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Abstract

Regression models for proportions are frequently encountered in applied work. The con-
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1 Introduction

After half a century of research on econometric models for limited dependent variables (Maddala,

1983, Wooldridge, 2002), it remains the case that only a small portion of it deals with proportions

data, and even a smaller one with panel models for such proportions. Machado (2004) proposes the

binomial fixed effects logit model, Papke and Wooldridge (2008) a correlated random effects probit

quasi-likelihood estimator and Ramalho et al. (2016) a class of exponential GMM estimators.

And yet, proportions and related types of data are regularly encountered in applied econometric

work. Often, they correspond to the number of “successes” in a sequence of Bernoulli trials, such

as homicide- or unemployment rates, or the fraction of days absent from work during a work

week. Also, variety scores (e.g., the number of applicable items in a general health questionnaire),

bounded count data, as well as ratings, share the key features of such variables, discreteness and

the existence of an upper and lower bound for the outcome.

In all these cases, the binomial model with a logit function for the expected proportion provides

a natural starting point for modelling. For the fixed effects setting, Machado (2004) shows that

the incidental parameters problem can be overcome by a conditional maximum likelihood (CML)

estimator, much like it is the case for the binary response logit model (Chamberlain, 1980). She

also provides Monte Carlo evidence indicating that the dummy variables (DV) approach is subject

to an upward bias that is decreasing both in the length of the panel, T , and in the number of

Bernoulli trials, K. For T > 5 and K > 5, CML and DV approaches yield quite comparable results

with minor bias (Machado, 2004).

This paper advances the earlier literature in three directions: First, we show how the binomial logit

fixed effects estimator can be implemented in any off-the-shelf statistical software that includes

a conditional logit routine, using the idea of cloning, or data expansion. Second, we study the

properties of the CML and DV estimators for the case where the binomial distributional assumption

fails. The leading example is that of overdispersion, originating from unobserved heterogeneity or

dependence among the Bernoulli trials. The CML estimator is not a pseudo ML estimator in

the sense of Gourieroux, Monfort and Trognon (1984), and it does not possess formal robustness

properties. We therefore investigate the extent of bias in a series of simulation experiments. Third
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and finally, we derive and implement a new test for the binomial assumption, i.e., a test for the

hypothesis of no dispersion, as existing tests (e.g. Dean, 1992) cannot be applied because the fixed

effects are not estimated by the CML estimator.

To illustrate the proposed methods, we conduct a study of the determinants of women’s work

behavior in Switzerland. The outcome variable is the contracted work-time percentage, where 0

means no work and 1 means full-time work. Data are from the Swiss Household Panel for the

years 2012 to 2016. The binomial logit estimates indicate that having children is associated with

substantially reduced work-time percentage, ceteris paribus. Perhaps more surprisingly, having a

partner makes the effect more pronounced, whereas speaking French reduces it.

2 Model and estimation

A proper panel model for proportions yit ∈ [0, 1] must overcome two challenges. First, the model

should observe the restricted support of the outcome, as well as being able to handle data clustering

at the end points. For instance, the log-odds transformation log[yit/(1 − yit)] is not defined for

yit = 0 or yit = 1. Another method facing the same limitation is beta regression, which is flexible

for fitting continuous proportional data but cannot give predictions at the boundaries with positive

probability. Second, direct control for unobserved time-invariant individual heterogeneity (that

may or may not be correlated with the regressors) using a dummy for each cross-sectional unit

is subject to the incidental parameters problem, leading to inconsistent estimation of structural

parameters when the length of panel T is fixed.

Machado (2004) addresses these two issues by introducing the binomial fixed effects logit model for

proportions and proposing a consistent conditional maximum likelihood estimator as follows:

Assumption 1

Let Yit = Kyit, where K is a known integer and

yit ∈
{

0,
1

K
,

2

K
, . . . , 1

}
such that

Yit|pit ∼ binomial(K, pit) , i = 1, . . . , N ; t = 1, . . . , T (1)
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Here, K is the number of “trials”, Yit = Kyit is the “number of successes”, and yit is the proportion,

or fraction of successes for observation unit i in period t.

Assumption 2

Let the expected proportion depend on covariates xit and an individual specific effect αi as follows:

E(yit|xit, αi) = pit =
exp(x′itβ + αi)

1 + exp(x′itβ + αi)
≡ Λit (2)

xit and αi can be correlated.

Assumption 3

Observations are independent between individuals and, conditional on group effects αi, serially

uncorrelated.

The objective of the analysis is estimation of β. Under Assumptions 1-3, the joint binomial density

for Yi1, Yi2, . . . , YiT conditional on
∑

t Yit is given by (see Machado, 2004)

f

(
Yi1, Yi2, . . . , YiT |

∑
t

Yit

)
=

Πt

(
K
yit

)
pYitit (1− pit)K−Yit∑

q∈Qi Πt

(
K
qt

)
pqtit (1− pit)K−qt

=
exp(

∑
t Yitx

′
itβ)Πt

(
K
yit

)∑
q∈Qi exp(

∑
t qtx

′
itβ)Πt

(
K
qt

) (3)

where Qi = {(q1, q2, . . . , qT )|qt ∈ {0, 1, 2, . . . ,K},
∑

t qt =
∑

t Yit}. The conditional binomial ap-

proach eliminates the fixed effects αi which appear in the numerator and denominator with same

power. Observations for which
∑

t Yit = 0 or
∑

t Yit = KT have a conditional probability of 1 and

do not contribute to estimation of β. For proportion data, such outcomes tend to be much less

prevalent than for binary outcomes.

2.1 An alternative implementation

The binomial logit fixed effects estimator can be implemented using any off-the-shelf statistical

software with a conditional logit routine, since the binomial distribution arises as the sum of K

independent Bernoulli trials. Therefore, two estimators are equivalent: one based on a binomial

log-likelihood function and the other based on a Bernoulli log-likelihood for an expanded dataset.

For the expanded dataset, one simply generates a sequence of K copies for each i, keeping the
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regressors unchanged, where the proportion yit is replaced by a sequence of 0/1 indicator variables

dijt in arbitrary order such that

K∑
j=1

dijt = Kyit (4)

It follows that dijt and yit have the same CEF:

E(yit|xit) = E

(∑K
j=1 dijt

K

∣∣∣∣∣xit
)

= E(dijt|xit). (5)

The logit (Bernoulli) log-likelihood function of the expanded dataset is given by

logL =

N∑
i

K∑
j

dijt log(Λit) + (1− dijt) log(1− Λit)

=
N∑
i

Yit log(Λit) + (K − Yit) log(1− Λit).

This log-likelihood function is proportional to the binomial log-likelihood as well as to the Bernoulli

quasi-log-likelihood (Papke and Wooldridge, 1996, replacing Yit by yit and (K − Yit) by (1− yit)),

and the three ML estimators are therefore identical.

Similarly, the conditional density function for individual i at time t can be written as:

f

{dijt}|∑
t

∑
j

dijt

 =
ΠtΠjp

dijt
it (1− pit)1−dijt∑

s∈Si ΠtΠjp
sjt
it (1− pit)1−sjt

=
exp(

∑
t

∑
j dijtx

′
itβ)∑

s∈Si exp(
∑

t

∑
j sjtx

′
itβ)

(6)

where Si = {(s11, s21, . . . , sK1, s12, . . . , sKT )|sjt ∈ {0, 1},
∑

t

∑
j sjt =

∑
t

∑
j dijt)}.

