 1.18 lnGooglet−2 1.18

lnHashratet 1.02
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Abstract: This study explores the determinants of initial coin offering (ICO) success, where success is
defined as the amount of capital a project could raise. ICOs are a tool for startups in the blockchain
ecosystem to raise early capital with relative ease. The market for ICOs has grown at a rapid pace since
its start in 2013. We analyze a unique dataset of 278 projects that finished their ICOs by August 2017
to assess determinants of funding success that we derive from the crowdfunding and venture capital
literature. Our results show that ICOs exhibit similarities to classical crowdfunding and venture
capital markets. Specifically, we identify resemblances in determinants of funding success regarding
human capital characteristics, business model quality, project elaboration, and social media activity.
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1. Introduction

Understanding the role of blockchain-based initial coin offerings (ICOs), which are claimed to
provide startups with a new form of financing, is of increasing importance both from a practical
(Clayton 2017) and a scholarly perspective (Conley 2017). Raising funds via ICOs is a very recent
phenomenon, with the first such offering having taken place in 2013. Especially over the last two years,
the number of ICO projects and the amount of funding raised have grown at a rapid pace and attracted
a lot of investors, with over $15 billion raised so far.

The ICO market has so far been characterized by very high yields for investors and, at the same
time, a lack of proper regulation. It could be argued that the ICO market has developed into a bubble
that could burst, like the dot com bubble (Wheale and Amin 2003), or that the exponential growth of
ICOs can solely be explained by the dawn of a new era of corporate financing. While certain return
rates for investors are at an abnormal level that is unlikely to be sustained in the future, there are also
good arguments why the current hype about ICOs is at least somewhat justified. One major reason
is that via the use of the underlying blockchain technology, ICOs enable startups to raise funds from
investors around the globe without the need for minimal contribution levels. Another reason is that
the tokens sold can usually be transferred immediately and traded on global cryptocurrency exchanges
that provide liquid secondary markets and operate 24 h a day and seven days a week.

There are three ways of looking at ICO financing: From the perspective of (1) startups;
(2) individual investors1; and (3) social welfare. When approaching the topic from the perspective

1 Legally, the term ‘investor’ may not be universally applicable, as ICO contributions, strictly speaking, often constitute donations.
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of startups, the main questions are how ICOs can help finance business ventures and how they are
best applied. Individual investors focus on success rates and on the return on their invested capital.
From the social welfare perspective, the angle of analysis is on the benefits and costs that ICOs entail
for society, how much market value they help create, and how they could be regulated.

Adhami et al. (2018) analyzed success determinants of 253 ICO campaigns and find that code
availability, presales, and specific services (like profit sharing) increase the probability of campaign
success. Fisch (2019) used a sample of 238 ICOs campaigns between 2016 and 2017 and found that the
underlying technology of a project determines the amount of funding, while venture characteristics
are less relevant. Amsden and Schweizer (2018) showed in their sample of 1009 projects between 2015
and 2017 that venture uncertainty is negatively correlated and venture quality is positively correlated
to ICO success. The term “success” is somewhat misleading, as it can be applied to funding success,
venture success, secondary market access, or return on investment. From the perspective of a startup,
the initial funding has the highest relevance, which is why we define success as the amount of funding
that a project is able to gather.

In this paper, we tackle the question of whether ICOs are pure hype or whether they represent
the dawn of a new era of financing from the perspective of startups and investors by analyzing
whether investors in ICOs behave similarly to investors in traditional crowdfunding. Signaling
theory (Spence 1973) can be used to explain the relevance of specific information for investments
into companies (Ahlstrom and Bruton 2006; Coleman and Robb 2014; Robb and Robinson 2014;
Ahlers et al. 2015). Ahlers et al. (2015) point to a research gap regarding the signaling of start-ups
towards smaller investments in the context of equity crowdfunding. As ICOs are a very new
phenomenon, the same research gap can be found for this specific kind of crowdfunding. For this
purpose, we examine the determinants of ICO funding using a unique dataset that includes data on the
amount of funds raised in 278 ICO projects through the 3 August 2017 (see Supplementary Materials),
and a variety of additional variables for each project. We hypothesize that if ICO participants invest
their money based on the expected fundamental value, this constitutes evidence of ICOs being a
new form of startup financing; otherwise, the current success of ICOs is perhaps more appropriately
described as a hype. We argue that we may speak of rational (i.e., fundamentals-based) investment if
the amount of funds raised per project is driven by similar variables as in traditional startup financing,
such as team size, project quality in terms of the business model, and project elaboration, or social
media activity.

Analyzing investor behavior in ICOs allows us to further add to the current stream of literature on
venture capital in two ways: We provide both a descriptive overview of the phenomenon of ICOs and
an insight into the variables that startups looking for ICO investments should focus on by analyzing
how ICO success depends on a range of factors.

2. Literature and Hypotheses

2.1. Startup Financing

When starting a venture, the entrepreneur will eventually face the question of how to fund the
business. Sources of external finance will often have to be tapped. While debt funding is not always
available, there are several options of equity funding. An angel investor, or business angel (BA), is one
such source of capital for early-stage startups. Deakins and Freel (2003) describe BAs as wealthy
individuals without any family connection to the entrepreneur who invest their money and experience
in the venture. Macht and Robinson (2009) find that BAs help the investees to close funding and
knowledge gaps, provide them with business contacts, and facilitate future funding. Harrison and
Mason (1996) suggest that most BAs do not participate in follow-up funding, which has, however,
been disputed in the literature.

Another form of equity financing is venture capital (VC). Venture capitalists collect funding from
larger investors and allocate it to startups based on a sophisticated screening process. VC traditionally
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covers the larger and more developed stages of startup funding and does not play a role in deals below
three or four million dollars (Kim and Wagman 2016). However, to support young ventures for later
deals, many VC funds have started to also engage in seed stage financing, i.e., the early-stage funding
typically covered by BAs. According to Kim and Wagman (2016), entrepreneurs will typically lose
more of their ownership in the startup if they accept VC as compared to angel capital.

The attraction of outside capital constitutes an inherent problem for startups, as the desired
amount of collateral or cash flows simply do not exist and there is a significant amount of information
asymmetry (Cosh et al. 2009; Schwienbacher and Larralde 2010; Busenitz et al. 2005) or information
cascades (Vismara 2016) with investors. Startups face the problem of signaling their quality at
an early stage of development. Baum and Silverman (2004) list three major factors that investors
may use to assess the quality of a project: Human capital, social (alliance) capital, and intellectual
capital. Crowdfunding offers a way for members of the general public to pool their resources to
fund a particular project via the internet (Ahlers et al. 2015), and has become a commonplace way
for early stage companies to attract financing in recent years (Hornuf and Schwienbacher 2017).
As Griffin (2012) states, the existing forms of crowdfunding can be distinguished by the type of
rewards that contributors get in return: Crowdfunding campaigns can be (1) donation-based, without
any actual rewards; (2) rewards-based, with non-financial rewards in the form of promotion or services;
(3) lending-based, with a financial return like interest payments; or (4) equity-based, with financial
return in the form of equity or dividends. Crowdfunding campaigns offer a signal regarding the
market potential of a product (Schwienbacher and Larralde 2010; Cholakova and Clarysse 2015).
In comparison to investments from angels or VC, crowdfunding must attract investors who are
small both in terms of their financial contributions and in terms of their stake in the target company
(Malmendier and Shanthikumar 2007). Smaller investors are less experienced than VCs and face higher
information costs—a relatively small investment does not warrant weeks of researching the target
project (Ahlers et al. 2015).

In the following, we will deduce the group of characteristics that will be used to compare
blockchain-based ICOs to the traditional markets of VC and crowdfunding. We build upon results
obtained in previous studies for these markets, which are most similar to ICOs in terms of the existing
literature and procedures.

Human Capital. In line with existing research on VC (e.g., Hsu 2007; Gimmon and Levie 2010),
we posit that the human capital of ICO teams will act as a signal for potential investors, assuming that
investors gauge the future success of new ventures on the basis of the team’s human capital, which is
an important resource for organizational success (Becker 1993; Lee et al. 2001). While larger teams have
more human capital, as argued above, team size is also a future cost factor, as the team will be paid
from the proceeds of the crowdfunding. Previous research has found that venture capitalists value
human capital criteria, such as previous startup experience, education, and managerial leadership
experience (Hall and Hofer 1993; Muzyka et al. 1996; Zacharakis and Shepherd 2005). Such criteria
serve venture capitalists as team quality indicators in the face of uncertain prospects (Gimmon and
Levie 2010). In a similar vein, research has shown that investors also value the founders’ social capital
(Florin et al. 2003; Stuart et al. 1999). Hsu (2007) showed that the effect of human capital on VC
valuations positively depends on the novelty of an industry. This result is particularly relevant to
our context, blockchain technology, which is also an emerging technology at the moment, much like
the Internet was in the 1990s and 2000s (Iansiti and Lakhani 2017). Ahlers et al. (2015) show that
human capital is an important factor for the investment decision of small investors in crowdfunding
campaigns. Overall, in line with existing research, we posit that a team’s human capital endowment
will be positively related to the funds raised during an ICO.

Quality of the business model. A business model connects an idea or technology with its
potential revenue stream. As methods to define a business model, Chesbrough (2010) suggests
the value and revenue proposition, market segment, structure of the value chain, cost structure
and profit potential, value network, and competitive strategy. Zott et al. (2011) showed that the
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literature provides no general and consistent definition of a business model and thus also of its
quality. Various determinants of the quality of business models can be identified across the literature,
such as the presence of information and communication technologies in the e-commerce literature
(Timmers 1998; Dubosson-Torbay et al. 2002), value drivers (Amit and Zott 2001), actual choices by the
project (Shafer et al. 2005; Casadesus-Masanell and Ricart 2010), regulatory pressure (Tankhiwale 2009),
and discovery-driven experimentation in the strategic literature (McGrath 2010). Technology itself
(Chesbrough and Rosenbloom 2002) and technological development and innovation (Calia et al. 2007;
Björkdahl 2009) are identified as determinants of quality in the technology and innovation management
literature (Zott et al. 2011). Hellmann and Puri (2002) suggest that companies with innovative
marketing strategies are more likely to be funded by VC as their products will penetrate the market
more quickly. As a successful business model unlocks the realization of economic value from a
technical basis (Chesbrough and Rosenbloom 2002), we expect that its quality will be positively related
to the funds raised during an ICO.

Project elaboration (whitepaper). We suggest that the availability and quality of a whitepaper,
which elaborates on the business project for the information of potential investors, will have a positive
impact on the amount of funds that a project is able to raise. A whitepaper for ICOs, which 52% of the
companies in our sample provide, can be compared to the business plan or pitch of traditional projects,
as it usually contains all the information that may be relevant for investors. Barrow et al. (2001)
describe the business plan as the potentially most relevant aspect for the successful creation of a
business. Business plans, or the whitepaper of an ICO, represent the first detailed information that a
funding team shares with its investors (Shepherd and Douglas 1999). Cumming et al. (2016) showed
that fraudulent crowdfunding projects, a recurring phenomenon, are often characterized by badly
drafted pitches. Findings by Ahlers et al. (2015) suggest that the provision of detailed information
about risks can increase the likelihood of a successful crowdfunding campaign. Du et al. (2015) show
that crowdfunding success can be explained by the amount of information that is disclosed in project
descriptions. Chen et al. (2009) investigated to what extent entrepreneurial passion influences VC
investment decisions. The authors found that funding success is driven not by the founders’ passion,
but by their level of preparedness. This suggests that ICO projects with very detailed whitepapers
will be more successful. We therefore posit a positive relationship between project elaboration and
funds raised.

Social media. Based on existing research in crowdfunding and venture capital, we posit that
social media activity, as proxied by the number of followers and the number of postings, will positively
influence funds raised at ICOs. At least two transmission mechanisms for this expected effect
come to mind (Jin et al. 2017; Yang and Berger 2017): First, social media activity may serve as a
marketing channel for announcing ICOs and distributing information about the underlying new
tokens. Thus, in line with the “salience view” (Solomon et al. 2012), increased social media activity
will lead to increased salience of an ICO, directing potential investors to the upcoming investment
opportunity (Sprenger et al. 2014). Second, social media activity may also serve as a positive signal
of endorsement from others and act as a mechanism to grow a (social) network and future user
base (Lechner et al. 2006; Witt 2004). According to this view, ICO projects with more followers on
social media will raise more funds because the positive signal to investors indicates higher levels
of social network resources. Indeed, recent research has shown that the amount of funds raised by
startups is associated both with the number of social messages and with the number of followers. For
instance, Jin et al. (2017) show that Twitter influence (a composite score consisting of the number of
followers, mentions, impressions, and sentiment on Twitter) is positively related to the funds raised
by early-stage startups. Moreover, they find a quadratic relationship between the number of Twitter
posts and funds raised, such that more posts initially increase funding while too many posts harm
the outcome. In a similar vein, Yang and Berger (2017) have recently shown a positive relationship
between the number of followers and the amount of startup funding. Likewise, Nevin et al. (2017)
show that the number of social media posts has a positive effect on funds raised through crowdfunding.
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Cumming et al. (2016) provide evidence that fraudulent crowdfunding projects are less likely to use
social media channels. Colombo et al. (2015) suggest that communication between a project and
its potential backers has a positive influence on the success of the campaign. Overall, based on this
evidence in the context of startup funding, we expect a positive relationship between social media
activity and funds raised at ICOs.

2.2. Hypotheses

Our general hypothesis is that ICO participants invest rationally based on fundamental value
expectations. We break this general hypothesis down into four hypotheses that can be tested empirically.
Each hypothesis is based on findings from the traditional VC funding and crowdfunding literature,
which we discussed above, and which we expect to confirm with respect to ICO funding if investor
decisions are driven by fundamental value expectations.

Hypothesis 1 (H1). There is a positive relationship between the amount of funds raised and the company’s
human capital characteristics, which we operationalize as (a) team size, (b) team network size, and (c) the number
of advisors.

Hypothesis 2 (H2). There is a positive relationship between the amount of funds raised and business model
quality, which we operationalize as a score variable determined by an industry expert for each project for the
respective form of the projects token-based business model (infrastructure, financial, or utility model).

Hypothesis 3 (H3). There is a positive relationship between the amount of funds raised and project elaboration,
which we operationalize as (a) whitepaper availability and (b) a whitepaper score based on a whitepaper’s number
of pages and citations.

Hypothesis 4 (H4). There is a positive relationship between the amount of funds raised and social media
presence, which we operationalize as a score based on the number of Twitter messages and the number of Twitter
followers, as Twitter is the most widely used social media channel across the projects covered by our sample.
Activity levels on Facebook, Reddit, and Bitcointalk are used as control variables.

2.3. Blockchain Technology

Blockchain represents an emerging technology that is among the most promising and potentially
most disruptive technologies in the future. It was first introduced in October 2008 by an unknown
person or entity using the name Satoshi Nakamoto, who presented it as part of the proposal for Bitcoin,
its first suggested application (Nakamoto 2008).

A blockchain is a distributed register to store static records and/or dynamic transaction data
without central coordination by using a consensus-based mechanism to check the validity of
transactions. In simple words, it is a database in which transactions are recorded and which is
simultaneously shared among all parties in a participating network. Data is stored in fixed structures,
“blocks”, which are always linked to the latest block that has been added to the database. As all
blocks are linked together in a chain, the entire history of transactions can be accessed and retraced.
The verification of each transaction results from the consensus of the majority of participants in the
network, without the involvement of any intermediary. In the Bitcoin world, for example, transactions
are validated by so-called miners, which are network members with high-level computing power.
In order to validate transaction blocks, complex coded problems must be solved. The miners’ efforts
are then rewarded with Bitcoins (Nakamoto 2008).

The main goal of the technology is to create a decentralized environment where no third party
is in control of the transactions and data. Simultaneously, it allows for transaction platforms that are
highly secure, cheap, fast, and less prone to error. This innovation will change not only the interaction
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between individuals and organizations, but also business-to-business (B2B) collaboration, raising the
overall productivity of the economy. The potential benefits of blockchain are not restricted to economic
matters, but extend to offering solutions to social, political, legal, and health issues (Linn and Koo 2016;
Scott 2016; Osgood 2016; De Filippi and Hassan 2018).

While blockchain is much acclaimed for its potential to deliver solutions to a wide range of issues,
the adoption of the technology entails significant risks and challenges that require awareness. One
of the most significant risks arises from future government regulation, a factor that is crucial to the
success of the blockchain industry. We may expect the new technology to be much more heavily
monitored and regulated in the future, and these new regulations may either facilitate or slow down
the adoption process. Furthermore, several technical challenges and limitations have been identified
and must eventually be addressed (Puthal et al. 2018; Joshi et al. 2018). Among them are the limited
throughput, the time required to complete a transaction, and high data volumes. Moreover, users
worry about a number of security threats. Especially, in financial contexts, there is concern about
hackers, identity theft, and money laundering (Ante 2018). All in all, the technology is still evolving
and maturing. As ever, more individuals and organizations are investigating and experimenting with
it, and new recommendations on how to solve the current issues are made each day.

2.4. Blockchain-Based Startup Financing

An increasing number of startups in the blockchain ecosystem use ICOs to raise early-stage
financing. Instead of going for initial public offerings (IPOs), which are expensive and highly regulated,
startups often issue a blockchain-based token and distribute it across investors in proportion to their
respective investment. So far, ICOs are regulated only very lightly, if at all. This allows for fast
processes and low operational cost.

In order to conduct an ICO, a token-based economy must be generated in which the blockchain
token has some form of value for investors. Figure 1 provides an example of a token-based economy
and the initial distribution of tokens. A company builds a product or a service around a token.
The token is used as a project-specific currency, some form of utility (utility token), or a security
(security token) that can provide some form of profit participation to investors. Utility tokens are
the most widely used token structure for ICOs. They possess some form of utility to token holders,
like a software license, which enables startups to bypass security regulations for their token sale.
Security token sales are less common, as they entail much higher legal costs and preparation and most
cryptocurrency exchanges do not hold the relevant licenses to trade securities, while regulated stock
exchanges cannot accommodate tokens yet. This paper focuses on utility tokens, as our sample mainly
consists of utility tokens. In order to access the product or service of the ICO project, users will need to
possess the specific token. The project simply generates the tokens and offers them to investors for
purchase in the ICO. Utility tokens do not represent equity or dividend rights, so they allow startups
to obtain finance while retaining full ownership of the company. ICOs are usually carried out at a
very early stage of the development process. Investors expect the tokens to increase in value as they
speculate that demand for the tokens will increase given the fixed or limited supply.

With the introduction of Ethereum and smart contracts, decentralized computer protocol can
automatically be executed upon predefined terms. This enables crowdsale-specific smart contracts
that are deployed on the blockchain and contain all crowdfunding details in the form of computer
protocol. Newly created tokens on the Ethereum blockchain are automatically distributed to investors
upon the successful deposit of funds (in the form of cryptocurrency), and once the crowdfunding
goal is reached, all additional payments are automatically returned. Blockchain technology enables
various technological innovations in the field of crowdfunding, as the decentralized architecture in
combination with low transaction fees permits individuals from anywhere to participate in an ICO
with as small an amount as they desire.
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Figure 1. Token-based economy and initial coin offering (ICO).

3. Data and Methodology

3.1. Data Sources

To identify blockchain-based crowdfunding projects, an explorative analysis of the ecosystem
was conducted. The online forum, Bitcointalk2, serves as a platform to announce new projects and
to communicate with potential investors. Project details, like crowdfunding date, team information,
amount of funding, or token distribution, were sourced from Bitcointalk, where available, or the
official web presence of each project. To this day, there is no comprehensive knowledge base that lists
information on all ICOs, so most information had to be retrieved manually. Social media statistics, such
as likes, followers, or subscribers, for the platforms of Twitter, Facebook, and Reddit were imported
directly from the application programming interfaces (APIs) of each social media website.

Our dataset consists of 278 projects that finished their ICO between July 2013 and August 2017.
The sample comprises all ICOs during that period for which we were able to collect information on all
the variables. Due to a lack of transparency and public data, a number of ICOs had to be omitted from
the sample.

3.2. Operationalization of the Variables

Dependent variable. This paper relies on the amount of funds raised (in USD) as the dependent
variable, i.e., as our measure of ICO success. Since the variable is highly skewed, in the regressions,
we use the natural logarithm, in line with existing research (Alexy et al. 2012; Sandner and Block 2011).
As projects that finance themselves via an ICO are usually funded in the form of cryptocurrency,

2 https://bitcointalk.org.
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the actual fiat value of the funding depends on the exact point in time at which the prices of
the cryptocurrencies, which fluctuate strongly (Yermack 2013), are determined. For comparability,
we calculate the fiat equivalent that applied at the time when the crowdfunding process closed.3

Independent variables. Team size signifies the number of team members listed on the official
website of each project. Team network represents the adjusted LinkedIn network reach of the team.
We calculate the average LinkedIn network of all team members in relation to the number of team
members who actually have a LinkedIn account. Advisors means the number of project advisors who
are listed on the project website.

We use three different score variables (business model: Infrastructure; business model: Financial; and
business model: Utility) to assess the quality of the business model of each project. For this purpose,
we had an expert evaluate each project. The expert assigned a score of zero, one, or two for the three
business model categories for each project. More specifically, the expert was asked to rate the quality of
the projects’ tokenized business model with regard to the (1) creation of infrastructure, like protocols
that other projects can build on or networks where users can interact with each other; (2) the financial
value that a tokenized business model unlocks, like a payment token or cryptocurrency-backed debit
card system; and (3) the utility of the underlying token model. Utility represents the overall value that
a token brings to a service, an ecosystem, or a network.

Whitepaper: Exists is a dummy variable that indicates the availability of a whitepaper for each
project. There is no business standard for the actual contents of a whitepaper, which is why the
overall quality can vary greatly. The use of whitepapers in the ICO ecosystem is based on the fact that
Bitcoin was introduced in a whitepaper and very successful ICO projects, like Ethereum, also issued
whitepapers (Nakamoto 2008; Buterin 2014; Wood 2014). The variable Whitepaper: Score, our proxy of
whitepaper quality, equals the sum of the number of pages and citations in the document.

Twitter score summarizes the level of activity of a project’s Twitter account as the sum of the
number of tweets and the number of followers of the project divided by 1000.

Control variables. The variable ICO duration represents the number of days between the start
and the end of the ICO. Mollick (2013) shows that the duration of a crowdfunding campaign can have
a negative effect, as longer duration could be due to a lack of market confidence.

We assigned each project to one of six industry dummy variables: Financial (financial sector),
Blocknet (blockchain network/infrastructure project), Media (media and communications sector),
Gambling (gambling and casino projects), Gaming (gaming projects), and Cloud computing (cloud
computing and cloud storage projects).

Team dispersion captures the number of different home countries represented among the team.
This way, we can access the effects of centralized processes in project decisions (Mollick 2013) and the
decentralized collaboration approach favored by open-source software projects (Belleflamme et al. 2014).

The Facebook score is calculated as the number of likes of the project’s Facebook page divided by
1000. Reddit is an online forum where projects can start sub forums to discuss and rate articles and
posts. ICO projects usually have their own Reddit page to interact with their community. The variable,
Reddit score, consists of the number of subscribers to a project’s subpage divided by 1000. Bitcointalk
is a forum for projects related to cryptocurrencies where most ICO projects have an announcement
thread. The Bitcointalk score is calculated as the number of total reads and the average number of posts
per day of the full project’s sub forum divided by 1000.

3 The example of the project, Digix Global, illustrates the effects of cryptocurrency price fluctuations. The project
raised 462,719 Ether in March 2016, worth around $5.5 million at the time. Thanks to the cryptocurrency price
increase, the projects’ funds were worth around $132 million only two years later (https://etherscan.io/address/
0xf0160428a8552ac9bb7e050d90eeade4ddd52843).

57



J. Risk Financial Manag. 2018, 11, 80

4. Results

4.1. Descriptive Statistics

To show the evolution of ICOs and ICO funding, the projects were classified in quarters based
on the end date of their ICO (see Figure 2). As the last ICO recorded ended on 3 August 2017,
the numbers for the third quarter of that year were extrapolated linearly from the first 33 days of the
quarter. The data exhibits a strong upward trend, driven especially by the 2017 ICOs. This trend holds
both for the number of ICOs and the average amount raised. Before 2017, the funding amount was
dominated by a few large projects, especially The DAO in Q2/2016. We thus see evidence of skewness,
as also indicated by the large discrepancy between the average ($6.5 million) and median ($0.4 million)
amount raised per ICO and the large standard deviation of $23.6 million. A Gini coefficient of 86.7%
also suggests that the distribution is strongly concentrated. We respond to this skewness by using the
log of funds as our dependent variable (Manning and Mullahy 2001).

Figure 2. Number of ICOs and ICO funding in million US-dollars over time. Q3* 2017 has been
interpolated for the remaining part of the quarter.

In terms of industries, most of the projects in our dataset can be assigned to the financial
sector (43.5%), followed by blockchain network and infrastructure projects (13.6%), media and
communications (12.5%), gambling (5%), and gaming (4.3%). The classification by industries was
conducted manually and is clearly open to debate as many projects could be allocated to multiple
sectors. For example, gaming and gambling often overlap, and the sector of cloud computing and
storage (2.9%) is not much different from blockchain network or infrastructure projects.

Table 1 provides an overview of the descriptive statistics. The mean amount of funds raised was
$6.5 million, with a minimum of $25 and a maximum of about $228 million. The biggest project team
had 46 members, while the average across all projects was 3.91. Team members possessed just below
100 LinkedIn contacts on average, while keeping in mind that 500 contacts is the maximal publicly
shown amount. The average ICO duration was 26 days and the longest ICO took 906 days to complete.
We were able to obtain whitepapers for 52% of all projects.
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Table 1. Descriptive statistics.

Variables Obs. Mean Std. Dev. Median Min. Max.

Funds raised 278 6,515,099 23,241,612 436,316 25 227,817,556
Log(Funds raised) 278 5.471 1.315 5.64 1.4 8.36
Team size 278 3.910 6.141 0 0 46
Team network 278 97.477 147.021 0 0 500
Advisors 278 1.162 2.804 0 0 17
Business model:
infrastructure 278 0.662 0.779 0 0 2

Business model: financial 278 0.644 0.69 1 0 2
Business model: utility 278 0.651 0.72 1 0 2
ICO duration 276 26.070 62.817 15 0 906
Log(ICO duration) 1 276 0.996 0.647 1.48 0 2.957
Whitepaper: score 278 13.230 17.601 2.5 0 131
Whitepaper: exists 277 0.520 0.501 1 0 1
Twitter score 278 4.750 9.714 2.025 0 115.21
Facebook score 278 3.332 13.755 0 0 143.213
Reddit Score 278 1.211 8.062 0.002 0 98.033
Bitcointalk Score 278 117.681 266.287 25.85 0 2379.9
Financial 278 0.414 0.493 0 0 1
Blocknet 278 0.133 0.340 0 0 1
Media 278 0.112 0.315 0 0 1
Gambling 278 0.054 0.226 0 0 1
Gaming 278 0.054 0.226 0 0 1
Cloud Computing 278 0.216 0.146 0 0 1
Team dispersion 278 1.040 1.628 0 0 9

1 If ICO duration > 0, then log(ICO duration), else 0.

4.2. Multivariate Results

The multivariate results are based on four models, which we estimate by ordinary least squares
(OLS. The results are reported in Table 2. In models 1 and 2, we added the variable, ICO duration,
as a control variable to all independent variables to observe any effects of the length of the campaigns,
while in model 2, we additionally added the six industry dummies to control for any influence
of business sectors. In model 3, we added the variable log(ICO duration) to account for any
heteroscedasticity, as there is substantial variation in ICO duration. The social media control variables
are introduced in model 4, as is team dispersion, to check for any effects of the degree of business
centralization. Models 1 and 3 have F values of 39.48 and 39.01 and adjusted R2 values of 0.5857 and
0.5831, respectively, suggesting a reasonable fit. The fourth model has a lesser fit, at F = 30.79 and
adjusted R2 = 0.5854. The second model has the highest adjusted R2 (0.6021) and, being based on the
largest number of different variables, the lowest F value (26.8).

In models 1, 3, and 4, we find a significant, but small, positive influence of team size, while all four
models predict a highly significant, but small, positive influence of the team network and a highly
significant positive influence of the number of advisors on the funds raised. The existence of the
whitepaper has a highly significant positive impact across all models, while for whitepaper: Score we
find a positive but insignificant coefficient.

Regarding the quality of the business idea, we find highly significant positive results for Business
model: Financial in all fours models. For Business model: Utility, we find positive results that are
significant at the 1%-level in models 1, 3, and 4. Model 2 returns a weaker association (p < 0.1). We also
find a marginally significant positive effect of ICO duration in model 1. Interestingly, social media
has no significant impact, with the coefficient signs being variously positive (Twitter and Facebook)
and negative (Bitcointalk and Reddit). We find a negative impact of Team dispersion in model 4.
Regarding the industry dummies in model 4, the only significant result is a strongly negative one for
financial projects.
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Table 2. Results of OLS regression models.

Variables Model 1 Model 2 Model 3 Model 4

Team size
0.019 * 0.016 0.018 * 0.032 ***
(0.075) (0.123) (0.089) (0.009)

Team network
0.009 ** 0.001 *** 0.001 * 0.001 **
(0.047) (0.008) (0.045) (0.014)

Advisors
0.061 *** 0.061 *** 0.063 *** 0.055 **
(0.007) (0.008) (0.006) (0.016)

Business model: Infrastructure
0.043 −0.034 0.048 0.093

(0.614) (0.696) (0.573) (0.288)

Business model: Financial
0.358 *** 0.395 *** 0.364 *** 0.391 ***
(0.000) (0.000) (0.000) (0.000)

Business model: Utility 0.265 *** 0.178 * 0.252 *** 0.266 ***
(0.005) (0.065) (0.008) (0.005)

Whitepaper: Score 0.005 0.004 0.005 0.004
(0.291) (0.321) (0.279) (0.367)

Whitepaper: Exists 0.806 *** 0.811 *** 0.783 *** 0.829 ***
(0.000) (0.000) (0.000) (0.000)

Twitter score
0.008 0.005 0.008 0.011

(0.169) (0.410) (0.200) (0.148)

Bitcointalk score - - - −0.000
(0.446)

Facebook score - - - 0.001
(0.776)

Reddit score - - - −0.001
(0.850)

ICO duration
0.001 * 0.001 - -
(0.083) (0.208)

Log(ICO duration) - - 0.093 -
(0.274)

Team dispersion - - - −0.105 **
(0.039)

Blocknet - 0.046 - -
(0.801)

Financial - −0.462 *** - -
(0.000)

Media - −0.275 - -
(0.149)

Gambling - −0.097 - -
(0.696)

Gaming - 0.041 - -
(0.869)

Cloud computing - 0.455 - -
(0.227)

F 39.48 26.8 39.01 30.79
Adj. R2 0.5857 0.6021 0.5831 0.5854

*, **, *** indicates significance at 0.05, 0.01 and 0.00 respectively.

5. Discussion

5.1. Implications for Theory

The exponential growth in ICO funding may be due to the “free money effect” or “house money
effect” (Thaler and Johnson 1990). Early investors in Bitcoin or Ethereum reaped very large gains of
many thousands of percent (depending on their entry, of course) that allowed them to invest large sums
into ICOs. According to Zelizer (1994) Social Meaning of Money theory, money is treated differently
depending on its context. This would imply that money won by investing in cryptocurrencies is not
seen as neutral, but as tied to the same market. Compared to money gained in other markets, early
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cryptocurrency winners are more likely to invest large sums in ICOs. Another reason might reinforce
this house money effect: Compared to gambling, early cryptocurrency investors might not perceive
their gains as pure luck, but rather as the fruits of investing in a technological breakthrough. As early
supporters, they are likely to reuse their funds to foster this technology. The analysis has shown that
most funds are raised in a few very large ICOs that appear to attract most investor interest.

The results of the multivariate analysis support some of our hypotheses. Especially, H1, the
conjectured positive relationship between human capital and funds raised, is supported by all four
models in the form of significant positive effects of team size, team network size, and the number
of advisors. This confirms our hypothesis that a larger network and thus greater human capital
supports ICO success, in line with the corresponding literature on venture capital (Florin et al. 2003;
Stuart et al. 1999), crowdfunding (Ahlers et al. 2015), and ICOs (Fisch 2019).

We also found support for H2 regarding the quality of a project in all four models, as there are
significant correlations between funds raised on the business model in regards to financial and utility
aspects. This finding suggests that investors, at least to some extent, rationally pick those ICOs which
signal strong quality, rather than blindly distributing their funds across the available ICOs. This finding
is in line with existing research on ICOs (Fisch 2019; Amsden and Schweizer 2018). Interestingly, we
did not find significant results for the third variable, infrastructure. We suggest that investors may
possess some form of knowledge to evaluate the quality of a business model.

Furthermore, we found a strong influence of whitepaper existence and thus some support for
H3 of a positive relationship between project elaboration and funds raised. Yet, no significant effect
was found for the whitepaper score. This suggests that what ICO investors value is not so much a
convincing (technical) whitepaper, but rather the quality of the business model in general. This could
be a sign that investors expect a whitepaper to be available, but do not actually read it. Our research
confirms that the actual level of preparedness in form of a well-structured business plan promotes ICO
success, as shown by Chen et al. (2009) for VC investment decisions.

Our hypothesis, H4, a positive relationship between social media presence and funds raised, failed
to find any significant support across all social media variables. Twitter has a very small positive impact
in all four models, as does Facebook, when included in model 4. Both Bitcointalk and Reddit yield
insignificant and negative results. There are two reasons why a negative sign on these two variables
is actually not surprising: (1) Whenever a project is exposed to rumors about illegitimacy or fraud,
a lot of additional posts are generated, resulting in a high score; (2) projects that occurred towards the
start of our sample period tend to raise less capital (by virtue of the growth trend we found), but have
had more time to accumulate posts and thus have a higher score.4 If for these reasons we disregard
Bitcointalk and Reddit and thus only interpret it as a proxy for social media attention the Twitter score,
as it only comprises followers and project tweets, but not community posts, our result confirms the
finding from the venture capital and crowdfunding literature that social media presence has a positive
impact on financing campaigns. The finding furthermore suggests that entrepreneurs looking for
funding via an ICO should devote attention to social media (Solomon et al. 2012; Sprenger et al. 2014).

In general, we show that investor behavior in ICOs shows similarities to the VC and crowdfunding
markets. This suggests that ICOs may need to be integrated into the research on corporate finance.
Our research adds to the literature of signaling theory by showing that ICO startups use certain types
of information, like human capital characteristics, business model quality, and project elaboration,
to signal their quality to campaign contributors.

4 Instead, the number of posts until the end of the ICO phase should have been used to determine the social media scores.
Yet, this data is virtually impossible to retrieve automatically for past years.
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5.2. Implications for Practice

The blockchain technology is said to hold massive disruptive power for various industries, and to
entail groundbreaking changes to numerous aspects of our lives. Startup funding is clearly among the
affected fields. If the relevant players, including VC funds, startups, and business angels, are aware of
the technology’s disruptive potential and learn to harness it to improve current processes or to develop
new business models, it can be a highly valuable tool for raising funds.

Furthermore, blockchain can potentially change the way in which businesses are managed and
organized. Yet, before concrete action can be taken, companies need to familiarize themselves with the
challenges and risks of the technology. In the financial industry, a broad utilization of blockchain is
expected in no more than three to five years, so other industries need to start preparing for it.

The fact that companies are able to raise money without the need to offer any form of equity,
voting rights, or profit participation in return could herald a new era of corporate financing. If ICO
funding keeps growing, traditional methods of corporate finance may have to adapt in some form.

Several aspects of the ICO market suggest that a bubble is emerging. Blockchain-based ICOs and
their underlying decentralized approach represent an innovative technology, and innovation lay at the
root of the financial bubbles in new economy stocks (Pastor and Veronesi 2009), the Mississippi Bubble,
the South Sea Bubble, and the Dutch Windhandel (Frehen et al. 2013). Pástor and Veronesi (2006) show
that stock prices in innovative industries grow irrationally high and predict that their price falls once the
uncertainty about the technology is resolved. The market for ICOs does fit clientele models as it features
both arbitrageurs (informed investors) and noise traders (uninformed investors) (Frehen et al. 2013).
Very high returns and rapid market growth constitute additional evidence of a price bubble emerging,
which asset managers need to account for in their risk analysis (Lee and Phillips 2016).

5.3. Limitations

Regardless of the strengths of our study (e.g., the comprehensive data set of a wide range of ICOs
starting from the very beginning in 2013), the following limitations should be mentioned. First, the ICO
tokens issued by various projects represent very different things (Conley 2017). For instance, there are
donation tokens, utility tokens (for different sorts of services and products), dividend tokens, and equity
tokens. Moreover, a token can also provide two sorts of benefits at the same time. This variation may
have unobserved effects on the amount of funds raised. We therefore encourage future studies to
explicitly control for token characteristics and to compare the investment consequences of different
kinds of tokens.

Second, the regulatory situation and legal status of the ICOs in our sample varied across countries
and across time, potentially leading to uncontrolled effects on our observations. ICOs are such a
novel phenomenon that there was and still is great regulatory uncertainty in many countries, allowing
projects to sell tokens for large sums to investors without conducting Know-Your-Customer (KYC)
procedures (Ante 2018). In 2017, the U.S. Securities and Exchange Commission (SEC) stated that
the tokens sold in an ICO by the project The DAO (Jentzsch 2016) were indeed securities whose
issuance in a crowdfunding campaign would have required a prospectus (SEC 2017a). The SEC
additionally issued an investor bulletin that provides potential ICO investors with numerous warnings
of investment fraud and a list of challenges that law enforcement face when investigating ICOs,
including difficulties in tracing money flows, the international scope, the lack of central authority,
and the risks and obstacles of freezing or securing virtual currency (SEC 2017b). On 11 December 2017,
the SEC issued a cease-and-desist order to the Delaware-based company, Munchee Inc., that offered
securities in their token sale, forcing the company to refund all investments and to abort its campaign.
Munchee promised that the value of their offered MUN token would increase because of the company’s
work and that tokens would be traded on secondary markets. The token did not involve any profit
participation mechanisms, such as buybacks or dividends (SEC 2017c). In other countries, ICO tokens
may also represent securities or can alternatively also be considered currencies with or without
securities characteristics (e.g., Germany). This unclear status may also have had an unobserved effect
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on our results. However, there is no reason to assume a systematic effect, so the results are unlikely to
be biased.

As a mostly unregulated ecosystem, the ICO market is only beginning to mature. The first ICOs
were carried out without incorporation or legal protection, which is why only limited information
on these projects is available. Our dataset is likely missing a number of failed and abandoned ICO
projects, so there is some selection bias in favor of successful projects. It is unclear whether and to what
extent our results are influenced by this fact. As the market continues to grow rapidly, the relevant
information is becoming much more accessible, so future research along these lines should not face the
same problem.

Presales of tokens are a standard process used by many projects. Various different approaches,
such as multi-stage presales and undisclosed presales, are used, which further reduces transparency in
the market. More and more funds and venture capitalists are entering the ICO market and try to gain
access to presale deals. Up until 2017, ICOs usually employed time-based bonus systems to incentivize
investors to invest early, a practice that has now been replaced by presales. Our variable funds raised
equals the sum of presale and main sale funding. Yet, we may not have captured all presale funding
for some projects. As a limitation, we cannot observe whether presale success had any effect on the
amount of funding raised in the ICO.

Some projects set minimum and maximum funding caps, while others try to raise as much capital
as possible. Our study defined ICO success as the amount of capital that a project was able to raise,
yet numerous projects met their funding targets in less than a day, so very likely they could have raised
more capital. In these cases, our dependent variable may not adequately capture the true funding
potential of a project or, in other words, the cap prevented our explanatory variables from taking full
effect. For our dataset, we were unable to identify enough funding caps across all projects due to a
lack of transparent data for historic campaigns. By implementing funding caps, the actual success of a
project could potentially be defined more clearly. Still, most projects implement funding goals today,
so their effects can be tested in future studies.

