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ABSTRACT

Equilibrium Directed Search with Multiple Applications

We analyze a model of directed search in which unemployed job seekers observe all posted
wages. We allow for the possibility of multiple applications by workers and ex post
competition among vacancies. For any number of applications, there is a unique symmetric
equilibrium in which vacancies post a common wage. When workers apply to only one
vacancy, a single wage is paid and the resulting equilibrium is efficient. When workers make
multiple applications, there is dispersion in wages paid, and equilibrium may be inefficient.
We show that our results also hold in a steady-state version of the model.
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1 Introduction

In this paper, we construct an equilibrium model of directed search. Un-
employed workers, observing the wages posted at all vacancies, direct their
applications towards the vacancies they find most attractive. At the same
time, (the owners of) vacancies post their wages taking into account that
their posted wages influence the number of applicants they attract. In our
model, each unemployed worker makes a fixed number of applications, a,
where a € {1,2,...,v}. When workers apply for two or more jobs at the
same time, i.e., a € {2,..,v}, there is a possibility that more than one va-
cancy will want to hire the same worker. In this case, we assume that the
vacancies in question can compete for this worker’s services.

When a = 1, our model is the same as that of Burdett, Shi, and Wright
(2001) (hereafter BSW), albeit translated to a labor market setting. BSW
derive a unique symmetric equilibrium in which all vacancies post a wage
between zero (the monopsony wage) and one (the competitive wage). The
value of this common posted wage depends on the number of unemployed,
u, and the number of vacancies, v, in the market. When a € {2,..,v}, our
results are radically different from those of BSW. We show that all vacancies
post the monopsony wage in the unique symmetric equilibrium. This leads
to equilibrium wage dispersion. Some workers (those who receive exactly
one offer) are employed at the monopsony wage, and some workers (those
who receive multiple offers) have their wages bid up to the competitive level.
When a = v, i.e., when each unemployed worker applies to every vacancy,
our model is related to — but not the same as — that of Julien, Kennes, and
King (2000) (hereafter JKK). JKK assume that each unemployed worker
posts a minimum wage at which he or she is willing to work, i.e., a “reserve
wage,” and that each vacancy then makes an offer to one worker. If more
than one vacancy wants to hire the same worker, then, as in our model,
there is ex post competition for that worker’s services. JKK show that the
unique, symmetric equilibrium reserve wage lies between the monopsony
and competitive levels. There is thus also equilibrium wage dispersion in
their model. Those workers who receive only one offer are employed at the
reserve wage, while those who receive multiple offers are employed at the
competitive wage.

In addition to subsuming BSW and (a model close to) JKK as spe-
cial cases, we make several contributions by considering the general case
of a € {1,2,...,v}. First, we contribute to the literature on the microfoun-



dations of the matching function,! an essential ingredient in much of the
search literature (Pissarides 2000). The urn-ball model is a standard mi-
crofoundation for the matching function. In that model, each worker makes
a single application, and there is a coordination problem among applicants
because some vacancies can receive applications from more than one worker,
while others receive none. With multiple applications, there is a second co-
ordination problem, this time among vacancies. When workers apply for
more than one job at a time, some workers can receive offers from more
than one vacancy, while others receive none. Ultimately, a worker can only
take one job, and the vacancies that “lose the race” for a worker will have
wasted time and effort while considering his or her application. The match-
ing function derived in BSW captures only the urn-ball friction, while the
one derived in JKK captures only the multiple application friction. Our
matching function incorporates both the urn-ball and the multiple applica-
tion coordination frictions, and the interaction between these two frictions
provides new insights.

Second, when a € {2,..,v}, our model generates equilibrium wage dis-
persion with directed search, even though workers and vacancies are homo-
geneous.? Relative to the JKK result for the case of a = v, we (i) find wage
dispersion so long as each worker makes at least two applications, (ii) derive
our result under the (in our view more realistic) assumption that vacancies
post wages, as opposed to workers posting reserve wages, and (iii) derive a
two-point distribution in which some workers are paid the monopsony wage,
while others are paid the competitive wage, as opposed to the reserve wage
and the competitive wage in JKK This last distinction is important because
it makes our model quite tractable, as we will show below.