Compared with equation (3), the number of s such that {s|
∑

j sijt = qit} is
(
K
qit

)
for given q.

Equation (6) is therefore basically the same as equation (3), except for the term Πt

(
K
yit

)
in the

numerator. But this term does not depend on any parameter and thus drops out of the first-order

condition for the maximum of the log-likelihood function. Specifically, the conditional Bernoulli
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log-likelihood function can be written as:

logL =
∑
i

∑
t

∑
j

dijtx
′
itβ − log(

∑
s∈Si

exp(
∑
t

∑
j

sjtx
′
itβ))

 (7)

with first derivative

∂ logL

∂β
=
∑
i

[∑
t

Kyitx
′
it −

∑
s∈Si exp(

∑
t

∑
j sjtx

′
itβ)

∑
t

∑
j sjtx

′
it∑

s∈Si exp(
∑

t

∑
j sjtx

′
itβ)

]
(8)

which is the same as in the conditional binomial model, up to an additive constant, and will give

the same consistent estimator of β, after elimination of the fixed effects.

2.2 Overdispersion

Departures from the binomial proportions model can take a number of forms. The first one is a

violation of the independence assumption for the underlying Bernoulli trials. Positive dependence,

or contagion, among the sequence of Bernoulli trials causes overdispersion, a conditional variance

exceeding the binomial variance Kpit(1 − pit). Another violation is “unobserved heterogeneity”,

where pit is no longer a constant but rather a random variable, say p̃it. Marginalizing over p̃it

then leads to a mixture model that is characterized by overdispersion as well. Depending on

the distribution of p̃it, proportions can for example have a u-shaped probability function even

conditional on αi and xit, i.e., probability mass stacked at the endpoints of 0 and 1, which is never

the case for a binomial distribution that has either a single, or two adjacent modes.

A prominent example for a continuous mixture is the beta-binomial model, where the conditional

probability is

p̃it ∼ beta(uit, vit), (9)

and

uit = φΛ(xitβ + αi), vit = φ(1− Λ(xitβ + αi)).

It is easy to show that a beta-binomial distribution with this parameterization has expectation
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KΛit and variance

Var(Yit|K,Λit, φ) = KΛit(1− Λit)

(
1 +

K − 1

φ+ 1

)
(10)

Thus, the variance of the beta-binomial model is proportional to that of the binomial model. The

degree of overdispersion increases in K, the number of trials, and it decreases in the parameter φ.

The binomial variance is obtained for K = 1, or in the limit, for φ → ∞, which also means that

Var(p̃it)→ 0.

In general, fixed effects conditional maximum likelihood estimators are not consistent if the under-

lying model is misspecified. The reason is that the first-order condition is not a moment condition

for the mean, but rather a function of the conditional probabilities. However, it might still be the

case that the CML estimator works satisfactorily as long as the degree of overdispersion, in other

words, the departure from the binomial assumption, is not too large. We will explore this type of

robustness in a series of simulation experiments. We thereby extend results by Machado (2004),

who considered the severity of the incidental parameters problem and the small sample properties

of the CML estimator under the maintained assumption of a correctly specified binomial model.

In our simulations, this assumption is dropped.

2.3 Simulation study

The simulation experiments employ two different data generating processes: one where the binomial

assumption is satisfied, and a second one, based on the beta-binomial model, where overdispersion

is present. Unobserved time-invariant individual heterogeneity is positively correlated with the

regressor in both cases. The degree of overdispersion is varied from 10 to 100 percent.

Both set-ups use the same logit conditional expectation function with a single regressor

E(yit|xit, αi) = Λ(β0 + β1xit + αi) =
exp(β0 + β1xit + αi)

1 + exp(β0 + β1xit + αi)
, (11)

where β0 = 0, β1 = 2 and the size of the cross-section is either N = 100 or N = 500. The time

dimension increases from T = 2, T = 5 to T = 10.

The regressor xit is drawn from a uniform distribution with support [−1, 1] and has therefore a

mean of 0 and a variance of 1/3. Draws are independent both across individuals and over time.
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We make a correlated random effects assumption:

αi =
√
T x̄i + εi, (12)

where εi ∼ N(0, 1). It follows that the correlation between αi and x̄i is 0.5, a substantial amount.

Once the mean is given, the dependent variable is obtained by generating pseudo random numbers

from either a binomial or a beta-binomial distribution. Specifically, we first draw integer random

numbers from a (beta) binomial distribution with parameters K and Λ(xitβ1 +αi), and then divide

the result by the number of categories K. e.g.:

yit =
Kyit
K

,Kyit ∼ binomial(K, pit), pit = Λ(β0 + β1xit + αi) (13)

K is exogenously set to 2, 5 or 10. For K = 2, K × yit can be 0, 1, or 2, with corresponding

fractions of yit = 0, 0.5, or 1, respectively; if K = 10, yit takes on one-digit decimals: 0, 0.1, 0.2,. . . ,

1.

Ignoring the presence of the individual specific component and estimating the marginal, pooled

model will have two effects:

• β1 is upward biased due to the positive correlation between xit and αi.

• β1 is downward biased due to omitted heterogeneity. In the probit model, there is a closed

form expression for this bias (Wooldridge, 2002). In the logit model, it needs to be computed

numerically, but the direction is the same.

Which one of the two biases is larger is an empirical matter. The DV estimator, on the other hand,

suffers from the standard upward incidental parameters bias (Abrevaya, 1997).

−−−−−−−−− Table 1 about here −−−−−−−−−

Table 1 shows the simulation results based on 1000 replications, for a sample size of N = 100. The

dependent variable has a binomial distribution conditional on xit and αi, and K = 2, K = 5 or

K = 10. The mean and standard deviation of estimated coefficients across replications are reported.

The three estimators are referred to as Blogit CML, Blogit DV, and pooled logit respectively.
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As Machado (2004), we find that the Blogit CML model estimates the true structural slope pa-

rameter very well even for small samples. There is a 2% upward bias for T = K = 2 that vanishes

quickly as either T or K increases. The sampling variability increases not only in T but also in K,

albeit at a less than
√
K rate. The Blogit DV estimators have a larger bias and a larger standard

error, and hence a higher mean squared error, in all settings. It becomes small as T and K increase.

For instance, for T = 10 and K = 10, the mean Blogit DV estimate is 2.025, whereas the mean

Blogit CML estimate is 2.000. On the other hand, the pooled logit estimator has no tendency to

converge to the true parameter β1 = 2, over- or underestimating it depending on the DGP. In the

lower panel of Table 1, simulations are repeated for a larger sample, N = 500 instead of N = 100.

The qualitative conclusions remain unchanged.

Beta-binomial DGP

Simulations from the beta-binomial model add a further step: instead of directly obtaining binomial

responses with (conditional on xit and αi) success probability pit = Λ(β0 + β1xit + αi), p̃it is now

drawn from a beta distribution with mean pit:

p̃it ∼ beta(φΛ(β0 + β1xit + αi), φ(1− Λ(β0 + β1xit + αi))) (14)

From (10), we know that the multiplicative variance inflation factor depends both on K and φ. To

keep the degree of overdispersion constant for K = 2, 5, 10, we adjust φ accordingly. For example,

for 10% overdispersion and K = 2, we have 1 + (K − 1)/(φ+ 1) = 1.1, so φ = 9.

