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Abstract

Inference about productivity change over time based on data envel-
opment (DEA) has focused primarily on the Malmquist index and
is based on asymptotic properties of the index. In this paper we
propose a novel set of significance tests for DEA based productivity
change measures based on permutations and accounting for the inher-
ent correlations when panel data are observed. The tests are easily
implementable and give exact significance probabilities as they are not
based on asymptotic properties. Tests are formulated both for the ge-
ometric means of the Malmquist index, and also of its components, i.e.
the frontier shift index and the efficiency change index, which together
enable analysis of not only the presence of differences, but also gives
an indication of whether the productivity change is due to shifts in
the frontiers and/or changes in the efficiency distributions. Simulation
results show the power of, and suggest how to interpret the results of,
the proposed tests. Finally, the tests are illustrated using a data set
from the literature.

Keywords: Malmquist index, frontier shift, efficiency change, Data Envelopment
Analysis (DEA), panel data, permutation tests, inference.
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1 Introduction

Benchmarking production units with non-parametric data envelopment analysis
(DEA) efficiency estimators, based on enveloping the observed set of input-output
combinations with a convex set, is widely used. Farrell (1957) was the first to
suggest the approach, which following the seminal paper by Charnes et al. (1978)
became more widely used. Since then, the method has become very popular and
many studies based on DEA efficiency estimators have been published.

The statistical properties of the DEA efficiency estimator have been subject to
numerous studies. Simar and Wilson (2015) provide a review of the results on the
asymptotics of its sampling distributions. Kneip et al. (2015) showed a central
limit theorem for the means of the estimated inefficiencies. Based on these results,
methods for inference about the mean efficiency has been developed in Kneip et al.
(2016), who furthermore propose a test for equality of means in two independent
samples (groups) of units and a test for equality of means and a common frontier
for the two groups. Both these tests are based on the asymptotic distribution of
the difference between the bias corrected sample means of inefficiencies, and the
derived asymptotic normal distribution relies on the independence assumption.
The bias correction terms are obtained using jackknife methods and are not easily
calculated.

Measures of productivity change over time have been commonly used since Caves
et al. (1982) introduced the Malmquist index of productivity change for a unit
in different time periods. Färe et al. (1992) subsequently proposed to calculate
the Malmquist index from DEA scores and furthermore suggested to decompose
the index into an efficiency change and a frontier shift component respectively.
Recently, Kneip et al. (2018) have derived central limit theorem results for the
distribution of the geometric means of DEA-based Malmquist estimators. Their
results can be used to construct asymptotic confidence intervals for the mean pro-
ductivity changes, but can not directly be translated into corresponding results
regarding the frontier shift and the efficiency change components.

Banker and Natarajan (2011) propose various tests for technical change, relative
efficiency change and productivity change. These tests rely on supposed results on
the asymptotic distributions of the empirical standard t-test statistic for e.g. the
mean of the logarithm to the relative change in the estimated frontiers. Further-
more, the approach of Banker and Natarajan (2011) is at present limited to the
single output case, and not immediately generalizable to multiple outputs.
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In the present paper we propose exact, and easily implementable, tests for produc-
tivity change, frontier shift, and efficiency change, based on permutations. These
tests do not rely on asymptotic distributional assumptions and are therefore also
suitable for practical purposes with limited sample sizes. We conduct extensive
simulation studies to assess the power of the proposed tests and conclude that
they are extremely powerful. Moreover, we analyse the ability of the three tests
to distinguish between frontier shift and efficiency change. Based on this, we give
recommendations on how to interpret the test results. Finally, the approach is
illustrated on a well-known data set from the literature.

The rest of this paper is structured as follows: In Section 2, the problem is for-
mally introduced, the hypotheses specified and appropriate test statistics defined.
Section 3 describes the design of the simulation studies, the results of which are
presented in section 4, which showcases the power of the proposed tests and ex-
plains how to interpret the results. In Section 5 the tests are illustrated using
an empirical example of U.S. electricity producing firms. The R-code used to im-
plement the tests in the empirical example is provided in an appendix. Finally,
Section 6 concludes the paper.

2 Test procedure

Following the notation of e.g. Kneip et al. (2016) let the vector of input quantities
be denoted by x ∈ Rp+ and output vector denoted by y ∈ Rq+. The production
possibility set, i.e the feasible set of input-output combinations, is given as

Ψ = {(x, y) ∈ Rp+q+ | x can produce y}.

The efficient frontier of Ψ is given by

Ψδ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ, ∀γ > 1}.

Farrell’s index of technical input efficiency (Farrell 1957) is defined as

θ(x, y) = inf{θ > 0| (θx, y) ∈ Ψ}.