We have identified a small positive impact of the variable whitepaper score on funding success,
while the existence of a whitepaper had a strong effect. Agrawal et al. (2014) show that crowdfunding
campaigns tend to be more successful if a unique product or service can be easily explained.
Therefore, whitepaper complexity could also impede funding success. Future research should therefore
additionally control for the availability of a less complex version of the whitepaper, like a pitch deck.

Our model 4 yielded a negative connection between the funds raised and the geographical
dispersion of a project’s team members. This finding is at odds with the decentralized approach of
the ICO ecosystem. Yet, the effect we found may really be driven by the existence of a collocated or
virtual team (Powell et al. 2006) or by cultural differences (Burtch et al. 2013). To check for the second
possibility, we conducted alternative calculations using geographical data, such as classifying projects
according to cultural dimensions theory (Hofstede 1984) or evaluating whether the presence of a team
member from China or eastern countries, like Russia, had any impact on ICO success. No significant
results were found. We therefore encourage future research to look into this issue as the data quality
continues to improve rapidly.

6. Conclusions

This study of the ICO phenomenon adds to existing research by evaluating how this new
ecosystem compares to existing processes in VC and crowdfunding financing. We investigate this
question from the perspective of the startups that are looking to raise money for their venture.
Our findings suggest that the ICO market indeed exhibits close similarities to the classical markets
of VC and crowdfunding: ICO success, as measured by the amount of capital raised, is positively
related to human capital characteristics, business model quality, project elaboration, and social media
presence. ICO contributors seem to invest rationally based on publicly available data. Yet, our findings
regarding the relevance that investors assign to project elaboration and social media presence are to
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some extent inconclusive and require further research. The market for ICO is still underregulated
and intransparent, with large information asymmetries between startups, contributors, and society.
ICO success is subject to the same causalities and signals as classic VC and crowdfunding financing.
We thus conclude that though ICOs are a new way of financing startups, they do constitute a new form
of crowdfunding financing that will technically and legally move closer to traditional mechanisms as
markets mature and regulators step in. It still remains to be seen to what extent the other markets will
adapt towards the ICO market. By 2018, over $15 billion has been raised in ICOs, so unless regulation
puts a stop to it, the phenomenon is here to stay.

Our study adds to research in the field of ICOs as a novel form of fundraising for startups and
paves the way for future research in this growing, but as yet under-researched area. Several questions
warrant further research. First, longitudinal research is needed to examine ICOs over time and track
their long-term development. A panel data set could yield more fine-grained insights into how the
predictors influence ICO success and into the mechanisms behind each of the variables. Such research
could also reveal the dynamics for certain variables, such as the influence of social media, advisors,
or team composition. For instance, it can be assumed that social media may create a hype around
certain ICOs. Longitudinal analyses of social media sentiment and funds raised over time could
uncover the dynamics underlying the influence of social media. Future research should comprise
time-series data on the social media channels of ICO projects to detect information cascades, under- or
overpricing, and announcement effects.

Second, while our study has been conducted from a startup’s perspective, looking at the
determinants of the amount of funds raised, future research may investigate ICOs from an investor’s
perspective and focus on variables, such as returns, dividends, and market capitalization. For instance,
our knowledge of investor strategies and the associated outcomes is very limited. In this regard,
it would be interesting to investigate how investors allocate their funds in terms of, for example,
industries, geography, and diversification, and what returns these strategies yield.

Third, we see a need to examine ICOs from a regulator’s and a legal perspective, and the status of
ICOs in society more generally. For instance, since tokens have different characteristics in different
countries (being treated for example as securities, as a currency etc.), comparative research on the
impact of such differential treatment is needed.

Fourth, given the amount of money at stake, we need to know how this form of funding can be
institutionalized in a way that benefits society as a whole. We hope that our study will spark interest
in these and related questions and trust that future research will address many of the as yet unresolved
puzzles in the emerging token economy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1911-8074/11/4/80/s1,
Datensatz ICO bereinigt.
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Abstract: Cryptocurrencies such as Bitcoin rely on a proof-of-work system to validate transactions
and prevent attacks or double-spending. A new proof-of-work is introduced which seems to be the
first number theoretic proof-of-work unrelated to primes: it is based on a new metric associated
to the Collatz algorithm whose natural generalization is algorithmically undecidable: the inflation
propensity is defined as the cardinality of new maxima in a developing Collatz orbit. It is numerically
verified that the distribution of inflation propensity slowly converges to a geometric distribution of
parameter 0.714 ≈ (π−1)

3 as the sample size increases. This pseudo-randomness opens the door to a
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1. Introduction

A decentralized electronic payment system relies on a ledger of transactions shared on a network.
The decentralization of a transaction ledger raises the question of security and integrity of the ledger.
In the original Bitcoin protocol, the problem of double-spending or alteration of the ledger is solved
by the use of blockchain, a system that requires proof-of-work by a network of computers to confirm
transactions. In cryptography, intensive computation as proof-of-work allows one party to verify
with little computational effort that a counterparty has spent a large amount of computational
effort. The concept was originally developed by Dwork and Naor (1992) as a spam prevention
technique. Nakamoto (2008) used, for Bitcoin, a proof-of-work based on Back (2002). The protocol
consists in finding a nonce value such that the application of the SHA-256 hashing algorithm to
a combination of that nonce and a block of information gives a hash starting with series of zeroes by
targetting a given threshold. The idea behind the proof-of-work is that participants have an incentive
to cooperate rather than to cheat because the computational power required to cheat is too large.
However, as cryptocurrencies became more popular and diverse, an over-reliance on mainstream
proof-of-work protocols, such as hashcash-SHA256, Ethash (Wood 2014) or hashcash-Scrypt based
proof-of-work (Percival 2009) creates a new type of systemic risk in which a cryptographic breakdown
would jeopardize cryptocurrencies that rely on these standard proofs-of-work. A weakness of
proofs-of-work in cryptocurrency applications is the threat that a single individual (or a coordinated
group) would be able to generate blocks faster than 50% of the network. In that case, this entity would
completely control the blockchain-based validation system of transactions. In practice, attacks on hash
functions could prevent new transactions or alter past ones. In financial markets, exchanges have
the possibility to cancel trades in case of infrastructure breakdown or malfunction. By opposition,
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a systemic failure of the proof-of-work system in decentralized cryptocurrency markets could mean
the destruction of the whole history of transactions. Potential risks clouding the proof-of-work system
include innovation in technology, mathematics and cryptography that could compromise the existing
protocols. Proofs-of-work entirely based on existing hash algorithms such as SHA-256 have been under
stress in recent years. Rubin (2017) documented a well-known mining optimization (“ASIC-BOOST”)
that allowed to mine Bitcoin blocks faster than the network average by taking advantage of a technical
flaw in SHA-256. A specific optimization of the mining instruments allowed reducing the problem’s
complexity by exploiting collision attacks on the SHA-256 hash algorithm. The multiplication of
proofs-of-work help mitigate this type of hyper-specialized hardware attack. Bitcoin, Ethereum,
Bitcoin Cash and Litecoin overwhelmingly dominate the market capitalization of minable coins.
Such concentration of the volumes into a few cryptocurrencies represent equally a significant systemic
risk. When looking at the top 25 cryptocurrencies by diluted market capitalization (see Table 1),
eight of them use Scrypt as underlying hash algorithm for proof-of-work. Introducing new types of
proof-of-work is needed to help networks diversifying the protocols in case of increased concentration
of hyper-specialized computational power.

Table 1. The 25 top cryptocurrencies as of 15 October 2018 as can be seen on https://onchainfx.com/
v/SMT45r.

Name ∼Fully Diluted (Y2050) Marketcap/15 October 2018 Underlying Algorithm

Bitcoin (BTC) $134,308,812,450 SHA-256
Ethereum (ETH) $29,787,293,584 SHA-3

Bitcoin Cash (BCH) $9,225,442,784 SHA-256
Litecoin (LTC) $4,430,985,913 Scrypt
Dash (DASH) $2,956,683,098 X11

Monero (XMR) $2,300,499,210 CryptoNight
ZCash (ZEC) $2,262,517,311 Equihash

Ethereum Classic (ETC) $2,161,731,159 SHA-3
Dogecoin (DOGE) $1,402,169,807 Scrypt

Siacoin (SC) $564,862,312 Blake-2b
Bitcoin Gold (BTG) $526,927,423 Equihash

Digibyte (DGB) $483,402,492 SHA-256 and others
ReddCoin (RDD) $447,635,857 Scrypt

Bitcoin Diamond (BCD) $343,664,370 X13
ZenCash (ZEN) $275,245,426 SHA-3

Verge (XVG) $229,929,732 Scrypt
Zcoin (XZC) $194,506,940 Equihash

Monacoin (MONA) $124,690,762 Scrypt
Syscoin (SYS) $81,207,881 Scrypt
Zclassic (ZCL) $67,149,925 Equihash
Vertcoin (VTC) $53,917,212 Lyra2REv2

Bitcoin Private (BTCP) $51,124,537 Equihash
LBRY Credits (LBC) $41,220,511 LBRY
Einsteinium (EMC2) $25,808,910 Scrypt

GameCredits (GAME) $13,734,781 Scrypt

So, even though there exist hundreds of different hash functions already, more diversification
of proofs-of-work could further mitigate cryptographic risks and improve robustness of the nascent
crypto-economy. Several types of proof-of-work have been designed using new hash functions, such as
prime numbers verification (King 2013), graph-theoretic proof-of-work (Tromp 2015) or proof-of-work
based on the generalized birthday problem (Biryukov and Khovratovich 2017). Post-quantum
algorithms are currently being developed in the field of security, see, for example, Bae et al. (2017).
In particular, Kiktenko et al. (2018) propose a quantum-safe blockchain that utilizes quantum key
distribution. The application presented in the following sections seems to be the first documented
attempt to establish a number theoretic proof-of-work unrelated to primes. The hash proposed is based
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on properties of the Collatz algorithm. In order to describe this algorithm, consider the following
function from N0 to N0 :

T(x) =

{
x/2 if x is even

(3x + 1)/2 if x is odd
(1)

Now, apply the following iterate of T:{
T0(x) = x

T(k+1)(x) = T(Tk(x))
(2)

The Collatz conjecture states that ∀ x ∈ N0, ∃ a finite k such that Tk(x) = 1. Lagarias (2010)
uses the following terminology: the “total stopping time” is defined as σ∞(x) = inf{k : Tk(x) = 1}.
The “stopping time” σ(x) is inf{k : Tk(x) < x}. The “gamma value” is defined as γ(x) = σ∞(x)

log(x) .
For instance, let us consider the case for x = 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0(3) = 3,

T1(3) = (3 × 3 + 1)/2 = 5,

T2(3) = (5 × 3 + 1)/2 = 8,

T3(3) = 8/2 = 4,

T4(3) = 4/2 = 2,

T5(3) = 2/2 = 1.

(3)

In this example, the Collatz sequence1 is
{

3, 5, 8, 4, 2, 1
}

and σ∞(3) equals to 5 while σ(3) = 4.

By definition, the value of σ∞(x) depends on the starting point of the algorithm. For example ∀ α ∈ N0,
σ∞(2α) = α as

Tα(2α) = 1. (4)

Analyzing the total stopping time ∀ x ∈ N0 has proven challenging: the lack of clear patterns
and the absence of an analytical shortcut to estimate σ∞(x) have left practitioners with numerical
methods to compute it and verify the conjecture. e Silva (2010) proved computationally that the
conjecture holds up until x = 20 × 258. Current computational capabilities have allowed confirming
the conjecture for very large numbers. For example, Honda et al. (2017) introduced a GPU-based
method to verify the Collatz algorithm. The authors could verify 1.31e12 64-bit numbers per second.
A probabilistic approach is also a frequent workaround to justify the validity of the Collatz conjecture:
assuming function Tk(x) is “random enough”, Crandall (1978) showed that half of the time, the next
number in the sequence will be (3x + 1)/2, then for the next iteration, 1/4 of the time it will be
(3x + 1)/4, then for the next iteration, 1/8 of the time it will be (3x + 1)/8 and so on so that the
average growth in the sequence will be ( 3

2 )
1/2( 3

4 )
1/4( 3

8 )
1/8( 3

16 )
1/16( 3

32 )
1/32... = 3

4 < 1. Terras (1976)
demonstrated that the set of integers {x:- x has stopping time ≤ k} has a limiting asymptotic density
F(k) with F(k) → 1 as k → ∞. These elements tend to indicate that Tk(x) does not diverge to infinity
as k grows. Using Minsky (1961) machines, Conway (1972) showed that a problem generalizing
the Collatz conjecture is not algorithmically decidable. Kurtz and Simon (2007) extended the proof
to show that this generalization is Π2

0 complete. If the problem is truly algorithmically undecidable,
then no information about the future inflation of the Collatz map is passed from one step k to the next
step k + 1. To explore that hypothesis and the properties of this “pseudo-randomness”, let us define

1 also called “trajectory” or “forward orbit”.
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the inflation propensity of order K ξ(x, K) as the cardinality of the set of steps that lead to a number
strictly larger than all previous numbers in the same sequence:

ξ(x, K) = card

{
k : Tk(x) > max(Mx,k)

}
, k = 1, ..., k, ...K, (5)

where Mx,k =
{

T0(x), T1(x), ..., Tk−1(x)
}

. ξ(x, σ∞(x)) is a particular case. For the ease of notation:
ξ(x) = ξ(x, σ∞(x)). In the above example of x = 3, ξ(3) = 2. Indeed, the set of numbers strictly
larger than the previous maxima in the sequence are {5, 8} so that ξ(3) = card{5, 8} = 2. In the other
example presented supra with x = 2α, ξ(2α) = 0 ∀ α ∈ N0 since no number in their sequences can be
strictly larger than the initial one.

This research paper investigates the distribution of ξ(x), the inflation propensity as a deterministic
variable that resembles a random behavior. If past maxima anywhere in the sequence are independent
from new maxima later computed in that orbit, we should have that ξ(x) ∼ G(ρ), a geometric
distribution of parameter ρ with density f (ξ(x) = y) = ρy(1 − ρ). The interests of fitting a density
distribution to ξ(x) are multiple. First, in absence of proof of the Collatz conjecture, numerical analysis
of the problem stays relevant towards resolving the question. Second, by properly addressing the
behavior of the series for large numbers, one can help anticipate the computational challenges related to
exploring the orbits of the Collatz map. Third, identifying pseudo-random behavior of Collatz inflation
propensity directly leads to a new class of proofs-of-work for blockchain applications. The remainder
of this document is built as follows. The next section discusses the empirical distributions of σ∞(x),
σ(x) and ξ(x) ∀ x ∈ N0. The third section details the observed density of ξ(x). The density parameter
of a geometric distribution is estimated using all natural numbers up to 1×1011 as sample. The fourth
section presents a new proof-of-work based on inflation propensity, while the last section is a
conclusion.

2. Inflation Propensity

Lagarias (1985) describes the 3x + 1 conjecture as “a deterministic process that simulates random
behavior” and goes further to mention that the problem seems “structureless”. Urvoy (2001) formally
proves the non-regularity of the Collatz’s graph. As a visual illustration of this “structurelessness”,
the total stopping time for the first 1×106 natural numbers as a function of their value is presented
in Figure 1. The equally “structureless” empirical distribution of the total stopping time for the
same numbers is presented in Figure 2. In this context, “structureless” means that it is impossible to
anticipate the frequency of the total stopping time. This is unfortunate since it means observing the
total stopping times over a region of N0 gives no information whatsoever on the Collatz problem apart
from strictly verifying its convergence. The mean of the total stopping time totally depends on the
region over which it is computed, and, even when considering a closed subset of N0, the distribution of
the total stopping time appears to be erratic and does not seem to follow any regular pattern. As such,
the total stopping time has no apparent statistical properties that could be useful in applications such
as, for instance, generating random numbers.
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 0       2 0 0, 0 0 0   4 0 0 , 0 0 0    6 0 0 , 0 0 0            8 0 0 , 0 0 0        1 , 0 0 0 , 0 00 

Figure 1. “Structureless” total stopping time for the first 1×106 natural numbers.

Figure 2. “Structureless” distribution of the total stopping time for the first 1×106 natural numbers.
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Precisely because the Collatz graph is non-regular, its complexity gives rise to a pseudo-random
behavior. Nichols (2018) and Kontorovich and Lagarias (2010) explore similarities between the Collatz
model and the following dynamical system:

log2 TK(x) ≈ log2x − K + b3

K

∑
k=0

Yk, (6)

where b3 is a constant and Yk are IID (independent and identically distributed) Bernouilli random
variables. The stochastic models predict that all orbits converge to a bounded set and that the total
stopping time σ∞(x) for the 3x + 1 map of random starting point x is about 6.95212 log x steps,
as x → ∞ have a normal distribution centered around that value. The authors point out that a suitable
scaling limit for the trajectories is a geometric Brownian motion. This approach is extended in the
current research in order to find a discrete metric that could exhibit some type of consistency and
is independent from the starting point x. If a geometric Brownian motion can properly describe
trajectories of large orbits, it means its Markov property can be exploited: each marginal step in the
orbit is independent from the previous step. As a consequence, the probability to find new maxima
after any random point Tk(x) of a large orbit does not depend on how many new maxima were
discovered before that point. In other words, for any x >> 4 ∈ N:

P
(

ξ(x) > M | ξ(x) ≥ ξ(x, k)
)
= P

(
ξ(x) > M − ξ(x, k)

)
, (7)

where M > ξ(x, k) and M ∈ N. If the inflation propensity is memoryless as described by Equation (7),
it directly implies that the density f (ξ(x) = y) follows a geometric distribution. It would mean that

f (ξ(x) = y) = ρy(1 − ρ) (8)

with ρ ∈ ]0; 1[ and y ∈ N. The moment generating function is

μn = Li−n(ρ)− ρLi−n(ρ), (9)

where Lin(ρ) is the nth polylogarithm of ρ and

ρ̂ =
μ1

1 + μ1
(10)

is the corresponding estimator of ρ based on Equation (9). It is also the maximum likelihood estimator.
The empirical distribution of ξ(x) defined in (5) is presented in Figure 3. The next step is to test the
hypothesis that ξ(x) ∼ G(ρ).
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Figure 3. Quasi-geometric distribution of the inflation propensity for the first 1×106 natural numbers.

3. Empirical Results

The samples consist in the first 1×108 , 1×109, 1×1010 and 1×1011 positive integers. For each
sample, the maximum likelihood estimator of ρ is computed, then tests are performed to see if elements
of the distribution follow a geometric distribution of parameter ρ:

H0 : P(ξ(x) = n) = (1 − ρ)n−1ρ ∀n = 1, ..., q (11)

H1 : P(ξ(x) = n) = (1 − ρ)n−1ρ ∀n = 1, ..., q (12)

where q ∈ [0, N] and N is the largest observed maximum in the sample. When q = N, the entire
distribution is tested for goodness of fit with a geometric distribution of parameter ρ̂. The tests are
performed using Pearson’s χ2 test at a 10% confidence level. Table 2 summarizes the results of the
tests. As the sample size increases, the hypothesis is not rejected when it comes to considering the
first quantiles of the distribution. For the last sample (1 × 1011), the hypothesis that the distribution of
the inflation propensity follows a geometric distribution cannot be rejected up to the 91th percentile,
compared to the 49th percentile for the 1 × 109 sample. Computational limitations prevent at this stage
investigating larger sample sizes so that the geometric behavior of the inflation propensity over the
entire domain (N0) needs to be conjectured. Interestingly, the estimator for ρ seems also to converge to
a given value as the size of the sample increases and is very close to π−1

3 , which is coincidentally the
solution to the equation 3x + 1 = π (see Figure 4). Table A1 in Appendix A indicates the distribution
of inflation propensities for the first 1 × 1011 integers.
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Table 2. Pearson’s χ2 tests for goodness of fit with a geometric distribution.

Sample 1×108 Sample 1×109 Sample 1×1010 Sample 1×1011

ρ̂ 0.7133482 0.7135956 0.713667 0.713681

q Percentile p-Value p-Value p-Value p-Value

0 29 0.01 0.15 0.70 0.64
1 49 0.04 0.19 0.70 0.14
2 64 0.09 0.00 0.23 0.25
3 74 0.15 0.00 0.36 0.39
4 82 0.08 0.00 0.11 0.35
5 87 0.05 0.00 0.01 0.37
6 91 0.07 0.00 0.00 0.13
7 93 0.11 0.00 0.00 0.03
8 95 0.00 0.00 0.00 0.04
9 97 0.00 0.00 0.00 0.03

10 98 0.00 0.00 0.00 0.00

6 7 8 9 10 11
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71
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Figure 4. ρ̂ as a function of the sample size (log10-scale).

4. Application

4.1. Collatz-Based Proof-of-Work

Because the distribution of the inflation propensity of Collatz orbits can be assumed to be
geometric over large samples, and that a natural generalization of the Collatz algorithm has been
proven to be undecidable, the inflation propensity can be considered as a new candidate to generate
proofs-of-work, conjecturing the Collatz algorithm is also undecidable. Consider the following
problem: find any set X made of n natural numbers {X1, ..., Xi, ..., Xn} whose values are between B and
B∗ = B + α, a larger number, and that have inflation propensities of given values {Q1, ..., Qi, ..., Qn}
with n << α. In other terms, find a solution to the problem

Qi = ξ(Xi) ∀i ∈ {1, ..., n}, (13)
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where Qi is known, Xi ∈ [B, B∗] and Xi = Xj ∀i = j ∈ {1, ..., n}. α, B, B∗, Q, X ∈ N0. B is the unsigned
integer value corresponding to a 256 bits block of hashed information. α is set to an arbitrarily large
value, for example α = 264. Note that this is still a fraction of the value for B so that pre-computation is
virtually impossible in practice.

Since P(ξ(Xi) = Qi) ≈ (π−1
3 )Qi (1 − π−1

3 ) the difficulty to the problem can be designed in
a straightforward manner: solutions for higher targets Qi will be exponentially more difficult to
find. Nevertheless, verifying the proof given inputs X and B is immediate, a desirable property for
a proof-of-work. Once a valid solution set X has been found, the nounce ν is simply:

ν = X − B, (14)

which in practice is an array if X is a set and is an integer if X is a scalar. At the exception of the
nonce and the target Q, the remainder of blockchain application based on Collatz is identical to the
existing Bitcoin protocol. In practice, the target set Q can be selected by the network so that, similar to
Bitcoin, six blocks are mined per hour. Every 2016 blocks, clients can compare the performance of
the network and adjust the difficulty accordingly. Thanks to the geometric nature of the inflation
propensity, a protocol for this adjustment is straightforward. Let us assume U0 is the average amount
of time required by the network to find any single value ξ(x). Any total computational time UT ≥ U0

can be easily selected by finding a set Q solving the following problem:

UT = ∑
q∈Q

1
ρq U0 + ε. (15)

Two additional constraints must be considered for the protocol to be properly defined: the set Q
must be chosen so that 0 ≤ ε ≤ U0 and the cardinality of the set must be as small as possible.

4.2. Example: Bitcoin Genesis Hash

A new Bitcoin genesis hash is created using original inputs by Nakamoto (2008), but exploiting
inflation propensity proof-of-work instead of hashcash. The inputs are: a hash merkle root that
condenses all information related to the first Bitcoin transaction, a version number, a public key, a date,
a time stamp that is used as coinbase parameter, and a target for complexity. A genesis block is the
first block of a blockchain. Figure 5 illustrates the proof-of-work system. To create a genesis hash
using inflation propensity as proof-of-work, only two adjustments to the Bitcoin protocol are required.
First, the target for complexity is expressed with an integer, which is the targeted inflation propensity.
This directly relates to a specific probability of occurrence. Second, the hashcash is replaced with the
inflation propensity algorithm. In practice, the block header is hashed using SHA-256 then converted
into an integer using hexadecimal encoding. This corresponds to B in Equation (14). The target set
Q is arbitrarily set to a single value of 40 for the generation of this first hash, which corresponds to
a probability of occurence of ∼ 4 × 10−7. The value of B given Nakamoto’s other initial inputs is of
∼ 2.52 × 1076. The X nonce is then incrementally added to the integer B and inflation propensity
is computed until the target of 40 is reached. The values obtained from each iteration are hereafter
named “Xis”. In the Python implementation of the algorithm, 2056 Xis are computed per second on an
Intel Core i7-4700MQ CPU with 8 × 2.40 GHz. After 28 min of computation, the solution is found.
Verification of the solution is done in ≈ 5 × 10−4 seconds on the same machine. Table 3 describes
diagnostics and results of the genesis hash. Using this first instance to calibrate the computational
difficulty, the smallest set Q that solves Equation (15) that would yield an expected computational time
of 10 min for the next block would be {2, 6, 16, 19, 22, 26, 31, 36, 41}. The Python code to generate the
Genesis Hash is provided in Appendix B.
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previous hash nonce
=
X1

BLOCK 1

previous hash nonce
=
X2

BLOCK 2

Figure 5. Proof-of-work system in the blockchain.

Table 3. A genesis hash based on original Bitcoin’s inputs for genesis but using inflation propensity as
proof-of-work.

block header hash 37d25f7f472fde7bb5b84f4bb319097c580383911b45eff10e68afa06073d6c0
corresponding integer 25248903652996148805237565338196318809513309980842754974279018460154571249344

merkle hash 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
pszTimestamp The Times 3 January 2009 Chancellor on brink of second bailout for banks
pubkey 04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f

35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f
time 1231006505
inflation propensity target 40 (0 × 28)
nounce 3420991

genesis hash 9ed4d59e375c60e568524ac7fdfcce2c36dd8d449a20b0be8c9f6f9dbd2f8709
computational time 28 min

4.3. Advantages of the Collatz-Based Proof-of-Work

The advantages of a Collatz-based proof-of-work are many. From a practitioner perspective,
the algorithm is easy to implement in code since the underlying problem is made of simple arithmetic
operations, however, bigint arithmetics are needed in case values inflate beyond 2256. Also, the natural
generalization of the Collatz algorithm is known to be algorithmically undecidable. If this holds for
Collatz algorithm, asymmetry is guaranteed: it is difficult to find the targeted value but easy to verify.
From an engineering point of view, difficulty control based on a geometric distribution is significantly
more complex than one based on hashcash, however, from a statistical perspective, the geometric
distribution allows a very convenient tailoring of the computational complexity. It is very easy to
adjust a specific targeted inflation-propensity, or a combination of targets. The same algorithm can
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also be indefinitely extended to meet new computational improvements since the upper bound of the
orbits is infinity. In addition to this scalability, it could be possible to generalize the 3x + 1 algorithm to
other congruential graphs exhibiting the same properties (for example, the 5x + 1 graph). Provided
further research confirms this hypothesis, such a feature could allow more possibilities to generate
new proofs-of-work.

5. Conclusions

For the classical 3x + 1 map, it is conjectured that inflation propensity ξ(x) = card

{
k : Tk(x) >

max(Mx,k)

}
, k = 1, ..., k, ...σ∞(x) has a geometric density distribution whose parameter’s value

ρ ≈ π−1
3 . This has been verified numerically for the first 1 × 1011 integers. The inflation propensity

of Collatz orbits is a new metric that exhibits properties particularly well suited to be the base for
new cryptography applications. A new proof-of-work is suggested: finding a set X of n integers
greater than a hashed block of information B but smaller than a threshold B∗ such that their inflation
propensities be of n given values Q1, ..., Qn. Advantages of this approach are multiple, including an
infinite scalability and the possibility to easily tune complexity of the algorithm. This work seems to be
the first number theoretic proof-of-work unrelated to primes. Further research is needed to generalize
this type of proof-of-work to a larger class of congruential graphs.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Distribution of Inflation Propensity for the First 1 × 1011 Integers

Table A1. Distribution of inflation propensity ξ(x) for the first 1 × 1011 integers.

ξ(x) Observations

0 28,631,964,381
1 20,434,254,718
2 14,583,348,496
3 10,407,804,534
4 7,427,954,284
5 5,301,161,512
6 3,783,166,989
7 2,699,976,430
8 1,927,052,441
9 1,375,229,862

10 981,424,318
11 700,353,911
12 499,868,474
13 356,795,944
14 254,706,290
15 181,761,315
16 129,757,032
17 92,628,127
18 66,127,176
19 47,199,172
20 33,676,458
21 24,024,158
22 17,138,021
23 12,231,945
24 8,727,118
25 6,225,787
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Table A1. Cont.

ξ(x) Observations

26 4,432,544
27 3,162,432
28 2,251,004
29 1,599,248
30 1,139,341
31 814,975
32 583,455
33 416,994
34 298,683
35 212,914
36 150,443
37 106,613
38 76,749
39 55,452
40 39,947
41 28,495
42 20,259
43 14,253
44 10,396
45 7791
46 5431
47 3690
48 2640
49 1984
50 1448
51 1041
52 745
53 595
54 467
55 347
56 234
57 170
58 127
59 72
60 41
61 21
62 20
63 17
64 17
65 9
66 2
67 0
68 1
69 0
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Abstract: We provide a trend prediction classification framework named the random sampling
method (RSM) for cryptocurrency time series that are non-stationary. This framework is based on
deep learning (DL). We compare the performance of our approach to two classical baseline methods in
the case of the prediction of unstable Bitcoin prices in the OkCoin market and show that the baseline
approaches are easily biased by class imbalance, whereas our model mitigates this problem. We also
show that the classification performance of our method expressed as the F-measure substantially
exceeds the odds of a uniform random process with three outcomes, proving that extraction of
deterministic patterns for trend classification, and hence market prediction, is possible to some
degree. The profit rates based on RSM outperformed those based on LSTM, although they did not
exceed those of the buy-and-hold strategy within the testing data period, and thus do not provide a
basis for algorithmic trading.

Keywords: cryptocurrency; metric learning; classification framework; time series; trend prediction

1. Introduction

Machine learning (ML) methods adapted from among deep learning algorithms have been recently
applied to financial time series prediction with a number of publications in computer science journals
(Greff et al. 2017; Fe-Fei et al. 2003; Zhang et al. 2018), as well as in economics and finance journals
(Koutmos 2018; Kristoufek 2018). There is a gap in the existing literature, however, which is pronounced
in the uncovered field of the applications of machine learning methods for time series to cryptocurrency
trading data. In this work, we aim to provide a benchmark as to how efficient the modern ML
algorithms can be in view of their applicability to the high-frequency trading data on the minute
scale. The application of deep learning techniques faces a difficult trade-off: deep learning algorithms
require a large number of data samples to learn from, implying in practice high-frequency data, such as
minute-sampled trade records, whereas the training patterns over long periods are not always stationary,
meaning varying patterns may be extracted from different segments of the training dataset.

The applicability of deep learning to high-frequency market prediction is still an open problem.
Recently, some empirical results (Mäkinen et al. 2018; Sirignano and Cont 2018; Zhang et al. 2018)
with deep learning algorithms showed that there might be a universal price formulation for the
deterministic part of trading behavior to some degree, which implies financial data at high frequency
exhibit some stylized facts and could posses learnable patterns that are stationary over long time periods.
The aforementioned references used order-driven data (limit order book) and trained recurrent neural
networks with the huge number of data. In this paper, we take a different approach: we provide a
metric learning-based (Cinbis et al. 2011; Koch 2015; Vinyals et al. 2016; Xing et al. 2003) method,
which we call the random sampling method (RSM). We measure the similarity between the input
pattern and the training samples with the novel sampling scheme, which we describe below. Then,
the label of the most similar data point becomes an output candidate for the prediction of our model.
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The present approach is motivated by the highly non-stationary dynamics in digital assets as volatile
as cryptocurrencies, in particular Bitcoin. State-of-the-art deep learning algorithms for time series, such as
the long short-term memory (LSTM) method (Gers et al. 2000; Hochreiter and Schmidhuber 1997) require
large datasets for training, and thus suffer from the fact that the causal patterns in the cryptocurrency time
series may change quite substantially in the training and testing datasets, resulting therefore in insufficient
prediction performance, noise fitting, and inconsistent results. For Bitcoin, recent data patterns are more
relevant for trend prediction than more distant data, which practically limits the number of samples
for each class. Here, we therefore adapt the metric learning method in which the algorithm finds the
best recent patterns to be labeled for optimal prediction (Fe-Fei et al. 2003; Lake et al. 2014, 2011, 2015;
Li et al. 2006). The works in (Graves et al. 2014; Koch 2015; Santoro et al. 2016; Vinyals et al. 2016) showed
how to deploy deep learning algorithms for such purposes in various applications.

2. Task Settings

2.1. Classification Problem

First, assume that there are three possible events where the price at time step t can move,
i.e., up, down, or static (Equation (2)). Precisely, the meaning is given by taking the histogram
of the logarithmic return defined as:

Rt = log
(

Pt

Pt−1

)
(1)

and partitioning it by 1/3 and 2/3 quantiles. The distribution of Rt is approximately symmetric
and stationary. We will denote by p(up)

t , p(down)
t , and p(static)

t the probabilities with which each event
happens, and we estimate them later in our model. Thus, we now have a classification problem,

Xt ∈ {up, down, static} (2)

2.2. Non-Stationarity

In particular, we consider the situation where p(up)
t , p(down)

t , and p(static)
t are changing as a function

of time. From the viewpoint of machine learning algorithms, it may happen that the models trained
on such a dataset are more biased to some class and possibly cannot deal with class imbalance
correctly when these are evaluated on a totally different regime. In order to alleviate this problematic
situation, we resort to the so-called walk forward optimization method (Dixon et al. 2017) (cf. Figure 1),
which trains a model on limited data points in a train window and tests in a test window, then moves
both windows to the right and trains the model again. This method enables us to utilize the assumption
that the distribution behind the dataset is stationary, and the learning thus becomes more stable.
However, data-driven methods such as deep learning could not generalize well with the limited train
data, and a model may suffer from non-stationarity even on a limited length dataset.
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Figure 1. Visualization for walk-forward optimization. It uses the data points in a train window (green
box) and a test window (red box), one at a time. After finishing training a model with the dataset, the two
windows move to the right, and training begins again until the windows hit the end of the time series.

The principle of the algorithm is as follows. We assume that if a pair of sequences
(e.g., xt−1, xt−2 · · · , xt−T−1, and xi−1, xi−2, · · · , xi−T−1) is similar to some measure, the distribution
p(up)

t , p(down)
t , and p(static)

t and p(up)
i , p(down)

i , and p(static)
i , which are conditioned on each sequence,

are also similar. Therefore, we train our model to learn how to measure a pair of sequences in order to
forecast the future trend label.

3. Random Sampling Method

In this section, we detail the sampling scheme and the model developed in this paper. The model
is also compared to the reference baseline cases.

3.1. Concept

Our approach was broadly inspired by recent deep learning (DL) developments in the field of
image processing. According to (Hilliard et al. 2018), “Learning high quality class representations
from few examples is a key problem in metric-learning approaches to few-shot learning”. We faced
the same problem, i.e., the limitation of the number of data relevant to training and the absence
of knowledge about a suitable feature space transform that enters the similarity metric. Similar to
(Hilliard et al. 2018), instead of using a static metric comparison, we trained the network to learn how
to compare among sequence patterns belonging to different classes. The work in (Hilliard et al. 2018)
found that such a flexible architecture provides superior results in the case of image classification task.
In our case of cryptocurrency time series, it helped us to address the highly non-stationary character
of the time series and to mitigate the class imbalance problem. Our metric learning implementation
for the classification task of trend prediction follows (Lake et al. 2011; Li et al. 2006). Our approach is
novel in adapting the above outlined classification framework to the field of time series and has yet to
be applied to cryptocurrency data and Bitcoin in particular, according to the best of our knowledge.

In particular, we assumed that the similarity of a pair of sequences can be characterized by the
classes to which they belong, e.g., a sequence labeled up was more similar to a sequence labeled up
than sequences labeled down or static. In this sense, we optimized parametrized models (neural
networks in this case) to output the hidden representations, where the hidden representations of
inputs labeled by the same class were more similar to the predicted output than those of other classes,
using the cosine similarity measure.
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In our framework, the input was a pair of a sequence, which we wanted to classify, and sequences
(there were three sequences labeled as up, down, and static, respectively) sampled from the recent past
(Figure 2). Then, we obtained hidden representations by encoding each sequence independently and
output the most similar class by comparing the hidden representation of the input sequence and the
hidden representations of the sampled sequences.

Figure 2. Visualization of the pipeline. Given inputs x
(input)
t , sequences x

(up)
t , x

(down)
t , x

(static)
t are

randomly sampled in the red window. Then, the input and samples are independently encoded with
LSTMNet (Equation (3)) and bi-directional LSTMNet (Equation (4)). Refer to the text for more details.

3.2. Sampling Scheme

We set a sampling scheme based on the assumption that financial data are non-stationary.
Therefore, we assumed we needed to sample sequences only observed recently. Formally, given input
sequence xt, our sampling scheme was to sample sequences from the closed interval [t − k − l, t − k]
where k is a window size for the simple moving average (see Section 5.2 for details) and l is a
hyperparameter to determine the size of this interval (we set it to 10,080). We perform an experiment
on how changing the sampling scheme affects the model performance in a later section.

We did rather minimal preprocessing of the dataset, removing the obvious outliers. In particular,
we removed a sequence labeled up or down if |Rt| > α was satisfied (Rt is defined in Equation (1)).
Here, α is the threshold, and we set it to 0.3 for BTCCNY and 0.1 for BTCUSD.

3.3. Encoder

Encoder (Figure 2) was used to lift a sequence to a corresponding hidden representation. We used
cosine similarity to measure the similarity of a pair of hidden representations.

Encoder is composed of two modules. Here, we call a tth input sequence x
(input)
t and the tth

samples x
(up)
t , x

(down)
t , and x

(static)
t . Then, a tth input sequence and the samples are converted to h

(input)
t ,

h
(up)
t , h

(down)
t and h

(static)
t independently by LSTMNet defined in Equation (3) (we omit superscripts
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for simplicity). LSTMNet is an LSTM network (a recurrent neural network composed of LSTM units is
called an LSTM network in this paper). In our settings, the LSTMNet had two layers, and each layer
had 32 LSTM units.

ht = LSTMNet (xt) (3)

Then, h
(input)
t , h

(up)
t , h

(down)
t , and h

(static)
t are related to each other by a bi-directional LSTM

network (Schuster and Paliwal 1997; Yao and Huang 2016), which takes as an input the aligned
sequence of h

(input)
t , h

(up)
t , h

(down)
t , and h

(static)
t . It processes the aligned sequence in the order h

(input)
t ,

h
(up)
t , h

(down)
t , and h

(static)
t and in the reversed order h

(static)
t , h

(down)
t , h

(up)
t , and h

(input)
t . It outputs the

result of the addition (Equation (4)) where
−→
h ti is the ith output of the bi-directional LSTM network

(on the tth sequence and the samples) in the aligned order, and
←−
h ti is the ith output in the reversed

order. We refer to (Vinyals et al. 2016) for this operation. In our settings, the bi-directional LSTM
network also had two layers, and each layer had 32 LSTM units. The total hidden feature ĥti is given
by the encoder equation below.

ĥti =
−→
h ti +

←−
h ti + hti (4)

We measured the similarity between hidden representations of an input sequence and samples with
cosine similarity and the class to which the sample that was the most similar belongs became the output.

4. Dataset

We used the OkCoin Bitcoin market (CNY and USD) time series data at a minute frequency.
The dataset was provided commercially by Kaiko data. Figure 3 shows OHLC (Open, High, Low,
Close) price time series in CNY and the transaction volume dynamics in Bitcoin. The horizontal axis
is time, and the vertical axis is the price of Bitcoin in CNY. The data ranged from 13 June 2013–18
March 2017. We chose this dataset because as Figure 3 may suggest, the distribution behind each class
changes rapidly, which is in accord with our non-stationarity assumption. Figure 4 shows the OHLC
price time series in USD and the transaction volume dynamics in Bitcoin. The data ranged from 25
July 2014–29 March 2017. We have computed the high frequency returns on a minute scale and a
half-an-hour scale for reference, which are shown in Figure 5. It can be seen that on the minute scale,
there was a difference between the exchange markets in the two fiat currencies, with larger volatility in
CNY minute prices; the difference almost disappeared, however, on the aggregation scale of 30 min.
We have performed the Kolmogorov–Smirnov test, which strictly ruled out the Gaussian shape of all
distributions, both for CNY and USD, on the scales of 1 min and 30 min. Heavy tails were observed in
all datasets, which cannot be explained by the normal distribution hypothesis. These features are in
good accord with the statistical analysis in (Bariviera et al. 2017; Gkillas and Katsiampa 2018; Gkillas
et al. 2018), which provided a much more detailed record of the long-range behavior of Bitcoin returns
and their stylized facts.
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Figure 3. OHLC plot (Bitcoin price in CNY). The price peaks at the end of 2013 and gradually decreases
toward the middle of 2015. Then, it recovers and peaks at the beginning of 2017. The price forms a
u-shape in the long run. Note that the price highly fluctuates at the beginning of 2017 when Bitcoin
markets were regulated in China. This caused class imbalance in the testing dataset (Figure 6).