As a practical limitation, common beta random number generators set lower bounds (above the

theoretical ones of 0) for the two parameters. In Stata, for example, these are given by 0.05 and

0.15, respectively. From (14) we see that attempts to draw from the beta using arguments violating

these bounds are more likely to arise when the mean is close to zero or one, or when φ is small (and

therefore the degree of overdispersion is large). Since such occurrences only depend on exogenous

factors, dropping these cases does not invalidate the estimation procedure. However, it affects the

effective sample size and thus leads to higher standard errors than would otherwise be the case.

−−−−−−−−− Figure 1 about here −−−−−−−−−

Figures 1 and 2 plot the relative biases of Blogit CML and Blogit DV against the degree of overdis-

persion, for N = 100 and N = 500, respectively. Overdispersion varies from 10% to 200% (The full
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results on the means and standard deviations of the estimators for each DGP are given in Tables

A1 and A2 in the appendix).

Three key patterns emerge. First, overdispersion leads to an upward bias of both the Blogit

CML and the Blogit DV estimators. The bias increases in the amount of overdispersion. Second,

the Blogit CML estimator always dominates the Blogit DV estimator, both in terms of bias and

standard error. This result did already hold for the binomial case, and it persists in the presence

of overdispersion. Third, for a given degree of overdispersion, the bias is decreasing in T as well as

in K. However, increasing K alone non necessarily leads to a reduction in estimation bias, because

it leads to more overdispersion, ceteris paribus. Again, results are qulitatively similar for N = 500

(see Figure 2).

−−−−−−−−− Figure 2 about here −−−−−−−−−

The overall conclusion is that the Blogit CML estimator maintains a rather good performance even

if the binomial model is misspecified, as long as the degree of overdispersion is modest, or else, as

long as T is large. To take the two polar cases, for N = 100, if K = T = 2 the mean estimate

with 10% overdispersion is 2.1, a 5% upward bias. For K = T = 10 the mean estimate with 100%

overdispersion is 2.049, a 2.45% upward bias.

3 A test for overdispersion

Existing binomial tests for yit, e.g. Dean’s (1992) score test or regression based tests regressing

squared residuals yit − Λ̂it on Λ̂it(1 − Λ̂it), require estimates Λ̂it (that are needed for estimating

the conditional variances V̂ar(yit|xit)). However the Blogit CML approach does not give us α̂i, so

this is not feasible. To ascertain the validity of the Blogit CML model assumption, i.e. that Kyit

is binomial distributed conditional on αi and xit, we propose an alternative approach that uses β̂

but does not require estimates of αi, based on taking differences.

To start, consider a binary random variable Mit defined by a draw from a Bernoulli distribution

with mean yit, Mit ∼ Bernoulli(yit). Clearly, the conditional mean is E(Mit|yit) = yit while the

unconditional mean is E(Mit) = Λit. The conditional variance is Var(Mit|yit) = yit(1− yit), while

the unconditional variance is Var(Mit) = E[yit(1− yit)] + Var(yit) = Λit(1− Λit).

The basic idea of the test is to compare the variances of the differences Yit − Yis and that of the
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difference Mit −Mis, for pairs of observations where the underlying probabilities pit = Λit are the

same (or similar) for the two periods. For notational simplicity, let t = 1 and s = 2. In such cases,

outcomes Yi1, Yi2 can be regarded under H0 as random draws from i.i.d. binomial distributions

and the variance of Yi1 − Yi2 should be equal to the sum of binomial variances, under assumptions

A1 and A3. On the other hand, the Bernoulli draws from the same distributions have standard

variances. If there is over- or under- dispersion, the variance of Yi1 − Yi2 will be larger or smaller

than the variance calculated from Bernoulli draws.

Specifically, consider the variable

zi =
(Yi1 − Yi2)2 −K(Mi1 −Mi2)2

K(K − 1)
. (15)

Conditional on yi1, yi2,

E[(Mi1 −Mi2)2|yi1, yi2] = yi1(1− yi1) + yi2(1− yi2) + (yi1 − yi2)2

= yi1 + yi2 − 2yi1yi2.

Therefore, under A1, A2 and A3, the expectation of zi is given by

E(zi) =
1

K(K − 1)

[
Var(Yi1) + Var(Yi2) + (EYi1 − EYi2)2 −K(Λi1 + Λi2 − 2Λi1Λi2)

]
.

Under the binomial assumption, Var(Yit) = KΛit(1− Λit), and it follows that

E(zi) =
1

K(K − 1)

[
KΛi1(1− Λi1) +KΛi2(1− Λi2) +K2(Λi1 − Λi2)2

−K[Λi1(1− Λi1) + Λi2(1− Λi2) + (Λi1 − Λi2)2]
]

= (Λi1 − Λi2)2.

(16)

Hence, the expected value of zi is zero under the null hypothesis of binomial dispersion as long as

Λi1 = Λi2. From (2), this is the case for observations for which the regressors xit do not change

over time, xi1 = xi2.

Under the alternative hypothesis, the variance function is given by

Var(Yi) = KΛit(1− Λit) (1 + η) , η 6= 0 (17)

For the beta-binomial model, η is equal to η = K−1
φ+1 > 0. If η < 0, Yi is under-dispersed relative to

the binomial model. Overdispersion originates from positive dependence of the Bernoulli trials, or
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from unobserved heterogeneity. Underdispersion arises from negative dependence. If yit does not

follow H0, the test statistic will have positive sign in overdispersed samples and negative sign for

underdispersed ones.

3.1 Case I: discrete covariates

Define the set of individuals with the same expectations over time, A = {i : Λi1 = Λi2}, for which

E(zi|i ∈ A) = 0 holds. With time invariant fixed effect αi, the set A is equal to {i : xi1 = xi2}. It

is feasible to find such a set A if all covariates are finite discrete variables and assuming that the

x-values are drawn from a stationary distribution, ruling out pure time trends, for instance. The

test term for discrete xit is defined as

τA = Ê(zi|i ∈ A) =

∑
i∈A zi

|A|
, (18)

where |A| represents the number of elements in A. Under H0, τA
p−−→ 0. Further, by the central

limit theorem (CLT), the statistic τA converges to a normal distribution,

√
|A|(τA − 0)

d−−→ N(0, σ2
A), (19)

where σ2
A = Var(zi|i ∈ A). In practice, σ2

A is replaced by the sample variance σ̂2
A. So we reject the

binomial distribution assumption at the α% significance level if

∣∣∣∣ τA
σ̂A/
√
|A|

∣∣∣∣ ≥ Z1−α
2
.

Individuals in the set A do not contribute to the estimation of the Blogit CML model, since xit

are cancelled out as fixed effects. Nonetheless, they are needed for generating our dispersion test.

This non-parametric method to build a test is similar to finding proper cell estimators in matching

theory, but likewise faces the curse of dimensionality. It is hard to find the set A when the dimension

of xit becomes larger. If |A| shrinks, the convergence rate
√
|A| will decrease and the estimator τA

will converge more slowly.