The smaller the θ(x, y) ≤ 1, the more inefficient is the firm and if θ(x, y) = 1 the
firm is said to be technically efficient. We could as well have chosen to measure
the output oriented technical efficiency or any other directional efficiency measure.

As in e.g. Kneip et al. (2016) the production possibility set is assumed to be closed,
convex and satisfying strong disposability in both inputs and outputs.
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Since we are here concerned with frontiers from different time periods, let the ef-
ficient frontier be indexed by a subscript t ∈ {t1, t2}, such that Ψδ

t denotes the
frontier for time period t. Assume that there exists a distribution Ft with density
ft on Ψt. Let (Xt, Yt) denote random variables with distribution Ft and joint dis-
tribution F . Note that the random variables in the two time periods, (Xt1 , Yt1),
and (Xt2 , Yt2), are allowed to be dependent.

In practice, the production possibility set Ψt is unobserved and estimated from
a set of n observations, i = 1, . . . , n, from a balanced panel. The observa-
tions (Xi

t1 , Y
i
t1 , X

i
t2 , Y

i
t2) are assumed to be independent and identically distributed,

such that (Xi
t1 , Y

i
t1) has distribution Ft1 and (Xi

t2 , Y
i
t2) has distribution Ft2 for all

i = 1, . . . , n. For ease of notation, the vector (X1
t , . . . , X

n
t ) will be denoted Xt and

the vector (Y 1
t , . . . , Y

n
t ) will be denoted Yt for t ∈ {t1, t2}.

The DEA estimator of the technical input efficiency is calculated by solving the
usual linear programming problem, which e.g. in the case of constant return to
scale (CRS) is formulated as

θ̂t(x, y) = min
θ,ω
{θ | y ≤ Ytω, θx ≥ Xtω, ω ∈ Rn+}.

for x ∈ Rp+, y ∈ Rq+ and t ∈ {t1, t2}. If another technology is appropriate the
efficiencies are calculated accordingly.

2.1 Inference on changes

The traditional Malmquist index of productivity change from one period to another
for a given firm (see e.g. Färe et al. 1992), is often decomposed into two effects:
The technical change (frontier shift) and the efficiency change (catch-up). The
technical change for an individual observation (x, y) is the ratio of the (here input)
efficiencies for (x, y) relative to each of the two frontiers

FS(x, y) =
θ̂t1(x, y)

θ̂t2(x, y)
. (1)

The efficiency change component for (x, y) observed in both time periods, t1 and
t2, is

EC(xt1 , yt1 , xt2 , yt2) =
θ̂t2(xt2 , yt2)

θ̂t1(xt1 , yt1)
. (2)

Typically, the geometric means over all the observations of these components are
reported and interpreted as the technical change viz. efficiency change for the whole
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technology, similar to the logic of Asmild and Tam (2007).

The geometric mean of the Malmquist index is calculated as

TM =
∏

t∈{t1,t2}

n∏
i=1

(
θ̂t(X

i
t2 , Y

i
t2)

θ̂t(Xi
t1
, Y i

t1
)

) 1
2n

. (3)

Likewise, the geometric mean of the frontier shift component is

TFS =
∏

t∈{t1,t2}

n∏
i=1

FS(Xi
t , Y

i
t )

1
2n , (4)

and the geometric mean of the efficiency measure is

TEC =
n∏
i=1

EC(Xi
t1 , Y

i
t1 , X

i
t2 , Y

i
t2)

1
n . (5)

Note that TM = TFS × TEC and all three statistics are positive. Also, we note
that TFS is close to one if the two frontiers are equal, and that a value far from 1
will be evidence against a hypothesis of the two frontiers being equal. Similarly,
TEC is close to one if the firms are equally close to the frontiers in the two periods
and smaller than one if the firms overall are further away from the frontier in time
period t2 than in time period t1.

The statistical properties of TFS and TEC are unknown. Therefore, we in the
following propose a permutation test for the hypothesis (Ft1 , Ft2) = (Ft2 , Ft1), i.e.
that the distribution in time period t1, Ft1 , can be interchanged with the distri-
bution in time period t2, Ft2 . We use three different test statistics, cf. (3)-(5), to
investigate this hypothesis, which provide different information about the nature
of any difference between (Ft1 , Ft2) and (Ft2 , Ft1).

If the hypothesis is rejected because of an extreme value of the test statistic TFS ,
this could be an indication of the frontiers in the two time periods being different,
i.e. Ψδ

t1 is different from Ψδ
t2 . However this could also be caused by other dif-

ferences between the two distributions, for example the densities of observations
close to the frontiers. The simulation studies in Section 3 provide insight into
which types of differences are evident from the different test statistics.