Figure 4. OHLC plot (Bitcoin price in USD). The dataset begins at the latter half of 2014. The price
peaks at the beginning of 2017 in the same way as CNY, cf. Figure 3. Transaction volume was
relatively constant before June 2016, whereas the volume of BTCCNY transactions in Figure 3 increased
dramatically after the beginning of 2016.
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Figure 5. Distribution of high-frequency returns computed from closing prices on a minute scale and a
half-an-hour scale for Bitcoin prices in CNY (black) and USD (red). A non-Gaussian shape is observed
in all cases.

5. Preprocessing of Data

5.1. Input

We used raw OHLC time series as input. Each input sequence had a length j = 32. Since OHLC
time series are assumed non-stationary, we first extracted a sequence from the dataset and then applied
max-min normalization (Equation (5)) to it. Here, xti means the ith OHLC data in the tth time point’s
input sequence, and the normalization reads

x̂ti =
xti − min(xt)

max(xt)− min(xt)
, (5)

where the operations of taking the minimum and maximum are applied to the components of xti for
all i = 1, . . . , 4 in the range of [t − 31, . . . , t].

5.2. Target

The target is represented as one-hot vectors in which the true class was set to one and the others
were set to zero. Our model was trained to minimize the cross-entropy loss function.

Let us denote by mt the average of prices over a moving window sized T =30 min preceding time
t. Then, the target labeling follows Equation (6),

yt =

⎧⎪⎪⎨⎪⎪⎩
−1, if mt > mt+T + ε

1, if mt < mt+T − ε

0, otherwise

(6)

Here, ε is the threshold parameter to control the class balance (we set it to 1.55 for BTCCNY and
0.24 for BTCUSD to adjust the class balance over the entire dataset). The distribution of the labels in
the training and testing datasets is shown in Figure 6.
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Figure 6. Comparative histogram of training and testing data points (BTCCNY in the OkCoin market).
It shows that there was a crucial class imbalance in the testing data, whereas the data points in the
training data were relatively balanced. This imbalance is also implied in Figure 3.

6. Experiment

6.1. Settings

The rectified linear unit (ReLU) was used as the activation function in all layers (without the
output layer,) which leverages sparsity and improves learning stabilization, even in deep architectures
(Glorot et al. 2011). We used as the optimizer the method of Adam (Kingma and Ba 2014). The learning
rate was set to 10−3, and we used the same hyperparameter values as the reference paper suggested.

The dataset (BTCCNY) was separated into the training, validation, and testing segments, as follows.
For the baseline models, the training set consisted of 920,484 min, validation of 120,000 min, and testing
of 120,000 min. For the present method, RSM, the training period was shortened to 910,352 min, whereas
the validation and testing sets were both 120,000 min long. Multiple evaluations were performed for
each method and evaluated on the validation dataset using early stopping. The coefficient of variation
of the validation results between various runs was at the level of 0.1%, meaning the first two significant
digits were stable in the validation phase. The selected model was then benchmarked on the testing set
using standard metrics for all tables reported in the following subsections.

6.2. Trend Prediction

We have used multi-layer perceptron (MLP) and an LSTM network as baselines (see Appendix A
for more details about LSTM). Both MLP and the LSTM network had two layers, and each layer had
32 hidden units. We computed the probability distribution and selected the class with the maximum
probability. Metric scores of accuracy, recall, precision, and the F1 measure are given in Table 1 for
BTCCNY dataset and in Table 2 for BTCUSD data set.

Table 1. Model evaluation scores on accuracy, recall, precision, and F1 measure. Bitcoin price in
Chinese yuan (BTCCNY) from the OkCoin market is used as the dataset. We use the last 120k data
points for the evaluation, which were not used in training and validation. RSM, random sampling
method. The highest score among the methods is printed in bold in each column.

Accuracy Recall Precision F1 Score

MLP 0.4766 0.4570 0.4822 0.4511
LSTM 0.4688 0.4877 0.5581 0.4657

RSM (ours) 0.5353 0.5182 0.5458 0.5092
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Table 2. Model evaluation scores on accuracy, recall, precision, and F1 measure. Bitcoin price in U.S.
dollar (BTCUSD) from the OkCoin market was used as the dataset. We used the last 120k data points
for the evaluation, which were not used in training and validation.

Accuracy Recall Precision F1 Score

MLP 0.5559 0.4945 0.4978 0.4786
LSTM 0.5759 0.5464 0.5717 0.5034

RSM (ours) 0.6264 0.5538 0.5488 0.5367

It can be seen that the three-valued classification F1 measure increased with noise reduction and
was the highest for the present model. Note that the LSTM network obtained the highest precision
score because it was biased to output static. It follows that the numbers of the true positives for up
and down decreased, and consequently the recall and F1 scores worsened. The reference levels for
uniform class distribution in a purely-random process would be 0.333̄, which were clearly exceeded by
the present results by all methods. Confusion matrices for the LSTM methods and the present RSM
method for both currencies, CNY and USD, are given in Figures 7 and 8.

Figure 7. Confusion matrices (LSTM). The x-axis is the prediction, and the y-axis is the true label.
Matrices at the top are unnormalized, and the ones at the bottom are normalized. Both unnormalized
and normalized matrices are given because there was a crucial class imbalance (Figure 6). As compared
to the matrices of Figure 8, the ratio of static prediction became higher.
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Figure 8. Confusion matrices (RSM). Refer to Figure 7 for the axis labels. As compared to the confusion
matrices of an LSTM network, it can be seen that our model was less biased to the static class.

6.3. Profitability

We examine the profitability of baselines and our model, based on the prediction we obtained
from the above experiment: up, down, or static for the simple moving average (the result is shown in
Table 3). We define a simple trading strategy: buy Bitcoin (all funds) for prediction up; sell Bitcoin (all
funds to CNY or USD) for down prediction; and no change in position (either BTC or CNY, based on
the current situation) if the prediction is static. Using the present dataset sampled by minutes and
the predicted classes for half-an-hour averages, we evaluated the prediction performance using a
half-an-hour sampling step. The length of the testing dataset was 120k-min steps. In this setting,
we used the log return defined in Equation (7) where Pt is the closing price at time t and k = 30.

Rt = log
(

Pt

Pt−k

)
(7)

Table 3. The profitability factor of BTCCNY and BTCUSD in the OkCoin market. BTCCNY and
BTCUSD prices showed two bubble bursts (Figures 3 and 4). The values are exponentials of the log
return accumulated from trades. Market reference values were 1.5643 for BTCCNY and 1.4122 for
BTCUSD (a value of 1 represents 100% of the initial investment). Refer to the text for details.

CNY USD

MLP 1.5787 1.1055
LSTM 1.2124 1.3157

RSM (ours) 1.4761 1.3346

Dynamic trading results measured on a half-an-hour trading scale are given in Figure 9. The green
curve (our method) should be compared with the red curve (buy-and-hold strategy). While all
strategies remained profitable in the long run, none of them outperformed the market, except for very
rare intermittent periods.
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Figure 9. Visualization for profitability of BTCCNY (left) and BTCUSD (right) at each time step.
Cumulation on each graph denotes the exponential of the cumulative log return value at that time step.
Refer to Figures 3 and 4 for price.

It remains to be established whether a more elaborate trading scheme based on the present
classification method would be able to outperform the market. An example could be using n-grams of
past prediction labels, evaluating their correctness, and conditioning the next trading move based on
the results. We remark here that the present success in predicting the market trend already rules out
the applicability of the strong form of the efficient market hypothesis; in addition, a profitable trading
strategy would rule out also its weaker form, which forbids the existence of such algorithms. Practical
differences may arise for instance from the transaction fees or because of the time required to record
the transactions in the blockchain (about 10 min for Bitcoin).

6.4. Alternative Sampling Schemes

We studied how changing the sampling scheme affects the performance (Table 4). We evaluated
our model using the original and the alternative sampling methods. If the sampling scheme does not
affect the performance, this may imply that the market dynamics does not change between the two
sampling selections. To test this hypothesis, we compared sample sequences from the very first part of
the dataset to classify the input sequences around the very end of the dataset, which is the essence of
the alternative sampling method.

Table 4. Model evaluation scores on BTCCNY. We deployed 2 different sampling schemes. Refer to the
text for details.

Accuracy Recall Precision F1 Score

first week 0.4031 0.4860 0.6076 0.4152
global 0.5364 0.5238 0.5503 0.5124

The alternative sampling thus took all samples from the first week. Interestingly, the performance
of BTCUSD did not change much, whereas the performance of BTCCNY degraded dramatically.
BTCCNY price at the end of 2013 went up sharply and heavily fluctuated during a few months.
This degradation might be caused by this strong fluctuation, which is not observed in BTCUSD time
series. The global sampling scheme used the option that all samples are taken from the whole past.

6.5. Universal Patterns

For the sake of completeness, we studied the degree of the existence of universal patterns
(see (Sirignano and Cont 2018) for the formulation) empirically. We deployed the pre-trained model
with fixed settings and evaluated it on the different dataset. If there were any relation among
distributions of an asset on which a model was trained and another asset on which the model was
tested, we could deploy the same model among different assets. The work in (Sirignano and Cont 2018)
studied this type of universality extensively. Here, we used Lite Coin (LTC) in the same market as
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a test dataset. We used RSM, which was trained on BTCUSD (we used the same number of train
data points as the experiment above) to test it on the last 120k data points of LTCCNY and LCTUSD,
which were not observed in the training data. The results are shown in Tables 5 and 6. Both the LSTM
network and our model worked reasonably, and our model performed better for most information
metric scores, except the precision score, for which the reason is the same as in the above section.

Table 5. Universal patterns (LTCCNY). Model evaluation scores use the same metric as in Table 1.
We evaluated the same baselines and our model on a different dataset from the dataset on which they
were trained. Lite Coin Chinese yuan (LTCCNY) in the OkCoin market was used as the evaluation
dataset. We used the parameters optimized on BTCUSD.

Accuracy Recall Precision F1 Score

MLP 0.4992 0.5004 0.5176 0.5005
LSTM 0.5475 0.5452 0.5668 0.5492

RSM (ours) 0.5746 0.5695 0.5762 0.5713

Table 6. Universal patterns (LTCUSD). Model evaluation scores use the same metric as in Table 1.
We evaluated the same baselines and our model on a different dataset from the dataset on which they
were trained. Lite Coin US dollar (LTCUSD) in the OkCoin market was used as the evaluation dataset.
We used the parameters optimized on BTCUSD.

Accuracy Recall Precision F1 Score

MLP 0.4917 0.4927 0.5052 0.4905
LSTM 0.5242 0.5332 0.5752 0.5291

RSM (ours) 0.5526 0.5504 0.5637 0.5499

7. Conclusions

We proposed a new trend prediction classification learning method and showed that it performed
well in the domain where taking the non-stationarity assumption was quite fair. We conducted
experiments with very small scaled models to distinguish the effect of our method and confirmed its
superiority in comparison with the MLP and LSTM baselines. The present method can be applied to
other financial time series and is not confined to cryptocurrency markets.
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Appendix A. Long Short-Term Memory

Long short-term memory (LSTM) (Gers et al. 2000; Hochreiter and Schmidhuber 1997) is a unit
for recurrent neural networks (Figure A1). LSTM deploys the gating mechanism, which is designed to
solve input (output) weight conflict. It enables LSTM to capture long time dependencies and encode
relatively long sequences ((Greff et al. 2017) conducted experiments on the performance of the varieties
of LSTM models extensively). Because of this advantageous property, LSTM has been used in many
research works (Andrychowicz et al. 2016; Bahdanau et al. 2014; Luong et al. 2015; Sutskever et al. 2014;
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Ravi and Larochelle 2017; Wu et al. 2016) as a core technique. Equations (A1)–(A6) are the formulation
(we refer to (Greff et al. 2017)),

zt = g
(

Wzxt + Rzyt−1 + bz

)
(A1)

it = σ
(

Wix
t + Riy

t−1 + bi

)
(A2)

ft = σ
(

W f xt + R f yt−1 + b f

)
(A3)

ct = zt � it + ct−1 � ft (A4)

ot = σ
(

Woxt + Royt−1 + bo

)
(A5)

yt = h
(
ct)� ot (A6)

where Wz, Wi, W f , and Wo are weight parameters for input, Rz, Ri, R f , and Ro are weight parameters
for recurrent input, and bz, bi, b f , and bo are biases, respectively. xt and yt−1 are input and recurrent
input (note that yt−1 has a gap in time because it is a recurrent input). g, σ, and h are non-linear
functions (usually, the hyperbolic tangent function is selected as g and h and the logistic sigmoid
function as σ). Capital letters in bold denote matrices, whereas lower case in bold is used for vectors.
� stands for element-wise multiplication.

Figure A1. Abstract visualization of LSTM. A set of components on the left describes their roles in a
unit on the right.

In Equation (A1), LSTM selectively extracts information necessary to output desired values, and
the information extracted passes the input gate where LSTM determines how much information should
be loaded into its memory (memory at time step t is represented as ct) in Equation (A2). If the gate
outputs one, then all the extracted information flows into its memory, and if it outputs zero, none of
the extracted information is read in its memory. The forget and output gates work in the same way to
adjust information flow in memory-to-memory and memory-to-output propagation segments.
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Abstract: The majority of electronic markets worldwide employ limit order books, and the recently
emerging exchanges for cryptocurrencies pose no exception. With this work, we empirically analyze
whether commonly observed empirical properties from established limit order exchanges transfer to the
cryptocurrency domain. Based on the literature, we establish a structured methodological framework to
conduct analyses in a systematic and comprehensive way. We then present results from a unique and
extensive limit order data set acquired from major cryptocurrency exchanges for the currency pair Bitcoin
to US Dollar. We recover many observations from mature markets, such as a symmetry between the
average ask and the average bid side of the order book, autocorrelation in returns on the smallest time
scales only, volatility clustering and the timing of large trades. We also observe some idiosyncrasies: The
distributions of trade size and limit order prices deviate from commonly observed patterns. Also, we
find limit order books to be relatively shallow and liquidity costs to be relatively high when compared to
established markets.

Keywords: limit order book; cryptocurrency; stylized fact; high-frequency finance; liquidity costs;
transaction costs

1. Introduction

With this paper, we aim to empirically characterize limit order books (LOBs) from several Bitcoin
exchanges, and to examinine stylized facts typically observed at a large range of traditional markets.
Cryptocurrency markets are of academic interest for several reasons: Leaving technological advances
aside, cryptocurrency markets represent a unique opportunity to study properties of an emerging market
for a largely unregulated asset, which does not (yet) “fulfill the main properties of a standard currency”
(Bariviera et al. 2017). It is, therefore, of interest to contrast the extensive body of results on traditional
limit order exchanges with analyses on cryptocurrency exchanges.

Despite the unprecedented ease of access to high-frequency and rich market data from cryptocurrency
exchanges using their open interfaces, we found only a single study employing LOB data: Donier and
Bouchaud (2015) focus on the role of liquidity in market crashes. Donier and Bonart (2015) use trade
data to reconstruct “metaorders” and investigate the price impact of these orders. Other works focus on
stylized facts of price time series (Bariviera et al. 2017; Brandvold et al. 2015; Chan et al. 2017; Chu et al.
2017; Easwaran et al. 2015; Zargar and Kumar 2019; Zhang et al. 2018) or the liquidity at the best bid and
best ask—see Dimpfl (2017) and Dyhrberg et al. (2018).

Clearly, there is a vast body of literature on LOBs in traditional markets. For a comprehensive survey
of literature on LOBs for traditional assets we refer to Gould et al. (2013). We review further works when
we present our methodology and results. In one of the first empirical works on LOBs, Biais et al. (1995)
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report a symmetry in the average shape of the LOB from the Paris Bourse, and find that incoming orders
are most likely placed close to the current price. In contrast, depth is largest further away from the current
price. When analyzing conditional probabilities of certain events, they find that market participants place
orders within the bid-ask spread when volume at the quotes is high or the bid-ask spread wide. Both
Bouchaud et al. (2002) and Zovko and Farmer (2002) study the arrival rates of limit orders at the Paris
Bourse and the London Stock exchange as a function of the price difference to the current price, and find
that it follows a power law. Focusing on levels deeper in the LOB, Gomber et al. (2015) study liquidity
costs for large volumes and their reaction after liquidity shocks in the form of large trades. Gopikrishnan
et al. (2000) focus on statistics of trades from LOBs for many major US stocks, and report power laws
in the distribution of trade size. Other works assess the price impact of limit orders, i.e., the change in
price following a limit order. Bouchaud (2009) provides an overview of the concept. Cont et al. (2014)
empirically demonstrate that short-term returns are mainly driven by order flow imbalances.

With this paper, we contribute to close the research gap in the cryptocurrency domain and make the
following contributions:

1. Structured framework for analyzing limit order book data: First, following the literature, we establish
a structured framework for the extraction of empirical properties from LOB data and trade flows. The
substantial body of literature addressing LOB data from established exchanges serves as a baseline
for our work as well as other studies addressing cryptocurrencies.

2. Recovery of common qualitative facts: Second, using a large-scale limit order data set, we can confirm
that many empirical observations from more mature markets also transfer to major exchanges for the
BTC/USD currency pair, most notably:

• Symmetric average limit order book: We recover the commonly observed symmetry between
the bid and the ask side of the time-averaged LOB.

• Dispersion of liquidity: Liquidity is dispersed over many levels of the order book, and small
values of depth at the best bid and ask occur with highest probability.

• No autocorrelation in lower-frequency returns: We do not observe significant autocorrelation
in the series of returns on time scales from minutes to days.

• Negative autocorrelation in tick-level returns (bid-ask bounce): The series of trade-to-trade
price changes exhibits negative autocorrelation in the first lags.

• Volatility clustering: The autocorrelation of volatility measures exhibits significant positive
values even after multiple days.

• Non-normality of returns: The distribution of returns on different time scales shows heavy tails
and deviates strongly from the normal distribution.

• Timing of large trades: Trades of large size seem to be executed when liquidity costs are
relatively low.

• Power tails in trade size distribution: For trades larger than the minimum order size, we recover
a power tail in the distribution of trade size.

3. Idiosyncratic observations: Third, we can identify the following key idiosyncrasies:

• Relatively shallow limit order book: Despite narrow bid-ask spreads, liquidity costs increase
rapidly once higher volumes are traded. This finding is consistent with Bitcoin traders being
retail traders rather than institutional investors.

• Weak intraday patterns: Depending on the exchange, we observe either absent or weak intraday
patterns in liquidity costs and weak patterns in trade frequency and size. Contrary to traditional
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markets, there is continuous trading at cryptocurrency exchanges, and our results might indicate
a superposition of automated trading and worldwide market participation.

• Frequent minor trades: Many trades are of very small size, i.e., close to the minimum size
increment. Unlike most traditional assets, Bitcoin can be traded in increments of 10−8 BTC with
typical minimum order sizes in the order of 10−3 BTC. These two limits and the predominance of
retail trading seems to explain the very broad empirical distribution of trade size with a minimum
at the minimum size increment.

• Broad distribution of limit order prices: A large part of limit order volume and changes thereof
is located very far away from the current price. Possible reasons are the unlimited lifetime of
orders at cryptocurrency exchanges, the speculative placement of orders far away from the
current price and the absence of regulatory limits such as price caps for submitted orders.

The remainder of this paper is structured as follows: In Section 2, we provide a brief overview
of cryptocurrency exchange market structure. Our data set is described in Section 3. We cover our
methodology in Section 4 and embed analyses from the literature in a comprehensive framework, which
then also guides the presentation of our results in Section 5. We conclude in Section 6.

2. Cryptocurrency Exchange Market Structure

There are several ways to acquire cryptocurrencies: First, units of a cryptocurrency can be earned
through the process of mining, e.g., by contributing computing power to append blocks to the block chain
(compare Böhme et al. (2015) for an introductory review). Second, cryptocurrencies can be used as form
of payment, and be obtained by offering goods or services. Third, cryptocurrencies can be exchanged
for traditional currencies and other cryptocurrencies at several exchange platforms, which are operated
by private companies. Although the Bitcoin network itself is largely decentralized and the technical
setup for an exchange is relatively straightforward, there are drivers that force exchanges to a small
number of countries. Regulatory requirements and the need for a secure infrastructure limit the number of
exchanges (Böhme et al. 2015). In addition, the origin of an investor determines a preference for certain
base currencies, which in turn constitutes a preference for the exchange’s place of business.

Cryptocurrency exchanges come in several varieties: brokers offering exchange at fixed prices, direct
peer-to-peer exchange venues and trading platforms similar to conventional currency or stock exchanges. In
this paper, we focus on currency exchanges operating LOBs, which are also used by most traditional
markets worldwide (Gould et al. 2013). In this respect, cryptocurrency limit order exchanges replicate
common features from their traditional counterparts: Traders express their intention by submitting orders
with a price limit and a fixed amount, which are then matched with other orders to yield transactions or
are transferred to the LOB. One prominent difference to conventional exchanges is that cryptocurrency
exchanges operate continuously and thus do not hold opening or closing auctions often found at (hybrid)
stock exchanges.

In Table 1, we exemplarily compare several cryptocurrency exchanges along several dimensions for
the currency pair Bitcoin (BTC) against US Dollar (USD). We list the availability of several special order
types: Stop orders (also called stop-loss or take-profit orders) are executed once previously set conditions
on the current price are met. Fill-or-kill orders are to be executed either immediately to the full requested
quantity or canceled. Immediate-or-cancel orders are executed immediately and to the largest extent possible,
and not transferred to the LOB. Hidden orders (also called iceberg orders) are not shown with their full
quantity in the publicly visible order book and serve to hide liquidity. The table also lists the range of fees
to be paid at the exchanges. Most exchanges charge fees following a fee schedule depending on traded
volume, and differ between taker and maker fees, which we list separately: Maker fees are paid for trades
following the provision of liquidity (e.g., after posting a new limit order), and taker fees are charged on
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trades taking liquidity out of the market by submitting some immediately executed order. We also list
fees payable when withdrawing or depositing traditional fiat currency. The listed resolution parameters
specify the smallest price increment (tick size) and the smallest order size (minimum order size).

Table 1. Comparison of cryptocurrency limit order exchanges along the dimensions order type,

fee structure and resolution parameters. FOK: fill-or-kill orders, IOC: immediate-or-cancel orders,
hidden: publicly invisible limit orders, taker fees: range of fees payable for taking liquidity from the
market, maker fees: range of fees payable when submitting orders subsequently taken by other traders.
All information is retrieved on 1 November 2018.
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BitFinex 1 � � � � � 20–5.5 10–0 10 bp/20 USD 10 bp/20 USD 10−1 2 × 10−3

BitStamp 2 � � 25–10 25–10 5 bp/7.5 USD 9 bp/15 USD 10−2 ≈10−3

Bittrex 3 � 25 25 NA NA 10−3 10−4

Coinbase/GDAX 4 � � � � 30–10 0 10 USD 25 USD 10−2 10−3

Gemini 5 � � � 100–10 100–0 none none 10−2 10−5

Kraken 6 � � 26–10 16–0 5 USD 5 USD 10−1 2 × 10−3

Poloniex 7 � 20–10 10–0 none 10 bp/50 USD 10−8 10−4

1 http://www.bitfinex.com/features; http://www.bitfinex.com/fees; http://api.bitfinex.com/v1/symbols_de
tails; 2 http://www.bitstamp.net/api/v2/trading-pairs-info/; http://www.bitstamp.net/faq/; http://www.bits
tamp.net/fee_schedule/; 3 http://support.bittrex.com/hc/en-us/articles/115000199651-What-fees-does-Bittrex-
charge-; http://support.bittrex.com/hc/en-us/articles/202227464-What-is-Time-in-Force-; http://support.bitt
rex.com/hc/en-us/articles/115003004171-What-are-my-trade-limits-; 4 http://support.pro.coinbase.com/cus
tomer/en/portal/articles/2945310-fees; http://support.pro.coinbase.com/customer/en/portal/articles/29453
13-overview-of-order-types-and-settings-stop-limit-market-; http://www.coinbase.com/legal/trading_rules; 5

http://gemini.com/trading-fee-schedule/; http://gemini.com/transfer-fee-schedule/; http://gemini.com/m
arketplace/#order-types; http://docs.gemini.com/rest-api/#symbols-and-minimums; 6 http://www.kraken.com
/en-us/help/fees; http://support.kraken.com/hc/en-us/articles/360001389366-Price-and-volume-decimal-p
recision; http://support.kraken.com/hc/en-us/articles/360000423043-Fiat-currency-withdrawal-fees; http://
support.kraken.com/hc/en-us/articles/360000279946-Fiat-currency-deposit-fees; 7 http://poloniex.com/fees/;
http://thecryptobot.com/2017/11/27/markets-minimum-trade-sizes-poloniex-bittrex-kraken/; http://supp
ort.usdc.circle.com/hc/en-us/articles/360015471331.

3. Data

We select data from several different exchanges, and focus on the BTC/USD market, which is the
leading cryptocurrency pair by traded volume and order book depth. For this currency pairs, we determine
the largest exchanges by volume and collect data from BitFinex, Bitstamp and Coinbase1.

We retrieve data from selected exchanges and for selected currency pairs by directly connecting to the
exchange’s application programming interface (API). We collect both transactions (trades) and limit order
data. For trades, we record the timestamp of the transaction, its volume, price and a buy/sell flag. The
collected limit order data contains the limit order book depth at all price steps. Our data set comprises
data from 2 December 2017 to 12 October 2018, i.e., close to one calendar year and covers the time of peak
interest in cryptocurrencies with the highest ever achieved prices and high volatility, as well as a time of
relatively stable prices. In total, we have obtained over 140 GB of raw data.

To prepare limit order data for further analyses, we first reconstruct the state of the LOB at a minutely
sampling frequency. We restore LOBs to the largest depth available during the time of retrieval via the

1 Formerly called GDAX.
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exchange’s API. For example, we reconstruct roughly 450 thousand states of the LOB for our evaluation
period and the BitFinex BTC/USD market. Finally, we aggregate order books to extract relevant measures.

4. Methodology

We continue by describing the methodology for our study. Section 4.1 introduces the basic notation
used throughout the remainder of this paper. Then, Sections 4.2 and 4.3 detail our approach for extracting
the empirical properties of cryptocurrency data.

4.1. Basic Notation

Our notation builds upon the mathematical description of LOBs introduced by Gould et al. (2013).
The atomic building block of a limit order exchange is the limit order denoted by the vector
x = (px, ωx, tx). In case of a positive volume ωx > 0 (negative volume ωx < 0), the order is a sell-order
(buy-order), expressing the intention to sell (buy) no more than |ωx| of the traded asset at a price of at
least px (no more than px). tx denotes the time of submission of the order. Limit orders usually need to
adhere to some discretization of price (tick size) and quantity (lot size) imposed by the exchange. A special
case of the limit order is the market order. It constitutes the commitment to sell at any price (therefore,
px = −∞) or buy at any price (hence, px = ∞). Upon order submission, the trade matching algorithm
of the exchange checks whether the newly submitted order can be matched with active limit orders, i.e.,
if the limit price px to sell (buy) is below the limit price of any buy-order (above the limit price of any
sell-order). A matched order leads to a transaction (trade) denoted by M = (pM, ωM, tM). Herein, |ωM|
is the amount traded, and pM is the price of the transaction. The sign of ωM is determined by the order
initiating the trade. A partial execution of orders may lead to a trade covering only a fraction of the initial
order, leaving the remainder in the LOB. An order enters the order book if it has not been fully executed
and its execution flags do not specify a differing behavior. Orders in the LOB are called active and remain
active until they are canceled, matched or expire. We denote the set of orders in the LOB at time t as L(t).
The bid side B(t) at time t contains all buy-orders, i.e., B(t) = {x ∈ L(t) | ωx < 0}. Similarly, the set of
sell orders (ask side) is defined as A(t) = {x ∈ L(t) | ωx > 0}. The evolution of an order book state L(t1)

to another order book state L(t2), t2 > t1 is driven by the flow of incoming orders {xt | t1 < t ≤ t2}.
Hence, we can have two different approaches to analyze the evolution of LOBs: First, we can either

look at the series of snapshots of the (static) state of the LOB, sampled at a Δt-second timescale. Second,
alternatively, analyses can cover the (dynamic) flow of limit orders {xi} leading to changes of the order
book or the resulting flow of trades {Mi}. Both perspectives are used in the literature, and for the sake of
a clear structure of the remainder of this paper, we use this differentiation and practical considerations to
guide our methodology and the presentation of results. Consequently, we first describe the statistics of
static LOB states L(t) in Section 4.2. In the subsequent Section 4.3, we turn to the analysis of order flows
{xi} and the resulting flow of transactions {Mi}.

4.2. Measures of the Static Limit Order Book

We first focus on derived measures of the static LOB at some time t, i.e., L(t). In other words, we
consider some function f which we apply to the static state of the LOB, i.e., f (L(t)). Most of the quantities
introduced in this section are visualized in Figure 1. One of the most important properties of L(t) is its
depth profile, which is the total available limit order volume at a given price p and is given by

nb(p, t) = ∑
{x∈B(t) | px=p}

ωx, (1)
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for the bid side, and similarly for the ask side. We write the i-th best price of the ask side (bid side) as
ai(t), i ∈ {1, . . . , |A(t)|} (bi(t), i ∈ {1, . . . , |B(t)|}). The total order volume at level i is given by qa

i (t) =
na(ai(t), t) and qb

i (t) = nb(bi(t), t), respectively. The first ask-side level a1(t) = minx∈A(t) px is the best ask
price of the order book, and b1(t) = maxx∈B(t) px is the best bid price. The average of best ask and best bid
price is the mid price given by m(t) = (a1(t) + b1(t)) /2. The difference between the best ask and the best
bid price is the bid-ask spread, i.e., s(t) = a1(t)− b1(t). Similarly, we can define the volume-weighted average
price (VWAP) function for the imaginary immediate execution of a market order of size ω, assuming no
other orders interfere at the same instant:

va(ω, t) =
1
ω ∑

i
ai(t) · min

(
max

(
ω −

i

∑
k=1

qa
k(t), 0

)
, qa

i (t)

)
. (2)

Herein, the index i iterates over price levels in a price-ordered fashion, and we assume that the order
book is deep enough to provide the requested volume ω. The definition for the bid-side VWAP function
vb(ω, t) is analogous.

To increase the comparability of different order books at different times, it is common practice to
consider prices relative to the current mid price. We define the transformation of a price p(t) to the
relative price scale as p̃(t) = (p(t) − m(t))/m(t). In this scale, the relative bid-ask spread is given by
s̃(t) = ã(t)− b̃(t). The bid-ask spread often serves as a measure of market liquidity, as it quantifies the
liquidity premium one needs to pay for immediately executing a trade by submitting a market order.
However, it is only an accurate estimate for the liquidity premium for order volumes smaller than the
order book depth at the best bid/best ask price. To correctly valuate the liquidity cost for a given volume
ω, we can similarly define the two-sided VWAP spread as ṽs(ω, t) = ṽa(ω, t)− ṽb(ω, t).2

2 Two-sided in this case refers to both the bid and the ask side of the order book, and is used for comparability to the (two-sided)
bid-ask spread. Please note that this is equal to the exchange liquidity measure (XLM) of Gomber et al. (2015).
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Figure 1. Schematic visualization of a limit order book. The figure visualizes the order book state L(t)
for the BitFinex BTC/USD market as of 2 December 2017 22:01:26 (UTC).

We split further analyses on measures of the static LOB into three canonical subgroups: First, we can
perform cross-sectional descriptive statistics in the sense that we ignore the time series nature of the
data. Second, we can take the time series nature of the derived measures into account and study their
evolution over time. Third, we can evaluate descriptive statistics of derived measures subject to some
condition.3 Table 2 provides an overview of the analyses which we describe in the following, and includes
the commonly observed fact under investigation as well as relevant references from works focusing on
traditional limit order markets.

3 To keep the three groups canonical, the third group is limited to conditions other than the own past of the data, i.e., the time
series, which was already addressed in the second group.
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Table 2. Overview of commonly found facts and supporting analyses on static limit order books. Type
refers to the class of analysis and is one of U (unconditional statistic), TS (time series statistic) and C
(conditional statistic).

Common Fact Measure Considered for Analysis Key References Type

Symmetric mean
cumulative depth profiles

Time-averaged depth profile (ã, b̃, qa, qb)i (Equations (3)
and (4)) and time-averaged relative price differences
between adjacent steps of the LOB (Δã, Δb̃)i (Equation (5))

Biais et al. (1995),
Cao et al. (2009) and
Potters and Bouchaud (2003)

U

Gamma-distributed depth
at best bid and best ask

Unconditional empirical distribution of the total volume
(depth) at the best bid (or ask), i.e., {qa

0(t)}t and {(qb
0(t)}t

Bouchaud et al. (2002) U

Hump-shaped mean
depth profile

Empirical distribution of the time-averaged volume from
the depth profile (qa

i (t) and qb
i (t)) as a function of the

(relative) price difference to the ask or bid price

Bouchaud et al. (2002),
Potters and Bouchaud (2003)
and Gu et al. (2008)

U

Increase in liquidity costs
beyond the best bid/ask

Unconditional distribution of the relative bid-ask spread
{s̃(t)}t and the relative VWAP spread {ṽs(ω, t)}t

Gomber et al. (2015) U

Heavy tails of mid-price
returns

Unconditional distribution of mid-price returns {r(t, Δt)}t
analyzed with kurtosis estimates and Hill estimator
(Equations (10) and (11))

Hill (1975), Balanda and
MacGillivray (1990) and
Lux and Marchesi (2000)

TS

No autocorrelation of
returns

Autocorrelation of logarithmic mid-price returns C(n)
(Equation (8))

Lux and Marchesi (2000) and
Cont (2001) TS

Volatility clustering
Autocorrelation of absolute or squared logarithmic
mid-price returns, i.e., the functions C1(n) and C2(n),
respectively (Equation (9))

Lux and Marchesi (2000) and
Cont (2001) TS

Non-constant liquidity
costs

Average daily liquidity costs (i.e., the bid-ask spread s̃(t)
and the VWAP spread ṽs(ω, t)) Dyhrberg et al. (2018) TS

U-shaped intraday
patterns of liquidity costs

Average liquidity costs (i.e., the bid-ask spread s̃(t) and the
VWAP spread ṽs(ω, t)) conditional on the hour of the day

McInish and Wood (1992)
and Gomber et al. (2015) C

Liquidity resiliency and
timed large trades

Distribution of average liquidity costs (i.e., the bid-ask
spread s̃(t) and the VWAP spread ṽs(ω, t)) for large trades
conditional on the event time τ of the trade (Equation (12))

Cummings and Frino (2010)
and Gomber et al. (2015) C

4.2.1. Descriptive Statistics of Unconditional Limit Order Book Measures

We can now introduce cross-sectional statistics of measures based on the static LOB L(t). We start
from a set of T LOB states {L(t)}T

t=1 and derive the corresponding set of values of some measure f , i.e.,
{ f (L(t))}T

t=1. In a first set of analyses, we consider distributional characteristics of the values of f . Thereby,
we focus on two important measures for liquidity costs, namely on the relative bid-ask spread ( f = s̃)
and on the two-sided VWAP spread for different order volumes ω ( f = ṽs). The second set of analyses
considers the average depth profile, where we average over all states L(t) of the LOB at different points in
time t. We first define the time-averaged relative ask (bid) price of LOB step i, i.e.,

ãi =
1
T

T

∑
t=1

ãi(t) and b̃i =
1
T

T

∑
t=1

b̃i(t). (3)

Following Biais et al. (1995), we consider the time-averaged cumulated depth up to a step i, i.e.,

qa
i =

1
T

T

∑
t=1

i

∑
j=1

qa
j (t) and qb

i =
1
T

T

∑
t=1

i

∑
j=1

qb
j (t). (4)

The vectors
(

ã, b̃, qa, qb
)

i
represent the time-averaged shape of the cumulated LOB. A different

definition is used by Bouchaud et al. (2002) to discuss the average shape of the LOB: They consider the
time-averaged distribution of non-cumulated volume qa

i (or qb
i ) as a function of the difference in price
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to the current bid or ask. Complementing the analyses of the average shape of the order book, we also
consider time-averaged differences between the relative price at level i and level i + 1, i.e.,

Δãi =
1
T

T

∑
t=1

ãi+1(t)− ãi(t) and Δb̃i =
1
T

T

∑
t=1

b̃i+1(t)− b̃i(t). (5)

4.2.2. Time Series Properties of Limit Order Book Measures

Instead of considering cross-sectional properties of the LOB state L(t), we can consider the time series
of values of some measure f , i.e., ( f (L(t)))T

t=1. Our analyses will focus on measures of liquidity costs
(relative bid-ask spread s̃ and the two-sided VWAP spread f = ṽs) and the mid price m. Also, we consider
logarithmic mid-price returns on the time scale Δt given by

rmid(t, Δt) = ln (m(t + Δt))− ln (m(t)) . (6)

We calculate the log-realized volatility rv(t1, t2, Δt) between times t1 and t2 as

rv(t1, t2, Δt) =

√√√√ t2

∑
t=t1

(
rmid(t, Δt)

)2. (7)

Following Cont (2001), we also compute the autocorrelation function of logarithmic mid-price returns
and the k-th power of absolute logarithmic mid-price returns, i.e.,

Cmid(n) = corr
(

rmid(t, Δt), rmid(t + nΔt, Δt)
)

, and (8)

Cmid
k (n) = corr

(
|rmid(t, Δt)|k, |rmid(t + nΔt, Δt)|k

)
. (9)

Herein, n denotes the lag, and corr is the sample correlation function.
Tails of the distribution of mid-price returns are analyzed in terms of two kurtosis measures and a tail

index estimator. As kurtosis metrics we consider the empirical fourth standardized moment (henceforth: m4,
compare Bacon (2008)) and a second metric based on Balanda and MacGillivray (1990), using quantiles
(henceforth: γp,q). The computation of γp,q is as follows:

γp,q =
F−1 (1 − p)− F−1 (p)
F−1 (1 − q)− F−1 (q)

, with 0 < p < q < 0.5. (10)

Please note that F−1 denotes the quantile function and p and q are p-quantiles. If the underlying
distribution F is symmetric, then we can use γp=0.025,q=0.125 to measure heavy tails (Büning 1991).
To measure deviation from normality we compute the excess version of both metrics, i.e., γe

p=0.025,q=0.125 =

γp=0.025,q=0.125 − 1.706 and me
4 = m4 − 3. A time series is classified as platykurtic if the excess metric of

interest is smaller than zero, mesokurtic if the excess metric is equal to zero and leptokurtic if the excess
metric is larger than zero. Thereby, for both metrics larger positive values are associated with heavier tails,
while smaller negative values indicate lighter tails. Financial time series are typically leptokurtic (Cont
2001).