3.2 Case II: continuous covariates

The set A = {i : Λi1 = Λi2} is empty or very small when Λi1 and Λi2 are continuous. A more

general method uses a kernel estimator for the conditional expectation E(zi|Λi1 − Λi2 = 0). The

main idea is to put more weight on individuals with smaller |Λi1 − Λi2|. Since we do not observe the
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underlying expectations Λit directly, we find the set A by using observables xit. Under the assump-

tion of a single scalar regressor and time-invariant unobserved heterogeneity, we can decompose the

conditional expectation (16) by a Taylor expansion at xi2,

(Λi1 − Λi2)2 = [Λ(xi1β + αi)− Λ(xi2β + αi)]
2

= [Λ′(xi2β + αi)β (xi1 − xi2) +
Λ′′(xi2β + αi)

2!
β2 (xi1 − xi2)2 + o((xi1 − xi2)2)]2

= [Λ′(xi2β + αi)β (xi1 − xi2)]2 + o(β2(xi1 − xi2)2),

Denote ∆i = (xi1 − xi2)β,

E(zi|Λi1 − Λi2) = (Λi1 − Λi2)2 = (Λ′i2∆i)
2 + o(∆2

i ).

As the fixed effect αi is cancelled out, an alternative conditional expectation function is given by

∆i,

τ(∆) = E(zi|∆i = ∆, Xi) = (Λ′i2∆)2.

Then, under the binomial assumption,

E(zi|Λi1 − Λi2 = 0) = τ(0) = 0.

The result generalizes to a vector-valued x, in which case ∆i = (xi1 − xi2)′β.

The next step is to build a kernel estimator for τ(0). One conditional moment estimator for τ(∆) is

τ̂(∆) =
∑N
i=1 K(

∆i−∆

h
)zi∑N

i=1K(
∆i−∆

h
)

, where h is the kernel bandwidth for ∆i and K(∆i−∆
h ) is the kernel function.

For a given sample, ∆i needs to be replaced by ∆̂i = (xi1 − xi2)β̂, where β̂ is estimated. We can

use the Blogit CML estimator for estimation, as it is consistent under the binomial null hypothesis.

We construct a local estimate τ̂ for the object of interest τ(0) (see Pagan and Ullah, 1999):

τ̂ =

∑N
i=1K( ∆̂i

h )zi∑N
i=1K( ∆̂i

h )
=

N∑
i=1

wnizi, wni =
K( ∆̂i

h )∑N
i=1K( ∆̂i

h )
,

The Gaussian function K( ∆̂i
h ) = 1√

2π
exp(− (∆̂i/h)2

2 ) is chosen for simplicity.
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3.3 Asymptotic properties

Let f = f(∆ = 0) denote the continuous density function of the random variable ∆ at point 0.

The kernel density estimator f̂ for f is

f̂ =
N∑
i=1

K( ∆̂i
h )

nh
.

In addition, rewrite zi as the sum of its conditional expectation E(zi|∆i) = τ(∆i) and an error

term ui, such that

zi = τ(∆i) + ui = (Λ′i2∆i)
2 + ui

where E(ui|∆i, Xi) = 0 and Var(ui|∆i, Xi) = σ2.

The estimator τ̂ is a combination of f̂ and zi

τ̂ =

∑N
i=1

1
nhK( ∆̂i

h )zi∑N
i=1

1
nhK( ∆̂i

h )
=

1

f̂

N∑
i=1

1

nh
K

(
∆̂i

h

)
zi =

1

f̂

N∑
i=1

1

nh
K

(
∆̂i

h

)
(Λ′i2∆i)

2 + ui.

The expectation of τ̂ is

E(τ̂) = E(
1

f̂

N∑
i=1

1

nh
K(

∆̂i

h
)(Λ′i2∆i)

2 +
1

f̂

N∑
i=1

1

nh
K(

∆̂i

h
)ui)

=

∫ ∫
1

hf̂
K(ν)(Λ′i2)2(hν)2f(hν,Λi2)hdνdΛi2 + Ê(ui|∆̂ = 0), where we replace ∆ = hν

= h2

∫ ∫
K(ν)(ν)2(Λ′i2)2 f(ν,Λi2)

f̂
dνdΛi2

= h2µ2E[(Λ′i2)2|∆ = 0], where µ2 =

∫
K(ν)(ν)2dν

We therefore obtain a bias

Bias(τ̂) = E(τ̂)− τ(0) = E(τ̂) = h2µ2E[(Λ′i2)2|∆ = 0], (20)

that is proportional to h2.

To guarantee consistency of the estimator τ̂n, convergence of the mean square error to zero is

required. The MSE is equal to MSE(τ̂) = Bias(τ̂)2 + Var(τ̂). So the bias for τn should decrease to
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zero, as n increases:

h2 −→ 0, as n −→∞. (21)

Besides the convergence condition for bias, we also consider the asymptotic performance of the

variance of τ̂ . Using a result on the variance of conditional expectations from Pagan and Ullah

(1999), we obtain:

Var(τ̂) =
σ2

nhf

∫
K2(ν)dν, Var(τ̂) ∝ 1

nh
. If n −→∞, 1

nh
−→ 0. (22)

To make sure that the MSE converges at the fastest speed, bias2 and variance should converge at

the same rate: h4 ∝ 1
nh . Otherwise, the slower speed dominates the convergence rate. Thus, h is

of order h ∝ n−
1
5 and by the central limit theorem,

√
nh(τ̂ − E(τ̂))

d−−→ N(0, f−1σ2

∫
K2(ν)dν) (23)

Here σ2 = Var(z2
i |∆ = 0), with the same definition as in the discrete case (eq. 19). In practice,

we standardize ∆i at first and set bandwidth h′ = 0.9n−
1
5 . The approximate bias is calculated

by Ê(τ̂) =
∑N

i=1wni(yi2(1 − yi2)∆̂)2, σ2 is replaced by σ̂2 =
∑
wni(zi − τ(∆̂i))

2 and V̂ar(τ̂) =

σ2

f̂2

∑N
i=1K

2(ν)
n2h2 . Hence, τ̂− ˆE(τ̂)√

V̂ar(τ̂)
can be used as a t-test.

3.4 Multiple periods

The test can be extended to multiple time periods. With T = 2, there is a single moment condition

for E(zi|∆i = 0) that can be tested. For T > 2, one possibility is to combine T − 1 such moment

conditions into a single test statistic.

In the discrete case, for set At = {i : xi,t = xi,t+1},

gi,t =
(Yi,t − Yi,t+1)2 −K(Mi,t −Mi,t+1)2

K(K − 1)
, t = 1, ..., T − 1.

gi,t is empty if xi,t 6= xi,t+1. As we derived before, E(gi,t) = 0.
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In matrix form,

gi =


gi,1

. . .

gi,T−1

 , and the sample mean is ḡn =


1
n1

n1∑
i=1

gi,1

. . .

1
nT−1

nT−1∑
i=1

gi,T−1

 ,

with nt = |At|, the cardinality of set At. Denote n = (n1, ..., nT−1)′. To calculate the sample

variance Ŝ, we replace off-diagonal elements with pairwise sample covariances and diagonal ones

with gt sample variances. A test statistics can be derived

J = (
√
n ◦ ḡn)′Ŝ−1(

√
n ◦ ḡn).