Our third contribution is to examine the normative question of whether
vacancy creation in a labor market with wage posting and directed search
is constrained efficient. That is, is the equilibrium, free-entry level of labor
market tightness the same as the level that a social planner would choose?
As uw and v become arbitrarily large, the results of Moen (1997) on the

'Our derivation of the matching function is taken from Albrecht, Gautier and Vroman
(2003). Relative to that paper, our contribution here is to derive our matching function
in an equilibrium setting.

?Postel-Vinay and Robin (2000) have a related result in an undirected, random search
framework. In their model, as in Burdett and Mortensen (1998), wage offers arrive at
Poisson rates to both the unemployed and the employed. If a worker who is already em-
ployed receives another offer, then that worker’s current employer and prospective new
employer engage in Bertrand competition for his or her services. In the homogeneous
worker /homogeneous firm version of their model, this leads to a 2-point equilibrium dis-
tribution of wages paid.



efficiency of competitive search equilibrium suggest an affirmative answer to
this question. To look at this issue, we investigate a limiting version of our
model. We first let u,v — oo with v/u = 0 and a fixed. We verify that the
standard efficiency result holds when a = 1, but for each fixed a > 1, we
show that the limiting equilibrium is inefficient; specifically, there is excess
vacancy creation. We then let u,v — oo with v/u = 6 and a = ¢v with 0 <
¢ < 1; that is, we let the number of applications grow at a rate proportional
to the number of vacancies as v — o0. In this case, equilibrium is once again,
i.e., as in the case of a = 1, constrained efficient.? In short, we show that
the limiting equilibrium is constrained efficient in the extreme cases (a = 1
and a proportional to v) but constrained inefficient when workers make any
fixed number of multiple applications.

In the next section we derive our basic positive results in a single-period
framework, and in Section 3, we give our results on constrained efficiency.
In Section 4, we present a steady-state version of our model for the case
of a € {2,..,v}. The key to the steady-state analysis is that a worker who
receives only one offer in the current period has the option to reject that
offer in favor of waiting for a future period in which more than one vacancy
bids for his or her services. Allowing for free entry of vacancies, this leads
to a tractable model in which labor market tightness and the equilibrium
wage distribution are simultaneously determined. The normative results
that we derived in the single-period model continue to hold in the steady-
state setting. Finally, in Section 5, we conclude.

2 The Basic Model

We consider a game played by u homogeneous unemployed workers and (the
owners of) v homogeneous vacancies, where u and v are given. This game
has several stages:

1. Each vacancy posts a wage.

2. Each unemployed worker observes all posted wages and then submits
a applications with no more than one application going to any one
vacancy.

3. Each vacancy that receives at least 1 application randomly selects one
to process. Any excess applications are returned as rejections.

3When ¢ = 1, our limiting equilibrium is the same as the one in JKK since in their
model the reserve wage converges to the monopsony wage.



4. A vacancy with a processed application offers the applicant the posted
wage. If more than one vacancy makes an offer to a particular worker,
then those vacancies can bid against one another for that worker’s
services.

5. A worker with one offer can accept or reject that offer. A worker with
more than one offer can accept one of the offers or reject all of them.

Workers who fail to match with a vacancy and vacancies that fail to match
with a worker receive payoffs of zero. The payoff for a worker who matches
with a vacancy is w, where w is the wage that he or she is paid. A vacancy
that hires a worker at a wage of w receives a payoff of 1 — w.