The tail index is a measure of the frequency of extreme returns (Lux and Marchesi 2000) and is
estimated with a Hill estimator (Hill 1975). As a prerequisite to compute the Hill estimator the time series
must be descendingly ordered, i.e., rmid

n ≥ · · · ≥ rmid
n−a ≥ · · · ≥ rmid

1 . Thereby, rmid
n denotes the largest

mid-price return in the time series and rmid
1 the smallest. The number of observations included in the tail
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analysis solely depends on the value for a. In recent decades a large body of literature has focused on
how to determine a.4 Following Lux and Marchesi (2000) and Kelly and Jiang (2014), we set a to a fixed
percentage p of data points, namely 10, 5 and 2.5 percent. Given the ordered time series, we can compute
the Hill estimator with the following equation (Lux and Marchesi 2000):

Hp =
1

1
a

a
∑

l=1

[
ln
(

rmid
n−l+1

)
− ln

(
rmid

n−a
)] . (11)

4.2.3. Statistics of Conditional Limit Order Book Measures

In the third category, we subsume many analyses from the literature which evaluate measures of the
static LOB conditional on some condition C. Following our notation, we evaluate order book measures f
for the subset given by C, i.e., consider the set { f (L(t)) | L(t) ∈ C}. We investigate the intraday dynamics
of liquidity measures to test for commonly observed patterns—see, among others, McInish and Wood
(1992), Biais et al. (1995), Danielsson and Payne (2001), Ranaldo (2004) and Gomber et al. (2015). In this
case, C selects only those order book states from a given hour of the day, and we evaluate mean bid-ask
spreads ( f = s̃) and VWAP spreads ( f = ṽs). Another class of studies covers the concept of market resiliency,
which we define in the sense of Foucault et al. (2005) and Gomber et al. (2015) as the recovery of market
liquidity following liquidity shocks, and which is considered to be one of the main characteristics of liquid
markets (Black 1971; Kyle 1985). We follow several previous studies (compare, for example, Degryse et al.
(2005), Large (2007), Cummings and Frino (2010) and Gomber et al. (2015)) and analyze the evolution of
market liquidity around large trades in a conditional event study: We condition the analysis onto a set
of selected events EC , which is given by the set of trades with exceptionally large volume, and transform
the timestamp t of a LOB state L(t) to the event time scale τ of event e, i.e., calculate τ = t − te. We then
consider the average avg of a measure f over all LOB states that are a time difference τ away from a
selected trade e ∈ EC :

f̄ (τ) = avg ({ f (L(t)) | t − te = τ, e ∈ EC}) . (12)

In the analyses presented in this paper, f̄ evaluates averages of the bid-ask spread and the VWAP
spread around large trades.

4.3. Dynamics of the Limit Order Book: Order and Trade Flows

We now turn to the analysis of the two event streams translating one static state of the LOB L(t1)

to a subsequent state L(t2): the flow of limit orders {xi} leading to changes of the order book and the
resulting flow of trades {Mi}. We use the index i to count limit order or trade events, while index t refers
to the wall-clock time. We directly observe trades with information Mi = (pM, ωM, tM)i, with the traded
amount |ωM|, the execution price pM and its time tM. The sign of ωM is determined by the order initiating
the trade. In contrast, we are unable to observe every single limit order between LOB states at different
times. Nevertheless, we can compute the change in depth profile between order book states sampled at
times t and t + Δt as the absolute change in limit order depth at a given price p, i.e.,

Δnb(p, t) = |nb(p, t + Δt)− nb(p, t)| (13)

4 There are theoretical-based methods and heuristics. For an overview about the different methods see Danielsson et al. (2016).
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for the bid side, and similarly for the ask side. For newly submitted or canceled limit orders that are not
executed, Δnb(p, t) corresponds to the net limit order volume flow between t and t + Δt. The limit order
volume flow close to the current price is underestimated as some orders are executed in between.

As for static LOB measures, we use three canonical subgroups (unconditional, time series and
conditional properties) to structure our analyses. Table 3 provides an analogous overview of analyses with
commonly found facts from other works.

Table 3. Overview of commonly found facts and supporting analyses on trades and limit orders. Type
refers to the class of analysis and is one of U (unconditional statistic), TS (time series statistic) and C
(conditional statistic).

Common Fact Measure Considered for Analysis Key References Type

Number preference for trade
sizes Empirical distribution of trade size ωM Mu et al. (2009) U

Power tail in the distribution
of trade size Empirical distribution of trade size ωM

Gopikrishnan et al. (2000),
Maslov and Mills (2001) and
Mu et al. (2009)

U

Power-law decay of order
frequency with relative price

Time-average of changed limit order volume,
i.e., Δnb(p) and Δna(p) (Equation (14))

similar to Bouchaud et al. (2002)
and Zovko and Farmer (2002) U

Negative autocorrelation of
trade prices (bid-ask bounce)

Autocorrelation of the series of trade price
changes Ctp(n) (Equation (15))

Cont (2001) and
Russell and Engle (2010) TS

Autocorrelation of trade
sizes

Autocorrelation in the series of trade sizes
Csize(n) (Equation (16)) TS

Intraday patterns in trade
frequency and volume

Average trade frequency and average trade
size conditional on the hour of the day

Biais et al. (1995) and
Danielsson and Payne (2001) C

4.3.1. Descriptive Statistics of Unconditional Measures

Several authors study the frequency of limit orders and their size as a function of the price difference
to the current bid or ask (among others, Bouchaud et al. (2002), Potters and Bouchaud (2003) and Gu
et al. (2008)). To analyze the limit order flow as a function of price using available data, we consider the
time-averaged absolute change in limit order depth as a function of price, which is for the bid side given
by

Δnb(p) =
1
T

T

∑
t=1

Δnb(p, t), (14)

and analogously for the ask side (Δna(p)). Another class of works studies the empirical frequency
distribution of transaction sizes, for example Gopikrishnan et al. (2000), Maslov and Mills (2001) and Mu
et al. (2009). We repeat these analyses with the available cryptocurrency data and consider distributional
properties of the series of trade size, i.e., {ωMi}.

4.3.2. Time Series Properties

To evaluate the evolution of trade properties, we sample trade data onto lower timescales
by considering some trade statistics fT of all transactions between time t1 and t2, i.e., the set
{Mi| t1 ≤ tMi < t2}. We consider the average trade size, the total trade volume as well as trade counts (i.e.,
the trade frequency).
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Time series of changes in trade price are known to exhibit autocorrelation for the first few lags
(compare, for example, Cont (2001) and Russell and Engle (2010)). We therefore define the series of changes
between trade prices, i.e., Δpi = pMi+1 − pMi , and compute its autocorrelation as

Ctp(n) = corr (Δpi, Δpi+n) . (15)

Similarly, we analyze the autocorrelation in the series of trade sizes by considering

Csize(n) = corr
(
ωMi , ωMi+n

)
. (16)

4.3.3. Statistics of Conditional Trade Measures

Similar to the analysis of intraday patterns of liquidity costs, we consider average properties of
cryptocurrency transactions conditional on the hour of the day (trade frequency, total traded volume,
average trade size). Biais et al. (1995) and Danielsson and Payne (2001) perform similar analyses.

5. Results

Following the methodology outlined in the previous section, we now present results for the
cryptocurrency exchange BitFinex and the currency pair BTC/USD. We focus our analyses on this exchange
as it has the highest trading volume in the time period of our study. We also evaluate data for the currency
pair BTC/USD for the second and third largest exchange (Coinbase and Bitstamp), and compare the results
to check robustness. Parts of those results are included in the appendix, and we discuss major differences
in the following. Most LOB measures are unlikely to be stationary, and might therefore differ with market
phases. To check robustness in this regard, we divide our data into a subperiod of high volatility (SP1 from
2 December 2017 to 7 May 2018) and a subperiod with relatively stable prices (SP2 from 7 May 2018 to 12
October 2018).5 We first analyze statistics of measures of the static LOB in Section 5.1, which we divide
into three parts to separately discuss unconditional, time series and conditional statistics. In Section 5.2,
we analyze the dynamics of LOBs.

5.1. Analysis of the Static Limit Order Book

5.1.1. Descriptive Statistics of Unconditional Limit Order Book Measures

We first present unconditional descriptive statistics of measures of the static LOB, and begin by
discussing the average shape of the LOB.

Time-averaged depth profile: Figure 2a displays the time-averaged cumulated depth profile of the
LOB, i.e., plots the quantities (ã, b̃, qa, qb)i (Equations (3) and (4)) for the first 25 limit orders of each side,
on a relative price scale. Table 4 presents further descriptive statistics of the prices and volumes of the first
ten steps of the depth profile. We make the following observations:

1. Symmetry between bid and ask side: There is a high degree of symmetry in the average depth profile
of the bid and the ask side: Average prices exhibit very similar absolute values, and depths agree
surprisingly well at corresponding steps i. This symmetry is well-known for limit order stock markets
(see, for example, Biais et al. (1995), Potters and Bouchaud (2003) and Cao et al. (2009)).

2. Dispersion of liquidity: The liquidity provided at the best bid or the best ask price is only a very small
part of overall liquidity, and the incremental liquidity provided by each level deeper in the LOB is

5 Whenever possible, results for subperiods are shown alongside main results. Omitted results are available on request.
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comparably small. Biais et al. (1995) observe this pattern for equity data from the Paris Bourse, and
we find that it is very pronounced in the Bitcoin market: The average level contributes an additional
volume of 2 BTC (corresponding to roughly 20000 USD). These small depths may be driven by the
fact that the cryptocurrency markets are still dominated by retail trading activity, and that there is still
potential for further institutional market making activities—see Chaparro (2017) and Arnold (2018).
Furthermore, we find that the average volume at the best ask/bid is triple the volume contributed
by levels deeper in the book, which contrasts with Biais et al. (1995) who point out that it is slightly
lower.

3. Approximately linear price schedule: In agreement with Biais et al. (1995), we observe that the price
schedule, i.e., the dependence of the price on demanded or offered quantity, can be approximated
very well by linearity and is weakly concave. The concavity seems to be a consequence of an unequal
spacing of average price levels rather than a consequence of increasing average volume at each price
level. To analyze this in detail, Figure 2b displays the average relative spread between adjacent price
levels

(
Δã, Δb̃

)
i

(Equation (5)) as function of the level number i. The bid and the ask side of the LOB
behave very similarly. The largest average difference in price is found directly after the best bid/best
ask and amounts to roughly 1.2 bp, which is larger than the average bid-ask spread (0.97 bp). This
value then declines to lower values and remains constant at roughly 0.7 bp for higher price levels
(i ≥ 15).6 The first 25 price levels in the static LOB are therefore denser further away from the bid-ask
spread. We might interpret this observation as a consequence of the execution of market orders
reducing the limit order volume at the center of the LOB. Orders deeper in the book are less likely to
be executed, leading to more densely spaced price levels on average.

Robustness checks: The observed symmetry between bid and ask side of the LOB and the roughly
linear price schedule holds also for subperiods SP1 and SP2 (compare the light gray lines in Figure 2a) as
well as for the Coinbase and Bitstamp exchanges (compare Figure A1 in the Appendix A). Surprisingly, for
Coinbase, the price schedule is convex, and consequently, the average price spread between LOB levels
increases with i.

6 The question arises whether these results are a consequence of the limited price increment of the exchange. With average mid
prices in the order of 10,000 USD and a price increment of 0.1 USD, we obtain a technical limit for relative price differences of
0.1 bp, which is still one order of magnitude larger than the observed average price differences.
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(a) (b)
Figure 2. Average limit order book and relative spread between adjacent order book depths. (a) Average
limit order depth. We plot the time-averaged spread (relative to the respective mid-price) and time-averaged
cumulated volume for each level of the order book and for the different subperiods (SP1, SP2) of the data.
(b) Time-averaged relative spread difference between adjacent depth steps. The gray lines are fits of
exponential functions to guide the eye.

Distribution of volume at the (best) bid and ask: Figure 3 shows the joint distribution of volume
at the best bid and the best ask (qb

1 and qa
1, respectively). We calculate the common logarithm of the

volume in units of the minimum order size (0.002 BTC, compare Table 1) and calculate the histogram. The
empirical distribution shares the main characteristic properties with the results by Bouchaud et al. (2002)
for the Paris Bourse: First, the empirical distributions agree very well and fit to a Gamma distribution
p(q1) ∝ qγ−1

1 exp (−q1/θ) with a shape parameter γ ≈ 0.28 ≤ 1 and a scale parameter θ ≈ 10.94 BTC.
From the fit to the Gamma distribution follows that the most probable volume at the best bid or best
ask is zero, but the expected value is rather large. Second, the distribution deviates from the Gamma
distribution for specific, equally spaced values: Apparently, there is a number preference for the order
size, which gets apparent for smaller depth values, where it is more likely that only a single limit order
provides the complete depth. Preferred values seem to be 0.1 BTC, 0.5 BTC, and especially 1.0 BTC. Third,
the distributions of the bid and the ask side are very similar (not shown).

Robustness checks: Despite differences in estimated parameters γ and θ, we find the empirical
distribution for subperiods SP1 and SP2 to be very similar. When comparing results to those of the
Coinbase and Bitstamp exchanges, we find that the volume at the best bid and best ask is considerably
lower (compare Tables A1 and A2 in the Appendix A) for both exchanges. The distribution seems to be
largely affected by a trader’s preference for certain order sizes and is not well described by the Gamma
distribution, which might be a consequence of a much smaller trading volume at these exchanges.
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Table 4. Descriptive statistics of the average order book. The table reports descriptive statistics for the
relative prices (ãi and b̃i) and depths (qa

i and qb
i ) at the first ten steps of the LOB.

ã1 [bp] ã2 [bp] ã3 [bp] ã4 [bp] ã5 [bp] ã6 [bp] ã7 [bp] ã8 [bp] ã9 [bp] ã10 [bp]

mean 0.4831 1.7123 2.8763 3.9788 5.0104 5.9803 6.9070 7.7917 8.6484 9.4799
sd 1.2024 2.3147 2.9969 3.6133 4.1442 4.6576 5.1445 5.6122 6.0846 6.5424

q25 0.0675 0.3759 1.0092 1.6425 2.3193 2.9572 3.5081 4.0941 4.6438 5.1234
median 0.0777 1.0470 2.0961 3.0733 3.9880 4.8294 5.5362 6.2500 6.9267 7.5638

q75 0.4392 2.1786 3.7341 5.1103 6.4375 7.6628 8.8376 9.9623 11.0422 12.1047

b̃1 [bp] b̃2 [bp] b̃3 [bp] b̃4 [bp] b̃5 [bp] b̃6 [bp] b̃7 [bp] b̃8 [bp] b̃9 [bp] b̃10 [bp]

mean −0.4831 −1.6766 −2.8087 −3.8629 −4.8509 −5.7797 −6.6675 −7.5188 −8.3457 −9.1531
sd 1.2024 2.2548 2.9204 3.4579 3.9502 4.4140 4.8690 5.3263 5.7785 6.2391

q25 −0.4392 −2.1422 −3.6505 −5.0113 −6.2035 −7.3812 −8.4742 −9.5624 −10.6170 −11.6707
median −0.0777 −1.0301 −2.0679 −3.0492 −3.9324 −4.7487 −5.3844 −6.0720 −6.7132 −7.3242

q75 −0.0675 −0.3608 −0.9902 −1.6176 −2.2711 −2.9088 −3.4496 −4.0167 −4.5456 −5.0245

qa
1 [BTC] qa

2 [BTC] qa
3 [BTC] qa

4 [BTC] qa
5 [BTC] qa

6 [BTC] qa
7 [BTC] qa

8 [BTC] qa
9 [BTC] qa

10 [BTC]

mean 6.2519 1.9335 1.8313 1.8295 1.8376 1.8579 1.8727 1.8916 1.8991 1.9668
sd 20.2119 14.0038 9.5268 9.3860 10.6332 9.5688 9.6347 10.2464 9.9094 17.8200

q25 0.5049 0.1000 0.1000 0.1049 0.1093 0.1226 0.1270 0.1322 0.1300 0.1338
median 2.1400 0.5225 0.5008 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

q75 6.6157 1.6600 1.5000 1.4802 1.4634 1.4722 1.4860 1.4990 1.5000 1.5000

qb
1 [BTC] qb

2 [BTC] qb
3 [BTC] qb

4 [BTC] qb
5 [BTC] qb

6 [BTC] qb
7 [BTC] qb

8 [BTC] qb
9 [BTC] qb

10 [BTC]

mean 6.7553 2.1255 2.0309 2.0423 2.0494 2.0255 1.9986 2.0195 2.0211 2.0247
sd 21.0636 10.3102 11.5825 12.0838 11.7907 12.6380 12.7130 12.8436 12.1750 10.6579

q25 0.5972 0.1000 0.1000 0.1000 0.1000 0.1063 0.1121 0.1194 0.1270 0.1251
median 2.2928 0.5394 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

q75 6.8141 1.7280 1.5360 1.5000 1.4770 1.4512 1.4300 1.4440 1.4743 1.5000

Figure 3. Distribution of volume at the best bid and best ask. We plot the empirical distribution of the
common logarithm of the volume at the best bid and ask in units of the minimum order size (0.002 BTC).
The solid line corresponds to a fit of a Gamma distribution with γ ≈ 0.28 and θ ≈ 10.94 BTC.

Broad distribution of limit order prices and hump-shaped average order book: Several authors
have reported empirical time-averaged limit order volumes as a function of the price difference to the
current bid or ask (see Bouchaud et al. (2002), Potters and Bouchaud (2003) and Gu et al. (2008)). Figure
4 presents the density of limit order depth qa

i (or qb
i ) as a function of relative price p̃ (Figure 4), which

we estimate using a kernel density estimator with bandwidth 0.25 bp. We identify the following main
characteristics:

1. Global maximum at (best) bid and ask: Consistent with the findings from the time-averaged cumulated
depth profile, we find the global maximum of volume at the current bid or ask of the LOB.
This structure resembles the finding by Potters and Bouchaud (2003) for the SPY exchange-traded
fund at Island ECN, where maximum limit order volume is found at the best bid and ask.
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2. Maximum away from current price: There is a second, local maximum further away from the current bid
(or ask), which we locate at relative prices in the order of p̃ ≈ 1%. We find the location of this maximum
to be roughly symmetric between the ask and bid side of the order book. Both Bouchaud et al. (2002)
and Gu et al. (2008) report a maximum in the average shape of the LOB located several ticks deep
in the order book, yielding a hump-shaped average order book. In contrast to data from the Bitcoin
exchange, this maximum is in relation closer to the current price.

3. Broad distribution of time-averaged volume: Bouchaud et al. (2002) find that orders are placed as far as 50
percent away from the current mid price; however most limit order volume is located within the first
100 ticks surrounding the current price, consistent with the analyses of Potters and Bouchaud (2003)
and Gu et al. (2008). In contrast, we find a very broad distribution of volume around the current mid
price, which extends with significant shares of the total limit order volume to up to 100 percent of the
current mid price, and for the case of ask orders even further.

Figure 4. Time-averaged limit order depth in dependence of price. The plots show the time-averaged
total limit order volume qa

i (t) (or qb
i (t)) as a function of relative price for different subperiods of the sample.

To gain a better understanding of our results, we refer to the work by Roşu (2009), who models the
hump-shaped volume distribution as an equilibrium: On the one hand, traders are optimistic that limit
orders placed away from the current price will eventually execute at a favorable price. On the other
hand, they fear that limit orders too far away from the current price will never be executed. Following
this picture, there seems to be a pronounced optimism in Bitcoin markets that limit orders far away from
the current price will eventually match, which may seem likely for market participants in the light of
highly volatile prices. In addition, Bitcoin markets do not close during night, and limit orders can have
unlimited lifetime, leading to significant limit order volume at highly speculative prices far away from the
current mid price. Bitcoin markets are unregulated, with exchanges, to our knowledge, not imposing any
restrictions that limit orders need to be placed within a fixed bandwidth around the current mid price.
This stands in contrast to more mature markets, where such conditions may be imposed—see Interactive
Brokers (2019). The observed second local maximum might therefore correspond to the hump observed in
other markets, but much further away from the current price.

Robustness checks: The general shape of the average limit order depth is similar for different subperiods
of data (compare Figure 4). Results from other exchanges are generally consistent with these results.

Liquidity costs: Knowledge of the full depth profile of the LOB at any time t allows to determine the
liquidity premium for the virtual immediate execution of a market order of size |ω|. This is particularly
interesting since liquidity costs make up an important part of transaction costs, which are critical, e.g., for
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the profitability of high-turnover statistical arbitrage strategies. Table 5 reports descriptive statistics of the
VWAP spread7 ṽs(ω, t) for different volumes ω and the bid-ask spread s̃.

Table 5. Descriptive statistics of liquidity cost measures. We list descriptive statistics of the bid-ask
spread s̃ and volume-weighted average price spreads ṽs for different order volumes ω.

ω [BTC] ω [USD]

s̃ 0.1 0.5 1.0 2.0 5.0 10.0 105 106

min 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1291
max 327.2825 327.2825 327.2825 327.2825 327.2825 327.7916 330.2782 327.9760 381.7934

mean 0.9663 1.1993 1.6364 2.0350 2.7790 4.8564 7.8754 8.3667 39.6270
sd 2.4048 2.6776 3.1408 3.5267 4.1727 5.7297 7.6235 6.7230 14.9090

q25 0.1350 0.1405 0.1488 0.1520 0.1604 1.0064 2.9504 4.0599 31.2217
q50 0.1554 0.1591 0.4497 0.7421 1.2843 3.2525 5.8831 7.0778 37.0837
q75 0.8783 0.9870 1.8381 2.5691 3.7175 6.5002 10.2739 10.8947 45.1485

skew 17.0203 13.9014 10.0866 8.2406 6.4527 4.2931 3.2508 3.4022 2.6558
kurt 1201.9088 831.4204 465.3095 309.4683 183.0332 74.8028 37.9242 49.7824 17.6048

We find an average bid-ask spread of 0.97 bp with a distribution skewed towards lower bid-ask
spreads (median spread of 0.16 bp, skewness ≈ 17). For a similar time period but different exchanges,
Dyhrberg et al. (2018) find comparable average quoted bid-ask spreads ranging from 0.54 bp to 7.8 bp and
point out that these are “significantly lower than the average quoted (effective) spread [...] of stocks on
the NYSE” (Dyhrberg et al. 2018, p. 141). However, taking into account liquidity deeper into the order
book, we find that liquidity costs rise fast for larger volumes ω: Two-sided VWAP spreads for 1 BTC are
on average twice as high as the bid-ask spread, and rise by roughly one order of magnitude (8.37 bp) for a
volume of 105 USD, which still is a relatively small amount for traditional institutional investors. When
compared to a similar analysis by Gomber et al. (2015), the depth of the LOB beyond the best bid or ask is
limited: For DAX stocks, the ratio between liquidity costs for 106 EUR and the bid-ask spread is between 5
and 12, whereas we find a value of roughly 41.

Robustness checks: When considering subperiods of data, we find that average liquidity costs for
small volumes depend on the current market phase (also compare Section 5.1.2). In SP1, liquidity is on a
generally higher level, but the scaling of liquidity costs with volume is similar. The scaling of liquidity
costs with volume is even more extreme for the second largest exchange (Coinbase): With 0.20 bp, the
bid-ask spread is narrower on average (compare Table A3), which might be a consequence of the smaller
price increment of 0.01 USD. However, liquidity costs rise fast, and assume values similar to the BitFinex
exchange for larger volumes. The ratio between liquidity costs for 106 USD and the bid-ask spread is at
282.

5.1.2. Time Series Characteristics of Statistics

We now turn to the study of time series properties of selected measures of the static LOB.
Non-normal return distribution: Figure 5 displays the evolution of the last mid-price m(t) of the

day, as well as the daily realized volatility (Equation (7)). Besides the expected non-stationarity of this
time series, we observe high volatility with double-digit percentage price changes during the first months
of our data. This picture is reinforced by the descriptive statistics of mid-price returns rmid(t, Δt) in Table 6,
for different time scales Δt. Both positive and negative daily logarithmic returns have extremal values

7 The reported VWAP spreads are upper bounds as BitFinex allows hidden limit orders which might provide further liquidity.
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close to 20 percent. Median and mean returns are close to zero. Daily returns are slightly skewed to the
left, minutely returns are slightly skewed to the right.

Figure 5. Daily closing prices and volatility. We plot the last available mid-price m(t) of each day in
universal coordinated time and the realized volatility rv(t − 1 day, t, 1 min) for the respective day.

Table 6. Descriptive return statistics. This table lists statistical properties of logarithmic mid-price returns
rmid(t, Δt) on different time scales Δt, in units of 1 bp (where applicable).

Δt = 1 min Δt = 1 h Δt = 1 day

min −363.0070 −1273.4918 −2039.0606
max 454.4009 1127.3911 2063.1761
mean −0.0219 −0.6505 −15.1541
sd 15.3572 115.6858 497.8412
q25 −3.4865 −35.9549 −232.2230
q50 0.0000 1.2460 5.8898
q75 3.5754 35.1836 187.2999
skew 0.1583 0.0309 −0.0797

Next, we will evaluate the tail index estimates. Table 7 summarizes the results of the tail analysis
for minutely and daily data. For the Hill estimator Hp (Equation (11)) to be meaningful, approximately
2000 observations are needed (Lux and Marchesi 2000), and we therefore do not show Hill estimates for
daily data (313 observations). Our tail index estimates range between 1.94 and 3.67, which is in line with
the literature. Smaller estimates indicate heavier tails. Estimates for the tail index smaller than four are
associated with infinite fourth moments making m4 unreliable. Thus, we show excess kurtosis values me

4
but do not interpret them. A typical pattern for stocks can also be found in our context, namely that the
tail index estimator increases with the number of observations considered as being in the tails (Lux and
Marchesi 2000). Our results provide evidence that mid returns exhibit heavy tails, i.e., the probability of
extreme events is higher compared to a normal distribution. For the case where we do not distinguish
between the two tails of the distribution (columns “both”), this can be seen from the quantile-based excess
kurtosis metric γe

p=0.025,q=0.125 close to 0.6.8 The Hill estimates between 2.05 and 2.90 (Δt = 1 min) as well
as 2.27 and 3.30 (Δt = 1 h) point into the same direction. According to both metrics, we can draw the
following further conclusions: First, minute data have heavier tails than hourly data, i.e., excess kurtosis
values are larger, and Hill estimates smaller. Second, the left tail is heavier than the right tail for minute data

8 There is only weak skewness (Table 6) giving no indication that the symmetry assumption underlying the metric is violated.
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and vice versa for hourly data. The latter holds true independent of the number of observations declared
as tail. In a recent contribution, Zhang et al. (2018) use the m4 kurtosis metric and the Hill estimator to
analyze the tails of eight cryptocurrencies, among them Bitcoin. For two years of daily returns, computed
from closing prices, the authors point out that all examined cryptocurrencies exhibit heavy tails. Overall,
we can reproduce the stylized facts on the empirical distribution of returns as summarized by Cont (2001):
The distribution of mid-price returns has a sharp peak centered around zero and exhibits fat tails, and is
therefore insufficiently described by the normal distribution.

Robustness checks: We recalculate tail measures for subperiods of the data (columns “SP1” and “SP2”
in Table 7). The patterns for SP1 are in line with those observed for the SP1 and SP2. Also, we find similar
tail patterns when comparing results to those obtained for the Coinbase and Bitstamp exchange.

Table 7. Analysis of tails of the return distribution. This table shows measures for the tails of the
distribution of logarithmic mid-price returns on different time scales Δt. We use kurtosis metrics based on
the fourth standardized moment (me

4) and based on quantiles (γe
p=0.025,q=0.125), as well as tail indices from

a Hill estimator (Hp). The measures are applied to the full distribution as well as to the left and right side
of the distribution only. SP1 and SP2 refer to subperiods of data.

SP1 and SP2 SP1 SP2

Δt 1 min 1 h 1 min 1 h 1 min 1 h

Side Both Left Right Both Left Right Both Both Both Both

me
4 44.3497 41.5939 47.3472 17.6771 18.0461 17.3392 32.219 11.6763 77.9707 30.7078

γe
p=0.025,q=0.125 0.6481 0.7975 0.6004 0.5784 0.4773 0.6922 0.3992 0.2830 0.5555 0.9727

Hp=10% 2.0521 1.9382 2.1681 2.2681 2.4375 2.1438 2.4160 2.6743 2.0854 1.8972
Hp=5% 2.4823 2.3919 2.5650 2.8674 2.8448 2.8233 2.8642 3.2549 2.3750 2.1826
Hp=2.5% 2.8954 2.8852 2.9079 3.2968 3.6668 2.9610 3.2203 3.7743 2.4933 2.7144

Autocorrelation of returns and volatility clustering: We check the common fact that
“price movements in liquid markets do not exhibit any significant autocorrelation” (Cont 2001, p. 229),
and compute the autocorrelation function of mid-price returns Cmid(n) on different time scales (Table 8):
We find a small positive autocorrelation of 0.0343 on the minute time scale for a lag of one minute. Turning
to daily data, we do not find significant structure in the autocorrelation, which is confirmed by the
Ljung-Box test (Ljung and Box 1978) with the null hypothesis of no autocorrelation.9

9 We obtain a p-value of 0.6340. Given the large sample sizes for minutely and hourly data, applying the Ljung-Box test is not
meaningful, because even the smallest estimated autocorrelation is significant (Lux and Marchesi 2000).
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Table 8. Autocorrelation of logarithmic, absolute and squared returns. We compute the autocorrelation
functions Cmid(n), Cmid

1 (n) and Cmid
2 (n) for different lags n, different time scales Δt and different subperiods.

Δt = 1 min Δt = 1 h Δt = 1 day

lag n Cmid(n) Cmid
2 (n) Cmid

1 (n) Cmid(n) Cmid
2 (n) Cmid

1 (n) Cmid(n) Cmid
2 (n) Cmid

1 (n)

SP1 and SP2 1 0.0342 0.2847 0.4667 −0.0722 0.1625 0.2962 0.0004 0.1443 0.1209
2 −0.0172 0.2357 0.4295 0.0134 0.2028 0.3259 0.0179 0.0436 0.1205
3 −0.0055 0.2198 0.4121 −0.0208 0.1690 0.3071 0.0107 0.0766 0.1681
4 −0.0015 0.2324 0.4041 −0.0364 0.1366 0.2833 −0.0862 0.2132 0.1960
5 −0.0074 0.2069 0.4005 −0.0083 0.2034 0.3264 0.0441 0.0796 0.1203
6 −0.0093 0.2112 0.3961 0.0212 0.1386 0.2850 0.0174 0.0887 0.1428
7 −0.0169 0.1976 0.3885 −0.0120 0.1785 0.3083 −0.0201 0.0733 0.1395
8 −0.0097 0.1858 0.3835 0.0071 0.2399 0.3399 0.0531 0.1511 0.2352
9 −0.0068 0.1873 0.3784 −0.0427 0.2007 0.3056 −0.0229 0.0528 0.0892

10 −0.0055 0.1944 0.3801 0.0535 0.2099 0.2927 −0.0307 0.1126 0.1503

SP1 1 0.0306 0.2706 0.4019 −0.0900 0.1324 0.2084 −0.0044 0.0678 −0.0331
2 −0.0186 0.2267 0.3683 0.0170 0.1793 0.2588 0.0071 −0.0532 −0.0188
3 −0.0066 0.2119 0.3523 −0.0256 0.1432 0.2421 0.0116 −0.0107 0.0539
4 −0.0001 0.2265 0.3452 −0.0403 0.1067 0.2109 −0.1007 0.1495 0.0927
5 −0.0080 0.1995 0.3432 −0.0098 0.1822 0.2663 0.0533 0.0075 0.0164

SP2 1 0.0592 0.2883 0.3813 0.0157 0.0757 0.1497 0.0189 −0.0040 0.0720
2 −0.0076 0.1446 0.2933 −0.0162 0.0029 0.0512 0.0613 0.0169 0.0044
3 0.0019 0.1071 0.2538 −0.0005 0.0342 0.0651 −0.0042 −0.0530 −0.0213
4 −0.0112 0.0914 0.2339 0.0019 −0.0044 0.0359 −0.0424 −0.0098 −0.0080
5 −0.0033 0.0810 0.2190 −0.0035 −0.0073 0.0292 0.0132 −0.0785 −0.0848

On the other hand, nonlinear functions of returns are known to show significant autocorrelation,
which is referred to as volatility clustering (Cont 2001). As for a wide range of other markets, we find that
the autocorrelation of squared returns is positive and decays slowly with the lag n. Following several
other authors, we fit a power law Cmid

2 (n) ∼ n−β and obtain coefficients of β ≈ 0.16 and β ≈ 0.24 for the
decay of autocorrelation on the minutely and hourly time scale, respectively, which is at the lower end of
the range given by Cont (2001) (β ∈ [0.2, 0.4]). The effect size of autocorrelation in squared and absolute
returns decreases with the frequency. For absolute and squared daily returns, we test the null hypothesis of
no autocorrelation using the Ljung-Box test (Ljung and Box 1978), which we can reject (p-value of 0.0000).
Our findings for daily data are in line with Zhang et al. (2018). The authors report for all eight analyzed
cryptocurrencies that autocorrelation decays at a fast rate for returns and slowly for absolute returns. In
addition, they found significant volatility clustering.

Robustness checks: The subperiod analysis for SP1 and SP2 (panels “SP1” and “SP2” in Table 8) reveals
that the general results for the full time period carry over to the subperiods. When comparing results with
other exchanges, we obtain a similar picture.

Evolution of liquidity costs: Figure 6 displays the evolution of the daily averages of the relative
bid-ask spread s̃(t) and the VWAP spread ṽs(ω, t) for virtual market orders of different sizes ω. We make
the following observations: First, the bid-ask spread s̃(t) varies over approximately one order of magnitude
from 3 bp in late 2017/early 2018 to roughly 0.3 bp after May 2018. This stark change is in line with
the evolution of the average weekly bid-ask spread for several Bitcoin exchanges found by Dyhrberg
et al. (2018). Second, we find that the variation in the level of liquidity costs for higher volumes is less
pronounced: For example, the VWAP spread ṽs(ω, t) for a value of 106 USD remains—in relation to the
bid-ask spread—closer to the long-term average value of 39.62 bp. Third, the analysis shows that the costs
of liquidity provision are higher in times of high Bitcoin price and high volatility: The linear correlation
coefficients between the daily closing price are ρ ≈ 0.73 for the bid-ask spread and ρ ≈ 0.21 for the VWAP
spread for 106 USD.
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Robustness checks: We find that results from the exchanges Coinbase and Bitstamp exhibit a similar
evolution of liquidity cost measures (compare Figure A2 in the Appendix A).

Figure 6. Evolution of daily average liquidity costs. The figure displays the evolution of the daily averages
of the bid-ask spread s̃(t) and the volume-weighted average price spread ṽs(ω, t) for different volumes ω.

5.1.3. Conditional Statistics of the Limit Order Book

Finally, we present two selected analyses based on conditional statistics of measures of the static LOB,
namely intraday patterns of liquidity costs and liquidity resiliency.

Intraday patterns of liquidity costs: A common result for limit order markets is that the bid-ask
spread has a U-shaped intraday pattern: McInish and Wood (1992) find for NYSE data that averaged
bid-ask spreads are highest at the beginning and the end of the trading day. Similar results have been
obtained for a foreign exchange market (Danielsson and Payne 2001), the Swiss Stock Exchange (Ranaldo
2004) and the Paris Bourse (Biais et al. 1995). Gomber et al. (2015) demonstrate that VWAP spreads are
approximately doubled near the start and end of the continuous trading session for Xetra-traded DAX
stocks. Figure 7 displays the change of the average hourly distribution of the bid-ask spread s̃(t) and
liquidity costs ṽs(ω, t) for 10 BTC and 106 USD relative to the mean value at the BitFinex BTC/USD market.
We observe that average liquidity cost measures vary only slightly across the day (with relative changes
of a few percent) with no clearly visible pattern.10 Dyhrberg et al. (2018) make the same observation for
averaged bid-ask spreads from three Bitcoin markets and attribute this to the continuous trading at every
hour of the day at cryptocurrency markets. In addition, we conjecture that these results could be explained
by a worldwide market participation leading to a superposition of intraday patterns from different time
zones and the presence of automated trading, such that no clear picture can emerge.

10 Following McInish and Wood (1992), we additionally perform a regression of the bid-ask spread s̃(t) on dummy variables for
each hour of the day. In line with previous results, regression results do not yield a significant pattern.
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Figure 7. Intraday dynamics of liquidity costs. We display the relative deviation from the mean value
of the average hourly distribution of the bid-ask spread s̃(t) and liquidity costs ṽs(ω, t) for 10 BTC and
106 USD, with the hour of the day given in the local exchange time zone (Hong Kong time).

Robustness checks: As expected, the observed average hourly changes in liquidity are not robust when
considering subperiods of data, which supports the conclusion of absent intraday patterns. We find a
clear but weak U-shaped intraday pattern in liquidity costs for the Bitstamp exchange (compare Figure
A3 in the Appendix A), which could be due to a focus of trading activity on the European market.11 In
contrast, we observe larger variations at the Coinbase exchange, but no universal pattern emerges when
comparing bid-ask spread and liquidity costs for higher volumes. Overall, we observe a mixed picture:
Hourly average liquidity costs differ largely between cryptocurrency exchanges, and pronounced patterns
known from established markets are largely absent.

Liquidity resiliency and timing of large trades: We now characterize the recovery of limit order
liquidity after liquidity shocks, and analyze whether large trades are timed in the sense that they occur
when liquidity is high. We examine average liquidity costs (precisely, the relative bid-ask spread f = s̃ and
VWAP spread f = ṽs) as a function of the event time τ in temporal vicinity of large trades (Equation (12)).
We consider the one percent largest trades (N = 510,584) to obtain sufficient statistics. Figure 8 displays
results for the bid-ask spread and the VWAP spreads for 105 USD and 106 USD. Compared to relevant
literature, we make the following observations:

11 As for BitFinex, we run a dummy variable regression which supports the existence of the U-shaped pattern.
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(a)

(b) (c)

Figure 8. Resiliency of liquidity costs. The figures display three different average measures of liquidity
cost in the event time τ of the 1 percent largest trades. (a) Evolution of the average bid-ask spread s̄(τ).
We fit an exponential function with time constant 8.3 s to guide the eye.; (b) Evolution of the average
volume-weighted average price spread v̄s(ω, τ) for a volume of ω = 105 USD; (c) Evolution of the average
volume-weighted average price spread v̄s(ω, τ) for a volume of ω = 106 USD.

1. Recovery of the bid-ask spread: We first consider the typical speed at which liquidity recovers after
a large trade. We find that the average bid-ask spread increases to roughly 2 bp directly following the
trade and subsequently recovers to its pre-event value of about 1 bp (Figure 8a). We fit an exponential
decay function s̄(τ) ∼ exp(−τ/T) to estimate the decay time constant as T ≈ 8.3 s (corresponding to
a half-life of T1/2 ≈ 5.8 s). Surprisingly, this is well in line with the finding of Cummings and Frino
(2010) for large block trades of interest rate futures at the Sydney Futures Exchange: Considering only
the largest block trades, they find that excess bid-ask spreads after the largest block purchases recover
to a normal level on a time scale of approximately 7 s. They find that recovery is faster for the largest
trades. Similarly, Large (2007) estimates a half-life time of about 20 s for a stock at the London Stock
Exchange.

2. Recovery of liquidity beyond the (best) bid and ask: For liquidity provided from deeper levels of the LOB,
we find that liquidity does not quite recover to pre-event levels in the considered time window of
300 s (compare Figure 8b,c). Gomber et al. (2015) find that “it takes longer to restore large depth than
to restore a small spread” (Gomber et al. 2015, p. 67). They estimate that it takes about four minutes to
restore liquidity costs for 105 EUR. For similar volumes (Figure 8b) we observe that average liquidity
after the trade still differs slightly from pre-trade values.

3. Pre-trade liquidity increase and timing of large transactions: For average liquidity costs for 105 USD and
106 USD, we find—at first quite surprisingly—that liquidity increases prior to a large trade. This effect
is observed in time windows of 2–3 min preceding the trade. Gomber et al. (2015) report a very similar
finding for the evolution of the average exchange liquidity measure: Liquidity costs for 105 EUR and
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DAX stocks decrease over an interval of about three minutes before large trades. Noticing that the
increase in liquidity takes place on the side of the market where the trade occurs, they interpret this
effect in terms of timed large transactions: Market participants prefer to execute large trades when
liquidity is exceptionally high, and the execution of large trades relatively cheap. Our results indicate
that the timing of large transactions is also present in Bitcoin markets.

Robustness checks: We obtain similar results for subperiods SP1 and SP2 of our data. To check that
results are not driven by clusters of trades, we follow Gomber et al. (2015) and redo calculations for all
large trades that are not followed by other large trades within 15 min. We observe very similar results and
conjecture that our results are not dominated by the clustering of trades. When comparing results to the
exchange Coinbase (compare Figure A4 in the Appendix A), we observe similar patterns in the recovery of
liquidity. However, results are different for the smallest exchange in our sample (Bitstamp), where we
observe an increase of liquidity costs after the trade. These results could be due to a market maker or some
other idiosyncrasy of the exchange, for example the generally lower liquidity or differences in trade and
order sizes.