In the continuous case, moment conditions are

gi,t =
K(

∆̂i,t

h )(zi,t − τ(∆̂i,t))∑N
i=1

1
nK(

∆̂i,t

h )
, t = 1, ..., T − 1

where ∆̂it = (xit − xi,t+1)β̂ and τ(∆̂i,t) = (yi,t+1(1 − yi,t+1)∆̂it)
2. Under the null hypothesis,

E(gi,t) = 0.

These moment conditions can be written in matrix form for individual i = 1, ..., N as :

gi =


gi,1

. . .

gi,T−1

 , and the sample mean is ḡN =


1
N

N∑
i=1

gi,1

. . .

1
N

N∑
i=1

gi,T−1

 .

Let Ŝ denote the sample variance:

Ŝ =
1

N

N∑
i=1

gig
′
i − ḡnḡ′n,

Since ḡN
p−−→ E(gi) = 0, a test statistic is given by

J = N · ḡ′N Ŝ−1ḡN = (
√
N · ḡN )′Ŝ−1(

√
N · ḡN )
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Theory:
√
N · ḡN

d−−→ N(0, S) and Ŝ
p−−→ S, then J

d−−→ χ2
T−1.

This chi-square test rejects the binomial distribution assumption at the α% significance level if

J ≥ χ2
α(T − 1).

3.5 Simulation study

We conduct simulation experiments to examine the performance of these tests under two scenarios.

In the first setting, explanatory variables are discrete (in fact, there is a single binary regressor,

to keep things as simple as possible), while the explanatory variable is continuous in the second.

The remaining aspects of the DGP regarding fixed effects, expectation functions and parameters

setting are kept the same as those in section 2.3.

−−−−−−−−− Table 2 about here −−−−−−−−−

Table 2 presents rejection rates, i.e., the relative number of times that our test rejects the binomial

assumption over 1000 replications, when x is discrete. xit is either 0 or 1 with equal probability.

In this case, Pr(xi1 = xi2) = 50%, and on average half of the observations will be in the set A

of individuals with the same expectations over time and thus informative for computing the test

statistic. As before, simulations are conducted for T = 2, 5, 10 and for K = 2, 5, 10.

The first row of each sub-panel shows results without overdispersion, i.e., sampling from a binomial

DGP applies. In this case, the rejection rates are equivalent to the proportion of type-I errors

and ideally should be close to the nominal size of the test, in this case 5%. When N = 100,

the rejection rate is larger than the nominal size (i.e., the test is conservative), especially when

T is larger, because convergence in the small sample is slow and the critical value of asymptotic

distribution may not be appropriate (Härdle and Mammen 1993). As N increases to 500, we find

that rejection rate shrinks towards the expected size. The smallest empirical rejection rate is 4.1

percent, the largest is 15%. If anything, there is a slight tendency to overreject the true assumption,

more so in the multivariate version of the test (T > 2) than in the scalar version (T = 2).

In the current set-up, where we test the validity of a specific model assumption, we would be more

worried about under- than overrejection. Also, the power properties are very important in this

context. The lower part of each subpanel shows the rejection rates under H0 when H0 is false, i.e.,

the binomial model is misspecified. Reassuringly, we find that the test has some power against the
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alternative of rather modest overdispersion (10%), in particular for N = 500 and T = 10, where

close to 30% of wrong null hypotheses are rejected. As the dispersion degree increases, the power

of the test also grows, and it reaches 100% for DGPs where overdispersion degree, the number of

observations, and the number of time periods are large.

−−−−−−−−− Table 3 about here −−−−−−−−−

In Table 3, we show the results for the kernel weighted test statistics for continuous regressors. xit

is drawn from a uniform distribution with positive support between -1 and 1, with mean 0 and

variance 1/3. The general patterns regarding type-I errors and power of the tests are mostly similar

to those of Table 2. As in Table 2, the power of the test tends to decrease in K, for a given overall

degree of overdispersion, but this tendency is more uniform in the continuous version of the test. It

indicates that the power of the test reacts differently to the two parameters driving overdispersion,

and in particular that it is more sensitive to increases in φ rather than K. The combined results

from our simulation experiments are reassuring: on one hand, modest amounts of overdispersion

cause only minor bias of the Blogit CML estimator; on the other hand, the test we derive has good

power properties against medium or high-dispersion alternatives to the binomial assumption.

4 Application to labor supply

In this illustrative application, we consider the interplay between fertility and female labor supply

in the context of Switzerland, using data from the Swiss Household Panel (SHP) for the years 2012-

2016. The SHP is an ongoing longitudinal survey of households and people living in Switzerland. It

collects information on a large range of topics on living conditions, both objective and subjective,

including work, fertility and health. We restrict the analysis to women aged 25-45, who participated

in the survey at least twice during the five-year period. This gives us a sample of 5,854 person-year

observations for 1,712 different women.

The study of female labor supply has a long history (see e.g. Mroz, 1987). Traditionally, the focus

has mostly been on the binary participation decision, i.e., the extensive margin, or on annual hours

of work, the intensive margin. In the Swiss context, it is more natural to model the work-time

percentage, which is a number between 0 and 100%. These work-time percentages are written

into contracts and also advertised in job vacancies. For instance, 60 percent work-time means that

the worker works the equivalent of 3 days per week and also is paid 60% of a full-time salary. In
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practice, the large majority of agreed-upon work-time percentages are multiples of 10%. Figure 3

shows the distribution of work-time percentages in our sample. The relative frequency of zeros is

14.4%, meaning that the estimated participation rate in our sample for this age group is 85.6%, a

number very close to the official numbers published by the Federal Statistical Office (BfS, 2016).

−−−−−−−−− Figure 3 about here −−−−−−−−−

Figure 3 documents one frequently noted “puzzle” of female labor supply in Switzerland: Although

the participation rate of women is one of the highest among OECD countries, there is a large

prevalence of part-time work, varying from very small amounts to more substantial ones, and the

proper full-time rate (defined as, say, working 100% or 90%) is actually not that high (here 21%).

As a consequence, quite substantial male-female gaps emerge over the life cycle regarding earnings,

eligibility for retirement benefits and career development more generally. Clearly, the low work-time

percentages for women with children provides a main explanation for this pattern. The Box-plots

in Figure 4 show, for our data, that the median work-time percentage drops from 80 percent or

higher for those aged 30 or below to 50 percent for women in their early 40s. At the same time,

older women are more likely mothers. Around 10 percent of Swiss women remain childless.

−−−−−−−−− Figure 4 about here −−−−−−−−−

Table 4 provides some descriptive statistics (means and standard deviations) for both the de-

pendent and the explanatory variables used in the estimation. The average work-time percent-

age is 55%, with a standard deviation of 0.34. We have re-coded the work-time percentage as a

strict multiple of 0.1, by moving the few intermittent values to the decile below. Hence, we can

treat 10-times the work-time percentage as a binomial variable with outcomes 0, 1, . . . , 10. Under

the binomial assumption, the standard deviation for a fraction with a mean of 0.56 is equal to√
0.56(1− 0.56)/10 = 0.157, substantially below the observed standard deviation of 0.346. Hence,

there is evidence of over-dispersion at the marginal level. However, this does not necessarily in-

validate the key assumption of the binomial distribution conditional on covariates and individual

specific fixed effects. This assumption will be tested.