Next, if the hypothesis is rejected because of an extreme value of the test statistic
TEC then there is an overall efficiency change and/or the frontiers are different.
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2.2 A permutation test

We construct 3×N new test statistics T jFS , T jEC , and T jM for j = 1, . . . , N , where
N is the number of permutations, using the following procedure:

a. For each i in 1, . . . , n construct a new observation pair (X̃i
t1 , Ỹ

i
t1 , X̃

i
t2 , Ỹ

i
t2)

With probability 0.5: Let (X̃i
t1 , Ỹ

i
t1 , X̃

i
t2 , Ỹ

i
t2) be the interchanged ob-

servation (Xi
t2 , Y

i
t2 , X

i
t1 , Y

i
t1)

Otherwise: Let (X̃i
t1 , Ỹ

i
t1 , X̃

i
t2 , Ỹ

i
t2) be the unchanged observation (Xi

t1 , Y
i
t1 , X

i
t2 , Y

i
t2)

b. Calculate T jFS , T jEC , and T jM similar to the description in (3)-(5), but with
the new set of observations (X̃i

t1 , Ỹ
i
t1 , X̃

i
t2 , Ỹ

i
t2) for i = 1, . . . , n.

Under the hypothesis that (Ft1 , Ft2) = (Ft2 , Ft1) it holds that the observations
(X̃i

t1 , Ỹ
i
t1 , X̃

i
t2 , Ỹ

i
t2) for i = 1, . . . , n are independent and identically distributed such

that the joint distribution of these is the same as the distribution of the original
observations. Consequently, the distributions of all T jFS ’s are identical with the
distribution of the original TFS , and the significance probability for the hypothesis
can be obtained by comparing the observed TFS with the empirical distribution
of the T jFS–variables: We count the number of T jFS ’s that are further away from 1
than the observed TFS . Similarly, significance probabilities can be obtained based
on the empirical distributions of the T jEC ’s and T jM ’s.

2.3 Frontier shift test for unbalanced panels

The test statistics introduced in Section 2.1 are formulated for balanced panels,
but TFS , as defined in (4), can easily be extended to cover the non-balanced case
by calculating FS(x, y) in (1) for all observations say nt1 and nt2 for each of the
two time periods. The test statistic now becomes the geometric mean of these
nt1+nt2 ratios and is calculated as

TFS =
∏

t∈{t1,t2}

nt∏
i=1

FS(Xi
t , Y

i
t )

1
nt1

+nt2 . (6)

The permutation test described in Section 2.2 of interchanging the observations
assume balanced panels. In the unbalanced case with a total of nt1+nt2 observa-
tions and where, say, n of these are complete observations (observations from both
years) the method can be modified as follows, when constructing each of the new
test statistics T jFS (for j = 1, . . . , N):
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I. Based on the set of n complete observation pairs derive (X̃i
t1 , Ỹ

i
t1 , X̃

i
t2 , Ỹ

i
t2)

for i = 1, . . . , n as in (a) in Section 2.2.

II. Permute the remaining (nt1 − n)+(nt2 − n) observations and divide them
randomly into two groups of size n1−n and n2−n respectively. Let (X̃i

t1 , Ỹ
i
t1)

denote the observations that end up in the first group for i = n+ 1, . . . , nt1 ,
and similarly let (X̃i

t2 , Ỹ
i
t2) denote the observations in the second group for

i = n+ 1, . . . , nt2 .

III. Calculate T jFS based on the set of new observations (X̃i
t1 , Ỹ

i
t1) and (X̃k

t2 , Ỹ
k
t2)

for i = 1, . . . , n1 and k = 1, . . . , n2 using (6).

3 Monte Carlo procedure

In the simulations we let p = 2 and q = 1 and assume CRS. The set of experiments
is performed for varying “true frontiers” and varying distributions of the points
both with and without frontier shift.

First we describe how we simulate each of the dependent pairs (Xt1 , Xt2) under
the hypothesis that (Ft1 , Ft2) = (Ft2 , Ft1).

Let the common frontier be defined by a Cobb–Douglas function, such that a point
(x1, x2) is placed on the frontier, if

1 = f(x1, x2) , where f(x1, x2) = xa1x
1−a
2 ,

for some parameter a ∈ (0, 1). Each Xt will be determined by a direction Ut on
the positive part of the unit sphere and a technical input efficiency 0 < Θt ≤ 1.
In the simulation procedure, we will let both pairs (Ut1 , Ut2) and (Θt1 ,Θt2) be
dependent. The direction vector (Ut1 , Ut2) is simulated as follows:

1. Simulate two vectors (W 1
1 ,W

1
2 ) and (W 2

1 ,W
2
2 ) each with dependent uniform

distributions on (0,1), using a Gumbel copula. The variables are positively
correlated, and the strength of the dependence is determined by a non–
negative parameter, we shall denote θ0. A larger value means a stronger
dependence.