5.2. Analysis of the Dynamics of the Limit Order Book: Order and Trade Flows

5.2.1. Unconditional Descriptive Statistics of Trades and Order Book Changes

We next present unconditional descriptive statistics of measures of the dynamic LOB, i.e., properties
of trades and the limit order flow, and begin by discussing the distribution of trade size.

Distribution of trade size: Table 9 lists descriptive statistics of the price pM and size ωM of all trades
in our sample (N = 51,058,356). There seems to be a large amount of retail trading: With a median trade
value of roughly 634 USD (0.0752 BTC), most trades are comparably small. Figure 9 displays the rich
structure in the distribution of trade size ωM, for which we observe the following:

1. Two regimes separated by the minimum order size: The distribution of trade size exhibits a large jump at
the minimum order size of 0.002 BTC, and separates two regimes: For smaller trades, trade frequency
increases with trade size, but exhibits discontinuities. For larger trade sizes, the distribution exhibits
a convex plateau and a power tail for trades larger 1 BTC.

2. Power-law dependence of volume for large trades: For trade sizes exceeding the minimum order size,
the empirical distribution of trade size agrees well with results from the literature: Similar to the
results of Mu et al. (2009), the empirical distribution of trade sizes larger than the minimum order

size fits well to a q-Gamma distribution p(ωM) ∝ (ωM)β
[
1 − (1 − q)ωM

θ

](1−q)−1
with parameters

β ≈ 10−4, θ ≈ 5.28 · 10−2 and q ≈ 1.41. The asymptotic tail exponent of this distribution is given by
α = 1

q−1 − β − 1 ≈ 1.44. Gopikrishnan et al. (2000) and Maslov and Mills (2001) find power tails with
comparable values for US stock markets (α = 1.53 ± 0.07) and the NASDAQ (α = 1.4 ± 0.1).

3. Significant share of trades smaller than the minimum order size: A large share of trades has a size smaller
than the minimum order size. We interpret these results in the light of a minimum order size
increment (10−8 BTC) much smaller than the minimum order size (0.002 BTC), leading to trade sizes
much smaller than the minimum order size. For example, an ask order with initial volume 0.0021 BTC
could be partially matched with a bid order of 0.002 BTC, leaving a small ask order active that could
subsequently lead to a trade of size 0.0001 BTC.

4. Number preference: Mu et al. (2009) reported that traders seem to prefer certain numbers for order
sizes, which also manifests in the distribution of trade size. Similarly, we observe peaks in trade
frequency for certain sizes, for example at 0.01 BTC, 0.02 BTC, 0.1 BTC, 0.5 BTC and 1 BTC.
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Contrary to traditional equity markets investigated in the literature, minimum order size and the
order size increment differ largely for cryptocurrency markets due to the divisibility of Bitcoin, leading to
the observation a different trade size distribution.

Robustness checks: The shape of the empirical distribution of trade size is robust with respect to
considering subperiods SP1 and SP2 of our data. We obtain very similar empirical distributions for the
other two exchanges, albeit slightly different minimum order sizes (compare Table 1).

Table 9. Descriptive statistics of trades. This table lists descriptive statistics of the price pM, the value
ωM · pM and the size ωM for all trades.

pM [USD] ωM · pM [USD] ωM [BTC]

All All Ask-Initiated Bid-Initiated All Ask-Initiated Bid-Initiated

count 51,058,356 51,058,356 26,112,746 24,945,610 51,058,356 26,112,746 24,945,610
mean 8665.11 3053.87 3059.75 3047.72 0.3643 0.3658 0.3627
sd 2493.81 13,658.82 14,155.62 13,118.64 1.6686 1.7441 1.5857
q25 6710.00 138.14 134.45 143.19 0.0170 0.0160 0.0180
q50 8011.30 634.33 626.23 641.15 0.0752 0.0748 0.0760
q75 9602.40 2431.44 2419.27 2440.93 0.2938 0.2906 0.2970
skew 1.52 89.51 97.32 78.79 94.84 92.21 97.75

Figure 9. Distribution of trade size. We plot the empirical distribution of trade size ωM in log-log scale.
The line corresponds to a fit to the q-Gamma distribution.

Distribution of changes in limit order depth: Next, we consider the flow of limit order volume
to and from the LOB. In Figure 10, we plot the time-averaged empirical density of changed limit order
volume in the LOB, i.e., Δnb(p) and Δna(p) (Equation (14)) on a price scale relative to the current mid
price. We make the following observations:

1. Power tail away from the current price: Further away from the current mid price, the changed limit order
volume declines rapidly. Figure 10 includes dashed straight lines with a slope of roughly −2.8, and
the empirical density in log-log axes declines at a roughly similar rate. Power tails in the distribution
of order frequency as a function of the difference to the price have been found before (compare, for
example, Bouchaud et al. (2002), Zovko and Farmer (2002) and Potters and Bouchaud (2003). These
analyses consider all incoming orders, whereas we consider the total change in depth in the LOB.
Therefore, a different distribution close to the mid price would be expected.

2. Constant changed order volume near the current price: We find a roughly constant density in changed
limit order volume up to a relative price of 1 percent. We may cautiously conclude that this finding is
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still consistent with the literature: Several authors (for example, Bouchaud et al. (2002), Zovko and
Farmer (2002) and Potters and Bouchaud (2003)) found that most orders arrive at the current bid
or ask price. These orders are, however, executed immediately or with high profitability, and thus
cannot be observed in our analysis, leading to the observed plateau in the distribution of changed
limit order volume. Orders arriving further away from the current price are less likely executed and
lead to persistent changes in limit order depth, which we observe in our analysis.

3. Peaked activity away from the current price: Quite surprisingly, we see distinct peaks in changed order
volume at relative prices of 4 and 6 percent. These could be the consequence of speculative order
placement or the traders’ preference for certain round order prices.

These results are well in line with the previously found broad distribution of limit order volume
(compare Section 5.1.1). Specifically, we conjecture that speculative order placement plays an important role
in these markets, which is—in contrast to established markets—not restricted by exchanges or regulators
by imposing caps on order prices.

Robustness checks: The distributions of LOB changes for all subperiods in Figure 10 are similar, and we
find generally consistent results for the other exchanges.

Figure 10. Distribution of changed limit order volume. We plot the time-averaged empirical density of
changed limit order volume in the limit order book (Equation (14)) on a relative price scale. The three plots
correspond to different four-week periods of our data. The dashed lines have a slope of −2.8.

5.2.2. Time Series Characteristics of Trade Properties

Evolution of trading volume and trade size: Figure 11 displays the evolution of daily averages of
the trade size, the number of trades and the cumulated volume (compare Section 4.3.2). We make the
following observations: First, both the number of trades and cumulated volume are higher during the
phase of comparably high prices. Second, peaks in cumulated volume and trade frequency coincide with
peaks in volatility of the mid price (compare Figure 5). Third, the average trade size is relatively stable,
and decreases in the high-price phase, which might be a consequence of increased retail trading due to
higher interest in cryptocurrencies.
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Figure 11. Daily trading volume, number of trades and daily average trade size. We aggregate the daily
volume and the daily number of trades in universal coordinated time.

Autocorrelation of trade price changes and sizes: While return time series on time scales of minutes
to days do typically not possess any significant autocorrelation, high-frequency return time series are found
to have negative autocorrelation at the first lags. This is attributed to the bid-ask bounce, i.e., the oscillation
of trade prices between prices of the bid side of the LOB and prices at the ask side (Cont 2001; Russell and
Engle 2010). Table 10 lists values of the autocorrelation function of trade price changes Ctp(n) (Equation
(15)). We observe negative autocorrelations Ctp(n) in the first lags, and Ctp(1) ≈ −0.18 is comparable in
size with results by Russell and Engle (2010). When looking at sell and buy trades separately, we find
that Ctp(1) drops to roughly −0.08, which is consistent with autocorrelations being driven mainly by the
bid-ask bounce. Results for the autocorrelation function of trade sizes Csize(n) (Equation (16)) exhibit
positive values in the order of 0.12, which does not depend on whether we include all trades or only sell or
buy trades.

Robustness checks: We obtain similar results when repeating the analyses for subperiods of data (panels
SP1 and SP2 of Table 10). Autocorrelation functions for trade price changes and trade sizes behave similarly
for the other Bitcoin exchanges.
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Table 10. Autocorrelation of trade properties. We compute the autocorrelation functions of trade price
changes Ctp(n) and trade sizes Csize(n) for lags n = 1, . . . , 10. We show results for all trades, for ask-initiated
trades (ωM > 0) and bid-initiated trades (ωM < 0) separately.

Csize(n) Ctp(n)

lag n All ωM > 0 ωM < 0 All ωM > 0 ωM < 0

SP1 and SP2 1 0.1225 0.1398 0.1176 −0.1759 −0.0790 −0.0833
2 0.1045 0.1106 0.1128 −0.0529 −0.0204 −0.0234
3 0.0926 0.0995 0.0946 −0.0302 −0.0110 −0.0147
4 0.1092 0.1219 0.1061 −0.0107 −0.0001 −0.0033
5 0.0743 0.0775 0.0796 −0.0128 −0.0059 −0.0066
6 0.0893 0.0947 0.0931 −0.0032 0.0059 0.0045
7 0.0672 0.0728 0.0694 −0.0091 −0.0018 −0.0018
8 0.0890 0.1013 0.0832 −0.0020 0.0048 0.0036

SP1 1 0.1024 0.1314 0.0854 −0.1775 −0.0787 −0.0831
2 0.0675 0.0718 0.0773 −0.0532 −0.0204 −0.0236
3 0.0611 0.0644 0.0665 −0.0294 −0.0101 −0.0140
4 0.0596 0.0609 0.0671 −0.0111 −0.0006 −0.0042
5 0.0496 0.0505 0.0580 −0.0114 −0.0044 −0.0054

SP2 1 0.1406 0.1464 0.1513 −0.1378 −0.0834 −0.0871
2 0.1380 0.1419 0.1501 −0.0468 −0.0207 −0.0205
3 0.1211 0.1278 0.1239 −0.0483 −0.0276 −0.0276
4 0.1541 0.1713 0.1469 −0.0024 0.0099 0.0121
5 0.0965 0.0993 0.1021 −0.0458 −0.0320 −0.0288

5.2.3. Conditional Statistics Across All Trades

Intraday patterns of trading activity: We now analyze intraday patterns in trading activity. Contrary
to commonly found patterns in the bid-ask spread, results from the literature differ depending on the
market, and range from U-shaped patterns for stocks at the Paris Bourse (Biais et al. 1995) to M-shaped
patterns in data from an FX market (Danielsson and Payne 2001). Figure 12 displays the average trade size
and trade frequency conditional on the hour of the day. We make the following observations: First, we
find some weakly visible patterns and a similarity between the average trade size ωM and the number of
trades. Second, we find the trade frequency to vary in the order of 10 percent during the day. Third, we
observe a slightly lower average trade size during night time.

Robustness checks: Similar patterns can be observed for the other exchanges (compare Figure A6).
Here, we find that the trade frequency is highest in the afternoon and lowest during night (or morning
hours) in the local time zone of the exchange. Nevertheless, there is a strong trading activity baseline for
all exchanges, which might indicate that large cryptocurrency exchanges for the US Dollar attract market
participants from all over the world, or that trading is to a large degree automated.
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Figure 12. Intraday dynamics of trading activity. We plot the average hourly trade size and the average
hourly number of trades as a function of the hour of the day in Hong Kong time.

6. Conclusions

In this work, we have empirically characterized limit order books and resulting trades from major
cryptocurrency exchanges, thereby using a structured and comprehensive framework of analyses and
commonly observed facts derived from the literature. We have focused on the presentation of descriptive
statistical facts, which we have compared to commonly found facts from established exchanges. Also, we
have provided possible qualitative interpretations for our findings. Limit order data from cryptocurrency
exchanges exhibit many of the properties found for other limit order exchanges, for example a symmetric
average limit order book, autocorrelation of returns only at the tick level and the timing of large trades.
In contrast, we have found that cryptocurrency exchanges exhibit a relatively shallow limit order book
with quickly rising liquidity costs for larger volumes, many small trades and an extended distribution of
limit order volume far beyond the current mid price. Further research could focus on the origin of order
placements further away from the current mid price and on the source of the differences in curvature of the
average limit order book, as well as on comparisons to limit order exchanges allowing to trade between
two cryptocurrencies.
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Appendix. Results for Further Exchanges

(a) (b)
Figure A1. Time–averaged limit order book. We plot the time-averaged spread (relative to the respective
mid price) and time-averaged volume for each level of the order book. (a) Coinbase BTC/USD market; (b)
Bitstamp BTC/USD market.

Table A1. Descriptive statistics of the average order book for the Coinbase BTC/USD market. The table
reports descriptive statistics for the relative prices (ãi and b̃i) and depths (qa

i and qb
i ) at the first five limit

order steps.

ã1 [bp] ã2 [bp] ã3 [bp] ã4 [bp] ã5 [bp] b̃1 [bp] b̃2 [bp] b̃3 [bp] b̃4 [bp] b̃5 [bp]

mean 0.0992 0.1532 0.3097 0.5102 0.7390 −0.0992 −0.1638 −0.3407 −0.5685 −0.8364
sd 9.4231 0.9120 1.3032 1.6700 2.0189 9.4231 0.9466 1.3670 1.7763 2.2484

q25 0.0056 0.0057 0.0058 0.0060 0.0061 −0.0076 −0.0077 −0.0078 −0.0085 −0.4824
median 0.0067 0.0068 0.0071 0.0074 0.0075 −0.0067 −0.0068 −0.0070 −0.0073 −0.0075

q75 0.0076 0.0077 0.0078 0.0085 0.3317 −0.0056 −0.0057 −0.0058 −0.0059 −0.0060

qa
1 [BTC] qa

2 [BTC] qa
3 [BTC] qa

4 [BTC] qa
5 [BTC] qb

1 [BTC] qb
2 [BTC] qb

3 [BTC] qb
4 [BTC] qb

5 [BTC]

mean 1.0937 1.0352 1.0407 1.0242 1.0012 0.8994 0.8716 0.8330 0.8478 0.8355
sd 3.5183 3.4218 3.5283 3.5174 3.5246 2.7554 2.7223 2.6287 2.7821 2.7304

q25 0.0047 0.0029 0.0030 0.0025 0.0023 0.0077 0.0064 0.0060 0.0063 0.0063
median 0.1130 0.1000 0.0932 0.0800 0.0662 0.1200 0.1002 0.1000 0.1000 0.0958

q75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9725 0.9683 0.9460

Table A2. Descriptive statistics of the average order book for the Bitstamp BTC/USD market. The table
reports descriptive statistics for the relative prices (ãi and b̃i) and depths (qa

i and qb
i ) at the first five limit

order steps.

ã1 [bp] ã2 [bp] ã3 [bp] ã4 [bp] ã5 [bp] b̃1 [bp] b̃2 [bp] b̃3 [bp] b̃4 [bp] b̃5 [bp]

mean 3.9306 5.9740 7.8983 9.6986 11.3785 −3.9306 −6.2516 −8.3233 −10.2498 −12.0205
sd 3.6971 5.0798 5.9524 6.6103 7.1657 3.6971 5.2242 6.1008 6.7221 7.2437

q25 1.3370 2.6456 3.9142 5.1897 6.5248 −5.3879 −7.9980 −10.6020 −12.8396 −14.7508
median 3.1511 4.7447 6.4603 8.2124 9.8818 −3.1511 −4.9946 −6.9114 −8.8283 −10.5893

q75 5.3879 7.6499 10.1350 12.3066 14.2027 −1.3370 −2.8920 −4.3039 −5.7707 −7.2550

qa
1 [BTC] qa

2 [BTC] qa
3 [BTC] qa

4 [BTC] qa
5 [BTC] qb

1 [BTC] qb
2 [BTC] qb

3 [BTC] qb
4 [BTC] qb

5 [BTC]

mean 1.5771 1.4164 1.4532 1.5579 1.7032 1.6735 1.5641 1.6563 1.8360 1.9904
sd 6.7095 5.3325 4.6434 4.6641 4.7830 9.1645 6.3446 4.9995 5.1847 5.3419

q25 0.0697 0.0380 0.0341 0.0350 0.0396 0.0855 0.0941 0.1000 0.1000 0.1000
median 0.5244 0.4200 0.4200 0.4440 0.5000 0.6273 0.6000 0.6691 0.8000 0.9397

q75 1.4285 1.3380 1.4226 1.5000 1.5114 1.5000 1.5000 1.5146 1.6483 1.8762
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Table A3. Descriptive statistics of liquidity cost measures for the Coinbase (panel A) and the Bitstamp

BTC/USD market (panel B). We list descriptive statistics of the bid-ask spread s̃ and volume-weighted
average price spreads ṽs for different order volumes ω.

ω [BTC] ω [USD]

s̃ 0.1 0.5 1.0 2.0 5.0 10.0 105 106

A mean 0.1984 0.4565 0.8852 1.2585 1.9590 3.9038 6.9085 8.2644 55.9732
sd 18.8463 1.6903 3.0141 2.7074 3.3185 4.6643 6.2279 6.4667 72.2166
q25 0.0112 0.0116 0.0121 0.0124 0.0137 0.2657 2.5405 3.7401 42.1128
q50 0.0133 0.0142 0.0150 0.0155 0.3297 2.6565 5.7849 7.4037 51.9763
q75 0.0152 0.0157 0.4227 1.3888 2.8715 5.7636 9.5908 11.4203 63.9471
skew 208.2537 9.5766 173.4533 5.0151 3.9150 2.8447 2.3831 2.0350 129.3065
kurt 43464.80 228.58 69382.36 63.09 37.55 19.99 14.23 12.14 21011.61

B mean 7.8612 9.0643 10.5030 11.6672 13.7398 18.2892 23.5749 24.9565 73.5508
sd 7.3941 7.9357 8.7012 9.3081 10.0856 11.6074 13.0441 11.7406 21.6807
q25 2.6739 3.6618 4.7017 5.4402 6.9664 10.7988 15.4833 17.8222 58.9856
q50 6.3022 7.4225 8.6849 9.6938 11.7622 16.0878 20.7755 22.8481 69.9553
q75 10.7758 12.2041 13.8400 15.1248 17.3629 22.0618 27.1251 28.6737 83.7376
skew 2.2649 2.1057 2.0129 1.9788 1.9183 1.8158 1.7826 1.7740 1.7231
kurt 17.3872 14.8690 11.7922 10.3188 8.9804 6.9622 5.8785 7.1700 7.5178

(a) (b)

Figure A2. Evolution of daily average liquidity costs. The figure displays the daily averages of the bid-ask
spread s̃(t) and the volume-weighted average price spread ṽs(ω, t) for different volumes ω. (a) Coinbase
BTC/USD market; (b) Bitstamp BTC/USD market.

(a) (b)

Figure A3. Intraday dynamics of liquidity costs. We display the relative deviation of the average hourly
distribution of the bid-ask spread s̃(t) and liquidity costs ṽs(ω, t) for 10 BTC and 106 USD from the mean
value. (a) Coinbase BTC/USD market. The hour of the day is given in San Francisco time; (b) Bitstamp
BTC/USD market. The hour of the day is given in Berlin time.
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(a) (b)

Figure A4. Resiliency of liquidity costs for the Coinbase BTC/USD market. The figures display three
different average measures of liquidity cost in the event time τ of the 1 percent largest trades. (a) Evolution
of the average bid-ask spread s̄(τ). We include the fit of an exponential function with exponential time
constant T ≈ 6.3 s to guide the eye; (b) Evolution of the average volume-weighted average price spread
v̄s(ω, τ) for a volume of ω = 105 USD.

(a) (b)

Figure A5. Resiliency of liquidity costs for the Bitstamp BTC/USD market. The figures display three
different average measures of liquidity cost in the event time τ of the 1 percent largest trades. (a) Evolution
of the average bid-ask spread s̄(τ). We include the fit of an exponential function with exponential time
constant T ≈ 16.6 s to guide the eye; (b) Evolution of the average volume-weighted average price spread
v̄s(ω, τ) for a volume of ω = 105 USD.

(a) (b)

Figure A6. Intraday dynamics of trading activity. We plot the average hourly trade size and the average
hourly number of trades as a function of the hour of the day. (a) Coinbase BTC/USD market. The hour
of the day is given in San Francisco time; (b) Bitstamp BTC/USD market. The hour of the day is given in
Berlin time.
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Abstract: Machine learning research has gained momentum—also in finance. Consequently, initial
machine-learning-based statistical arbitrage strategies have emerged in the U.S. equities markets
in the academic literature, see e.g., Takeuchi and Lee (2013); Moritz and Zimmermann (2014);
Krauss et al. (2017). With our paper, we pose the question how such a statistical arbitrage approach
would fare in the cryptocurrency space on minute-binned data. Specifically, we train a random forest
on lagged returns of 40 cryptocurrency coins, with the objective to predict whether a coin outperforms
the cross-sectional median of all 40 coins over the subsequent 120 min. We buy the coins with the top-3
predictions and short-sell the coins with the flop-3 predictions, only to reverse the positions after 120 min.
During the out-of-sample period of our backtest, ranging from 18 June 2018 to 17 September 2018, and
after more than 100,000 trades, we find statistically and economically significant returns of 7.1 bps per
day, after transaction costs of 15 bps per half-turn. While this finding poses a challenge to the semi-strong
from of market efficiency, we critically discuss it in light of limits to arbitrage, focusing on total volume
constraints of the presented intraday-strategy.

Keywords: statistical arbitrage; cryptocurrencies; machine learning

1. Introduction

The cryptocurrency markets are a phenomenon. During the year of 2017, Bitcoin has reached a total
market capitalization of more than USD 300 bn—next to more than one thousand smaller cryptoassets
with less significant capitalization (coinmarketcap.com 2018). Despite these heights, the market has
remained fairly unregulated by governmental institutions (Dyhrberg 2016). We hypothesize that this
unique, early-stage environment may exhibit pricing inefficiencies that can potentially be detected and
exploited by statistical arbitrage strategies. So far, only few academic studies have touched upon this
question, and most of them only focus on a few selected cryptocurrencies.

One of the first works addressing this question is Shah and Zhang (2014). Specifically, the authors aim
for predicting price changes of Bitcoin during a six month period in 2014 with a Bayesian regression model.
The results are astonishing, with a return of 89 percent and a Sharpe ratio of 4.10 during a period of merely
50 trading days. However, no transaction costs are taken into account, perfect liquidity is assumed, and
only one cryptocurrency is considered. Utilizing some of the ideas proposed by Shah and Zhang (2014),
Madan et al. (2015) deploy several classification models to predict the sign of Bitcoin price changes,
leveraging information on prices, transaction volume, and data about the underlying blockchain. A
binomial generalized linear model and a random forest perform exceptionally well with 98.7 percent and
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95.0 percent accuracy for the daily sign, respectively. However, the authors note that these results may
very well be due to, in general, rising long-term prices in the market—a naive buy-and-hold strategy
would have achieved similar results in ever-rising crypto markets at that time. Lintilhac and Tourin
(2017) develop a pairs trading strategy for Bitcoin, following ideas of Tourin and Yan (2013), and other
representatives of the stochastic control approach—for an overview see Krauss (2017). Balcilar et al. (2017)
find that volume can help in predicting returns, based on a Granger-causal relationship between these
two variables. Another innovative idea for constructing explanatory variables is to include social signals.
Garcia and Schweitzer (2015) build a vector autoregressive (VAR) model to predict the sign of future
returns of Bitcoin on a daily basis. The model is provided with market information, such as returns,
transaction volumes, as well as social signals. These signals include relative search popularity based on
Google trends data, the volume of tweets containing the term “bitcoin”, and the emotional valence and
sentiment expressed in these tweets1. Daily returns above 0.3 percent and a Sharpe ratio of over 1.75, prior
to transaction costs, are generated. Up to transaction costs of 25 bps, the results remain profitable. Also
related to social signals and the “fear of missing out” (FOMO) of uniformed investors is the recent work
by Baur and Dimpfl (2018). The authors analyze asymmetric volatility effects for 20 cryptocurrencies and
find, as opposed to equities markets, that positive shocks lead to a stronger increase of volatility compared
to negative shocks. In a similar spirit, Koutmos (2018) observes an increase in the frequency of return
and volatility spillovers in recent times, especially during major news events and oftentimes driven by
Bitcoin. Beneki et al. (2019) dive deeper into this topic and test for volatility spillovers and hedging abilities
between Bitcoin and Ethereum using impulse response analysis and a multivariate BEKK-GARCH model.
In their study, the authors find a significant reduction of the diversification potential due to a delayed
positive response and large changes in time-varying correlation among the two cryptocurrencies. Colianni
et al. (2015) explore the predictive information potentially comprised in Twitter data. With the use of
text-processing, the authors analyze the negativity, positivity, and neutrality of words contained in tweets
relating to Bitcoin. Based on these data, features are generated. These features are processed with several
classification models that manage to accomplish astonishingly high accuracy values when predicting the
hour-to-hour and day-to-day sign change of Bitcoin. Instead of utilizing Twitter data, Kim et al. (2016) base
their model on sentiment expressed in user forums relating to cryptocurrencies. The authors’ framework
consists of three steps. First, they crawl text data from the relevant forums where participants express
opinions about the coin. Second, a sentiment for each comment is derived with the VADER algorithm2.
Third, an averaged one-dependence-estimator is applied as a predictive model for future price fluctuations.
With a simple trading strategy, profits of over 35 percent are accumulated. As of the day of writing, very
few studies have introduced deep learning to predictive tasks in the cryptocurrency market. McNally
et al. (2018) investigate the performance of state-of-the-art deep learning models, such as a long short-term
memory (LSTM) network, in predicting future price changes of Bitcoin. Using a rolling window of 100
days of input data, this model achieves a predictive accuracy of 52.78 percent in forecasting the price
change of the next day. Jiang and Liang (2017) follow a different approach based on deep reinforcement
learning. Recently, Ha and Moon (2018) use genetic programming to detect profitable technical trading
patterns for cryptocurrencies, and find that their system performs better than a buy-and-hold strategy.

However, to our knowledge, none of these studies have systematically transferred a well-established
statistical arbitrage approach from more mature markets to the cryptocurrency space. With the present
paper, we aim to fill this void and make the following contributions to the literature:

1 The emotional valence and opinion polarization are computed on a daily basis as proposed by Warriner et al. (2013).
2 Vader = Valence Aware Dictionary for sEntiment Reasoning. This algorithm allows to interpret slang, neologisms, and emoticons,

which are oftentimes found on social media platforms. Further information on this algorithm can be found in Gilbert (2014).
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• Development of an advanced, machine-learning-based statistical arbitrage approach for the
cryptocurrency space: we build our approach on the ideas of Fischer and Krauss (2018);
Huck (2009, 2010); Krauss et al. (2017); Moritz and Zimmermann (2014); Takeuchi and Lee (2013),
who have developed similar methods for U.S. cash equities, but on much lower frequencies (days
to months). With the present manuscript, we successfully show that relative-value arbitrage
opportunities exist in this young and aspiring market, given that a random forest is able to produce
daily returns of 7.1 bps after transaction costs.

• Consideration of microstructural effects: advancing to higher frequencies, e.g., minute-binned data,
brings along substantial challenges. First, trading volume needs to be taken into account. In cash
equities, many strategies are backtested on the closing price, which captures 7 percent of daily liquidity
for NYSE listed stocks—see Intercontinental Exchange (2018). In stark contrast, liquidity needs to be
carefully assessed for every minute bar in the cryptocurrency space, especially in case of smaller coins.
We incorporate this effect in our study and only execute trades in case liquidity is present. Second,
micro-structural effects, and especially the bid-ask bounce, need to be considered. We therefore
introduce a lag between the price on which the prediction is generated, and the subsequent price on
which execution is taking place. Hence, we eliminate the bid-ask bounce see, e.g., (Gatev et al. 2006)
and we render the strategy realistic in the digital age, given that there is sufficient time for signal
generation, order routing, and order execution.

• Shining light into the black box: machine learning models often have the downside of being
intransparent and opaque. Hence, we analyze feature importances, and we compare the random forest
to the transparent logistic regression. We find that both methods capture short-term characteristics in
the data, with past returns over the past 60 min contributing most when explaining future returns
over the subsequent 120 min.

The remainder of this paper is organized as follows. Section 2 covers the data sample as well as
software and Section 3 the methodology. Sections 4 and 5 present the results and discuss the key findings.
Finally, Section 6 concludes.

2. Data and Software

2.1. Data

In this paper, we use minute-binned price and volume data from 5 January 2018 to
7 September 2018, collected from www.cryptocompare.com via their official application programming
interface (cryptocompare.com 2018). For each minute, we collect Open, High, Low, Close, Volume f rom,
Volumeto, and Timestamp data. Open, High, Low, and Close denote the first, highest, lowest, and last price
paid for a coin c in minute t, respectively. Volume f rom and Volumeto quantify the volume of coins being
traded during that period of time and the equivalent value in USD. Timestamp is the UNIX-timestamp, i.e.,
is the number of seconds that have passed since 1 January 1970 (IEEE and The Open Group 2018).

The initial collection of coins and possible exchanges consist of the 100 coins with the highest market
capitalization according to coinmarketcap.com (2018) and all 78 exchanges available with respect to the
API, both as of 27 December 2017. To this large database, we apply several filters, ensuring minimum
liquidity requirements and data quality, and rigorously drop many of the coin-exchange combinations.
Going forward, we work with 40 coins and the data from their most liquid exchange—the combinations
are listed in Appendix A.
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2.2. Software

The code for this study is written in Python 3.5 (Python Software Foundation 2016). It involves the
preprocessing and formatting of the data, the training of the models and the backtesting engine, as well as
the evaluation of the performance, i.e., the calculation of risk and return metrics. Data preparation mostly
relies on the packages numpy (van der Walt et al. 2011) and pandas (McKinney 2010), which are powerful
tools for handling large amounts of data. Furthermore, the package sci-kit learn (Pedregosa et al. 2011)
is used for the random forest and logistic regression model and the packages SciPy (Jones et al. 2014)
and Empyrical (Quantopian Inc. 2016) are deployed for the calculation of the statistical properties and
performance analysis of the results.

3. Methodology

Following Krauss et al. (2017), the methodology of this paper consists of four steps. First, the entire
data set is split into a training set and a trading set. Second, the features (explanatory variables) and targets
(dependent variables) are created. Third, a random forest, and a simpler logistic regression model are
trained in the training period (in-sample data). Fourth, with each trained model, out-of-sample predictions
are made on the respective trading set to test the effectiveness of the model and its trading performance.
The rest of this section follows the outlined structure.

3.1. Generation of Training and Trading Set

Of the data available for each coin, the first two thirds of the time-series are used as training data
(in-sample) while the remaining third makes up the trading period (out-of-sample). The training and
trading sets are strictly non-overlapping to ensure that no look-ahead bias is introduced. As minute-binned
data since the beginning of January 2018 up to the beginning of September 2018 are used, one complete
time-series consists of close to 360,000 data points.3 Taking into account the n = 40 coins, this results in
approximately 40 · 360, 000 · 2

3 ≈ 9.6 million training examples and 4.8 million trading examples for the
models.

3.2. Feature and Target Generation

3.2.1. Features—Multiperiod Returns

Loosely following the logic of Takeuchi and Lee (2013), each feature sequence (input) is generated in
the following way: Let Pc = (Pc

t )t∈T denote the price process of coin c, with c ∈ {1, . . . , 40}, and Rc
t,t−m

the simple return for a coin c over the last m periods, i.e.,

Rc
t,t−m =

Pc
t

Pc
t−m

− 1, (1)

where the periods are in minutes. Each feature sequence then consists of the set {Rc
t,t−m} with m ∈

{{20, 40, 60, 80, 100, 120} ∪ {240, . . . , 1320, 1440}}. Hence, the model first puts emphasis on the returns of
the last 120 min and then switches to a less granular resolution to focus on the returns of the last k · 120,
with k ∈ {2, . . . , 12}, points in time. With this approach, we follow the logic of Takeuchi and Lee (2013)

3 Not all time-series examined are complete in the sense that they cover the whole period from January to September 2018. This
could be due to several reasons such as the delisting of a coin. It is noteworthy that such time-series are not eliminated but traded
according to the available data.
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and transfer it to minute-binned data with the aim of forecasting the return of the next two hours or 120
min, while using information of the returns of the last 24 h.

3.2.2. Targets

As in Krauss et al. (2017), a binary response variable Y c
t+121,t+1 ∈ {0, 1} is introduced. All target

values of the cross-section are classified as class “1” if the return over the 120 min after the predict time t
(including a one minute gap), i.e., Rt+121,t+1, is at or above the cross-sectional median of all coins, and “0”
otherwise. Therefore, instead of predicting the actual value of the future 120 min returns, the probability
Pt+121,t+1 of the coin outperforming the cross-sectional median is predicted. This approach is promising,
as classification problems have found to work better than regression problems in the context of financial
market predictions (Enke and Thawornwong 2005; Leung et al. 2000).

3.3. Models

3.3.1. Logistic regression

As a baseline model, we include a transparent (we can interpret the regression coefficients to better
understand what leads to a prediction) logistic regression (LR). The model’s name “logistic regression”
stems from the logistic function which is used to model the binary response variable. As our classification
problem comprises two classes (hence, binary), i.e., “the coin outperforms the cross-sectional median of
all coins over the following 120 min” (class 1) and “the coin does not outperform” (class 0), our model is a
linear function of the form

f (x) = y =
1

1 + e−(α+βx)
, (2)

with α, β denoting the intercept and coefficients, y the dependent and x the independent variable/feature
vector (Berkson 1953; Kleinbaum and Klein 2010). The coefficients can be estimated by maximum likelihood
using the observations from the training set—further details are available in Hastie et al. (2008).

For this paper, we rely on the implementation of Pedregosa et al. (2011) for the logistic regression
and follow the parameters outlined in Fischer and Krauss (2018), i.e., the optimal L2-regularization is
determined among 100 values on a logarithmic scale from 0.0001 to 10,000 via 5-fold cross-validation on
the respective training set and L-BFGS is deployed to find an optimum. Further, we restrict the maximum
number of iterations to 100.

3.3.2. Random forest

Following Krauss et al. (2017), who find the random forest (RF) to yield the best trading performance
in their empirical study for the S&P 500 constitutents, we opt for this model as our machine learning
benchmark. Random forests Breiman (1996, 2001); Ho (1995, 1998) are ensemble learners consisting of
many decorrelated decision trees which can be understood as their building blocks. During the learning
phase, the decision trees are trained individually on random subsets of the training samples. Hereby,
each tree is “grown” with the objective of separating the training samples as pure as possible with respect
to their class (the target value “0” or “1”). At each split (node of the tree), the samples are divided into
two buckets depending on whether or not the respective sample fulfills the learned split criterion, e.g.,
whether or not the value of the feature “return over the past 60 min” exceeds 3 percent. This process is
repeated recursively until all buckets are pure or another stop criterion, e.g., max depth J of the tree, is
reached. Once all trees are trained, the random forest model can be applied to make predictions for the
unseen data. Hereby, each tree of the forest predicts the class of the new sample based on its learned
split criterions—simply speaking, if the new sample is sorted into a “0” bucket, the tree predicts “0”,
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otherwise “1”. In the last step, the predictions of all B trees of the forest are averaged to compute the final
prediction—a value between 0 and 1 which can be interpreted as the probability that the sample belongs
to class “1”. Further details and a comprehensive description of the algorithm are available in Raschka
(2015).

As random forest implementation, we use Pedregosa et al. (2011) and largely follow
Fischer and Krauss (2018) and Krauss et al. (2017) with respect to the parameters of random forest model.
Specifically, we set the number of trees B to 1000 and the maximum tree depth J to 15. For the random
feature selection, we follow the default value m =

√
p for classification, whereby p denotes the number of

features—see (Pedregosa et al. 2011).

3.4. Forecasting, Ranking and Trading

Once the two models are trained using the features and targets of the training set (Note: we train
universal models, i.e., each of the two models is trained using the samples of all coins), the learned
parameters are fixed and the two models are transferred to the trading phase. In this phase, only the
features are used (which are limited to the information an investor would have known at the respective
point in time) and out of sample predictions are made. Specifically, at the end of each minute t of the
trading period, each model forecasts the price development of all individual coins over the next two hours,
i.e., the probability to outperform the cross-sectional median. We hence obtain two lists (one list per model)
with 40 probabilities (one for each coin) which we sort in descending order. At the top of the lists, we
find the coins that are most likely to outperform the cross-section of coins, whereas at the bottom, we
find those coins most likely to underperform. Based on that ranking, we enter a long position for the
top-3 coins, and a short position for the flop-3 coins. Finally, we reverse all positions at the end of the two
hours holding period. To simulate the whole trading period from 18 June 2018 to 7 September 2018, the
above procedure is repeated for each minute of the trading set resulting in 120 parallel portfolios active
at each point in time (each portfolio is funded with 1/120th of the overall capital and comprises three
long and three short positions at leverage 1). To render the backtest more realistic, we incorporate several
execution constraints and transaction cost assumptions:

• Execution gap: We create the trading signal at the end of minute t and place the order for execution
at the closing price of the following minute t + 1. In other words, we introduce a one period gap
between signal generation and execution to account for the time frame required for data processing,
prediction making, and order management.

• Volume constraint (opening of position): A position is only opened when at least one unit of the currency
pair is traded at the respective point in time—otherwise, the order is canceled and the amount of
capital foreseen for the position is kept in cash for the two hours period.

• Volume constraint (closing of position): Once the position has reached its two hours lifetime, a closing
order is triggered and executed at the first bar with sufficient volume.

• Elimination of starting point bias: To avoid any bias related to the starting point (point in time at which
the first portfolio is opened), we open a new portfolio at every minute t ∈ {1, 2, ..., 120} and average
the results across the 120 portfolios that are opened at each time t.

• Transaction costs: We assume 15 bps per half turn, based on analyses on transaction costs and liquidity
costs provided in Schnaubelt et al. (2019) on cryptocurrency limit order book data.

Finally, at the end of the backtesting period, we analyze the financial performance for each of the two
models based on the logged trades.
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4. Results

In this section, we evaluate the financial performance of the RF and the LR model (when investing in
the top-3 and flop-3 coins), and contrast them to a simple buy-and-hold strategy in Bitcoin (BTC) as well
as the general market (MKT). The latter shall be defined as an equally-weighted investment in all coins
at the beginning of the trading period. We proceed in three steps. First, we analyze the performance on
trade level. Next, we aggregate the individual trades to daily returns and explore the development of the
financial performance over time. Finally, we move beyond financial results and shed light on the patterns
the employed predictive models exploit to select coins for trading.

4.1. Trade-Level Results

First, we evaluate the predictive performance of the logistic regression (LR) and the random forest
(RF) model on the level of individual round trip trades.

Table 1 depicts the results of the more than 100,000 round trip trades over the full out-of-sample
period from 18 June 2018 until 7 September 2018 after transaction costs of 30 bps. We make the following
observations:

• Positive mean returns: Both models yield positive and statistically significant mean returns with the RF
(3.8 bps) clearly outperforming the LR (2.0 bps) by a factor of almost two. Looking at the contribution
from long trades and short trades, we find that the latter are more profitable (−2.1 bps. vs. 5.6 bps
(LR) and 0.2 bps. vs. 6.4 bps. (RF))—a finding that is likely driven by the overall decline of the
cryptocurrency market during this period.

• Extreme price movements: Looking at the minimum (−42.8 percent) and maximum returns (34.4 percent),
we find astonishingly high values given the two hour holding period. However, these observations
can be attributed to the extreme price movements in cryptocurrency markets—see Osterrieder and
Lorenz (2017). The 25 percent and 75 percent quartiles are less extreme with values between −1.2 and
1.3 percent for both models.

• Negative median: We further notice that both, the RF and the LR model, have negative median returns.
In other words, more trades lead to a loss than to a profit. However, taking into account the magnitude
of the profits and losses, we find that the profits surpass the losses by approximately 5 bps (LR) and 10
bps (RF) on average (simply speaking, more money is made when the model is right than lost when it is
wrong). In result, the mean trade of the RF is positive, i.e., 0.49587× 0.01774+ 0.50413× (−0.01669) =
0.00038 > 0.