−−−−−−−−− Table 4 about here −−−−−−−−−

Women have an average age of 36.3 years and 63.1 percent report having at least one child in the

year they are surveyed. For 58.4 percent of person-year observations, there is a partner present
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in the household. The health status is captured by a 5-point scale for self assessed health, where

0 means “not well at all” and 4 means “very well”. We treat it as a cardinal scale for simplicity,

and also abstract from its potential endogeneity to working or having children. Finally, we include

information on language region. There is quite a bit of evidence that work-norms differ between

the French and the German speaking parts of Switzerland, with some stigma attached to working

mothers, in particular during the first years of the child’s life, for and full-time work. This stigma

seems to be stronger in the German-speaking part of Switzerland (65% or our sample) but less so

in the French-speaking part (29% of our sample) (see Steinhauer, 2018).

Our final estimation model includes four year dummies, age-squared (the linear age term is dropped;

alternatively, one could identify the linear age effect by setting a second year effect equal to zero),

indicators for the presence of a child and partner, and the health variable. Since language region

is mostly constant over time, it is near-collinear with the fixed effects when applying the Blogit

CML or Blogit DV estimators, and we therefore only include its interaction with the child-indicator

variable.

As is the case for the binary logit model with fixed effects, DV estimation of the binomial model is

subject to the perfect prediction problem (see e.g. Kunz, Staub and Winkelmann, 2018). Outcomes

for women, whose work-time percentage is either zero or one in each year are perfectly predicted,

meaning that the associated dummy coefficient will tend to minus or plus infinity, respectively. For

the Blogit CML, perfectly prediction formally does not arise as the αi’s are not estimated. However,

all such observations have mechanically a log-conditional likelihood contribution of zero and thus

do not contribute to estimation of β either. To use the same estimation sample everywhere, we

right away drop all perfectly predicted outcomes, leading to a final sample size of 4,661 person-year

observations for the work-time percentage model.

−−−−−−−−− Table 5 about here −−−−−−−−−

Regression results are given in Table 5. The first column shows the estimated coefficients from

the Blogit CML and the second those from the Blogit DV model. The last two columns add

corresponding (binary) logit models for the extensive margin model (work yes/no), again using

alternatively the CML or DV estimators. Standard errors are clustered at the individual level

throughout.

When interpreting magnitudes, we note the recent suggestion by Kemp and Santos Silva (2016)

and focus on expected (semi-) elasticities. These can be estimated without knowledge of αi and are
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thus very suitable for our conditional maximum likelihood approach. For the binomial proportion

model with E(yit|xit, αi) = Λit, we get

∂ log E(yit|xit, αi)/∂xit = β(1− Λit)

A good estimator of the overall mean of Λit is the sample mean of the outcome, Λ̄ = ȳ = 0.55,

so that the CML estimators β̂ can be multiplied by 0.45 to obtain an estimate of the population

average semi-elasticities with respect to changes in the associated covariate.

From columns (1) and (2) of Table 5, we find a large negative association between having a child

and the amount of work. The point estimate of the main effect is about -2, which means that not

having a child increases the expected work-time percentage by about 90 percent, a factor of close to

two. This effect is highly statistically significant, as are two of the three interaction effects: having

a child reduces the work-time percentage more if a partner is present than otherwise, underlining

the relevance of pecuniary motives for work, and the need to “make ends meet”. The labor supply

response of women to having children is about half as large for French speaking women as it is for

German speakers, corroborating the social norm results found in the earlier literature (Steinhauer,

2018).

In this application, the Blogit CML and the Blogit DV results are very similar. The DV results are

always a bit larger in absolute value, but the difference never exceeds five percent. This resonates

with our simulation results, because both T and K are both relatively large. Nevertheless the

joint test for the binomial assumption derived in section 3.3 indicates a clear rejection (test value

of 37.7 with a χ2
0.95 critical value of 9.5). This rejection result due to overdispersion was already

foreshadowed, although not logically implied because of the conditional nature of the test, by the

high proportion of no work (zero) and full-time work (100%) as evident in Figure 1. However, we

know from the simulation results (Tables 1 and 2) that even with 50% overdispersion, the bias of

the Blogit CML is very small for K = 10 and T = 5, a setting similar to the current application.

At the same time, the probability of rejecting the wrong H0 is very close to 1 (see Table 3). On a

practical note, the CML estimator can be computed much faster than the DV estimator, by a factor

of about 10 in our case. The speed problem of DV models would be exacerbated in applications

with more cross-sectional units, to the point where computation of the Blogit DV estimator may

become infeasible in the current Stata/R setting.

In the last two columns of Table 5, we allow for a comparison with results from a more conventional
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binary logit extensive margin estimator. A first point to note is that the sample becomes much

smaller, since all observations with variation in the positive range only, i.e., percentages between

10% and 100%, are now coded as “1” and thus become perfectly predicted. Their variation does

not contribute to estimation, the usable sample size drops by 3/4, and the standard errors of the

estimated coefficients increase accordingly. We had to drop the interaction between speaking Italian

and having children, as it could not be estimated in the reduced sample.

The estimated coefficients tend to be substantially larger, but they are not directly comparable.

To obtain the implied expected semi-elasticities for the probability of work, coefficients need to be

multiplied by the non-participation rate, 0.145 in this case, compared to a factor of 0.45 applicable

in the first two columns. Based on the CML estimates, some of the extensive margin semi-elasticities

are smaller than the overall semi-elasticities (like the main effect of having a child), and some of

them larger (such as self-rated health). In terms of statistical significance, we find that the health

and partner coefficients were not statistically in the work-time percentage model, but they are in

the participation model. And in terms of point estimate, the interaction between speaking French

and having children just offsets the main effect of having at least one child, meaning that there is

no difference in participation probabilities for French speaking mothers and non-mothers, although

some labor supply responsiveness was found in the work-time percentage model for the combined

extensive and intensive margin effect. Finally, in terms of estimation method, and in contrast to the

work-time percentage model, the participation model suffers from a massive incidental parameters

bias, since the point estimates for the DV estimator exceed those of the CML estimator by fifty

percent on average.

5 Concluding remarks

Machado (2004) introduced the fixed effects binomial model as a method for proportions or discrete

bounded outcomes more generally. However, she did not address the question whether or not the

conditional binomial logit maximum likelihood estimator is robust to misspecification. In this

paper, we focus on the consequences of overdispersion as it originates, for instance, from neglected

unobserved heterogeneity. We show in simulation experiments that the Blogit CML estimator

maintains a rather good performance even if the binomial model is misspecified, as long as the

length of the panel T is sufficiently large, or the degree of overdispersion is modest.

We then derive a test of the null hypothesis that the binomial assumption is valid against the
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alternative hypothesis of overdispersion. The test computes the variance of within-individual out-

come differences. For the subset of observations whose regressors do not change over time, the

mean difference is zero (or close to zero if regressors do not differ “too much”) and it is possible to

compute variances with and without the binomial assumption that do not depend on fixed effects.