2. Transform each of the variables W 1
1 ,W

1
2 ,W

2
1 ,W

2
2 by the quantile function for

the Beta-distribution here chosen with parameters (3, 3). Let V 1
1 , V

1
2 , V

2
1 , V

2
2

denote the new variables, and note that they all follow a Beta(3, 3)–distribution.
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3. Let Ut1 be the normalized version of the vector (V 1
1 , V

2
1 ), and Ut2 the nor-

malized version of the vector (V 1
2 , V

2
2 ). That is

Ut1 =
(V 1

1 , V
2

1 )

‖(V 1
1 , V

2
1 )‖

and Ut2 =
(V 1

2 , V
2

2 )

‖(V 1
2 , V

2
2 )‖

.

Consequently, the two directions Ut1 and Ut2 are dependent, since both their
first and second coordinates are chosen to be dependent.

By this construction, the directions are not uniformly distributed on the positive
part of the unit sphere. This is however intentional and has the purpose of mim-
icking typical datasets: The use of the Beta–distribution makes directions close to
the axes less likely than directions in the middle of the positive part of the unit
circle.

The input efficiency vector is simulated as follows

4. Simulate a vector (Z1, Z2) of two dependent uniformly distributed variables
using a Gumbel copula with dependence parameter θ.

5. Transform each of the two variables Z1, Z2 by the quantile function for the
Beta-distribution with parameters (3, 1.5). Define Θt1 and Θt2 to be the
new variables.

Note that the variables Θt1 and Θt2 both (marginally) follow a Beta(3,1.5)–distribution.
The choice of the Beta–distribution is due to the flexibility of this class of prob-
ability distributions. The parameter 3 determines the tail behaviour of points far
away from the frontier, and the parameter 1.5 determines the density of points
very close to the frontier. Choosing this parameter greater than 1 makes points
very close to the frontier less likely.

The final pair of points (Xt1 , Xt2) is generated as

Xt1 =
Ut1

f(Ut1)Θt1

and Xt2 =
Ut2

f(Ut2)Θt2

.

3.1 Difference between frontiers

When simulating dependent pairs (Xt1 , Xt2) in a situation, where there is a dif-
ference between the two distribution (Ft1 , Ft2) and (Ft2 , Ft1), we follow almost the
same procedure as previously. The only difference will be that we apply two dif-
ferent Cobb–Douglas functions in the definitions of Xt1 and Xt2 , respectively. For
Xt1 we apply the same function as previously

f(x1, x2) = xa1x
1−a
2 ,
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while for β > 1 we use
f2(x1, x2) = βxa1x

1−a
2 ,

to generate Xt2 with technological progress.

3.2 Difference between efficiency distributions

Another way of obtaining a difference between the two distributions (Ft1 , Ft2)
and (Ft2 , Ft1) is by changing the efficiency distribution. Here we use the same
frontier for the two time periods, and let the marginal distributions of Θt1 and
Θt2 , respectively, be different. In this situation, we use two different modified
versions of (5) when simulating the efficiency vector. For the first version, we only
change the part of the efficiency distribution that is furthest away from 1:

5’. Transform each of the two variables Z1, Z2 by the quantile function for the
Beta-distribution with parameters (3, 1.5). Define Θt1 and Θt2 to be the
new variables. Replace Θt2 by the following transformation of Θt2

(
Θt2
δ

)1.5
· δ Θt2 ≤ δ

Θt2 Θt2 > δ .

The parameter δ is in the simulations chosen to be 0.7, 0.8, and 0.9. Using this
procedure, Θt1 and Θt2 will have different distributions, but in a way such that
the behaviour of efficiencies close to 1 is unchanged. That means that points close
to the frontier will behave in the same way for the two time periods, while points
further away from the frontier will behave differently: In the second time period
these points are further away from the frontier than in the first period.

For the second version of modifying the efficiency distributions, we simply use
another Beta-distribution for the observations in the second time period

5”. Transform the variable Z1 by the quantile function for the Beta-distribution
with parameters (3, 1.5) and the variable Z2 by the quantile function for the
Beta-distribution with parameters (3, 1.3). Define Θt1 and Θt2 to be the
new variables.