• Skewness and Kurtosis: Both, LR and RF exhibit positive skewness, which is a favorable property
for investors, given that the right tail tends to be more pronounced than the left tail. By contrast,
kurtosis values above 9 indicate leptokurtic behavior, and that significant risk lies in the extremes—see
Osterrieder and Lorenz (2017).

• Differing number of trades: Finally, we observe that the number of executed trades differs between the
two models as well as the long and short leg. As described in the previous section, our backtesting
engine cancels orders in case no volume is available to execute the respective trade. We may therefore
cautiously conclude that the RF model selects a larger share of less liquid coins (119,829 executed
trades) compared to the LR model (158,408 trades). Note: the overall high number of trades results
from the backtesting logic in which we open a new portfolio with three long orders and three short
orders by the end of each minute to avoid starting point bias.
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Table 1. Key return characteristics on the level of individual round trip trades for the logistic regression
(LR) and the random forest model (RF) when investing in the top-3 and flop-3 coins, after transaction costs
of 30 bps for the round trip trade.

LR RF

Long Short Total Long Short Total

No. trades 73319 85089 158408 49689 70140 119829
Mean return −0.00021 0.00056 0.00020 0.00002 0.00064 0.00038
Standard error 0.00009 0.00009 0.00006 0.00011 0.00010 0.00008
t-Statistic −2.35284 6.19182 3.17475 0.19865 6.39796 5.14330
Minimum −0.17736 −0.42764 −0.42764 −0.17649 −0.42764 −0.42764
25% Quantile −0.01169 −0.01086 −0.01127 −0.01140 −0.01064 −0.01094
Median −0.00141 0.00109 −0.00004 −0.00192 0.00095 −0.00015
75% Quantile 0.00993 0.01313 0.01172 0.00990 0.01299 0.01183
Maximum 0.29043 0.34424 0.34424 0.26296 0.34424 0.34424
Share > 0 0.46677 0.52671 0.49897 0.45622 0.52395 0.49587
Standard dev. 0.02449 0.02656 0.02563 0.02490 0.02653 0.02587
Skewness 1.00453 −0.44146 0.14509 1.03417 −0.38629 0.14070
Kurtosis 9.26031 9.46260 9.41992 8.98506 9.55134 9.36387
Mean return positive trade 0.01726 0.01750 0.01739 0.01802 0.01757 0.01774
Mean return negative trade −0.01551 −0.01828 −0.01691 −0.01508 −0.01799 −0.01669

4.2. Return Development over Time

Next, we aggregate the individual trades to daily returns and further explore the financial performance.
Table 2 depicts daily and annualized risk-return metrics for the logistic regression (LR) and the random
forest (RF) compared to Bitcoin (BTC) as well as the general market (MKT), i.e., an equal investment in
all coins at the beginning of the trading period.

Table 2. Daily and annualized risk-return metrics for the logistic regression (LR) and the random forest
model (RF) model when investing in the top-3 and flop-3 coins, versus Bitcoin (BTC) and the general market
(MKT), i.e., an equal investment in all coins at the beginning of the trading period. Panel A depicts daily
return characteristics, panel B depicts risk and panel C annualized risk-return metrics.

LR RF BTC MKT

A Mean return 0.00049 0.00071 −0.00005 −0.00281
Standard dev. 0.00661 0.00534 0.03260 0.03680
Minimum −0.02583 −0.01027 −0.10016 −0.10805
25% Quantile −0.00323 −0.00212 −0.01598 −0.02270
Median 0.00025 0.00020 0.00111 0.00069
75% Quantile 0.00388 0.00324 0.01458 0.01829
Maximum 0.01920 0.02115 0.08777 0.11555
Share > 0 0.51807 0.53012 0.50602 0.50602

B Historic VaR 1% −0.01523 −0.01025 −0.09112 −0.10461
Historic VaR 5% −0.00809 −0.00756 −0.05482 −0.05978
Maximum drawdown −0.05892 −0.02432 −0.26738 −0.32908

C Annual return 0.18762 0.29012 −0.18754 −0.71640
Annual volatility 0.12632 0.10203 0.62284 0.70310
Sharpe ratio 1.42394 2.54785 −0.02755 −1.46060
Sortino ratio 2.16255 4.51777 −0.03787 −1.90273

We make the following findings:
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• Panel A—daily return characteristics: With regard to mean return, the random forest surpasses the
logistic regression by 2.2 bps per day (7.1 bps vs. 4.9 bps). We further observe that both, the maximum
and minimum daily returns, are within reasonable levels of −2.6 percent (LR) and +2.1 percent (RF),
respectively. The underlying reason is the large number of active positions at each point in time (see
Section 3.4) which also explains the low standard deviation of 66 bps (LR) and 53 bps (RF). Looking at
Bitcoin (BTC) and the general market (MKT), we find mean returns of −0.5 bps per day and −28.1
bps, respectively.

• Panel B—risk metrics: Panel B reveals favorable risk metrics for the random forest with a 1-percent
value at risk of −1.0 percent compared to −1.5 percent for the logistic regression. Moreover, we find
a significantly lower maximum drawdown of −2.4 percent for the RF and -5.9 percent for the LR
compared to −26.7 percent for Bitcoin and −32.9 percent for the general market. The difference
is caused by the short leg of the portfolio, i.e., the investment in the flop-3 coins which helps in
eliminating market risk.

• Panel C—annualized risk-return metrics: Finally, panel C depicts annualized risk-return metrics.
We observe annualized returns of 29.0 percent for the random forest and 18.8 percent for the logistic
regression, compared to vastly negative results for the buy-and-hold benchmarks. Given the low
volatility, these results translate into a Sharpe ratio of 1.4 (LR) and 2.5 (RF) respectively—hereby
outperforming both Bitcoin and the general market by a clear margin.

Finally, Figure 1 depicts the cumulative profits for the random forest model (RF), and compares it to
the development of Bitcoin (BTC) and the general market (MKT) over the duration of the out-of-sample
trading period from 18 June 2018 to 7 September 2018:

-0.3

-0.15

0

0.15

RF BTC MKT

+6%

-25%

-5%

Figure 1. Development of financial performance of random forest model (RF) when investing in the top-3
and flop-3 coins vs. Bitcoin (BTC) and general market (MKT), i.e., an equal investment in all coins at the
beginning of the trading period.

We observe that the RF model shows fairly steady growth at low volatility levels—which is in stark
contrast to the rugged nature and wild swings of Bitcoin and the general market. By the end of the trading
period, the random forest has accumulated profits of +6 percent, whereas Bitcoin (BTC) and the general
market (MKT) yield negative profits of −5 percent and −25 percent respectively.
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4.3. Beyond Returns—Shedding Light Into the Patterns Exploited for Trading

In the following paragraphs, we move beyond the financial results and shed light into specific aspects
of our predictive models. Specifically, we extract the feature importance of the random forest and contrast
it with the regression coefficients of the logistic regression. We hereby aim to gain insights into the patterns
our models exploit in order to select coins for trading. Figure 2 depicts the feature importance (RF) and
regression coefficients (LR) respectively:
We make the following observations:

• Feature importance analysis: The upper half of the figure shows the features (explanatory variables)
used by the random forest, sorted by feature importance in descending order. The most important
features are the returns over the past 20, 40 and 60 min. In other words, the random forest pays most
attention to the price development over the past hour. By contrast, the longer term price development
(past 12–24 h) does not seem to have a substantial contribution to predicting the price change over the
next two hours.

• Coefficient analysis: Looking at the lower part of the figure, we take advantage of the high transparency
and explanatory value of the logistic regression model. The highest regression coefficient of
approximately −6.5 belongs to the return over the past 20 min, followed by the coefficients for
the 40 and 60 min returns. Moreover, we find that almost all regression coefficients exhibit a negative
sign—in other words, the model likely produces a positive forecast (long), in case the respective
coin has experienced a decline in the recent past (negative feature values which are multiplied with
negative regression coefficients) and vice versa. We may therefore cautiously conclude that the model
capitalizes on short-term mean-reversion—see Jegadeesh (1990); Lehmann (1990).
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Figure 2. Feature importance extracted from the random forest and regression coefficients for the logistic
regression model. The features (explanatory variables) are sorted in descending order based on their
importance extracted from the random forest model. The coefficients of the logistic regression model are
plotted following the same order.

5. Discussion—Limits to Arbitrage

We would like to discuss our findings in light of limits to arbitrage. The most prominent effect that
may adversely affect returns, is market microstructure. Inadvertently trading the bid-ask bounce in a
backtest leads to high and statistically significant returns that may yet not be captured in reality. Hence, we
have followed Gatev et al. (2006) and representatives of the high-frequency pairs trading literature—see
Bowen and Hutchinson (2016); Liu et al. (2017), and only trade (i) when volume is present for a coin
and (ii) with a one period gap after signal generation. In other words, when the signal is generated at
the end of minute t, we only enter the market at the closing price of minute t + 1, as long as volume is
present. To corroborate our findings, and to take into account potential liquidity issues, we further delay
execution by additional periods—see Table 3 for our findings. We see that executing without gap—as is
often the baseline in the literature—would lead to returns of 20.5 bps per round trip4. This value drops

4 More precisely, by executing at the opening price of minute t + 1, we still leave a small gap compared to an execution at the
closing price of minute t (which is used to make the prediction).
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drastically to 3.8 bps when delaying execution to minute t + 1—our base case used throughout this study.
A delay to minute t + 2 leads to returns of 2.4 bps and a delay to minute t + 3 to 1.6 bps—both of them
still statistically significant. When delaying execution to minute t + 4, returns are still positive at 0.9 bps,
albeit not statistically significant. As of minute t + 5, the alpha has vanished. Hence, we may conclude
that fast execution after signal generation is paramount to the success of such a strategy. The latter is
technically possible, but still a challenge. A second limit to arbitrage are short-selling constraints—which
are commonly known in equity markets, see Gregoriou (2012). For cryptocurrencies, at the time of writing,
several exchanges offer short selling (e.g., Poloniex, Bitfinex, etc.), but it is questionable whether the
desired coin is always available at reasonable costs and in reasonable quantities. Given that the majority of
the RF profits stem from the short leg in a downward market environment, this limit poses a challenge
to any investor implementing such a strategy. The third major limit to arbitrage is capacity. An intraday
strategy for cryptocurrencies may offer high Sharpe ratios. By contrast, costs for productionizing and
operating such a strategy would be significant, when taking into account human capital and technical
infrastructure. The reward may be fairly thin. The average trading volume per coin and minute is
7000 USD for the considered coin-exchange combinations (see Appendix A). Assuming a participation
rate of 5 percent and a six-positions portfolio (top-3 long, flop-3 short) would lead to an estimated capacity
of 0.05 × 7000 × 6 = 2100 [USD] per minute—a fairly low value, compared to more mature markets.

Table 3. Key return characteristics on the level of individual round trip trades for the random forest (RF)
model when investing in the top-3 and flop-3 coins, after transaction costs of 30 bps. Each column represents
the gap between signal generation and signal execution, i.e., gap 0 refers to signal generation at the closing
price of bar t and execution at the opening price of bar t + 1. Gap 1 refers to a delayed execution at the
closing price of bar t + 1, gap 2 to a delayed execution at the closing price of bar t + 2, and so forth.

Gap 0 Gap 1 Gap 2 Gap 3 Gap 4 Gap 5

No. trades 119829 119829 118948 118424 118055 117630
Mean return 0.00205 0.00038 0.00024 0.00016 0.00009 −0.00001
Standard error 0.00008 0.00008 0.00008 0.00008 0.00008 0.00007
t−Statistic 26.97626 5.14330 3.24117 2.15184 1.15309 −0.09429
Minimum −0.42764 −0.42764 −0.40397 −0.43317 −0.40940 −0.37498
25% Quantile −0.00974 −0.01094 −0.01104 −0.01113 −0.01120 −0.01126
Median 0.00097 −0.00015 −0.00031 −0.00043 −0.00053 −0.00061
75% Quantile 0.01330 0.01183 0.01163 0.01146 0.01135 0.01124
Maximum 0.34424 0.34424 0.34424 0.34424 0.34424 0.34424
Share > 0 0.52342 0.49587 0.49294 0.49070 0.48810 0.48605
Standard dev. 0.02626 0.02587 0.02574 0.02566 0.02566 0.02552
Skewness 0.32786 0.14070 0.11708 0.09076 0.04651 0.09360
Kurtosis 9.19105 9.36387 9.14659 9.35075 9.76571 9.47677
Mean return positive trade 0.01869 0.01774 0.01763 0.01756 0.01755 0.01745
Mean return negative trade −0.01623 −0.01669 −0.01666 −0.01660 −0.01656 −0.01651

6. Conclusions

With our paper, we have successfully transferred an advanced machine-learning-based statistical
arbitrage approach from the U.S. equities markets to a large universe of 40 cryptocurrency coins on
minute-binned data. Using returns over the past 1440 min (24 hours) and a random forest classifier, we aim
to forecast the development of each coin for the subsequent 120 min. When going long the top-3 and
short the flop-3 predictions, we find statistically and economically significant excess returns of 3.8 bps per
round-trip trade—even after delaying order execution by one period, incorporating volume constraints
for the opening and closing of the position, and transaction costs of 15 bps per half-turn. These results
outperform a naive buy-and-hold strategy of Bitcoin, and of all 40 participating coins, equally-weighted
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by far—thereby indicating that this young and aspiring market may not (yet) follow the semi-strong
form of market efficiency (Fama 1970). By analyzing the feature importances of the random forest and
by comparing it to the coefficients of a logistic regression model, we observe that both methods capture
short-term characteristics in the data, with returns over the past 60 min contributing most when explaining
future returns over the subsequent 120 min. Moreover, the regression coefficients of the logistic regression
model suggest the capitalization on short-term mean reversion—a well-documented phenomena in the
finance literature (see Jegadeesh 1990; Lehmann 1990). Finally, we critically discuss these findings in light
of potential limits to arbitrage. Hereby, we find the returns to remain positive and statistically significant
when waiting up to three minutes after signal generation—so timely execution is paramount. Furthermore,
potential short-selling constraints and overall market liquidity, which limits the capacity of the strategy,
pose additional challenges on the implementation of statistical arbitrage strategies in the yet developing
cryptocurrency markets.
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Appendix

Table A1. Overview of coins and corresponding exchanges used throughout this study. Note: All coins are
denominated in USD prices as provided by www.cryptocompare.com.

No Coin Exchange No Coin Exchange

1 ADA BitTrex 21 QTUM Bitfinex
2 BCH Bitfinex 22 RDD Yobit
3 BCN HitBTC 23 SAN Bitfinex
4 BTC Bitfinex 24 SNT Bitfinex
5 BTG Bitfinex 25 STRAT HitBTC
6 CND HitBTC 26 TNB Bitfinex
7 CVC HitBTC 27 TNT HitBTC
8 DASH Bitfinex 28 TRX Bitfinex
9 DATA Bitfinex 29 USDT Kraken

10 EOS Bitfinex 30 VIB HitBTC
11 ETC Bitfinex 31 WAVES Yobit
12 ETH Bitfinex 32 XDN HitBTC
13 ETP Bitfinex 33 XEM Yobit
14 GNT Bitfinex 34 XLM Poloniex
15 LTC Bitfinex 35 XMR Bitfinex
16 MANA Bitfinex 36 XRP Bitfinex
17 NEO Bitfinex 37 XVG BitTrex
18 NXT Poloniex 38 YOYOW Bitfinex
19 OMG Bitfinex 39 ZEC Bitfinex
20 QASH Bitfinex 40 ZRX Bitfinex
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Abstract: This paper studies the behaviour of Bitcoin returns at different sample frequencies.
We consider high frequency returns starting from tick-by-tick price changes traded at the Bitstamp and
Coinbase exchanges. We find evidence of a smooth intra-daily seasonality pattern, and an abnormal
trade- and volatility intensity at Thursdays and Fridays. We find no predictability for Bitcoin returns
at or above one day, though, we find predictability for sample frequencies up to 6 h. Predictability
of Bitcoin returns is also found to be time–varying. We also study the behaviour of the realized
volatility of Bitcoin. We document a remarkable high percentage of jumps above 80%. We also find
that realized volatility exhibits: (i) long memory; (ii) leverage effect; and (iii) no impact from lagged
jumps. A forecast study shows that: (i) Bitcoin volatility has become more easy to predict after
2017; (ii) including a leverage component helps in volatility prediction; and (iii) prediction accuracy
depends on the length of the forecast horizon.

Keywords: bitcoin; realized volatility; HAR; high frequency

1. Introduction

One of the reasons why cryptocurrencies—and in particular Bitcoin introduced by Nakamoto
(2009)—became so popular in 2017 has been their huge price increase which caught the attention from
both the media and regular people. Indeed, we find that approximately 65% of all Bitcoin transactions
happened in 2017 or later.1 As a consequence of this huge interest, Bitcoin experienced a price increase
of 1324% from the begin to the end of 2017. The financial industry and the academics have also been
very interested in Bitcoin over the last years. For example, the Chicago Mercantile Exchange (CME)
as well as Nasdaq and the Tokyo Financial Exchange started to negotiate Bitcoin futures during 2017
and 2018, see CME (2017), Bloomberg (2017), and Cryptocoinsnews (2017). Academics working in
the field of financial econometrics have studied Bitcoin using well known methodologies, such as
ARMA–GARCH models. For example, Dyhrberg (2016) compared Bitcoin with gold and the American
dollar and classified the behavior of Bitcoin in between these two assets. Bariviera (2017) found long
memory in the Bitcoin volatility measured as the logarithmic difference between intraday highest and
lowest prices. Phillip et al. (2018) document long memory in cryptocurrencies as well. Additional
results about the time–dependence properties of cryptocurrencies are reported in Zhang et al. (2019).
Ardia et al. (2018) and Stavroyiannis (2018) model and forecast the value at risk for Bitcoin. Recently,
Catania and Grassi (2017) show that standard volatility models, like GARCH, are generally not
suitable for cryptocurrency time–series and suggest to use a more sophisticated modelling technique
based on the score driven approach, see Creal et al. (2013) and Harvey (2013). The predictability of
cryptocurrencies returns and volatility has been studied in Catania et al. (2019) and Catania et al. (2018),

1 Specifically, 54.42% for the Bitstamp exchange and 68.78% for the Coinbase exchange.
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respectively. Understanding the behavior of Bitcoin volatility has important implications for individual
investors and public institutions. Individual investors – people not in the finance industry but
interested in trading cryptocurrencies – should be informed about how the Bitcoin volatility evolves
and whether these investment opportunities match with their risk profile. Public institutions, like the
central banks of Ecuador, Tunisia, and Sweden who are considering issuing their own cryptocurrency,
should be interested in the behavior of Bitcoin due to the possible systemic risk they would face by
entering in this new market.

In this paper, we study the Bitcoin returns at high frequency and its realized volatility measure.
We start by describing the construction of our dataset from the raw transactions downloaded from
the Bitstamp and Coinbase exchanges.2 The first part of our analysis focuses on the in sample
properties of Bitcoin returns sampled at different frequencies. We study the autocorrelation structure
of Bitcoin returns as well as the intraday and intraweek seasonalities of Bitcoin volatility and traded
volumes. Results indicate strong presence of both intraday and intraweek seasonality in the volatility.
We also document that seasonality is different across exchanges. Specifically, Coinbase follows the US
trading activity, while Bitstamp the European one. The second part the paper focuses on predicting
realized volatility for Bitcoin using several forecasting models. Realized volatility is a consistent
estimator of the quadratic variation of the price process and is presently widely used in financial and
risk management applications, see Bauwens et al. (2012) for a recent overview. We consider the baseline
HAR-RV model of Corsi (2008) as well as its generalization with the inclusion of jumps (Andersen et al.
2007; Barndorff-Nielsen 2004; Barndorff-Nielsen and Shephard 2003; Barndorff-Nielsen et al. 2006) and
the leverage component (Corsi et al. 2012). Our results suggest that: (i) the predictability of Bitcoin
realized volatility has increased over time; (ii) including the leverage component helps in predicting
future volatility levels; and (iii) predictability varies with the forecast horizon. Both in sample and
out of sample results are reported for the two exchanges as well as for the subperiod 2017–2018
which coincides with the explosion in the interest of Bitcoin. Overall, our results indicate several
peculiarities of Bitcoin volatility compared to the volatility of alternative investment opportunities.
First, we find that the frequency of jumps is much higher compared to common findings. Second,
in contrast to Catania and Grassi (2017) and Ardia et al. (2018) who find an “inverted” leverage
effect, our results show that Bitcoin exhibits a leverage effect similar to that of equity assets when this
is measured using the Realized Volatility estimator. This last point also supports the arguments of
Dyhrberg (2016) who classify Bitcoin as an asset and not as an exchange rate. Indeed, the leverage effect
is of little importance for exchange rates as documented for example by Hansen and Lunde (2005) and
Ardia et al. (2018).

The structure of the paper is organized as follows. Section 2 details the dataset we build starting
from tick–by–tick price changes to equally spaced logarithmic returns. Section 3 studies the behaviour
of Bitcoin returns sampled at different frequencies. Section 4 analyses the realized volatility of Bitcoin.
Conclusions are drawn in Section 5.

2. Data

Our dataset is composed by tick-by-tick traded prices recorded at the two exchanges Bitstamp and
Coinbase over which the majority of the transactions takes place. From both exchanges we collect the
tick-by-tick transaction data using the freely available API at www.api.bitcoincharts.com. The raw data
include the transaction price for every trade, along with the amount of Bitcoins traded. Observations
start the 13 September 2011 on Bitstamp and the 1 December 2014 on Coinbase and are reported in UTC

2 Among several exchanges where Bitcoin is traded we have selected two of the most active ones. Another possibility would
have been to consider GDAX instead of Coinbase since this exchange might give a better representation of Bitcoin. However,
we have decided to use Coinbase since, differently from GDAX and Bitstamp which are traditional exchanges, it is a click
and buy exchange which allows investor to immediately invest in Bitcoin. We thank an anonymous referee for pointing out
this to us.
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time. We record data up to 18 March 2018 for a total of 22,457,894 trades for Bitstamp and 39,439,004 for
Coinbase. Unfortunately, trades are reported with a precision of one second. However, even though
it is not reported in the exchanges documentations, we conjecture that trades within a second are
reported in a chronological order. Overall, we find that 47.35% and 70.40% of the recorded transactions
happen simultaneously with at least one other trade for Bitstamp and Coinbase, respectively.

Data Cleaning

Similar to standard high-frequency financial time-series, raw tick-by-tick Bitcoin prices are
contaminated by wrongly reported observations. As suggested by Barndorff-Nielsen et al. (2009),
we start by removing all those transactions associated with zero or negative volume. As a second step
of data cleaning, we apply the methodology of Brownlees and Gallo (2006) to filter each transaction
price. Specifically, let pi be the price of Bitcoin associated with trade i in our dataset, we apply the
following rule:

(|pi − p̄i (k)| < 3si (k) + γ) =

{
True, pi is kept

False, pi is removed
, (1)

where p̄i (k) and si (k) denote δ-trimmed mean and sample standard deviation of a neighborhood of k
observations around i, respectively. According to Brownlees and Gallo (2006), the positive integer k
should be chosen as a function of the trading intensity, which for Bitcoin is relative high since there is
no minimum buy-level. The additional tuning parameter γ ∈ (0, 1) is a granularity parameter and
should prevent a zero standard deviation caused by sequences of k equal prices. Finally, δ ∈ (0, 1)
helps to reduce the effect of extreme observations during the filtering procedure. We run the filter
reported in Equation (1) using different choices of γ, and k. Table 1 reports results from the cleaning
procedure in terms of percentage of outliers eliminated over the full sample and on a daily basis, for
different choices of the tuning parameters γ ∈ {0.02, 0.04, 0.06} and k ∈ {40, 60, 80}. We set δ = 5%
and found that results are robust to this choice.

Table 1. Number of outliers and average number of outliers per day in percentage points as a function
of the rolling trimmed mean parameter k and the granularity parameter γ. Results are reported for
Coinbase and Bitstamp using Equation (1) with δ = 5%.

(k, γ) (40, 0.02) (40, 0.04) (40, 0.06) (60, 0.02) (60, 0.04) (60, 0.06) (80, 0.02) (80, 0.04) (80, 0.06)

Bitstamp
Number of outliers 141,029 134,584 128,934 104,018 99,007 85,593 82,623 78,603 75,438

Average outliers per day 0.51% 0.46% 0.42% 0.38% 0.34% 0.30% 0.31% 0.27% 0.25%

Coinbase
Number of outliers 118,162 107,936 100,570 98,037 89,922 84,009 85,499 78,482 73,521

Average outliers per day 0.24% 0.20% 0.17% 0.19% 0.16% 0.14% 0.17% 0.14% 0.12%

The percentage of outliers we find are consistent with the findings of Brownlees and Gallo (2006)
and Barndorff-Nielsen et al. (2009). For k = 80 and γ = 0.06 we find almost half the amount of
outliers than for the case k = 40 and γ = 0.02. In general, we see a clear decreasing pattern in
the amount of outliers when increasing the surrounding neighborhood as well as the granularity
parameter. Consistently with Brownlees and Gallo (2006), we also find that the amount of outliers
increases along with the increase in the number transactions. Indeed, for the case k = 60 and γ = 0.02,
we find that 58.66% and 81.95% of the outliers are from 2017 or later for Bitstamp and Coinbase,
respectively. Generally, we find that the outcome of the cleaning procedure is similar to that of
Brownlees and Gallo (2006) suggesting that no particular attention should be made when dealing with
high-frequency Bitcoin prices compared to the standard procedure employed for other financial series.
Therefore, we stick to Brownlees and Gallo (2006) and use price series filtered using (k, γ) = (60, 0.02)
for our analysis. Starting from the filtered series of prices, we compute an equally spaced sequence of
one–second prices and volumes. When multiple transactions are available within the same second, we
set the final price to the median price computed over that second. Days with less then 40 observations
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have been removed for the dataset. We removed 167 days for Bitstamp and 16 days for Coinbase from
the begin of the sample. Beside this, in order to remain with a time series without missing days, we let
our data set to start from 17 March 2013 for Bitstamp and from 2 February 2015 for Coinbase. In order
to isolate the effect of 2017, for the rest of the paper results are reported for the full sample as well as
for the sub-sample after 1 January 2017 at midnight labelled as “Hype”. Table 2 summarizes the results
from the cleaning procedure.

Table 2. This table summarizes the results from the cleaning procedure. Starting from the raw dataset,
transactions associated with non positive volume are removed. Outliers are identified following the
procedure of Brownlees and Gallo (2006). The “Simultaneous ticks” reports the number of transactions
that occurs within the same second. The row “Final sample size in seconds” and “ Trading days” report
the number of equally spaced observations in second and the number of trading days, respectively.
Results are reported for the two exchanges Bitstamp and Coinbase as well as for the full sample and
the sub–sample “Hype”.

Bitstamp Coinbase

Full Sample Hype Full Sample Hype

Raw observations 22,346,195 12,217,195 39,285,138 27,126,897
Volume ≤ 0 1112 98 0 0

Outliers 104,295 61,350 103,071 85,418
Simultaneous ticks 9,976,748 5,338,296 28,400,400 18,861,682

Final sample size in seconds 12,263,584 6,817,445 10,781,667 8,179,797
Trading days 1825 442 1132 442

3. High Frequency Bitcoin Returns and Realized Volatiltiy

We start our analysis by computing the series of percentage Bitcoin logarithm returns at second
s = 1, . . . , 86, 400 in day t as:

rs,t = 100 × [log(ps,t)− log(ps−1,t)],

where ps,t and ps−1,t are two subsequent Bitcoin prices for day t. One second logarithmic returns are
subsequently aggregated at different frequencies as reported below. We also compute the realized
volatility for day t as in Andersen et al. (2001b). As suggested by Liu et al. (2015) realized volatility is
computed using 5-min returns, as:

RVt =
288

∑
j=1

r̃2
j(300),t,

where r̃j(N),t = ∑
mj
s=mj rs,t and mj = (j − 1)× N + 1 and mj = j × N and we set N = 300 to achieve

5-min. aggregation. Table 3 reports a comparison between the realized variance of Bitcoin and the
variance of S&P 500 measured with the VIX. We note that the volatility of Bitcoin and that of S&P 500
are comparable during the years 2015 and 2016. On the contrary, in the period 2017–2018 the volatility
of Bitcoin is considerably higher compared to that of S&P 500. We also note that volatility of Bitcoin is
higher during the bear market period of 2018 than during the bubble period of 2017. Overall, results
indicate that the volatility of volatility is much higher for Bitcoin than for the S&P 500.

Descriptive statistics for Bitcoin percentage log returns aggregated at the 5-min. frequency are
reported in Table 4. We observe that both series are characterized by extreme observations. We find
that returns traded at the Bitstamp exchange exhibit higher volatility. However, we also note that
returns traded at Coinbase are characterized by more pronounced negative skewness and higher excess
of kurtosis. Overall, departure from Gaussianity is evident from the data. To conclude the analysis
of Bitcoin returns at 5-min, in Figure 1 we report Gaussian kernel densities estimated on the mean,
standard deviation, skewness, and kurtosis coefficients computed over each trading day available in
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our dataset. Interestingly, while the skewness and the excess of kurtosis coefficients are similar across
exchanges and sub–samples, we note that the distribution of the standard deviation is considerably
shifted to the right during the Hype period. Furthermore, it is also evident that during the Hype
period we observe more dispersed average returns.

Table 3. Comparison over the period 2015–2018 between daily average realized variance of Bitcoin,
measured using Coinbase and Bitstamp 5-min returns and S&P 500 measured using the volatility
index VIX. The first four columns report the sample while the last four columns the standard deviation
(i.e., the volatility of volatility).

Mean Standard Deviation

2015 2016 2017 2018 2015 2016 2017 2018

S&P 500 16.67 15.83 11.09 16.64 4.34 3.97 1.36 5.09
Coinbase 11.25 6.89 37.24 59.02 29.76 17.26 78.46 67.15
Bitstamp 23.10 10.08 37.46 64.88 72.48 14.69 57.19 62.44

Panel (A) Bitstamp

Panel (B) Coinbase

Figure 1. Gaussian kernel densities estimated using 5 min returns over the daily mean (a); standard
deviation (b); skewness (c) and excess of kurtosis (d) coefficients for Bitstamp (panel A) and Coinbase
(panel B). Results are reported for the full sample (black) and for the Hype period (red).
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Table 4. Summary statistics of the 5 min Bitcoin log returns. Results are reported for the two exchanges
Bitstamp and Coinbase over the full period “Full” and conditional on the Hype period.

Bitstamp Coinbase

Full Hype Full Hype

Maximum 61.09 7.41 10.62 10.62
Minimum −36.89 −15.54 −21.02 −21.02

Mean 0.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 0.00

Std. Dev. 0.31 0.33 0.20 0.31
Skewness −0.28 −0.38 −0.58 −0.40

Excess of kurtosis 8.84 8.28 14.36 10.22

3.1. Are Bitcoin Returns Predictable?

Catania et al. (2019) investigate the predictability of Cryptocurrencies returns—and in particular
Bitcoin—at one–day horizon.3 They find evidence of predictability for Bitcoin returns at the one–day
frequency when averaging over a large number of Dynamic Linear Models resorting to the Dynamic
Model Averaging technique. In this section, we only focus on the plain autoregressive model of order
one defined as:

r̃j(N),t = μN + φNr̃j(N)−1,t + σε j(N),t, ε j(N),t
iid∼ (0, 1),

where φN is the first order autoregressive coefficients for frequency N. Figure 2 plots the estimated
coefficient φN for Bitstamp and Coinbase according to different values of N starting from N = 300
(five minutes) to N = 2, 592, 000 (30 days). Results for the Hype period are also reported.
We find that φN is negative and statistical different from zero when returns are aggregated up to
6 h. The autoregressive coefficient follows an upward trend and a peculiar curve around the 12 h
aggregation frequency. After this point, the estimated coefficient decreases again and start being quite
noisy around 0. We find that this behaviour is consistent across exchanges and also holds during the
Hype sub-sample.

We conclude that there is no strict evidence indicating that Bitcoin returns can be predicted using
a first order autoregressive model when looking at horizons longer than a day. However, by looking
at intraday horizons, and especially within the first 6 hours, it seems like there is some predictability,
even though the statistical significance is limited.4

Gencay et al. (2001) note that the first order autocorrelation of high frequency financial assets
is time–varying resulting in different patterns of predictability over time. We follow their approach
and investigate the stability of the estimated φN over time for different N. We expect that due to the
increase in the number of transactions the Bitcoin market has become more efficient over time, resulting
in insignificant predictability based on prior observations. Thus, we estimate φN for N = 900 (15 min),
N = 1800 (30 min), and N = 3600 (one hour) using only observations available in the previous month
of data and update its value according to a rolling window of fixed length. Figure 3 displays the
estimated φN coefficients for Bitstamp and Coinbase. We find that during the begin of the sample
Bitstamp shows a significant predictability pattern for both the 30 min and one hour intervals. Though,
from the beginning of 2015, this predictability seems to have shrinkage down and lead into the 95%
confidence range indicating insignificant predictability. This pattern indicates that Bitcoin traded at
Bitstamp has become more efficient especially during the Hype period. Differently, in the Coinbase
exchange we do not find the same predictability pattern. A possible explanation could be the more

3 See also Balcilar et al. (2017) who examine the causal relation between Bitcoin return/volatility and traded volumes.
4 However, we acknowledge that at the time of writing there is a lag of 10.83 min between the placement and execution of

a trade on Bitstamp. Differently, on Coinbase trade execution is immediate.
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substantial amount of trades for the Coinbase exchange compared to Bitstamp, which implies that
Coinbase is a more liquid and efficient market.

Figure 2. Linear correlation coefficient calculated as a function of the size of the time interval of returns
for Bitstamp left and Coinbase right. The horizontal axis is the logarithmic of the time interval.

Figure 3. First order serial autocorrelation coefficient estimated using a fixed rolling windows of one
month for Bitstamp (top figures) and Coinbase (bottom figures). Horizontal dashed lines indicate the
95% confidence interval. The dashed vertical line indicates the start of the Hype period at the begin of
January 2017. Results are reported for Bitcoin logarithmic returns sampled at 5, 15, 30, and 60 min.

3.2. Seasonality in Bitcoin’s Volatility

Similar to foreign exchange rates, also Bitcoin exhibits a large amount of seasonality in its volatility,
see for example Dacorogna et al. (1993), Taylor and Xu (1997), and Breedon and Ranaldo (2013).
We investigate the daily seasonality pattern by looking at the intraday realized volatility computed
at 30 min over the full sample and over the Hype period, as well as the average traded volumes
computed at the same frequency.

Figure 4 reports a graphical illustration of the intraday realized volatility and average volumes
every 30 min. The figure shows a clear seasonality pattern for the average traded volume (vertical lines)
and intraday realized volatility (red line). It is interesting to see the differences in the two exchanges
peak hours, referring to the fact that Bitstamp is a European-based exchange, and Coinbase is a
US-based exchange. Hence, they have spikes in different timezones associated with their working
hours. Asia should be represented in both exchanges but does not seem to influence the two figures.
We also note that the seasonal pattern has not changed during the Hype period.
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(A) (B)

Figure 4. Intraday realized volatility (red lines, left axis) and average volumes (vertical bars, right axis)
computed every 30 min for Bitcoin traded at the Bitstamp (panel A) and Coinbase (panel B) exchanges.

Besides the analysis of the intra-daily seasonality, we also investigate whether there is presence of
intra-weekly seasonality. Following Dacorogna et al. (1993), we divide the week into a sequence of 2 h
equally spaced observations. Figure 5 reports the weekly sequence based on average realized volatility
(red line) and the average sum of volume (vertical lines). The effect of the weekends is clear from the
figure. However, we note that this effect is more pronounced during the Hype period reported in the
top panel of the figure. Interestingly, we also find evidence of intra–weekly seasonality for other days.
Indeed, for both the exchanges we observe increasing activity from Monday to Thursday–Friday and
then a decreasing curve over Saturday and Sunday. Remarkably, this effect during working days is not
present for regular financial trading assets.

Figure 5. Weekly seasonality computed for the Bitstamp (left figures) and Coinbase (right figures)
exchanges over the full sample and Hype period. Red lines report the average realized volatility
(left axis) while the vertical bars report the average sum of volume (right axis).

4. Modelling and Predicting Bitcoin Realized Volatility

In this section, we report on an in sample and out of sample forecast analysis of the Bitcoin’s
realized volatility using several Heterogeneous Autoregressive (HAR) specifications. HAR has been
originally introduced by Corsi (2008) in order to approximate the slow decay of the autocorrelation
function of realized volatility. The model builds on the assumption of three different types of investors
creating three different types of volatility. The investors are: (i) short-term traders with daily activity;
(ii) medium investors who typically regulate their portfolio once a week; and (iii) long-term investors
with horizon around a month or longer. Corsi (2008) and Corsi et al. (2012) argue that while the level of
short-term volatility does not affect the long-term traders, the level of long-term volatility does affect
the short-term traders, as it determines the expectation to the future size of trends and risks. Hence,
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the short-term volatility is dependent on the longer horizon volatility, while the long-term volatility
only consist of an AR (1) structure, then the model can be written in a hierarchical system defined by

σ̃m
t+1m = cm + φRVm

t + ω̃m
t+1m

σ̃w
t+1w = cw + φwRVw

t + γwEt
[
σ̃m

t+m
]
+ ω̃w

t+1m
σ̂d

t+1d = cd + φdRVd
t + γdEt

[
σ̃w

t+w
]
+ ω̃d

t+1d

(2)

where RVd
t , RVw

t and RVm
t are the daily, weekly and monthly realized volatility and ω̃d

t+1d, ω̃w
t+1w,

and ω̃m
t+1m are the volatility innovations for the daily, weekly and monthly horizons, respectively.

The economic interpretation of this hierarchical system is that each horizon volatility component
consists of two parameters: (i) the expectation to the next period volatility; and (ii) an expectation for
the longer horizon volatility, which is shown to have an impact on the future volatility. The HAR model
can be written in a cascade of previous values for one day, one week and one month. By straightforward
recursive substitutions we obtain a forecasting model for the realized volatility as:

RVd
t,t+h = c + βdRVd

t + βwRVw
t + βmRVm

t + εt,t+h (3)

where h ≥ 0 is the forecast horizon and εt,t+h is a zero mean serially uncorrelated shocks
and RVw

t = 1
7 ∑7

s=1 RVd
t−s+1, and RVm

t = 1
28 ∑28

s=1 RVd
t−s+1 are the weekly and monthly volatility,

respectively.5 This model is labelled as “HAR-RV”. Andersen et al. (2007) extended the HAR-RV
model to include a jump component in the cascade of lagged volatility measures. Jumps are defined as:

Jt+1 ≡ max (RVt+1 − BVt+1, 0) (4)

where:

BVt+1 = μ−2
1

n

∑
i=2

|rt+i|
∣∣∣rt+(i−1)

∣∣∣ , (5)

with μ1 =
√

2/π is the bipower variation introduced by Barndorff-Nielsen and Shephard (2003)
and Barndorff-Nielsen (2004). By including the jump component into the HAR model we obtain the
“HAR-RV-J” defined as:

RVd
t,t+h = c + βdRVd

t + βwRVw
t + βmRVm

t + αd Jd
t + εt,t+h. (6)

A related specification has been further introduced by Barndorff-Nielsen et al. (2006) by including
the so called “significant jumps” component. Specifically, let:

TQt+1 = nμ−3
4
3

n

∑
i=3

|rt,i|
4
3 |rt,i−1|

4
3 |rt,i−2|

4
3 (7)

be the realized tripower quarticity where μ 4
3
= 2

2
3 · Γ (7/6) · Γ (1/2)−1. The significant jump component

at level τ ∈ (0, 1) is defined as:

Jt+1,τ = I [Zt+1 > Φ1−τ ] · [RVt+1 − BVt+1] (8)

where I [A] is the indicator function equal to 1 if A is true and 0 otherwise, and:

Zt+1 = Δ−1/2 × [RVt+1 − BVt+1] RV−1
t+1[(

μ−4
1 + 2μ−2

1 − 5
)

max
{

1, TQt+1BV−2
t+1

}]− 1
2

(9)

5 Please note that Bitcoin is traded 7 days a week.
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is the feasible test statistics arising from the asymptotic distribution of the difference between the
realized volatility and the bipower variation, see Barndorff-Nielsen et al. (2006) for more details.
Finally, the new HAR model with continuous jumps, HAR-RV-CJ, is defined as:

RVd
t,t+h = c + βcdCd

t + βcwCw
t + βcmCm

t + αcd Jd
t,τ + αcw Jw

t,τ + αcm Jm
t,τ + εt,t+h (10)

where:
Ct+1 = I [Zt+1 ≤ Φ1−τ ] RVt+1 + I [Zt+1 > Φ1−τ ] BVt+1 (11)

selects RVt+1 if Zt+1 ≤ Φ1−τ and BVt+1 if Zt+1 > Φ1−τ . We perform a sensitivity analysis similar to
that reported in Andersen et al. (2007) and set τ = 0.01.