This is essential, as fixed effects are not estimated by the Blogit CML estimator. Our simulation

experiments show that the test has good power properties under the alternative of medium or large

degrees of overdispersion. But these are exactly the case when the bias of the Blogit CML estimator

becomes noticeable.

Proportions data are ubiquitous in empirical economic research. We study in our empirical appli-

cation an outcome related to women’s work behavior, namely the contracted work-time percentage.

In our sample of mid-aged women obtained from the Swiss Household Panel, 65% of all women

report working part-time, i.e. a percentage between 10% and 90%. The empirical analysis using the

fixed effects binomial logit model yields substantially different work-time percentages for mothers

and non-mothers. Having a partner makes the effect more pronounced, whereas speaking French

reduces it. We show how these coefficients can be interpreted in terms of expected semi-elasticities

even if the fixed effects are not estimated. In comparison to the fixed-effects logit estimation

for the participation model, much fewer observations are lost in the work-time percentage model

due to perfect prediction, contributing to its overall much more precise estimation of the model

parameters.

In future work, we will consider alternative estimators that could be pursued if the binomial null

hypothesis is rejected. If the logit conditional expectation function is to be kept, a binomial logit

correlated random effects model is a possible approach. Such a model would explicitly account for

overdispersion, by assuming for instance that unobserved heterogeneity follows a normal distribu-

tion with mean depending on the regressors.
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Table 1: Simulation Results under the Binomial Distribution

N=100 T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=2 2.049 2.880 2.242 2.003 2.280 1.986 2.006 2.134 1.877
(0.419) (0.621) (0.255) (0.178) (0.211) (0.145) (0.118) (0.128) (0.101)

K=5 2.012 2.279 2.243 2.000 2.101 1.990 2.002 2.051 1.872
(0.233) (0.272) (0.190) (0.111) (0.118 ) (0.104) (0.073) (0.075) (0.076)

K=10 2.005 2.129 2.241 2.001 2.050 1.989 2.000 2.025 1.871
(0.157) (0.169) (0.153) (0.078) (0.081) (0.091) (0.052) (0.052) (0.063)

N=500 T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=2 2.013 2.826 2.234 2.002 2.278 1.987 2.002 2.130 1.870
(0.170) (0.254) (0.112) (0.082) (0.097) (0.068) (0.053) (0.057) (0.046)

K=5 2.003 2.268 2.232 2.001 2.102 1.986 2.000 2.049 1.867
(0.102) (0.119) (0.078) (0.051) (0.054) (0.050) (0.033) (0.034) (0.033)

K=10 1.997 2.121 2.235 1.999 2.049 1.984 2.000 2.024 1.867
(0.071) (0.076) (0.067) (0.034) (0.035) (0.042) (0.023) (0.023) (0.029)

Results for 1000 Monte Carlo replications; Standard deviations in parentheses. The number of observation
in each period is 100 in the upper part of the table and 500 in the second half. xit ∼ U [−1, 1]. β1 = 2 and

αi =
√
T x̄i +N(0, 1). Outcomes yit follows the binomial distribution with pit = exp(xitβ1+αi)

1+exp(xitβ1+αi)
.
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Table 2: Simulation Results for Rejection Rates when x is Discrete

N=100 Dispersion T=2 T=5 T=10 N=500 Dispersion T=2 T=5 T=10

K = 2 0% 0.062 0.150 0.447 K = 2 0% 0.054 0.071 0.129
10% 0.080 0.216 0.477 10% 0.143 0.222 0.373
50% 0.502 0.797 0.743 50% 0.992 1 1

K = 5 0% 0.056 0.175 0.444 K = 5 0% 0.041 0.078 0.134
10% 0.044 0.186 0.429 10% 0.094 0.150 0.250
50% 0.225 0.501 0.737 50% 0.861 0.995 1.000
100% 0.603 0.899 0.958 100% 1 1 1
200% 0.938 0.992 0.968 200% 1 1 1

K = 10 0% 0.052 0.169 0.426 K = 10 0% 0.059 0.059 0.149
10% 0.052 0.197 0.422 10% 0.083 0.130 0.211
50% 0.204 0.428 0.700 50% 0.813 0.991 1.000
100% 0.492 0.823 0.941 100% 1 1 1
200% 0.869 0.993 0.992 200% 1 1 1

Notes: xit is binary variable with 50% probability equal to 0 or 1. The rest DGP is same as in Table 3;
The null hypothesis is that of binomial dispersion.

Table 3: Simulation Results for Rejection Rates when x is Continuous

N=100 Dispersion T=2 T=5 T=10 N=500 Dispersion T=2 T=5 T=10

K = 2 0% 0.053 0.063 0.097 K = 2 0% 0.062 0.047 0.056
10% 0.070 0.095 0.185 10% 0.138 0.223 0.394
50% 0.424 0.684 0.899 50% 0.948 1 1

K = 5 0% 0.05 0.053 0.078 K = 5 0% 0.042 0.05 0.057
10% 0.044 0.063 0.110 10% 0.083 0.105 0.190
50% 0.239 0.512 0.805 50% 0.772 0.992 1
100% 0.608 0.958 0.999 100% 0.996 1 1
200% 0.927 0.991 0.995 200% 1 1 1

K = 10 0% 0.041 0.062 0.091 K = 10 0% 0.052 0.056 0.043
10% 0.041 0.057 0.086 10% 0.073 0.094 0.179
50% 0.190 0.402 0.673 50% 0.677 0.988 1
100% 0.482 0.908 0.997 100% 0.991 1 1
200% 0.873 0.999 0.999 200% 1 1 1

Note: Results for 1000 Monte Carlo replications; Standard deviations in parentheses. In each period, the
number of observation is 100. xit ∼ U [−1, 1] . β1 = 2 and αi =

√
T x̄i +N(0, 1). Overdispersion factor k−1

φ+1

represents dispersion degree of variance. Overdispersion degree 0% is generated by binomial distribution
and postive dispersion degree is generated by a beta-binomial DGP.
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Table 4. Descriptive statistics (NT = 5, 854)

mean std. dev.

Work-time percentage 0.557 0.346
Age 36.30 6.01

Children (yes=1) 0.631 0.482
Partner (yes=1) 0.584 0.492

Self-rated health 3.114 0.610
Years of schooling 14.43 3.09

French speaking (yes=1) 0.293 0.455
Italian speaking (yes=1) 0.043 0.204

Source: Swiss Household Panel 2012-2016, own calculations.
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Table 5. Determinants of female labor supply (SHP 2012-2016)

Work-time Percentage Work (yes/no)
Blogit CML Blogit DV Logit CML Logit DV

Age squared -0.001 -0.001 0.005 0.007
(0.002) (0.002) (0.005) (0.008)

Self-rated health 0.071 0.073 0.448 0.642
(0.038) (0.039) (0.153) (0.220)

Partner (yes=1) 0.322 0.333 1.371 1.927
(0.253) (0.260) (0.658) (0.952)

Children (yes=1) -2.097 -2.160 -1.975 -2.771
(0.276) (0.286) (0.956) (1.381)

Children × Partner -0.824 -0.848 -2.216 -3.188
(0.260) (0.268) (1.056) (1.510)

Children × French 1.152 1.194 1.876 2.777
(0.405) (0.418) (1.089) (1.619)