Before we analyze this game, some comments on the underlying assump-
tions are in order. First, this is a model of directed search in the sense that
workers observe all wage postings and send their applications to vacancies
with attractive wages and/or where relatively little competition is expected.
We assume that vacancies cannot pay less than their posted wages. If they
could, directed search would not make sense. Second, we are treating a as
a parameter of the search technology; that is, the number of applications is
taken as given. In general, a € {1,2,...,v}. Third, we assume that it takes
a period for a vacancy to process an application. This is why vacancies
return excess applications as rejections. This processing time assumption
is important for our results. It captures the idea that when workers apply
for several jobs at the same time, firms can waste time and effort pursuing
applicants who ultimately go elsewhere. Finally, we assume that 2 or more
vacancies that are competing for the same worker can engage in ex post
Bertrand competition for that worker. This means that workers who receive
more than one offer will have their wages bid up to w = 1, the competitive
wage. There are, of course, other possible “tie-breaking” assumptions. For
example, one might assume that vacancies hold to their posted wages, that
is, refuse to engage in ex post bidding. This, however, would not be in the
individual interest of vacancies.

We consider symmetric equilibria in which all vacancies post the same
wage and all workers use the same strategy to direct their applications.
We will show that for each (u,v,a) combination there is a unique symmet-
ric equilibrium, and we will derive the corresponding equilibrium matching
function and posted wage. Assuming (for the moment) the existence of a
symmetric equilibrium, we begin with the matching function. The following
result is from Albrecht et. al. (2003).



Proposition 1 The expected number of matches in symmetric equilibrium

18
. J— v a u a

M(u,v;0) = w1 = (1= —=(1 = (1= 2y))e), 1)
Proof. Let q be the probability that any one application leads to a job offer.
This equals the number of vacancies with applications divided by the total
number of applications, that is, ¢ = pv/au, where p is the probability that a
particular vacancy will receive at least one application. If all vacancies post
the same wage, then the optimal mixed strategy for each unemployed (given
that all other unemployed follow the same strategy) is to send applications
to randomly selected vacancies. The number of applications received by any
one vacancy is then a binomial random variable with parameters u and a/v,

1—(1— 2y

sop=1—(1— g)“ and g = ———Y—. The probability that at least one
v au/v

of a worker’s applications leads to a job offer is 1 — (1 —¢)%; so, the expected
number of matches is u[l — (1 — ¢)?]. Substitution gives equation (1). m

For a = 1, this result is analogous to the one given in Proposition 2
of BSW. That is, with a = 1 (and with the notational change of m = v
and n = u) our results exactly match those of BSW. For a € {1,2,..,v},
M (u,v;a) is increasing at a decreasing rate in both u and v. In addition,
M (u,v;a) exhibits decreasing returns to scale in (u, v) for each fixed a. The
basic point of these results is that the qualitative properties of the matching
process in BSW hold for general values of a, i.e., not just for the special case
of a =1.

The properties of M (u,v;a) as a function of a are of more interest. With
a = 1, the familiar urn-ball friction operates in the labor market. Some va-
cancies can receive more than one application, while others receive none,
so the expected number of matches is less than the minimum of « and v.
When workers submit more than one application, the urn-ball friction is re-
duced in the sense that the probability that any particular vacancy receives
no applications decreases, but with a > 1, a new friction is introduced by
the multiple applications. A worker who gets multiple offers can only ac-
cept one job. A vacancy that has processed a particular application may
find at the end of the period that the worker whose application it processed
takes a job elsewhere. The urn-ball friction results from a lack of coordina-
tion among job seekers; the multiple-application friction is due to a lack of
coordination among vacancies. The urn-ball friction decreases with a; the
multiple-application friction increases with a. Figure 1 gives an example of
the relationship between the number of matches and the number of appli-



cations treated as a continuous variable. When u = v = 100, the expected
number of matches first increases with the number of applications and then
decreases.