4.1. Including a Leverage Component

A well known stylized fact of equity financial returns is the so called leverage effect,
see Black (1976), Nelson (1991) and Zakoian (1994), among others. The leverage effect relates to the
different reaction of the volatility of a firm to past positive and negative news. Its original formulation
relates to the reaction of the volatility to changes in the debt to equity ratio of a traded company.
Specifically, when a bad news arrives, the value of the firm decreases while its debt remains unchanged.
This leads to an increase of the debt to equity ratio corresponding to an increase of the riskiness of
the firm which translates in more volatility. Of course, the original interpretation of the leverage
effect cannot be applied to Bitcoin since it does not have any capital structure. However, previous
empirical works have found evidence of leverage effect for Bitcoin, see Catania and Grassi (2017),
Katsiampa (2017), Bariviera (2017), and Ardia et al. (2018). We follow Corsi et al. (2012) and introduce
a leverage component in the HAR specification by defining:

r−d
t = min

[
288

∑
i=1

rt,i, 0

]
(12)

which indicates the minimum return over the trading day. The variable r−d
t along with its weekly

r−w
t and monthly r−m

t averages are included linearly in the HAR-RV, HAR-RV-J, and HAR-RV-CJ
specifications. For example, the HAR-RV specification with leverage, HAR-RV-L, is defined as:

RVd
t,t+h = c + βdRVd

t + βwRVw
t + βmRVm

t + γdr−d
t + γwr−w

t + γmr−m
t + εt,t+h (13)

4.2. In Sample Results

We consider the realized variance of Bitcoin from 17 March 2013 for Bitstamp and from 2 February
2015 for Coinbase up to 18 March 2018. Similar to previous results, we also consider the Hype period
from 1 January 2017 to 18 March 2018. Results are also reported for the realized standard deviation,
RSD =

√
RV and the logarithmic realized variance, LRV = log (RV). Figure 6 displays: (i) the time

series of the log realized variance; (ii) the feasible test statistics; and (iii) the significant logarithmic
jump series, log(Jt,τ + 1) over the full sample for Bitstamp and Coinbase. We find that the logarithmic
realized variance for the Coinbase exchange displays an increasing pattern, with the highest values
in the end, and especially around December 2017 where the underline value increased significantly.
Interestingly, we find that realized volatility is lower during the bubble period of 2017 compared to the
bear market period of 2018.

Panel (b) reports the test statistics from Equation (9) for τ = 0.01. The red horizontal line indicates
Φ1−0.01 = 2.32, i.e., the threshold after which jumps are classified as significant. Interestingly, we find
a very large proportion of jumps for Bitcoin compared to the proportion usually found in other asset
classes, see e.g., Andersen et al. (2007). Indeed, the proportion of jumps ranges from 27% to 92%
depending on different choices of τ. When τ = 0.01, the proportion of jumps over the full period is
around 79% for Bitstamp and 85% for Coinbase. If we focus on the Hype period the proportion of
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jumps is halved for both exchanges. This results further indicates the growing trade intensity and the
increased stability of the market over time.

Figure 6. Plot of logarithmic realized variance log(RVt) (a), Zt (b) and logarithmic significant
jumps log(Jt + 1) (c) over time. Purple vertical dashed lines indicate the start of the Hype period.
The horizontal red line indicates the 1 − τ quantile of a standard Gaussian distribution for τ = 0.01.
Figures on the left panel are for Bitstamp, figures on the right panel for Coinbase.

Table 5 reports the summary statistics for the realized variance and its transformations. We find
that both the median and the standard deviation of the realized variance and jump component
are higher during the Hype period. We also find that similar to Andersen et al. (2001a) and
Andersen et al. (2001b), we are not able to reject the null hypothesis of normality for the logarithmic
realized variance according to the Jarque-Bera test statistics.

Table 5. Summary statistic for the realized variance, realized standard deviation and logarithmic
realized variance. Panel (A) reports results for the full sample while panel (B) for the Hype period.
The rwo J.test reports the Jarque-Bera test statistics for the null hypothesis of Gaussianity.

Panel (A)—Full sample
Bitstamp Coinbase

RVt RV
1
2

t log (RVt) Jt J
1
2
t log (Jt + 1) RVt RV

1
2

t log (RVt) Jt J
1
2
t log (Jt + 1)

Maximum 9374.99 96.82 9.15 1320.43 36.34 7.19 835.73 28.91 6.73 326.73 18.08 5.79
Minimum 0.87 0.93 −0.14 0.12 0.35 0.12 0.01 0.31 −2.31 0.02 0.15 0.02

Mean 54.94 5.23 2.86 7.35 1.85 1.29 21.47 3.41 1.82 2.69 1.25 0.88
Median 15.63 3.95 2.75 2.01 1.42 1.10 5.81 2.41 1.76 1.02 1.00 0.70

Std. Dev. 311.15 5.26 1.23 45.42 1.98 0.87 53.93 3.14 1.57 11.48 1.06 0.73
Skewness 21.19 7.39 0.69 21.16 7.96 1.82 7.51 2.72 0.19 24.81 5.51 1.34
Kurtosis 541.82 94.59 4.11 552.17 102.12 8.60 81.77 14.48 2.55 694.19 74.09 5.77

J.test 22e+6 65e+4 239 30e+4 7612 16.01

Panel (B)—Hype period

Bitstamp Coinbase

RVt RV
1
2

t log (RVt) Jt J
1
2
t log (Jt + 1) RVt RV

1
2

t log (RVt) Jt J
1
2
t log (Jt + 1)

Maximum 588.38 24.26 6.38 37.84 6.15 3.66 835.73 28.91 6.73 326.73 18.08 5.79
Minimum 1.40 1.19 0.34 0.26 0.51 0.23 0.23 0.48 −1.48 0.07 0.26 0.06

Mean 42.23 5.64 3.18 4.62 1.91 1.44 41.04 5.21 2.89 5.16 1.78 1.30
Median 24.56 4.96 3.20 2.90 1.70 1.36 18.70 4.32 2.93 2.19 1.48 1.16

Std. Dev. 58.99 3.23 1.06 5.37 0.99 0.72 76.98 3.73 1.29 21.39 1.42 0.76
Skewness 4.44 1.80 0.06 3.10 1.32 0.53 5.49 2.30 −0.06 14.05 6.77 1.41
Kurtosis 31.60 8.08 2.86 16.08 5.49 2.90 43.11 10.97 3.16 210.54 73.42 7.91

J. test 16, 521 714 0.62 31, 853 1562 0.67

Model Estimation

We now estimate by OLS the HAR-RV, HAR-RV-J, and HAR-RV-CJ models to the realized variance,
realize standard deviation and logarithmic realized variance over the full sample for the two exchanges.

164



J. Risk Financial Manag. 2019, 12, 36

Specifications that include the leverage component are also estimated and indicated with the additional
label “-L”. Estimation results are reported in Table 6. Estimated coefficients are in line with those usually
found in the literature for other asset classes. Interestingly, we find that specifications that include the
leverage component outperform their counterpart without leverage. Regarding the estimated leverage
coefficients, we see that these are negative and statistically significant at standard confidence levels.
This finding is somehow in contrast with previous results by results by Catania and Grassi (2017)
and Ardia et al. (2018) who document an “inverted” leverage effect for Bitcoin. To further investigate
this aspect, in Figure 7 we report the empirical autocorrelation at different lags between realized
variance and the leverage component, i.e., cor(RVt, r−d

t−h) for h = 1, . . . , 50. The plot is reported for the
two exchanges for the full sample as well as for the Hype period. Results indicate that correlations
are negative and statistically different from zero up to h = 10 when computed over the full sample.
However, when we focus on the Hype period, evidence of correlation between RVt and r−d

t−h is less
strong. This result suggests that the leverage effect has changed over time for Bitcoin and somehow
confirms the findings of Ardia et al. (2018).

(A) (B) (C) (D)

Figure 7. Empirical cross correlation at different lags between realized variance and the leverage
component, cor(RVt, r−d

t−h) for h = 1, . . . , 50. Panels (A) and (B) report results for Bitstamp over the full
sample and the Hype period, respectively. Panels (C) and (D) report results for Coinbase over the full
sample and the Hype period, respectively. Horizontal red dashed lines indicate 95% confidence bounds.

4.3. Out of Sample Results

We now conduct an out of sample analysis studying the predictability of Bitcoin realized
variance at different horizons. Predictions are made by the models previously introduced at horizons
h = 1 (one day), h = 7 (one week), and h = 28 (one month) using the direct method of forecast,
see Marcellino et al. (2006). We start making prediction from 21 April 2014 for Bitstamp and 17 March
2016 for Coinbase and than update model parameters each time a new observation becomes available
during the whole forecast periods using a fixed rolling window. The length of the out of sample is
F = 1424 and F = 731 for Bitstamp and Coinbase, respectively. Results are compared with the Random
Walk (RW) specification defined by:

RVt+h = RVt + εt+h. (14)

Let R̂Vt+h be the prediction made at time t for time t + h. Comparison among different
specification is performed according to the mean absolute forecast error (MAFE) and root mean
square forecast error (RMSFE). MAFE at horizon h is defined as:

MAFEh =
1
F

F

∑
f=1

∣∣∣RVT+ f − R̂VT+ f+h

∣∣∣ , (15)

while RMSFE as:

RMSFEh =

√√√√ 1
F

F

∑
f=1

(
RVT+ f − R̂VT+ f+h

)2
(16)

where T is the length of the in sample period. Models with lower MAFE and RMSFE are preferred.
Table 7 reports the results computed over the full sample. Results for the Hype period are similar and
are available upon request to the second author.
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Along with the MAFE and RMSFE measures, the table also reports the R2 of the Mincer–Zarnowitz
regression defined by:

RVt+h = c + βR̂Vt+h + εt+h, (17)

as well as the Diebold and Mariano (1994) test statistics of each model with respect to the benchmark
RW (DM1) and with respect to the plain HAR-RV model (DM2). Results indicate that predictability
is higher for lower forecast horizons. Indeed, looking at the R2 we find that when h = 1, up to
65% of the log realized variance variability can be predicted with the HAR-RV-CJ model. However,
when h = 28 the R2 decreases to only 33%. Overall, the inclusion of jumps does not always translate
in better predictions. In this respect, results are a bit mixed. Differently, models that include the
leverage component seem to generally perform better than the standard HAR-RV model. Looking at
the Diebold Mariano test statistic with respect to the benchmark model (DM1), we find strong evidence
of predictability of all specifications. Differently, when we focus on predictability with respect to the
plain HAR-RV model, results are mixed and do not show a clear pattern. Comparing results between
the two exchanges indicates that realized variance is easier to predict in the Coinbase exchange.

To conclude our analysis we study the stability of prediction gains with respect to the RW
benchmark over time. To do so, we compute the cumulative absolute error of a forecast model over
the cumulative absolute error of the benchmark model. Specifically, the ratio of cumulative absolute
errors RCAE at time f is defined as:

RCAEf =
∑

f
s=1

∣∣ej,s
∣∣

∑
f
s=1 |ei,s|

, (18)

where ej,s is the forecast error of generic model j at time s and ei,s is the forecast error of the benchmark
specification. Results are reported for i = RW and i = HAR-RV. Values of RCAEf below one indicate
outperformance with respect to the benchmark and viceversa. Figure 8 displays the RCAEf for the
log realized variance for different forecast horizons and the two exchanges. In the top graph of
each sub-figure the comparison is performed with respect to RW, while in the bottom graphs we use
HAR-RV as the benchmark. Results are very clear and show that predictability of the realized variance
is increased over time. Indeed, at the start of the sample we observe large losses of all models with
respect to RW and HAR-RV probably due to uncertainty in estimated parameters. However, at the
end of the forecasting period those losses seem to vanish suggesting that volatility becomes more
easy to predict. Across the different specifications we observe that HAR-L and HAR-CJ-L are the top
performer. This result confirms the in sample findings and indicates that the leverage component is
important for volatility prediction of Bitcoin. A comparison across the two exchanges also suggests
that volatility in the Coinbase exchange is easier to predict.
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Panel (A) Bitstamp

Panel (B) Coinbase

Figure 8. Relative cumulative absolute errors of several forecasting models with respect to RW (first
sub-figure) and HAR-RV (second sub-figure). The third sub-figure reports the evolution of the realized
standard deviation over time. The red vertical lines correspond to the start of the Hype period. Results
are reported for Bitstamp in panel (A) and for Coinbase in panel (B) for the three forecast horizons
h = 1, h = 7, and h = 28.

5. Conclusions

In this paper, we analysed Bitcoin returns sampled at high frequency and its realized variance.
Raw Bitcoin transactions have been downloaded from the two exchanges Bitstamp and Coinbase.
After detailing how raw data are cleaned, we started our analysis focusing on the in sample properties
of Bitcoin logarithmic returns sampled at different frequencies. Results about the autocorrelation
structure of Bitcoin returns as well as the intraday and intraweek seasonality of Bitcoin volatility and
volumes are reported. The second part the paper focuses on predicting realized variance for Bitcoin
using several forecasting models. Our results indicate that the predictability of Bitcoin realized variance
is increased over time, and that predictability varies with the forecast horizon. Results extend those
reported by Catania et al. (2019) and Catania et al. (2018) to the high frequency case and are consistent
with previous findings reported for lower frequencies. We have also documented the presence of
leverage effect for Bitcoin when realized variance is used. However, this finding is in contrast with
previous results reported by Catania and Grassi (2017) and Ardia et al. (2018) where an “inverted”
leverage effect is found. However, we note that differently from Catania and Grassi (2017) and
Ardia et al. (2018) who use financial econometrics models to filter the conditional volatility of Bitcoin,
in this study we estimate volatility using the realized variance estimator of Andersen et al. (2001a).
Furthermore, our results also indicate that the leverage effect is less evident during the Hype period.
Through the paper, all results have been detailed with respect to the two exchange rates as well as with
a focus on the recent 2017–2018 period.
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We believe that our results can be used by private investors as well as by hedge funds to improve
their forecasting models for Bitcoin as well as for pricing of derivative securities. Furthermore, central
banks who are considering issuing their own digital currency like Ecuador, Tunisia, and Sweden can
exploits our results to improve the efficiency and reduce the volatility of the resulting market.

We have not investigated the presence of possible arbitrage opportunities across the two exchanges.
Possible extensions can be made in this direction. Additionally, our results can be extended to
a multivariate analysis aiming at investigating the lead/lag structure of different cryptocurrencies
observed at high frequency.
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Abstract: Cryptocurrencies lack clear measures of fundamental values and are often associated with
speculative bubbles. This paper introduces a new way of testing for speculative bubbles based on
StockTwits sentiment, which is used as the transition variable in a smooth transition autoregression.
The model allows for conditional heteroskedasticity and fat tails of the conditional distribution of the error
term, and volatility may depend on the constructed sentiment index. We apply the model to the CRIX
index, for which several bubble periods are identified. The detected locally explosive price dynamics,
given the specified bubble regime controlled by a smooth transition function, are more akin to the notion
of speculative bubble that is driven by exuberant sentiment. Furthermore, we find that volatility increases
as the sentiment index decreases, which is analogous to the commonly called leverage effect.
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1. Introduction

The current literature on bubble tests is confronted with the difficulty to conclude that a price
bubble is not caused by time-varying or regime switching fundamentals (Gürkaynak 2008). Recent tests
proposed by (Phillips et al. 2011, 2015) provide powerful tests, essentially based on the supremum
of sequential unit root test statistics, and have been applied to the cryptocurrency markets by
(Cheung et al. 2015; Corbet et al. 2018; Hafner 2018), where the latter accounts for time-varying volatility.
These tests, however, are purely statistical in nature and do not allow us to infer if structural breaks
detected in the time series processes of asset prices are evidence of bubbles or are due to breaks in the
underlying (unobserved) fundamentals (Pesaran and Johnsson 2018). An inclusion of extracted sentiment
information, representing the sentiment in the crypto community with their specific linguistic features,
contributes to solving this inconclusive puzzle and adds economic and behavioral information into the
statistical settings.

Alternative bubble tests have been proposed e.g., by Pavlidis et al. (2017) based on the gap between
spot and futures prices and applied to equities and exchange rates, and Pavlidis et al. (2018) using market
expectations of futures prices applied to the oil market—see also Kruse and Wegener (2019). With the lack of
liquidity in futures prices of cryptocurrencies, it seems difficult to apply these tests to crypto markets today.
Further bubble tests include Cheah and Fry (2015), who use a continuous time model to identify bubbles via
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anomalous behaviors of the drift and volatility components, and Fry and Cheah (2016), who develop models
for financial bubbles and crashes based on statistical physics, with applications to Bitcoin and Ripple.

Bubbles are more prone to emerge in the crypto market than in the stock markets. Theoretical grounds
for market efficiency rely crucially on the stabilizing powers of rational speculation—see e.g.,
(De Long et al. 1990; Glosten and Milgrom 1985; Yang and Brown 2016). Given the presence of limits to
arbitrage (e.g., no short-sale venue) and the limited fundamental information in the cryptocurrency market,
rational speculation that pulls prices close to its fundamental value is not possible. These constraints result
in a hurdle of price discovery.

In this paper, we postulate that a bubble-like behavior of prices is characterized by a smooth transition
function that dynamically assigns the probability (loading) to the explosive regime and the random walk
regime, given the exogenous sentiment information. By this construction, the speculative bubble can only
be pumped up with anomalous sentiment. We therefore develop an econometric framework and a test for
a sentiment-induced price bubble.

We target the cryptocurrency-related messages in Stocktwits which attracts the crypto community to
share their information, opinions and sentimental moods. We use the sentiment measures constructed by
Nasekin and Chen (2018) from this social media as their newly constructed sentiment index is viewed as
a representative sentiment from the crypto community, with a consideration of their specific linguistic
features. The information content of it is relevant for future market performance and can be used to predict
the price and volatility evolution (Chen et al. 2018). As mentioned before, due to the limited knowledge
of a fundamental value in this new digital asset class, the mispricing caused by sentiments cannot be
promptly corrected or revert to its fundamental value. This is the reason why sentiment entails a short-run
predictability because of an inefficient crypto market that defers a price correction process. This slow
correction makes sentiment accumulated and amplified; as a consequence, the bubble is able to grow and
probably collapse once sentimental bias is finally being corrected.

The econometric framework is that of a smooth transition autoregressive model (STAR), where the
transition variable is the sentiment index. The idea is that, in times of a very high sentiment index,
corresponding to excessively bullish evaluations, the price dynamics will be driven by an explosive
autoregression, while otherwise they follow a random walk. We allow for conditional heteroskedasticity
and fat tails by specifying recently proposed score-driven models that are shown to fit the data well.
Volatility is allowed to depend explicitly on the sentiment index. This complements previous studies on
cryptocurrency volatility as in (Conrad et al. 2018; Kjaerland et al. 2018).

We apply the model to the CRIX index, which is a value weighted index of the cryptocurrency market
with endogenously determined number of constituents using statistical criteria. The reallocation of the CRIX
happens on a monthly and quarterly basis—see (Trimborn and Härdle 2018) and thecrix.de for details.
We identify several bubble periods, primarily in 2017. Volatility is negatively depending on the sentiment
index, meaning that bad sentiments or news increase volatility, a feature commonly called leverage effect in
classical financial markets. Here, the leverage effect is explicitly driven by the sentiment index.

The paper is organized as follows. We first present the sentiment index for cryptocurrencies in
Section 2. Then, we introduce the econometric model in Section 3 and discuss its application to the CRIX.
Section 4 provides the conclusions.

2. Cryptocurrencies and a Sentiment Index

For the task of sentiment quantification and construction, this section outlines the dataset being
analyzed and the methodologies employed for quantification.
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2.1. StockTwits Data

StockTwits1 is a social microblogging platform where investors and traders dedicate to financial and
economic discussion. Each message, by StockTwits policy, should start with “cashtag” that explicitly refers
to the specific financial asset. Through it, one can easily link the message content with the asset symbol
starting with cashtag; subsequently, associate the symbol with the sentiment of message content, after
textual analysis. Sentiment analysis is very possible in StockTwits due to its add-in sentiment disclosure
applied to each users. Users can also express their sentiment by labeling their messages as “Bearish”
(negative) or “Bullish” (positive) via a toggle button. The available labeled data benefits an advance on
textual analysis that typically relies on the available training dataset.

Since 2014, StockTwits adds streams and symbology for cryptocurrencies and tokens, expanding from
100 cryptos in the beginning to more than 400 cryptos recently. This brand new and vibrant new asset
class have successfully attracted a huge attention from its big community and also from new comers.
New cryptocurrencies are regularly added to the list of cashtags supported by StockTwits.2 A cashtag
refers to a cryptocurrency if and only if it ends with “.X” (e.g., $BTC.X for Bitcoin, $LTC.X for Litecoin).
We use this convention and StockTwits Application Programming Interface (API) to download all messages
containing a cashtag referring to a cryptocurrency. StockTwits API also provides for each message its user’s
unique identifier, the time it was posted at with a one-second precision, and the sentiment associated
by the user (“Bullish”, “Bearish” or unclassified). Our final dataset contains 1,220,728 messages from
33,613 distinct users, posted between March 2013 and May 2018, and related to 425 cryptocurrencies.
Overall, 472,255 messages are classified as bullish (38.6%) and 92,033 as bearish (7.5%), and the remaining
are unclassified. An imbalance between the numbers of positive and negative messages shows that online
investors are optimistic on average, as previously found by (Avery et al. 2016; Kim and Kim 2014).

StockTwits, with a focus on financial discussion, offers an advantage to extract the speculative
sentiment, which may ultimately trigger a speculative bubble. Another advantage is that the availability of
labeled sentiment by users themselves, rendering an application of supervised learning schemes. The detail
of statistical learning model applied to Stocktwits dataset will be documented in the following subsection.

2.2. Sentiment Prediction

Nasekin and Chen (2018) propose a state-of-art methodology for semantic sentiment prediction in the
cryptocurrency domain. The long short-term memory (LSTM) type of recurrent neural network (RNN),
together with word embedding technique provide a superior performance in predicting domain-specific
sentiment. The key advantageous feature in the LSTM is to keep the context-specific dependence encoded,
so that the important information about semantic structure of sentence won’t be lost.

A general architecture of a sentiment prediction LSTM/RNN network is presented in Figure 1 of
Nasekin and Chen (2018). This architecture consists of the input sequence, an embedding lookup matrix,
several layers of LSTM cells/units, an output sequence, mean pooling and softmax layers. The core of this
structure are the LSTM cells. The structure of these cells is presented in Figure 1. The specifications of this
structure include several steps: (1) introducing the cell state Ct to keep information about the previous
states of LSTM cells. The amount of information stored in the cell state is controlled by the “gates”:
an input gate it, a forget gate ft and an output gate gt. The first to act is the forget gate ft: it determines
how much of the previous state Ct−1 will be kept based on the values of the previous hidden state ht−1

and the current input xt. The sigmoid function σ(x) = 1/(1 + exp(−x)) outputs a value between 0 and 1

1 https://stocktwits.com/.
2 This list can be found at https://api.stocktwits.com/symbol-sync/symbols.csv.
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for each number in the cell state Ct−1; (2) generating an update to Ct−1 through a new candidate value of
the cell state, C̃t, and deciding how much of the new candidate state C̃t will be inputted into Ct; and (3)
updating the value of the cell state Ct as a weighted sum of the previous cell state value Ct−1 and the new
candidate value C̃t; (4) updating the the hidden state ht as a filtered value of the cell state Ct, which is put
through the tanh nonlinearity and multiplied element-wise by the values of the output gate gt.

The detail of RNN algorithm can be found in Nasekin and Chen (2018). Its performance in terms of
labeling sentiment as bullish or bearish is also documented, with 84% accuracy.

Figure 1. Structure of an LSTM unit.

2.3. Sentiment Index and Cryptocurrency Index

A trained RNN model is used to predict sentiment labels of unlabeled messages which constitute about
60% of the StockTwits’ messages’ dataset. More specifically, the LSTM setup with pre-trained Word2Vec
embeddings are employed for this purpose. Aggregated sentiment in Nasekin and Chen (2018) is constructed
in the following way:

st = log

(
MBu

t − MBe
t

MBu
t−1 − MBe

t−1

)
, (1)

where MBu
t and MBe

t is the number of bullish and bearish messages on day t, respectively. Equation (1)
is defined as a logarithmic rate of change of the number of bullish and bearish messages on a day
t. This aggregate sentiment is viewed as a representative sentiment from the crypto community in
Stocktwits with their specific linguistic features. The information content of it is relevant for future market
performance and can be used to predict the price and volatility evolution, given the limited knowledge of
fundamental value (Chen et al. 2018). More importantly, due to the limited knowledge of fundamental
value in this new digital asset class, the mispricing due to sentiment cannot be promptly corrected or
revert to its fundamental value. This is the reason in sentiment carries a short-run predictability. This slow
correction makes sentiment accumulated and amplified; as a consequence, the bubble is able to grow and
probably collapses as sentimental bias is finally being corrected.

The CRIX (CRyptocurrency IndeX) is created by Trimborn and Härdle (2018) and used to track the
entire cryptocurrency market performance as close as possible. It is constructed robustly in the sense it
considers a frequently changing market structure, hence the representativity and the tracking performance
can be assured. In such a way, the number of constituents is changing over time, depending on market
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conditions and the relative dominance among cryptos. The data series starting from July 2014 can be
downloaded through thecrix.de.

Figure 2 displays an interplay between the time series of crypto-sentiment index and the CRIX index
over time, from July 2014 until May 2018. We observe a concurrence between sentiment exuberance and
price soar. The next section, based on this observation, is to model a role of sentiment in testing the
price bubble.

Figure 2. Log CRIX (upper panel) and sentiment index (lower panel). The shaded areas correspond to the
estimated bubble periods.
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3. A Sentiment-Based Model for Locally Explosive Crypto Prices

Suppose we have a series of log prices for the CRIX, denoted yt, and a series of sentiment indices
for the crypto market, called st. The idea is to allow for bubble-like behavior of prices, given by a locally
explosive autoregressive process, where the explosive regime is determined by a sentiment index of the
crypto market. The transition between the random walk and the explosive regime is driven by a smooth
transition function as in classical smooth transition AR models (STAR). Furthermore, we take into account
conditional heteroskedasticity of the error term and fat tails of the conditional distribution. The model can
be written as

Δyt = μ1 + {αyt−1 + μ2}g(st−1) + exp(ht)εt,

where α > 0, εt is an i.i.d. error term with mean zero and unit variance, ht is volatility, and g(s) is the
logistic function, i.e.,

g(·) = 1
1 + exp(−γ(· − τ))

,

with “steepness” parameter γ and “threshold” parameter τ. Essentially, the dynamics of yt are a mixture
of two regimes. When the index st is large, then g(·) will be close to unity and more weight is given
to the explosive regime, while if it is small, then g(·) is close to zero and more weight is given to the
random walk regime. In the limiting case, γ → ∞ one obtains as a special case the threshold autoregressive
model, as g(st) degenerates to the indicator function I(st − τ > 0). It is for this reason that we interpret
the situation st − τ > 0 as the bubble regime and st − τ < 0 as the non-bubble regime, although in the
smooth transition model there is strictly speaking a continuum of regimes. See also van Dijk et al. (2002),
who adopt the same interpretation.

Estimation of the model can be done by nonlinear least squares—see, e.g., Teräsvirta (1994). However,
it will be more efficient to take into account conditional heteroskedasticity and fat tails of the distribution
of εt by using maximum likelihood estimation (MLE).

The volatility part of the model is taken to be the Beta-t-EGARCH model of (Creal et al. 2011;
Harvey 2013). That is, we assume that εt follows a student-t distributed random variable with mean zero,
scale one, and η degrees of freedom and the volatility dynamics are driven by the score of the likelihood
function, i.e.,

ht+1 = ω + φht + κut, |φ| < 1,

ut =
(η + 1)ε2

t
η + ε2

t
− 1.

By Proposition 12 of Harvey (2013), we can write alternatively ut = (η + 1)bt − 1,
where bt = ε2

t /(ε2
t + η) is an IID beta distributed r.v. The reason for using a score driven EGARCH

rather than the classical EGARCH model of Nelson (1991) is that many recent empirical studies have
found that the news impact function of classical EGARCH tends to overweigh the impact of large shocks
on volatility, while the impact functions of score driven models tend to give a more accurate account of
the impact of large shocks—see, e.g., Harvey (2013) for a detailed discussion and motivation for score
driven models.

The exponential form of volatility is convenient to augment the volatility equation with explanatory
variables without having to worry about the positivity of the variance. We consider an additional term
based on the first difference of the sentiment index, Δst, i.e., the volatility equation becomes

ht+1 = ω + φht + κut + δΔst. (2)
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The motivation for using the first differences of the sentiment index rather than the index level is that
changes in the index might be more informative to explain price uncertainty, and hence volatility, than the
index itself. The sign of the parameter δ is not a priori clear, as it may be that volatility increases when
either the sentiment index increases or decreases. We have tried other functional forms for the impact of
the sentiment index, such as δ(Δst−1 − c)2, where c is a constant—for example, the sample mean of the
sentiment index. However, and perhaps surprisingly, the best form turned out to be the linear one.

Estimation of the transition parameter γ is often problematic when this parameter is large, as then the
transition function is steep and a large number of observations in a neighborhood of st = τ is required
to obtain a reliable estimate of γ—see, e.g., Granger and Teräsvirta (1993) for a detailed discussion.
In that case, they suggest to first reparameterize g as 1/(1 + exp(−γ(st−1 − τ)/σ̂)), where σ̂ is the sample
standard deviation of the sentiment index, then set γ to a fixed value, e.g., unity, and estimate the
remaining parameters by MLE. The procedure can be reiterated by using a set of fixed values for γ on a
grid. We follow their advice here using the grid of integers from 1 to 10 and found that, after rescaling of
the transition function, γ = 3 maximizes the likelihood and gives the best results.

We compare our model with one that ignores the sensitivity index in the conditional mean and
variance, i.e.,

Δyt = μ + exp(ht)εt,

ht+1 = ω + φht + κut.

We call this model M0, as opposed to the above complete model M1, and we would like to test
model M1 versus model M0 to see whether the sensitivity index has a significant contribution to explain
locally explosive behavior and volatility. Testing is however non-standard as under the null hypothesis,
H0 : α = μ2 = 0, there are unidentified parameters, τ and γ. Thus, likelihood ratio test statistics do not
have a chi-square distribution under the null. This is a well known problem in STAR models—see, e.g.,
(Granger and Teräsvirta 1993; van Dijk et al. 2002) for an overview. The simplest solution is to use an
LM-type test by estimating the auxiliary regression

Δyt = μ + byt−1st−1 + et, (3)

where et is an error term, and then test the hypothesis H′
0 : b = 0. As shown by Luukkonen et al. (1988),

testing H0 is equivalent to testing H′
0, as the mean term in the auxiliary regression is the first order Taylor

expansion of the logistic regression. See van Dijk et al. (2002) for details.
For the CRIX and sentiment index, daily observations from 8 August 2014 to 15 May 2018,

the estimation results are reported in Table 1. In the sentiment-free model M0, the constant μ1 is positive
and significant, while in model M1 the combined term of μ1 and μ2 is closer to zero. The estimate of
α is small but significant, indicating that the explosive regime is important. In addition, the difference
in the log likelihood values suggests that the goodness-of-fit of M1 is substantially higher than that of
M0. A classical likelihood ratio test clearly would reject M0 in favor of M1. However, as outlined above,
this test is non-standard in our context due to unidentified parameters under the null hypothesis. Instead,
we perform the auxiliary regression approach in Equation (3) and obtain the least squares estimator of
b̂ = 0.0011 with a standard error of 0.0002, so that the p-value of the t-test for H′

0 : b = 0 is very close
to zero. Hence, we reject the hypothesis of a random walk in favor of STAR nonlinearity. Rather than
estimating the degrees-of-freedom parameter η directly, we estimate its inverse, 1/η, as this often yields
more stable results numerically—see, e.g., Harvey (2013). To summarize, our testing approach suggests a
significant contribution of the sentiment index to explain locally explosive behavior of the CRIX.
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The estimated transition function is given by g(·) = 1/(1 + exp(−3(· − τ̂)/σ̂)), where σ̂ = 0.3358 is
the standard deviation of the sentiment index. This function is shown in Figure 3, indicating the “bubble
regime” for st > τ̂. Empirically, this regime occurs in about 16% of the sample period, as, for 219 of 1340
observations, the sentiment index is larger than the estimated value of τ.

Table 1. Estimation results for the model without (M0) and with (M1) sentiment index. Standard errors are
in parentheses. log L is the value of the log likelihood function.

Parameter Model M0 Model M1

ω −0.0929 (0.0323) −0.0972 (0.0085)
κ 0.1193 (0.0155) 0.1183 (0.0153)
φ 0.9759 (0.0081) 0.9709 (0.0000)

1/η 0.3716 (0.0325) 0.3872 (0.0330)
μ1 0.0025 (0.0005) 0.0015 (0.0006)
μ2 −0.0222 (0.0392)
τ 0.7461 (0.1461)
α 0.0061 (0.0012)
δ −0.2740 (0.1289)

log L 2820.45 2838.78
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Figure 3. Estimated transition function. The vertical red line indicates the line s = τ̂ = 0.746, for which
g(st) = 1/2. Values above this line, i.e., the shaded area, are interpreted as the bubble regime.

Note that the estimated volatility parameters, except for the sentiment term, are rather similar for the two
models and characterized by high persistence, i.e., φ is close to one, and fat tails of the conditional student-t
distribution given by a degrees of freedom parameter η of about 2.6 for both models. However, the parameter
related to the sentiment index, δ is significant and negative, indicating that volatility increases whenever
there is a drop in the sentiment index. This is similar to financial markets, where negative news tend to have
stronger impact on volatility than positive news, often referred to as the “leverage effect” and first noted
by (Black 1976; Christie 1982), see Bauwens et al. (2012) for a recent overview. In our case, the asymmetry
in the impact of positive and negative innovations on volatility is explicitly modeled by the change of the
sentiment index.
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Figure 4 shows the estimated log volatility process together with the estimated conditional mean of
returns, i.e., μ1 + {αyt−1 + μ2}g(st−1). The shaded areas highlight the estimated bubble periods, which
mainly occurred in 2017 and parts of 2018. Not surprisingly, the shaded bubble periods correspond
to substantially higher conditional mean returns, while it is close to zero for the non-shaded areas.
Unlike Hafner (2018) who finds a single bubble regime starting in May 2017 and whose sample ends
in December 2017, we find multiple bubble periods, mainly during the period May 2017 to April 2018.
Hence, the starting date of these periods coincides with the single regime of Hafner (2018), but, due to the
volatility of the sentiment index, this regime is decomposed into several sub-regimes. While the procedure
advocated by (Hafner 2018; Phillips et al. 2011) identifies bubble periods that are of long duration and
quite inert to price decreases, our approach produces regimes of shorter duration because, as the sentiment
index drops, one quickly leaves a bubble regime.

Furthermore, we find that volatility is generally higher in the bubble regimes, with an average log
volatility of −3.58 compared with −4.04 outside of a bubble. However, short term movements of volatility
tend to react negatively to changes of the sentiment index, as reflected by the negative estimate of δ

in model (2). Hence, our approach of using a sentiment index for modelling cryptocurrencies not only
identifies locally explosive bubble periods, but also measures its impact on volatility. Moreover, it can
be used as a predictive device, on a daily basis, both for returns and volatility. The method we propose
conveys regulation implications in the cryptocurrency markets. Very likely scams come to a play given
investors’ irrational exuberance and a surge of initial coin offerings (ICOs). However, these challenge the
regulators in the presence of bubbles.

Figure 4. Cont.
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Figure 4. Estimated log volatility (upper panel) and conditional mean (lower panel). The shaded areas
correspond to the estimated bubble periods.

4. Conclusions

Our model allows to test for speculative bubbles in cryptocurrencies using a sentiment index, which
drives the transition in a regime switching autoregression. For a popular cryptocurrency index, we find
statistically significant regime nonlinearity and identify corresponding bubble periods. Furthermore,
volatility is specified as a score-driven EGARCH-type model augmented with the daily changes of the
sentiment index. We find that volatility increases as the sentiment index decreases, and vice versa. This is
similar to the leverage effect in classical financial markets, where bad news have a stronger effect on
volatility than good news, but here this effect is explicitly driven by the sentiment index.

Several extensions of the present analysis are possible. First, it is possible to do forecasting.
One-step-ahead forecasting is trivial, but multi-step ahead is not, due to the nonlinearity of the
conditional mean function. Several approaches could be employed including bootstrap and Monte
Carlo simulation—see, e.g., van Dijk et al. (2002). In addition, the time series properties of the sentiment
index would have to be investigated to build a model that explicitly takes the sentiment dynamics into
account. Second, we could compare the statistical properties of our testing approach with those of a
pure time series based approach such as Phillips et al. (2011). The latter approach uses less information
and hence should have less power if the true data generating process is close to a smooth transition
autoregression. This is left for future research.
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Abstract: This paper addresses two practical investment questions: Is investing in the diamond equity
market a more feasible and liquid alternative to investing in diamonds? Additionally, is diamond
equity affected by polished diamond prices? We assemble an original database of diamond mining
stock prices traded on main stock exchanges in order to assess their relationship with diamond prices.
Our results show that the market of diamond-mining stocks does not represent a valid investment
alternative to the diamond commodity. Diamond equity returns are not driven by diamond price
dynamics but rather by local market stock indices.
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1. Introduction

Diamonds are emerging as a new investment asset, providing great opportunities for trading,
investing and diversification. Hedge funds and financial intermediaries have shown increased interest
in the market and recent available data allow us to study its features and dynamics. However, the lack
of a standardization system for the diamond commodity prevented the existence of an exchange
regulated trading platform for diamonds, leaving diamond-mining companies’ stocks as the unique
officially tradable asset of the diamond industry. Over the last decade, diamond stocks have been
considered as a promising financial asset for investors’ portfolios according to finance professionals
(Carlin 2017; McKeough 2015; Sizemore 2015; Cameron 2014), though, to our best knowledge, neither
academic scholars nor industry professionals have tested this hypothesis.

A diamond-based financial index has not yet emerged as a tradable asset on official exchanges.
Commercial experts have been planning to introduce diamond derivatives that could be used to hedge
risk in the diamond market; nevertheless, no such product has been launched on official exchanges
until the present moment.

In this paper we study the sensitiveness of diamond-mining companies’ stocks to diamond prices
in order to examine whether they could be a good alternative investment exposure to the diamond
market, while still fulfilling the condition of market liquidity. In such a case, the behavior of diamond
stock prices would be driven by the diamond market dynamics and would not be influenced by the
idiosyncratic risks of the stock markets where they are traded. More precisely we try to give an answer
to the following research questions: are diamond mining stocks a good substitute to investing in a
diamond-based financial asset? Do they correctly represent the dynamics of the diamond market?

We use the entire set of international diamond stock prices firstly to analyze their statistical
features and dynamics and then to test their dependence on diamond prices using the standard CAPM
approach (Tufano 1998).
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Our results find that diamond stocks should not be considered as a valid tradable substitute for a
diamond-based investment tool.

2. Some Recent Research

Literature on the analysis of diamond markets’ features and dynamics is quite scarce. Most
research primarily tackles the diamond commodity market. Several scholars have studied the dynamics
of diamond prices in the last decade (Low et al. 2016; Auer 2014; Auer and Schuhmacher 2013; Vaillant
and Wolff 2013; Renneboog and Spaenjers 2012; Scott and Yelowitz 2010; Lu et al. 2010; Cardoso and
Chambel 2005; Ariovich 1985), while others analyzed the structure of the diamond market (Spar 2006;
Shevelyova 2006; Levenstein and Suslow 2006; Karo 1968).