The densities for Θt1 and Θt2 (both when simulated according to 5’, using δ = 0.8,
and 5”) are shown in Figure 1.
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Figure 1: The left plot shows the density of the Beta(3,1.5)–distribution
(blue solid line) together with the density described in 5” (red dashed line)
with δ chosen to be 0.8. The right plot shows the density of the Beta(3,1.5)–
distribution (blue solid line) together with the density of the Beta(3,1.3)–
distribution (red dashed line).

4 Simulation results

In the following we have used the simulation procedure described above to investi-
gate the power of the proposed tests. For each combination of parameters within
each of the simulation scenarios from Section 3.1 and 3.2, we have generated 1000
sets of observations containing either n = 50 or n = 100 observations. For each
set, we have used the permutation test procedure described in Section 2.2 with
N = 1000 permutations, to derive the proportion of rejected hypotheses on a 5%
significance level. The values shown in each of the cells in Tables 1-3 are the re-
jection rates across the 1000 simulations.

4.1 Results for differences between frontiers

Table 1 investigates the behaviour of the tests in the situations, where the frontiers
are different but the efficiency distributions are identical, i.e. where there is frontier
shift but no efficiency change. The results in the first 4 rows of Table 1 correspond
to the situation with no frontier shift, i.e. β = 1, and thus identical distributions
in the two groups, corresponding to the hypothesis (Ft1 , Ft2) = (Ft2 , Ft1). As ex-
pected, the proportions of rejected hypotheses, for all three tests and all parameter
combinations, are close to 0.05 in these rows.
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In the next rows we see that the larger the difference between the frontiers (i.e.
the larger the β) the larger the proportions of rejections for the frontier shift (FS)
and the Malmquist (M) index tests. This clearly illustrates that the tests have
very high power for all parameter combinations. Note also that the higher the
dependency between the observations in the two time periods, as expressed by the
parameters θ0 and θ, the higher the power of the test. However, the power of the
efficiency change (EC) test remains low throughout the parameter combinations.
This is as expected, since we in this set of simulations maintain the same efficiency
distributions in the two groups.

To summarize, from Table 1 we see that in situations with only frontier shift, the
M-test identifies differences between the two distributions, and the FS-test and
the EC-test between them show that the differences are due to frontier shift alone.

Figure 2 illustrates the results from power calculations for FS-test for sample sizes
of n = 50 and n = 100 respectively for the symmetric Cobb-Douglas function with
θ0 = 2.5 and θ = 2.5. The significance levels chosen are 0.05, 0.01, and 0.001.
Again, we see that the power is high, and even for fairly small differences be-
tween the frontiers we are able to distinguish between them also for small samples
(n = 50).

4.2 Results for differences between efficiency distribu-
tions

This section investigates the behaviour of the tests in the situations where the
frontiers are identical but the efficiency distributions are different, i.e. where there
is efficiency change but no frontier shift.

First consider the case where, even though the efficiency distributions are differ-
ent, the distribution of points close to the frontier is the same in the two groups
(using three different cut-off points), as illustrated in the left panel of Figure 1.
This means that the estimated frontiers for the two groups are similar (apart from
the natural variation). Therefore the FS-test should not identify any differences
between the two frontiers, while both the M-test and the EC-test are expected to
find a difference between the two group of observations.

Table 2 shows the power of the three tests with the cut-off parameter δ chosen to
be 0.7, 0.8 and 0.9 and with a and the dependence parameters θ and θ0 varying
as before. As expected, both the M–test and the EC-test correctly detects that

11



a
=

0.
5

a
=

0.
8

n
=

5
0

n
=

10
0

n
=

50
n

=
10

0
β

θ 0
θ

F
S

E
C

M
F

S
E

C
M

F
S

E
C

M
F

S
E

C
M

1
2
.5

2
.5

0
.0

4
7

0
.0

46
0.

04
9

0.
04

9
0.

05
1

0.
04

5
0.

06
5

0.
05

1
0.

05
2

0.
06

1
0.

04
5

0.
04

3
5

0
.0

5
4

0
.0

40
0.

04
5

0.
06

1
0.

04
2

0.
04

6
0.

05
0

0.
05

4
0.

05
7

0.
05

0
0.

04
4

0.
04

3
5

2.
5

0.
04

9
0
.0

4
6

0.
04

8
0.

05
4

0.
04

6
0.

05
0

0.
03

6
0.

05
5

0.
05

1
0.

04
0

0.
05

8
0.

00
58

5
0
.0

5
7

0
.0

50
0.

06
1

0.
04

7
0.

04
5

0.
05

6
0.

.5
5

0.
06

0
0.