Figure 1
M (100, 100, a)
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The special case of a = v is of particular interest. A matching process
in which workers apply to all vacancies and each vacancy then randomly
selects one applicant is an urn-ball process with the role of urn played by
workers and that of ball played by vacancies. That is, the case of a = v is
essentially the same as that of a = 1, except that the roles of workers and
vacancies are reversed. The symmetry between the cases of a =1 and a = v

1 1
can be seen in M (u,v;1) =v(l—(1— ;)“) and M (u,v;v) = u(l—(1— E)”)
The case of a = v is the one considered in JKK.

Proposition 1 and its implications are only interesting if a symmetric
equilibrium exists. We now turn to the existence question.

Proposition 2 There is a unique symmetric equilibrium. When a =1, all
vacancies post a wage of

(2)

w(u,v;1) =




When a € {2,...,v}, all firms post the monopsony wage of w = 0. As in
1—(1- %y
v
au/v
offer with probability aq(l — ¢ Such a worker is paid w = 0. The
probability that a job seeker receives two or more offer is 1 — (1 — q)* —

aq(1 — q)* 1. In this case, the worker is paid w = 1.

Proposition 1, let ¢ = . Then a job seeker receives exactly one

)a—l .

Proof. Given in the Appendix. m

To prove the existence of a symmetric equilibrium, we show that when
a = 1, the wage given in equation (2) has the property that if all vacancies,
with the possible exception of a “potential deviant,” post that wage, then it
is also in the interest of the deviant to post that wage. When a € {2,...,v},
then no matter what the common wage posted by other vacancies, it is
always in the interest of the deviant to undercut that common wage. This
forces the wage down to the monopsony level, which in our single-period
model is w = 0.

The equilibrium wage for the case of a = 1 is equal to one minus the
price given in Proposition 2 in BSW — again with the appropriate nota-
tional change. The tradeoff that leads to a well-behaved equilibrium wage,
w € (0,1), when a = 1 is the standard one in equilibrium search theory.
As any particular vacancy increases its posted wage, holding the wages
posted by other vacancies constant, the probability that it will attract at
least one applicant also increases. At the same time, however, the profit
that this vacancy generates conditional on attracting an applicant decreases.
This tradeoff varies smoothly with u and v; so the equilibrium wage varies
smoothly between zero and one as v increases and/or u decreases. Thus, as
emphasized in BSW (p. 1069), there is a sense in which frictions “smooth”
the operation of the labor market.

When a € {2, ..., v}, matters are radically different. No matter what the
values of v and v, so long as workers make more than one application, the
posted wage collapses to the Diamond (1971) monopsony level. The intu-
ition for this result is based on the change in the tradeoff underlying equilib-
rium wage determination. It is still the case that as any particular vacancy
increases its posted wage, holding all other posted wages constant, the prob-
ability that at least one applicant will be attracted increases.? However, the
profit that a vacancy generates conditional on attracting an applicant now

4 As a increases, the rate of increase in this probability decreases. In the extreme case
of a = v, an increase in the posted wage cannot increase the probability of attracting an
applicant since that probability is necessarily already one.



decreases for two reasons when the posted wage is increased. First, if the
vacancy manages to employ the worker at the posted wage, then an increase
in that wage obviously decreases profit. This is the same factor that limits
increases in the posted wage when a = 1. Second, and this is the new fac-
tor, the probability that the applicant will have other offers increases. The
reason is that in symmetric equilibrium, all workers respond to an increase
in the wage posted by one vacancy by increasing the probability of applying
for that job and decreasing the probability of applying to other jobs. That
is, the probability that other workers will apply to the same vacancies as the
other vacancies applied to by the chosen applicant decreases. The probabil-
ity that the selected applicant will get multiple offers and so generate zero
profit thus increases. This added factor is what drives the posted wage to
the Diamond monopsony level.

Despite the fact that the posted equilibrium wage is zero when a €
{2, ...,v}, there is still a sense in which “the wage” varies smoothly with u
and v. The expected fraction of wages paid equal to one,

_1-(1-q*—ag(l-q)""
1—(1-gq) ’

increases with v and decreases with u, and in the limit, as v — oo holding u
fixed (as u — oo holding v fixed), v — 1 (v — 0). Note that since the wage
is either 0 (the posted wage) or 1 (the Bertrand wage), v is the expected
wage (paid, as opposed to posted).