Commercial reports examining the dynamics of diamond pricing and diamond financial benefits
are more common but mostly represent discussions based on general knowledge of the diamond
industry (Wieczner 2014; Chesters 2014; Treadgold 2013; Mcgee 2013; Zimnisky 2013; Golan 2012,
2013; Steinberg 2012; Gupta et al. 2010; Adler 2010; Rapaport 2009; Even-Zohar 2012; Turrell 1982;
Kempton 1995).

Despite the fact that diamond stocks have attracted interest as financial assets in the commercial
financial literature, research studies have remained limited. Bain and Company, Bain and Company
and Antwerp World Diamond Center (2011, 2012, 2013, 2018) (AWDC) reports analyzed the overall
structure of the mining market and presented the leading companies, without providing any financial
analysis of the behavior of the relevant stocks.

Carlin (2017), Sizemore (2015) and Cameron (2014) described diamond stocks as a new investment
asset class that could be very beneficial for the financial world. McKeough (2015) and O’Keefe and
Bermel (2014) focused on Canadian diamond mining stocks, praising them as financial assets that
will hold their value during market setbacks, thus acting as a safe haven. However, apart from
O’Keefe and Bermel (2014), no quantitative analysis has been performed in order to test these claims
for the overall diamond equity market and the claims are strictly based on the general opinion of the
industry’s experts.

To authors’ best knowledge, no recent research examining the financial potential of diamond
stocks and their sensitivity to the price of the diamond commodity has been performed yet. The reason
for the absence of research in this scientific domain could be the industry’s monopolistic past, as well
as the general lack of data transparency.

3. The Market of Diamond Mining Stocks

Diamond mining companies are involved in two major activities of the diamond value chain:
exploration and mining. In the exploration phase companies search for diamondiferous kimberlitic
rocks, which could represent possible viable sources of diamonds. They do so by testing the ground for
changes in the magnetic field. The mining process consists of diamond ore’s extraction from kimberlitic
pipes using different techniques, such as open-pit mining, underground mining, alluvial mining and
marine mining, depending on the origin and location of kimberlites.

Upon mining, diamond ore goes through several stages of crushing and processing in order to
extract rough diamonds from it. A very small amount of diamond ore consists of diamonds, as less
than 1% of it represents the material with a concentration of diamonds.

The majority of the global diamond reserves1 are concentrated in Russia, which represents the
largest producer of rough diamonds by volume (Figure 1). Russia declared diamonds to be of strategic
importance and all mining companies and their exploration processes are, at least partly, state-owned
with free access to all country regions. The mining conditions are, however, extremely severe and a
large portion of these diamond resources remains unexploited. Africa is the richest world region in

1 Reserves are a part of resources whose extraction is economically justifiable, based on feasibility studies.
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terms of estimated diamond resources that could be mined in the future. Nevertheless, their extraction
depends on economically feasible processes. In Figure 1 we report annual rough diamond production
by country in billions of U.S. dollars during 2013–2018.

Figure 1. Annual rough diamond production by country in billions of U.S. dollars (2013–2018). Notes:
The figure presents annual rough diamond production by country in billions of dollars. Only diamonds
tracked by Kimberley Process are included. 2018 data is preliminary estimate. DRC is Democratic
Republic of the Congo. Source: (Bain and Company and Antwerp World Diamond Center 2018).

Current diamond reserves are divided into projects and mines, owned by different diamond
mining companies. The overall diamond mining sector represents the part of the diamond industry
value chain that has been achieving the highest profit margins, as reported in Figure 2.

Figure 2. Profit margins of the diamond value chain in 2017. Notes: The figure presents profit margins
of the mining value chain in 2017. The analysis of exploration and production is based on data for
ALROSA, De Beers Group, Rio Tinto, Dominion Diamond Mines, Petra Diamonds. The analysis of
large chains is based on data for Chow Sang Sang, Chow Tai Fook, Gitanjali Jewels, Lukfook, Signet
Jewelers, Tiffany & Co., Titan Company. Source: (Bain and Company and Antwerp World Diamond
Center 2018).

Despite the fact that many international and local companies are involved in the diamond
exploration and mining industry, the market is driven by the top five industry players: Alrosa, De Beers,
Rio Tinto, BHP Billiton and Dominion Diamond. These five companies accrued 78% of the industry’s
revenues in 2012 (Bain and Company and Antwerp World Diamond Center 2013). In 2013 BHP Billiton
sold its diamond business to Dominion Diamonds, bringing the number of players to four.

Alrosa is the largest diamond volume producer, based on the number of diamond carats produced
(Figure 3). De Beers, who had the monopoly of the industry until 2003, is now owned by Anglo
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American and remains the largest rough diamond producer in value terms as shown in Figures 3 and 4.
This advantage is not unattainable for others, as several competitors are approaching the levels of
De Beers’ diamond value sales. For instance, while De Beers in 2012 held 37% of the overall rough
diamond value sales, while Alrosa’s share of the market was 30%.

Figure 3. Major producers of rough diamonds in millions of carats (2014–2018). Notes: The figure
presents major diamond mining companies and producers of rough diamonds in millions of carats in
2017. Source: (Bain and Company and Antwerp World Diamond Center 2018).

Figure 4. Sales of rough diamonds by producers in billions of dollars, including inventories (2013–2018).
Notes: The figure presents major diamond mining companies and producers of rough diamonds in
billions of dollars. Estimated realized price is based on an estimate of carats sold if data is published,
if not, based on production data. ALROSA revenues represent diamond sales only. Dominion Diamond
Mines 2017 results based on H1 2017 as the company was delisted and no longer publishes the data.
Petra Diamonds data converted from year ending in June to year ending in December, based on
company reports for full year and half year. Only diamonds tracked by Kimberley Process are included.
Other is estimated assuming no price change for the players of this segment. E is an estimate. In order
to estimate average price per carat sold, total value of diamonds sold is divided by total volume of
diamonds sold. Source: (Bain and Company and Antwerp World Diamond Center 2018).

4. Methodology

The aim of this work is to investigate the relationship between diamond mining stocks and the
price of the diamond commodity. For this purpose, we study statistical features and dynamics of
stock prices in levels and log returns by firstly testing for stationarity using the ADF test. We then
test the occurrence of structural breaks, using the Bai-Perron (Bai and Perron 1998) test. We further
employ the ARCH LM test to examine the presence of heteroscedasticity in log returns. In the case
of volatility clustering, we estimate the time-varying conditional variance for each return series by
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choosing among ARCH, GARCH, TARCH or E-GARCH volatility models (Engle 1982; Nelson 1991).
To study the relationship existing between diamond equity prices and diamond prices we use a time
varying correlation approach using the DCC-GARCH model (Engle 2002), and the standard CAPM
approach presented in Tufano (1998).

5. Data

The database used in this research, composed of price series of diamond mining stocks, has been
collected by the authors following thorough background research and represents an original contribution
of the paper. It includes daily prices of all companies (21) involved in the diamond-mining sector and
traded on different exchanges. It is, to our best knowledge, the only database of diamond-mining
companies’ stock prices that are traded regularly.

The information on diamond prices are provided by the polished diamond price indices
developed in D’Ecclesia and Jotanovic (2018), following a proprietary basket index methodology.
In order to account for the different features of diamond prices due to differences in their quality,
we use the Mid-range Diamond Index-MDI—corresponding to polished diamonds of mid quality,
and the Higher-range Diamond Index-HDI—corresponding to polished diamonds of higher quality.
The dynamics of the two indices are reported in Figure 5.

Figure 5. Mid-range and Higher-range diamond indices price dynamics. Notes: Price dynamics of
diamond price indices: Mid-range Diamond Index (MDI) and Higher-range Diamond Index (HDI) in
their original currencies (USD) for the period 4 June 2007–15 February 2019: Source: Polished Prices
and D’Ecclesia and Jotanovic (2018).

The list of the stocks included in the database is reported in Table 1. Stock price data were obtained
from Bloomberg and Yahoo Finance data platforms. The time interval of the data varies for each stock
due to different Initial Public Offering (IPO) dates. All diamond stock prices are daily real traded
closing prices from the date of the company’s IPO until 15 February 2019.

The selected diamond stocks fulfill the following criteria:

1. All companies are involved in the process of diamond exploration and mining;
2. All companies are publicly traded on one or more Stock exchanges.

Some of the diamond mining companies are traded on several exchanges with one of the exchanges
serving as the flagship market. In such a case we report only the flagship market of the equity.

The biggest player in the industry today, in terms of billions of carats produced, is Alrosa, listed on
the Moscow Stock Exchange-MICEX, followed by Anglo American and Rio Tinto. Another important
diamond producer, Dominion Diamond, was acquired in July 2017 by a privately held group of mining
businesses, The Washington Companies, and since then has operated as a standalone, private company
without being listed on any exchange.

In Table 1 we report all the mining companies traded on exchanges whose main business is related
to diamond mining activity. The two exceptions are Anglo American and Rio Tinto that mine a wide
range of other metals and minerals as well as diamonds. Nevertheless, these two companies represent
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important diamond producers and an important part of their revenues is linked to diamond mining, as
can be detected by looking at their balance sheets. Moreover, Anglo American owns 85% of De Beers,
the previous industry’s monopolist and the current leader in diamond production in value (Bain and
Company and Antwerp World Diamond Center 2013).

Table 1. Diamond-mining stocks traded at different exchange markets.

No Company Ticker Exchange Currency
IPO

(mm/dd/yy)
Av. Volume

1. Alrosa * ALRS.ME MICEX RUB 11/29/11 8,468,875
2. Anglo American AAAL.L LSE GBP 05/24/99 4,551,716
3. Rio Tinto RIO.L LSE GBP 01/07/88 4,149,613
4. BlueRock Diamonds * BRD.L LSE GBP 04/09/13 4,021,770
5. Petra Diamonds * PDL.L LSE GBP 04/01/00 1,963,700
6. Botswana Diamonds * BOD.L LSE GBP 02/02/11 826,091
7. Lucara Diamond Corp. * LUC.TO TSX CAD 08/14/07 408,936
8. Stornoway Diamond Corp. * SVY.TO TSX CAD 08/08/96 349,232
9. Star Diamond Corp. * DIAM.TO TSX CAD 02/10/87 202,216

10. Newfield Resources Ltd. * NWF.AX ASX AUD 01/05/11 173,439
11. Mountain Province Diamonds * MPVD.TO TSX CAD 01/05/96 158,342
12. Firestone Diamonds * FDI.L LSE GBP 08/14/98 109,490
13. GEM Diamonds * GEMD.L LSE GBP 02/14/07 84,299
14. North Arrow Minerals Inc. * NAR.V TSXV CAD 10/25/07 41,904
15. Pangolin Diamonds Corp. * PAN.V TSXV CAD 08/20/14 37,185
16. Diamcor Mining * DMI.V TSXV CAD 08/08/96 26,621
17. Trans Hex Group Ltd. * TSX.JO JSE ZAR 01/08/90 12,312
18. Tsodilo Resources Ltd. TSD.V TSXV CAD 10/25/07 11,440
19. Diamond Fields Resources Inc. DFIFF TSXV CAD 01/14/99 611
20. Archon Minerals Ltd. * ACS.V TSXV CAD 08/16/12 122
21. Alrosa Nurba * ALNU.ME MICEX RUB 08/12/11 60

Notes: The table presents, to our best knowledge, all diamond-mining companies traded on official stock Exchanges,
sorted by the average daily volume during the last 3 months (25 November 2018–25 February 2019). * Companies
that are only involved in diamond mining and explorations and no other base or precious metals. Source: Elaboration
on Bloomberg and Yahoo Finance data.

The companies listed in Table 1 differ substantially based on their dates of initial public offering
(IPO) as well as their liquidity (average volume of transactions). In order to have a robust and reliable
dataset for our analysis we selected the stocks that satisfy the following criteria:

1. Diamonds as the main activity: The company is involved exclusively in diamond mining activities;
2. Liquidity: The average traded volume of the equity is at least 100,000;
3. Time series length: The company has been listed on an Exchange since 6 April 2007.

In addition to the chosen companies that satisfy the above criteria we include in the research
sample the biggest market players traded on official exchanges—Rio Tinto, Alrosa and Anglo American.
These three companies do not satisfy the above criteria, as Rio Tinto and Anglo American remain
involved in mining and exploration of other metals and minerals as well as diamonds, while Alrosa
only became listed on the Moscow Stock Exchange in 2011. Nevertheless, we believe they can provide
us with valuable information due to their high stakes in the industry.

Finally, the following 8 diamond stocks were selected for the analysis:
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The 8 selected stocks are traded on Moscow (MICEX), London (LSE) and Toronto Stock Exchanges
(TSX). The common time span is 4 June 2007–15 February 2019, while their price dynamics are reported
in Figure 6. All 8 companies exhibited a significant price decrease in their values at the time of the
Global Financial Crisis of 2008, after which different dynamics for each stock can be observed. Alrosa,
Anglo American and Rio Tinto all reported an increasing trend in the last three years while the other
five showed a period of high instability (Mountain P. D. and Petra D.), reducing trend (Stornoway D. C.)
or constant behavior (Firestone D. and Star D. C.). Firestone Diamonds and Star Diamond Corporation
exhibited similar dynamics with no price recovery after the crisis. On the other hand, Mountain
Province Diamonds and Petra Diamonds exhibited similar price increases on different occasions, such
as during the recovery process in 2010 and then again in 2016.

We further provide additional financial information of the 8 selected companies, reported in
Table 2.

Table 2. Financial information of the 8 studied diamond-mining stocks.

Company
Market Value

(Millions in USD)
Market to Book Ratio

Price/Book
Growth Rate of

Sales (%)
Growth Rate of

Assets (%)

Alrosa 10,686.00 2.70 8.80 −3.90
Anglo American 34,144.00 1.40 5.21 −4.30

Rio Tinto 97,896.00 2.18 1.20 −5.00
Petra Diamonds 211.00 0.40 25.50 −3.50
Stornoway D. C. 120.00 0.29 0.60 −4.20

Star D. C. 77.00 1.44 no revenues * −0.03
Mountain P. D. 194.00 0.51 82.80 9.50

Firestone D. 17.00 0.20 1.24 −2.20

Notes: The table presents financial information of the selected 8 diamond-mining stocks. Market value is the market
capitalization of a company (number of shares × their current price), expressed in millions of USD. Market to
book ratio corresponds to the ratio between market capitalization and company’s net asset value. Growth rates
correspond to percentage changes between 2017 and 2018, expressed in %. * The company does not currently
operate any producing properties and, as such, is dependent upon the issuance of new equity to finance its ongoing
obligations. Source: Elaboration on Bloomberg and Yahoo Finance data.

As reported in Table 2 we observe that Alrosa operates with the highest market to book ratio,
implying that the investors are willing to pay a higher price than its actual net asset value. This could
be explained by investors’ expectations of future profitability of the company supported by its very
high Return on Equity (ROE) of around 36%. Moreover, the management of Alrosa has been very
successful in reducing the company’s debt and retaining good profits at the same time.

Most of the companies involved solely in diamond mining, with the exception of Stornoway D.
C., exhibit market to book ratios that are smaller than 1. This signifies that the investors are skeptical
about their profitability and growth, valuing them lower than their net asset values.

Growth rates of sales differ noticeably across diamond mining companies in terms of their values
but all result positive, in accordance with the expected increase in diamond sales in 2018 (Bain and
Company and Antwerp World Diamond Center 2018). On the other hand, asset growth rate results
were mostly negative across diamond–mining companies. The reason for this can be found in increased
diamond mining, which reduces the value of diamond mines while no new mines are being acquired.
Another possible reason for negative asset growth in balance sheets can be found in the reduction of
diamond stock due to the increase in sales.
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Figure 6. Price dynamics of diamond stocks. Notes: Price dynamics of 8 diamond stocks included in
the analysis sub-sample in their original currencies for the period 4 June 2007–15 February 2019: Alrosa
(RUB), Anglo American (GBP), Firestone Diamonds (GBP), Rio Tinto (GBP), Petra Diamonds (GBP),
Mountain Province Diamonds (CAD), Stornoway Diamond Corporation (CAD) and Star Diamond
Corporation (CAD). Alrosa is only listed in 2011. Source: Elaboration on Bloomberg and Yahoo
Finance data.

193



J. Risk Financial Manag. 2019, 12, 79

6. The Diamond Stock Market

Stock prices are quoted in local currency of the Stock exchange where they are traded. The goal of
the paper is not to forecast their dynamics but only to identify whether the drivers of their volatility
are governed by the risk factors originating from the global diamond market. We therefore analyze the
log returns of each company and study their statistical features.

In Table 3 we firstly report the basic summary statistic for diamond mining stock prices and
diamond indices in levels.

Table 3. Summary statistics for diamond stocks and diamond indices in levels (original currencies).

Company Mean Min Max Prc. 5% Prc. 95%

Diamond Stock Prices

Alrosa
Level 60.48 22.00 107.70 24.66 100.52

Return 0.00 −0.21 0.34 −0.03 0.03

Anglo American Level 1807.40 221.10 3680.00 643.09 3227.45
Return 0.00 −0.24 0.21 −0.05 0.05

Rio Tinto
Level 3198.80 818.70 5847.20 1762.20 4419.01

Return 0.00 −0.46 0.20 −0.04 0.04

Petra Diamonds
Level 91.68 11.53 178.32 31.77 150.69

Return 0.00 −0.23 0.29 −0.05 0.05

Stornoway D. C Level 1.13 0.18 4.32 0.39 2.68
Return 0.00 −0.22 0.19 −0.05 0.05

Star D. C.
Level 0.67 0.12 5.42 0.17 3.90

Return 0.00 −0.31 0.43 −0.06 0.06

Mountain P. D.
Level 4.19 0.68 7.15 1.35 6.25

Return 0.00 −0.33 0.35 −0.04 0.05

Firestone D.
Level 226.03 2.63 2005.00 5.34 1175.00

Return 0.00 −0.54 0.32 −0.06 0.05

Diamond Price Indices

MDI
Level 98,910.00 72,206.00 14,4760.00 83,136.00 122,710.00

Return 0.00 −0.17 0.22 −0.06 0.06

HDI
Level 18,3023.00 124,472.00 281,240.00 149,519.00 231,381.00

Return 0.00 −0.15 0.19 −0.04 0.04

Notes: Summary statistics for 8 diamond stocks included in the analysis sub-sample in levels (in their original
currencies for the period 4 June 2007–15 February 2019: Alrosa (RUB), Anglo American (GBP), Firestone Diamonds
(GBP), Rio Tinto (GBP), Petra Diamonds (GBP), Mountain Province Diamonds (CAD), Stornoway Diamond
Corporation (CAD) and Star Diamond Corporation (CAD)). Alrosa is only listed in 2011. Source: Elaboration on
Bloomberg and Yahoo Finance data.

In Table 4 we report the ADF test statistics for stock price series in levels. In line with the standard
features of stock prices, all price series result integrated processes of order 1—I(1), together with the
two diamond indices. Following the assumption that stock prices follow a lognormal distribution,
we further transform the prices into log-returns and perform the following research studies using this
stationary transformation of price data2.

Bai Perron structural break test results, reported in Table 5, indicate how price dynamics of the
various stocks and the two indices are rather different. Several structural breaks occur for each time
series in the observed decade but all in quite different dates. Structural breaks in diamond indices
seem to be completely unrelated to structural breaks occurring for diamond stock prices. The only

2 The stationarity of log returns has been tested and confirmed and the results can be obtained upon request.
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exception may be represented by the structural break of the Mid-range Diamond Index occurring on
10 October 2016, which may have caused breaks in Anglo American and Rio Tinto stock price series
that occurred in November and December 2016, respectively.

Table 4. ADF test statistics for diamond stocks and diamond indices in levels.

ΔPt = α+βPt−1 + δt +
∑p

i=1γiΔPt−i + εt H0:β = 0 HA:β < 0

Pt α tα β tβ(ADF) δ tδ I(d)

Diamond Stock Prices

Alrosa 0.09 1.14 0.00 −0.80 *** 0.01 3.51 I(1)
Anglo American 7.59 1.43 0.00 −2.00 0.00 −0.66 I(1)

Rio Tinto 16.98 2.37 −0.01 −2.69 0.00 0.23 I(1)
Petra Diamonds 0.25 1.53 0.00 −2.02 0.00 −0.22 I(1)
Stornoway D. C. 0.01 2.09 * −0.01 −3.15 0.00 −1.18 I(1)

Star D. C. 0.00 0.88 * 0.00 −3.27 0.00 −0.57 I(1)
Mountain P. D. 0.01 1.42 0.00 −1.73 0.00 −0.11 I(1)

Firestone D. 1.18 1.35 −0.01 −2.55 0.00 −1.19 I(1)

Diamond Price Indices

Mid-range D. I. 1238.05 2.33 −0.01 −2.15 −0.11 −1.54 I(1)
Higher-range D. I. *** 2903.46 3.40 −0/01 −3.19 −0.32 −2.58 I(1)

Notes: The table presents ADF test statistics of 8 studied diamond stocks in levels in their original currencies for the
period 4 June 2007–15 February 2019. The estimated equation includes a constant and a linear trend. Mackinnon
critical (asymptotic) values are used for the rejection of the null hypothesis. *** and * indicate 1% and 10% significance
levels respectively. Source: Elaboration on Bloomberg and Yahoo Finance data.

Table 5. Bai Perron test statistics for diamond stock price series and diamond indices.

Series No. F-Stat.
1st Break

(mm/dd/yy)
2nd Break

(mm/dd/yy)
3rd Break

(mm/dd/yy)
4th Break

(mm/dd/yy)
5th Break

(mm/dd/yy)

Diamond stock prices

Alrosa 4 36.54 09/18/2013 12/15/2014 01/19/2015 09/05/2016 -
Anglo American 4 92.56 11/13/2009 05/14/2012 12/11/2014 11/22/2016 -

Rio Tinto 4 35.52 08/03/2010 05/04/2012 06/15/2015 12/05/2016 -
Petra Diamonds 5 91.80 03/03/2009 12/02/2010 11/11/2013 08/14/2015 05/18/2017
Stornoway D. C. 4 31.56 12/21/2009 10/20/2011 08/17/2015 05/17/2017 -

Star D. C. 2 283.43 03/05/2009 11/17/2011 - - -
Mountain P. D. 3 24.65 09/02/2010 05/13/2013 04/27/2017 - -

Firestone D. 4 134.49 03/03/2009 09/19/2011 06/26/2013 05/18/2017 -

Diamond price indices

Mid-range D. I. 4 220.38 12/15/2010 08/13/2012 12/03/2014 10/12/2016 -
Higher-range D.I. 4 134.82 11/03/2010 07/09/2012 08/10/2015 05/30/2017

Notes: The table presents Bai Perron test statistics for 8 diamond stocks (in their original currencies) and the two
Diamond Indices for the period 4 June 2007–15 February 2019. The model tests the null hypothesis of L against L + 1
sequentially determined structural breaks. The estimation was performed with 0.15 trimming and maximum breaks
set to 5 at 5% significance level. The third column reports F statistics for the selected number of breaks, subject to
critical values tabulated by Bai and Perron (2003). Source: Elaboration on Bloomberg and Yahoo Finance data.

We also tested the presence of structural breaks by using the improved model suggested by
Lee and Strazicich (2003) that allows up to two structural breaks, and obtained similar results3.

Stock returns and indices returns result heteroskedastic as shown by the ARCH LM test reported
in Table 6. We use a GARCH approach to measure the volatility of each series. The estimated GARCH
parameters for each stock and the two indices are reported in Table 7, while the single conditional
variances are presented in Figure 7. We estimated the most appropriate GARCH model for each
individual time series, choosing among ARCH, GARCH, TARCH and E-GARCH. We determined

3 Results can be obtained upon request.

195



J. Risk Financial Manag. 2019, 12, 79

our choice for the most appropriate model for each series by contemplating the values of Akaike and
Shwarz information criteria, after estimating all possible models on each series.

Table 6. ARCH LM test statistics for diamond stock prices and diamond indices.

u2
t = α0 + α1u2

t−1 + . . . + αpu2
p−1 H0:α0 = α1 = . . . = αp = 0 HA:α0 = α1 = . . . = αp � 0

Pt F-Stat. Prob. (F-Stat.) Obs.*R2 Prob. Chi-Square (m) ARCH Effect

Diamond Stock Prices

Alrosa *** 70.28 0.00 *** 67.56 0.00 YES
Anglo American *** 112.74 0.00 *** 108.32 0.00 YES

Rio Tinto *** 45.79 0.00 *** 45.06 0.00 YES
Petra Diamonds *** 3.01 0.01 *** 17.93 0.01 YES
Stornoway D. C. *** 72.24 0.00 *** 70.36 0.00 YES

Star D. C. *** 130.26 0.00 *** 124.21 0.00 YES
Mountain P. D. *** 87.80 0.00 *** 85.03 0.00 YES

Firestone D. *** 31.67 0.00 *** 31.33 0.00 YES

Diamond Price Indices

Mid-range D. I. *** 74.37 0.00 *** 80.86 0.00 YES
Higher-range D. I. *** 40.07 0/00 *** 39.28 0.00 YES

Notes: the table presents ARCH LM test statistics of 8 diamond stocks in their original currencies for the period 4 June
2007–15 February 2019. The null hypothesis of homoskedasticity is tested against the alternative of heteroskedasticity
(ARCH effect). ut denotes the residual series of the least squares regression on the dependent variable Yt. Number
of lags for the test was chosen based on the AIC. The test is the usual F statistic for the regression on the squared
residuals. Obs. *R2 denotes the LM test statistic for the null hypothesis. The statistic follows a χ2 distribution with m
degrees of freedom. *** indicates 1% significance level. Source: Elaboration on Bloomberg and Yahoo Finance data.

Table 7. GARCH parameters for diamond stock prices.

Pt Model ω α β γ

Diamond Stock Prices

Alrosa E-GARCH (1,1) *** −1.29 *** 0.31 *** 0.66 *** −0.06
(−11.26) (11.44) (66.43) (3.52)

Anglo
American

E-GARCH (1,1) *** −0.11 *** 0.09 *** 0.90 *** −0.05
(−7.51) (9.05) (665.09) (−7.60)

Rio Tinto E-GARCH (1,1) *** −0.14 *** 0.11 *** 0.86 *** −0.06
(−7.67) (10.13) (645.24) (−8.15)

Petra
Diamonds

E-GARCH (1,1) *** −0.17 *** 0.12 *** 0.78 *** −0.03
(−7.89) (10.39) (406.73) (−4.76)

Stornoway D. C TARCH (1,1) *** 0.00 *** 0.34 *** 0.51 ** 0.08
(9.85) (11.20) (14.69) (0.01)

Star D. C. TARCH (1,1) *** 0.00 *** 0.09 *** 0.88 *** 0.05
(7.24) (7.33) (175.66) (5.30)

Mountain P. D. E-GARCH (1,1) *** −0.18 *** 0.14 *** 0.82 *** −0.04
(−12.35) (17.57) 621.45 (−9.23)

Firestone D. TARCH (1,1) *** 0.00 *** 0.01 *** 0.96 *** 0.03
(17.87) (13.98) 782.21 14.99

Diamond Price Indices

MDI E-GARCH (1,1) *** −0.09 *** 0.12 *** 0.89 ** −0.01
(−6.31) (8.79) (724.59) (−2.39)

HDI TARCH (1,1) *** 0.00 *** 0.01 *** 0.95 ** 0.02
(3.68) (10.01) (258.45) (2.44)

Notes: The table presents conditional variances and their parameters of 8 studied diamond stocks in their original
currencies for the period 4 June 2007–15 February 2019 estimated by the GARCH family models. α denotes the
symmetric ARCH term, β represents the GARCH term measuring the persistence of conditional volatility, while
γmeasures the leverage effect and asymmetric ARCH term. The leverage affect is confirmed if γ is positive and
significant in the case of TARCH. The numbers reported in brackets are z-statistics. *** and ** indicate 1% and 5%
significance levels, respectively. Source: Elaboration on Bloomberg data. Source: Elaboration on Bloomberg and
Yahoo Finance data.
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Figure 7. GARCH conditional variances of log returns of diamond stocks and indices. Notes: The figure
presents estimated conditional variances (E-GARCH) of log returns of 8 studied diamond stocks
(Alrosa, Firestone Diamonds, Mountain Province Diamonds, Petra Diamonds, Anglo American,
Rio Tinto, Star Diamond Corporation, Stornoway Diamond Corporation) and 2 diamond indices
(Higher-range DI and Mid-range DI) for the period 4 June 2007–15 February 2019. Source: Elaboration
on Bloomberg and Yahoo Finance data.
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Conditional variances show quite different patterns for each stock. Rio Tinto, Mountain Province
and Star D. C., after exhibiting an enormous increase in volatility during the GFC, show a pattern
of average volatility. Alrosa, Petra D. and Anglo American show several periods in which volatility
increases quite aggressively. For instance, the stock Petra D. shows a return to volatility in 2011 that
was higher and more erratic than the one that occurred in 2008, and several volatility spikes during the
period 2011–2018. Alrosa, on the other hand, shows a very noisy volatility pattern for that entire period.

Diamond Stocks vs. Diamond Prices

Diamond stocks and diamond indices do not show similar dynamics in levels; Moreover, their
returns show structural breaks occurring at different dates, not providing evidence that a common driver
may explain diamond stocks volatility. We further investigated the relationship between diamond stock
returns and the two diamond indices by estimating the Dynamic Conditional Correlation-E-GARCH
(1,1) over the studied period. The choice of the model was based on the Akaike information criterion.
The DCC-E-GARCH approach allows measuring the short-run correlation existing between the various
pairs of securities. A long run relationship may be measured using a cointegration approach.

In Table 8 we firstly report the cross-correlation matrix between the price returns of all studied
diamond stocks and the two diamond price indices. We observed very low correlations between
diamond stocks and diamonds, with correlation values close to zero. Moreover, the two diamond price
indices exhibited a fairly low correlation (0.28), giving further evidence to their different dynamics,
as reported in D’Ecclesia and Jotanovic (2018). While the simple correlations among the stock prices
of diamond companies result low on average, the stock price returns of Anglo American and Rio
Tinto, the two mining giants, were highly correlated (0.80), which could be explained by the common
factors affecting the overall mining sector, as well as the fact that both stocks are traded on the London
Stock exchange.

Table 8. Cross-correlation matrix among diamond-mining stocks and diamond price indices.

Cross-Correlation
Matrix

Alrosa
Anglo

A.
Rio

Tinto
Petra

D.
Stornoway

D. C.
Star D.

C.
Mountain

P. D.
Firestone

D.
Mid
DI

Higher
DI

Diamond Stock Prices

Alrosa 1.00 0.11 0.15 0.08 0.02 −0.03 0.05 0.00 0.05 0.04
Anglo A. 0.11 1.00 0.80 0.25 0.08 0.01 0.08 0.02 −0.02 0.04
Rio Tinto 0.15 0.80 1.00 0.25 0.07 0.00 0.08 0.04 −0.01 0.06
Petra D. 0.08 0.25 0.25 1.00 0.04 −0.01 0.12 0.04 0.00 −0.04

Stornoway D. C. 0.02 0.08 0.07 0.04 1.00 0.01 0.04 0.00 −0.01 0.03
Star D. C. −0.03 0.01 0.00 −0.01 0.01 1.00 0.03 0.01 0.00 0.04

Mountain P. D. 0.05 0.08 0.08 0.12 0.04 0.03 1.00 −0.01 0.04 0.06
Firestone D. 0.00 0.02 0.04 0.04 0.00 0.01 −0.01 1.00 0.01 0.02

Diamond Price Indices

Mid-range DI 0.05 −0.01 −0.01 0.00 −0.01 0.00 −0.01 −0.01 1.00 0.28
Higher-range DI 0.04 −0.01 0.01 0.04 0.03 −0.02 0.02 0.00 0.28 1.00

Notes: The table presents cross-correlation matrix of log returns of 8 studied diamond stocks in their original
currencies and diamond price indices for the period 4 June 2007–15 February 2019. The series have been individually
matched to maintain the maximum number of observations for each pairwise correlation analysis. Source: Elaboration
on Bloomberg and Yahoo Finance data.

In Figure 8 we further report some of the time-varying DCC-E-GARCH correlations estimated
between diamond stocks and the two diamond price indices4. The DCC correlation parameters
corresponding to all performed estimations are reported in Table 9. The results show that the diamond
stock returns are not related to diamond prices given that, on average, each stock shows an average
zero correlation with both diamond indices. This might be explained by the fact that stock returns are

4 The remaining correlation series have not been reported, as they do not differ significantly from those reported in Figure 8.
All results are available upon request.
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not driven by diamond prices but rather by other factors related to the book values of the companies.
In addition, one possible explanation for the lack of correlation found between stock prices and
diamond indices may be explained by the fact that polished diamonds are not a direct output of the
mining companies. Rough diamonds pass through several value chains before they reach the polished
diamond market and the prices for rough diamonds are only available with a monthly frequency.
Hence, a different approach must be used to test any possible dependence.

Figure 8. DCC-E-GARCH correlations among diamond stocks and diamond indices. Notes: The figure
presents some of the estimated time-varying correlations (DCC-E-GARCHs) between log returns of
studied diamond stocks and 2 diamond indices: (Alrosa - Mid-range DI, Rio Tinto - Higher-range DI,
Anglo American – Higher-range DI, Stornoway Diamond Corporation – Mid-range DI, Petra Diamonds
– Mid-range DI and Mountain Province Diamonds – Higher-range DI) for the period 4 June 2007–15
February 2019. Source: Elaboration on Bloomberg and Yahoo Finance data.
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Table 9. DCC parameters from the DCC-EGARCH correlation estimations.

Series
Mid-Range Diamond Index Higher-Range Diamond Index

a z-Stat b z-Stat. a z-Stat b z-Stat

Alrosa *** 0.99 61.23 ** 0.00 2.56 *** 0.78 45.79 *** 0.00 14.35
Anglo A. *** 0.83 6.82 ** 0.02 2.23 *** 0.95 18.48 0.01 0.97
Rio Tinto *** 0.92 16.89 *** 0.02 10.81 *** 0.98 37.65 * 0.01 1.91
Petra D. *** 0.98 26.64 0.01 0.75 0.71 0.59 0.52 0.60

Stornoway D. C. 0.64 1.32 * 0.02 1.93 * 0.79 2.19 0.02 0.89
Star D. C. 0.63 1.28 *** 0.02 3.10 0.69 1.37 0.02 1.14

Mountain P. D. *** 0.76 2.59 0.01 0.95 *** 0.82 7.86 * 0.02 1.72
Firestone D. 0.80 0.38 *** 0.00 2.87 0.80 1.25 *** 0.00 17.94

Notes: The table reports DCC parameters from the DCC-EGARCH correlation estimations of 8 studied diamond
stocks and 2 diamond indices for the period 4 June 2007–15 February 2019. ***, ** and * indicate 1%, 5% and 10%
significance levels, respectively. Source: Elaboration on Bloomberg and Yahoo Finance data.

We further test a possible relationship between the diamond stock prices and the diamond indices
using the multifactor approach presented in Tufano (1998), where the author tests how firms engaged
in gold mining can be affected by the price of gold. In this paper we analyze the risk exposure of
the share returns of the eight firms engaged in diamond mining to changes in the price of diamonds
(or their returns).

Managers and investors express share price exposure to the input prices in terms of elasticities;
for each percentage change in the input prices they estimate that mining shares would change by 2 to
10 percent, due to financial and operating leverage. These predictions can be confirmed by estimating
a multifactor market model, as in Jorion (1990). To estimate the exposure of diamond mining firms to
diamond prices, we developed the following market model:

Rs,it = αit + β1Rm,it + β2Rd,it + εit

where

Rs,it—measures the daily return of stock i at time t;
Rm,it—measures the daily return of regional market stock index i at time t;
Rd,it—measures the daily return of diamond index i at time t;

For the regional market stock index, we chose the most important market index built in each
exchange we analyzed. The coefficients β1 and β2 represent the sensitivity of stock i’s return for a
1 percent return to holding diamonds, after controlling for movements in broad equity indices that
affect the return on these stocks independent of diamond price movements.

In order to obtain unbiased beta estimates, we used the approaches suggested by Dimson (1979),
as corrected by Fowler and Rorke (1983), and calculated five sets of diamond and market betas for
each diamond mining firm over the entire sample period. These sets of betas differed by the method of
adjustment. The adjustments used one lead and one lag term, as adding more than one lead or lag term
does not significantly change the measured mean betas. The diamond mining stock returns exhibit
the ARCH effect (Table 6) and, hence, we estimated two regressions for each stock using GARCH.
The three different stock indices chosen for each of the exchanges we are studying are:

1. MICEX, Russian Stock Index;
2. The S&P/Toronto Stock Exchange 60;
3. FTSE 100 Index, corresponding to London Stock Exchange.

The estimated coefficients from the GARCH mean equations are reported in Table 10. It is
interesting to notice that diamond stock returns results were only affected by their respective stock
market indices. The Higher-range or the Mid-range diamond indices do not have any role in the
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diamond stock returns. This provides further support to the previous result showing that shares of
firms engaged in diamond mining cannot be used as an alternative to diamond investments and,
therefore, cannot be used as a safe haven.

Table 10. GARCH regression coefficients from the mean equation.

Yt MDI (Rd,it) Market Index (Rm,it) HDI (Rd,it) Market Index (Rm,it)

Alrosa
0.02 *** 0.65 0.00 *** 0.65

(0.22) (21.62) (0.13) (21.75)

Anglo American 0.00 1.63 0.00 1.63
(0.26) (64.28) (−0.05) (63.99)

Rio Tinto
−0.01 *** 1.52 0.00 *** 1.52

(−0.72) (66.78) (−0.20) (67.00)

Petra Diamonds
0.02 *** 0.84 0.03 *** 0.84

(0.46) (14.23) (1.19) (14.14)

Stornoway D. C −0.02 *** 0.64 0.02 *** 0.63
(0.28) (11.88) (0.38) (11.77)

Star D. C.
−0.01 *** 0.60 −0.06 *** 0.59
(0.02) (9.36) (−2.34) (9.36)

Mountain P. D.
** 0.04 *** 0.71 * 0.07 *** 0.71
(2.23) (14.14) (3.10) (14.07)

Firestone D.
0.01 *** 0.37 −0.01 *** 0.37

(0.51) (8.32) (−0.33) (8.36)

Notes: The table reports estimated betas of diamond mining stocks for the period 4 June 2007–15 February 2019.
***, ** and * indicate 1%, 5% and 10% significance levels, respectively. Source: Elaboration on Bloomberg and Yahoo
Finance data.

7. Concluding Remarks

Diamonds represent the last hidden commodity that was long neglected by the financial world,
given the lack of its fungibility and price transparency. The recent financial crisis encouraged investors
to look for alternative assets to protect their portfolios. This brought financial attention to diamonds,
which were perceived as a possible new investment asset and eventually viewed as a hedge or
a portfolio diversifier. Given that a tradeable diamond financial derivative is still not traded on
a regulated exchange, in order to study the potential role of diamonds in the investment context
we analyzed the shares of firms engaged in diamond mining. We verified whether they can be a
potential liquid substitute to investing in diamonds. We collected a unique dataset of stock prices of all
21 diamond mining companies which are traded on official stock exchanges and studied their price
dynamics and possible relationship with diamond prices. For this purpose, we used the Mid-range
and Higher-range diamond basket indices built by D’Ecclesia and Jotanovic (2018) as a proxy for the
diamond market prices. We then analyzed the relationship between diamond mining stock prices and
diamond prices by examining their long-term conditional correlations. Moreover, we also estimated a
multifactor market model to verify a possible influence of diamond prices on diamond stock returns.
We found that stock returns are only exposed to stock market index returns.

The results show that diamond stocks are not affected by diamonds price dynamics and are not
correlated with the diamond market indices.

This paper represents a first step in the scientific analysis of the diamond stock market and leaves
plenty of scope for further research. We hope that the original database of diamond mining stocks
presented in this article will encourage scholars and facilitate future research in the field.
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