06
0

0.
03

46
0.

05
7

0.
05

2

1.
05

2.
5

2
.5

0
.4

7
5

0.
03

3
0.

20
3

0.
80

6
0.

02
5

0.
37

3
0.

42
2

0.
03

2
0.

18
9

0.
81

3
0.

02
4

0.
38

8
5

0
.5

3
2

0
.0

18
0.

49
5

0.
88

8
0.

01
9

0.
78

8
0.

51
9

0.
01

2
0.

48
7

0.
84

5
0.

00
8

0.
78

3
5

2.
5

0.
53

7
0
.0

2
1

0.
23

2
0.

87
4

0.
01

7
0.

38
3

0.
50

4
0.

03
4

0.
21

7
0.

87
2

0.
03

0
0.

37
9

5
0
.7

1
3

0
.0

15
0.

52
3

0.
94

4
0.

00
9

0.
83

3
0.

65
2

0.
01

2
0.

53
9

0.
93

0
0.

01
1

0.
82

2

1
.1

2.
5

2.
5

0
.8

85
0.

01
4

0.
57

8
0.

99
9

0.
01

0
0.

89
6

0.
88

4
0.

01
5

0.
58

4
0.

99
8

0.
01

0
0.

86
4

5
0
.9

3
2

0
.0

07
0.

93
1

0.
99

8
0.

00
2

0.
99

8
0.

90
4

0.
00

6
0.

92
4

0.
99

7
0.

00
4

0.
99

8
5

2.
5

0.
92

0
0
.0

1
6

0.
57

1
0.

99
9

0.
01

6
0.

86
1

0.
91

2
0.

01
8

0.
59

1
1

0.
00

6
0.

89
4

5
0
.9

7
9

0
.0

00
0.

96
9

1
0.

00
2

0.
99

8
0.

96
5

0.
00

4
0.

95
6

1
0.

00
3

0.
99

9

1
.2

2.
5

2.
5

0
.9

97
0.

00
7

0.
96

8
1

0.
00

4
1

0.
99

9
0.

00
4

0.
97

2
1

0.
00

5
1

5
1

0
.0

0
2

1
1

0
1

1
0

1
1

0
1

5
2.

5
0.

99
9

0
.0

0
2

0.
97

2
1

0.
01

0
1

0.
99

9
0.

00
7

0.
96

7
1

0.
01

1
1

5
1

0
1

1
0

1
0.

99
9

0
1

1
0.

01
1

1

T
ab

le
1:

S
im

u
la

ti
on

re
su

lt
s:

P
ro

p
or

ti
on

s
of

re
je

ct
ed

h
y
p

ot
h
es

es
fo

r
va

ry
in

g
fr

on
ti

er
s

an
d

p
ar

am
et

er
co

m
b
i-

n
at

io
n
s.

12



1.00 1.05 1.10 1.15 1.20

n=100

 b

pr
ob

ab
ili

ty
 o

f r
ej

ec
tin

g

0.00
0.05

0.20

0.40

0.60

0.80

1.00

a=0.05
a=0.01
a=0.001

1.00 1.05 1.10 1.15 1.20

n=50

 b

pr
ob

ab
ili

ty
 o

f r
ej

ec
tin

g

0.00
0.05

0.20

0.40

0.60

0.80

1.00

a=0.05
a=0.01
a=0.001

Figure 2: Power functions for varying sample sizes (n) and varying signifi-
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there is a difference between the two groups. The power of these two tests seem to
be almost identical in the situations studied here. It is furthermore seen that the
power increases drastically, when δ increases. This effect is due to the fact that
the two efficiency distributions become more different with increasing values of δ.

Conversely, but not unexpectedly, the FS-test does not detect any differences be-
tween the two groups. In particular for δ being 0.7 and 0.8 the test behaves as
if there was no difference at all. For δ = 0.9 there seems to be a small increase
in the power. This happens since with δ = 0.9 only few of the points near the
frontier in the second group follow the same distribution as the points in the first
group. Thus, due to the bias when estimating frontiers, the two frontiers will be
estimated differently.

The total collection of tests correctly concludes, that the efficiencies are different
and that the frontier and the distribution close to the frontier is the same.

Next, consider the case where the entire efficiency distributions, i.e. also for points
close to the frontiers, are in fact different in the two groups as illustrated in the
right panel of Figure 1 and mathematically described in 5”. This influences the
(biases of the) estimations of the two frontiers and therefore the FS-test might
identify frontier differences, even if these are caused by the different biases in the
estimations rather than real frontier shifts.