Children × Italian -0.247 -0.266
(0.720) (0.754)

Year 2013 0.143 0.147 -0.018 -0.018
(0.147) (0.151) (0.465) (0.647)

Year 2014 0.246 0.253 -0.147 -0.265
(0.278) (0.285) (0.820) (1.143)

Year 2015 0.338 0.347 -0.247 -0.408
(0.412) (0.423) (1.205) (1.677)

Year 2016 0.387 0.397 -0.449 -0.717
(0.545) (0.560) (1.577) (2.204)

Number of person-years 4,661 4,661 1,071 1,071
Number of persons 1,334 1,334 295 295
Log pseudolikelihood -23,183.6 -1,838.3 -358.8 -595.9
Fixed effects yes yes yes yes
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Figure 1: Relative bias by dispersion degree (N=100)
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Figure 2: Relative bias by dispersion degree (N=500)
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Figure 3: Distribution of Work-time percentage in 2016
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Figure 4: Work-time percentage and motherhood by age in 2016
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Appendix A: Simulation Results N=100

N=100 Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=2 0% 2.049 2.880 2.242 2.003 2.280 1.986 2.006 2.134 1.877
(0.419) (0.621) (0.255) (0.178) (0.211) (0.145) (0.118) (0.128) (0.101)

10% 2.100 2.968 2.225 2.036 2.320 1.988 2.010 2.138 1.876
(0.419) (0.632) (0.263) (0.192) (0.227) (0.156) (0.121) (0.131) (0.105)

50% 2.516 3.674 1.898 2.179 2.484 1.908 2.073 2.204 1.937
(0.822) (1.283) (0.399) (0.360) (0.429) (0.279) (0.246) (0.266) (0.222)

Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=5 0% 2.012 2.279 2.243 2.000 2.101 1.990 2.002 2.051 1.872
(0.233) (0.272) (0.190) (0.111) (0.118 ) (0.104) (0.073) (0.075) (0.076)

10% 2.033 2.303 2.239 2.013 2.115 1.990 2.010 2.059 1.875
(0.252) (0.295) (0.184) (0.120) (0.128) (0.115) (0.079) (0.081) (0.078)

50% 2.139 2.431 2.205 2.054 2.159 1.971 2.032 2.081 1.882
(0.300) (0.354) (0.214) (0.139) (0.149) (0.122) (0.086) (0.088) (0.083)

100% 2.320 2.657 2.140 2.111 2.219 1.958 2.052 2.102 1.898
(0.402) (0.485) (0.253) (0.176) (0.188) (0.147) (0.116) (0.119) (0.104)

200% 2.721 3.167 1.887 2.231 2.345 1.891 2.115 2.167 1.948
(0.736) (0.910) (0.354) (0.306) (0.326) (0.246) (0.208) (0.214) (0.186)

Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=10 0% 2.005 2.129 2.241 2.001 2.050 1.989 2.000 2.025 1.871
(0.157) (0.169) (0.153) (0.078) (0.081) (0.091) (0.052) (0.052) (0.063)

10% 2.017 2.142 2.237 2.004 2.053 1.986 2.002 2.026 1.868
(0.174) (0.187) (0.158) (0.082) (0.084) (0.091) (0.055) (0.055) (0.063)

50% 2.065 2.195 2.241 2.026 2.076 1.984 2.012 2.036 1.869
(0.202) (0.219) (0.175) (0.098) (0.101) (0.100) (0.064) (0.065) (0.072)

100% 2.139 2.275 2.214 2.051 2.102 1.979 2.025 2.049 1.876
(0.239) (0.260) (0.183) (0.109) (0.113) (0.106) (0.074) (0.075) (0.076)

200% 2.293 2.443 2.146 2.105 2.157 1.963 2.049 2.073 1.892
(0.325) (0.354) (0.215) (0.148) (0.153) (0.124) (0.095) (0.096) (0.087)

Results for 1000 Monte Carlo replications; Standard deviations in parentheses. In each period, the number
of observation is 100. xit ∼ U [−1, 1] . β1 = 2 and αi =

√
T x̄i +N(0, 1). Overdispersion factor k−1

φ+1

represents dispersion degree of variance. Overdispersion degree 0% is generated by binomial distribution
and postive dispersion degree is generated by a beta-binomial DGP.
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Appendix B: Simulation Results N=500

N=500 Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=2 0% 2.013 2.826 2.234 2.002 2.278 1.987 2.002 2.130 1.870
(0.170) (0.254) (0.112) (0.082) (0.097) (0.068) (0.053) (0.057) (0.046)

10% 2.078 2.936 2.214 2.026 2.307 1.975 2.011 2.139 1.870
(0.195) (0.293) (0.120) (0.084) (0.099) (0.070) (0.058) (0.062) (0.050)

50% 2.361 3.424 1.849 2.142 2.438 1.881 2.062 2.191 1.926
(0.311) (0.489) (0.175) (0.151) (0.180) (0.120) (0.102) (0.110) (0.092)

Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=5 0% 2.003 2.268 2.232 2.001 2.102 1.986 2.000 2.049 1.867
(0.102) (0.119) (0.078) (0.051) (0.054) (0.050) (0.033) (0.034) (0.033)

10% 2.032 2.302 2.237 2.007 2.109 1.984 2.006 2.055 1.868
(0.108) (0.126) (0.088) (0.052) (0.055) (0.051) (0.035) (0.036) (0.034)

50% 2.143 2.435 2.204 2.052 2.157 1.973 2.023 2.073 1.871
(0.132) (0.156) (0.090) (0.063) (0.068) (0.055) (0.041) (0.043) (0.040)

100% 2.289 2.617 2.121 2.103 2.211 1.951 2.050 2.100 1.895
(0.168) (0.203) (0.107) (0.080) (0.085) (0.063) (0.049) (0.051) (0.046)

200% 2.619 3.034 1.852 2.225 2.339 1.882 2.105 2.156 1.932
(0.292) (0.363) (0.152) (0.137) (0.146) (0.109) (0.093) (0.095) (0.083)

Dispersion T=2 T=5 T=10
CML DV Pooled CML DV Pooled CML DV Pooled

K=10 0% 1.997 2.121 2.235 1.999 2.049 1.984 2.000 2.024 1.867
(0.071) (0.076) (0.067) (0.034) (0.035) (0.042) (0.023) (0.023) (0.029)

10% 2.014 2.140 2.233 2.003 2.053 1.986 2.002 2.026 1.869
(0.075) (0.081) (0.073) (0.038) (0.039) (0.043) (0.025) (0.025) (0.031)

50% 2.066 2.195 2.228 2.023 2.073 1.980 2.013 2.037 1.868
(0.092) (0.099) (0.076) (0.043) (0.044) (0.044) (0.029) (0.029) (0.033)

100% 2.134 2.269 2.206 2.050 2.100 1.974 2.024 2.048 1.871
(0.108) (0.117) (0.083) (0.050) (0.051) (0.048) (0.035) (0.035) (0.035)

200% 2.293 2.443 2.146 2.105 2.157 1.963 2.049 2.074 1.890
(0.325) (0.354) (0.215) (0.148) (0.153) (0.124) (0.043) (0.043) ( 0.040)

Notes: see Appendix A.
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