Next, we look at the limiting properties of the labor market described
above. We let the labor market get large in the standard way, namely, we
let the number of unemployed and vacancies increase without limit in such a
way that the ratio of vacancies to unemployed, i.e., labor market tightness,
is held fixed. First, we carry out this limiting exercise holding the number
of applications per worker fixed. To make this clear, we use the notation
a € {l1,...,A}, where A is an integer greater than 1, which does not change
as u and v go to infinity. Then we repeat the exercise, also allowing the
number of applications to go to infinity.

(3)

Proposition 3 Let u,v — oo with v/u = 0 and a € {1,..., A} fized. The
number of matches increases without limit, but the probability that any one
worker finds a job converges to

m(fa) =1 — (1 — 2(1 _ e—el0yya. ()



In the case of a = 1, the wage converges to

(1/6) exp(—1/6)
1 —exp(—1/6) (5)

w(f;1) =

In the case of a € {2,..., A}, the fraction of wages paid that equals one

converges to

1 (1= 20— cm9/))e — 91— /) (1 = 21 — o/
1-(1-4(1—ea/f))a

v(0;a) = (6)

Proof. Given in the Appendix. m

With a = 1, it is easy to verify that our limiting matching function and
the limiting wage for the case of @ = 1 match the corresponding entities
in a labor-market version of BSW. In general, i.e., for a € {1,2,..., A}, the
limiting matching probability has the following properties:

(i) For large values of u and v, the matching function exhibits approximate
constant returns to scale for each fixed a in the sense that in the limit, the
matching probability depends only on the ratio of v to u;
(ii) m(0; a) is increasing and concave in 6, gir%m(@; a) =0, and

lim m(6;a) = 1;

0—o00

m(0; a)

(iii) 7 is decreasing in 6, gir% m(b; a)

0

=1, and lim M
0—o0 0

The proofs of these properties are straightforward and are available on re-
quest.
The effect of a on m(0;a) is less clearcut. We find that mg(0;a) = 0

a
. i q% —In(1 — q) = 0 where ¢ = g(l —e 0). This is illustrated in
in Figure 2, a contour map which shows how m(0;a) varies jointly with a
and 6. The lighter shaded areas denote larger values of m(0;a). The figure
suggests that for values of 0 below .5, m(6; a) decreases with a, but for values

of 6 above .5, m(6;a) first increases and then decreases with a.

as

is not convex in #, as can be seen immediately by considering

(6;a)

the case of a = 1. The properties of m(6;a) and n

5 . m(0;a
?Interestingly,

given in (ii) and (iii) are the

minimal ones required for our normative results in Sections 3 and 4 below.



Figure 2
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For the case of a € {2, ..., A}, we also need to investigate the properties
of the expected wage, v(0;a). We can show that (6;a) is increasing in 6
and in a and that 61)1_%7(9; a) = 0 and 611%07(0; a) = 1. The result that v is
increasing in 6 is exactly as one would expect — as the labor market gets
tighter, the chance that an individual worker gets multiple offers increases.
To understand why ~ is also increasing in a, it is important to remember that
v(0; a) is the expected wage for those workers who match with a vacancy;
in particular, those workers who fail to match are not treated as receiving a
wage of zero.

Proposition 3 describes the limiting properties of the labor market taking
a as a constant. Alternatively, we could let the number of applications per
worker become arbitrarily large as well. To do this while keeping a < v,
we let a be a fixed fraction of v and then let u and v go to infinity in the
standard way.

Proposition 4 Let a,u,v — 0o with v/u =6 and a/v = ¢, where 0 < ¢ <
1. Then the probability that any one worker finds a job converges to

m(@) =1—e? (7)

10



and the fraction of wages paid equal to one converges to

1 e ¥ —fe?