Table 3 shows the simulated power of the three tests with the parameters a, θ
and θ0 varying as before. The M-test correctly identifies that there is a difference
between the groups, and the EC-test furthermore establishes that (at least) part
of the difference is due to a change in the efficiency distribution. However as
expected, also the FS-test finds a difference between the groups. Thus, it can be
concluded that the FS-test reacts on both real frontier shifts and on changes in
the point distribution near the frontier.

4.3 Conclusion on simulation results

To sum up, our simulations show

- If the M-test shows non-significance, there is not statistical evidence for Ft1
and Ft2 being different and thereby Ψδ

t1 being unequal to Ψδ
t2 .

- If the M-test shows significance, then Ft1 and Ft2 are unequal.

- If the FS-test shows non-significance, there is not statistical evidence for the
frontiers being equal i.e. Ψδ

t1 is equal to Ψδ
t2 and the distributions Ft1 and
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Ft2 are equal near the frontier. However this does not exclude the possibility
of the point distributions being substantially different further away from the
frontier.

- If the FS-test shows significance, then the frontiers are different, i.e. Ψδ
t1

is different from Ψδ
t2 or the distributions Ft1 and Ft2 are different near the

frontier.

- If the EC-test shows significance, then the distributions of efficiences are
different in the two periods.

5 Empirical Example

To illustrate the proposed tests, we reconsider the data set on U.S. electric power
generating firms, introduced by Christensen and Greene (1976) and also used
by e.g. Pastor and Lovell (2005) and Pastor et al. (2011) to illustrate various
Malmquist-type indexes. The data set comprises a balanced panel of 93 electricity
producing firms observed in each of the years 1977, 1982, 1987, and 1992. The
firms use three inputs (capital, fuel and labour) to produce one output (electricity)
and the production model use an input-orientation and assume constant returns
to scale. The justification for the choice of variables can be found in Christensen
and Greene (1976) and average values for the variables in each year are provided
by Pastor and Lovell (2005).

In Table 4 the test statistics (cf. equations 3-5) for the shifts 1977-1982, 1982-1987,
and 1987-1992 in the electricity data set are shown.

77-82 82-87 87-92
TFS 0.370 (0.000) 0.822 (0.474) 1.118 (0.099)
TEC 1.163 (0.678) 1.089 (0.986) 0.929 (0.314)
TM 0.431 (0.000) 0.895 (0.000) 1.039 (0.084)

Table 4: Test statistics and significance probabilities for electricity data
(based on 10000 permutations).

Regarding the frontier shifts shown in the first row of Table 4, we see that the
frontier shift index, TFS (cf. equation 4), can be found to be 0.370, 0.822, and
1.118 for the shifts 1977-1982, 1982-1987, and 1987-1992 respectively, which is tra-
ditionally interpreted as the frontier having worsened from 1977 to 1982 and from
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1982 to 1987, but improved from 1987 to 1992.

Applying the permutation test (with 10000 permutations), the corresponding sig-
nificance probabilities are 0.000, 0.474 and 0.099 respectively. Therefore, we can
conclude that there is only a significant difference between the distributions of
points, and thus likely a significant difference between the frontiers, for the shift
from 1977 to 1982. For the other two shifts (1982-87 and 1987-92) we find no
significant differences between the distributions, and thus we can not distinguish
between these frontiers.

The observations from 1977 and 1982 are illustrated in the top-left panel of Figure 3
(and similarly for 1987 and 1992 in the top-right panel), where we have divided
each of the three inputs by the output (allowable since we are assuming CRS).
For the observations from 1977 and 1982 it is obvious that there are differences
between the two frontiers (with the 1982 observations having much higher capital
levels) whereas there are no clear distinctions between the observations from 1987
and 1992. The lower panels illustrate the unit specific frontier shifts, FS (cf. equa-
tion 1), and here we see that all observations in 1977 and 1987 have FS-measures
lower than 1, meaning that the 1982 frontier is worse than that in 1977, whereas
the individual FS measures for the shift from 1987 to 1992 are centered around
1. Thus there is an obvious difference between the 1977 and 1982 frontiers, but
not between the 1987 and 1992 frontiers, in correspondence with the significance
probabilities in Table 4.

Concerning the efficiency change index in the second row of Table 4, we note that
there in none of the cases are evidence against the hypothesis (Ft1 , Ft2) = (Ft2 , Ft1).
This means that there is no evidence of efficiency changes between any of the time
periods.

Concerning the Malmquist index, the test statistics are extreme for two of the
three shifts (1977-1982, and 1982-1987). This means that there in these two sit-
uations are significant differences between the distributions. For the first shift
(1977-1982) it is likely that the difference is due to changes in the frontiers, since
TFS is significant and TEC is not. That the productivity change (decline) is, in
fact, likely due to the frontier shift in particular, is evident from Figure 3.

For the shift from 1982 to 1987 there is a significant productivity change, but since
neither of the TFS and TEC components are significant we have no additional in-
formation about the nature of the difference.
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Finally, for the shift from 1987 to 1992 there is no evidence of any type of produc-
tivity change.

6 Conclusion

In this paper we have introduced exact tests (permutation tests) for the Malmquist
index and its components (frontier shift and efficiency change) estimated using the
non-parametric DEA approach. The tests do not depend on an assumed technology
and a specific type of efficiency distribution, nor are they limited by the number of
inputs and outputs. The tests are easily implementable and the R-code is shown in
the Appendix. Further, it is described how to extend the the method to situations
with unbalanced panel data.

Extensive simulation studies show that the suggested approach correctly detects
differences between the two groups, as indicated by the individual tests relying
on the Malmquist index, the frontier shift and (to some extent also) the efficiency
change respectively. The proposed set of three tests is useful in the sense that
when, for example, the Malmquist test identifies significant differences between
time periods, then the other two tests generally are able to identify the nature of
the difference, i.e. whether the difference is due to frontier shift or due to efficiency
change.

The test procedure has furthermore shown to be useful when applied to an em-
pirical case from the literature and we have provided the R-code for this example,
showing that the approach is easily implementable in practice.

7 Appendix

The R-code used to implement the permutation test in the empirical illustration
(balanced panel):

library(Benchmarking); library(EnvStats)

NN <- 10000 #number of permutations

N <- 93 #number of DMU’s

#t1x and t1y are input and output matrices for time t1 and similary for t2

t1xy<-cbind(t1x,t1y)

t2xy<-cbind(t2x,t2y)

thetat1<-dea(t1x,t1y, RTS=’crs’,ORIENTATION="in")
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thetat12<-dea(t1x,t1y,XREF=t2x,YREF=t2y, RTS=’crs’,

ORIENTATION="in")

FSt1<-thetat1$eff/thetat12$eff

thetat21<-dea(t2x,t2y,XREF=t1x,YREF=t1y, RTS=’crs’,

ORIENTATION="in")

thetat2<-dea(t2x,t2y, RTS=’crs’,ORIENTATION="in")

FSt2<-thetat21$eff/thetat2$eff

EC12<-thetat2$eff/thetat1$eff

FS<-geoMean(c(FSt1,FSt2) )

EC<-geoMean(EC12)

M<-FS*EC

perm_fun<-function(x,t){

return(x*t)

}

FS_perm<-rep(0,NN)

EC_perm<-rep(0,NN)

M_perm<-rep(0,NN)

for (i in 1:NN){

perm_index<-sample(0:1,size=N,replace=TRUE)

t1xy_perm<-apply(t1xy,2,perm_fun, t=perm_index)+apply(t2xy,2,perm_fun, t=(1-perm_index))

t2xy_perm<-apply(t2xy,2,perm_fun, t=perm_index)+apply(t1xy,2,perm_fun, t=(1-perm_index))

t1x_perm<-t1xy_perm[,1:3] #three inputs

t1y_perm<-t1xy_perm[,4] #one output

t2x_perm<-t2xy_perm[,1:3] #three inputs

t2y_perm<-t2xy_perm[,4] #one output

efft1_perm<-dea(t1x_perm,t1y_perm, RTS=’crs’,ORIENTATION="in")

efft12_perm<-dea(t1x_perm,t1y_perm,XREF=t2x_perm,YREF=t2y_perm, RTS=’crs’,

ORIENTATION="in")

FSt1_perm<-efft1_perm$eff/efft12_perm$eff

efft21_perm<-dea(t2x_perm,t2y_perm,XREF=t1x_perm,YREF=t1y_perm, RTS=’crs’,

ORIENTATION="in")

efft2_perm<-dea(t2x_perm,t2y_perm, RTS=’crs’,ORIENTATION="in")

FSt2_perm<-efft21_perm$eff/efft2_perm$eff

EC12_perm<-efft2_perm$eff/efft1_perm$eff

FS_perm[i]<-geoMean(c(FSt1_perm,FSt2_perm))

EC_perm[i]<-geoMean(c(EC12_perm))

M_perm[i]<-FS_perm[i]*EC_perm[i]

}

significance_probability_FS<-mean(abs(FS_perm-1)>abs(FS-1))

significance_probability_EC<-mean(abs(EC_perm-1)>abs(EC-1))

significance_probability_M<-mean(abs(M_perm-1)>abs(M-1))
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