7(0) =

(8)
Proof. Given in the Appendix. m

These results are also derived in JKK for the case of ¢ = 1. There
are three points worth noting about Proposition 4. First, we can derive
equations (7) and (8) if we start from Proposition 3, i.e., the situation in
which u,v — oo with v/u = 6, and take the limits of m(6;a) and v(0;a) as
a goes to infinity. Second, m(6) and (@) are both increasing and concave in
6. Finally, neither m(6) nor () depend on ¢; that is, the limiting matching
probability and expected wage are the same in the limit whether each worker
applies to every vacancy or whether each worker applies to, say, one vacancy
in every thousand. The reason is that even if ¢ is very small, eventually

the total number of applications (au = ?vz) swamps the total number of

vacancies in the market. That is, in the limit, every vacancy receives at least
one application with probability one.

3 Efficiency

We now turn to the question of constrained efficiency. As is usual, we
examine this issue in a large labor market, i.e., one in which u,v — oo
with v/u = 6. The result suggested by the efficiency of competitive search
equilibrium holds in our setting when a = 1; however, when workers make
a fixed number of multiple applications, this result breaks down. When we
let a — o0, the equilibrium is again constrained efficient.

We start with a fixed and finite. We suppose that vacancies are set up
at the beginning of the period and that each vacancy is created at cost c.
The efficient level of labor market tightness’® is determined as the solution
to

rélzaéc{—cH +m(0;a)}.

The first-order condition for an interior solution to this problem is

c=mp(0%;a). 9)

In a finite labor market with u given, the social planner chooses v to maximize —cv +
M (u,v;a); ie., expected output (equal to the expected number of matches since each
match produces an output of 1) minus the vacancy creation costs. Dividing the maximand
by u and letting u, v — oo gives the maximand in the text.

11



The equilibrium level of labor market tightness is determined by free entry.
When a = 1, this means
m(6**; 1)

c= T(l —w(0™;1)), (10)

whereas for a € {2,..., A}, the condition is

EE
=00 0 q(0a). (1)

Equations (10) and (11) reflect the condition that entry (vacancy creation)
occurs up to the point that the cost of vacancy creation is just offset by
the value of owning a vacancy. This value equals the probability of hiring
a worker times the expected surplus generated by a hire — equal to 1 minus
the posted wage when ¢ = 1 and to 1 minus the expected wage when a €
{2,..., A}.

Note that 8" denotes the constrained Pareto efficient level of labor market
tightness and 0** denotes the equilibrium level of labor market tightness. At
issue is the relationship between 6* and 6**.

Proposition 5 Let u,v — 0o with v/u = 0 and a € {1,..., A} fized. For
a=1,0"=0". Forac{2,.. A}, 0 > 0"

Proof. Differentiating equation (4) with respect to 6 gives
0 —a/0yya—1 —a/0 @ —ajo
mg(f;a) =(1——(1—e ¥")* (1 —e — ¢ ). (12)
a
For the case of a = 1, equation (9) becomes

1
c=1—e Y0 _ 5671/9.

From equations (4) and (5), equation (10) is

m(6;1)
0

Thus, equations (9) and (10) imply 6* = 6**.
When a € {2,..., A}, 6" solves

(1= w(0:1)) =1—e 10— %6*1/9.

c=(1- §<1 —em/0))am1(] — ¢ma/f %e*aw), (13)

12



whereas, using equations (4) and (6), 6** solves
4 —a/0\ya—1 —a/6
c:(l—g(l—e )1 —e Y. (14)

The right-hand sides of both (13) and (14) are decreasing in 6. Since the
right-hand side of (14) is greater than that of (13) for all § > 0, it follows
that 6 > 0. m

Posting a vacancy has the standard congestion and thick-market effects
in our model — adding one more vacancy makes it more difficult for the in-
cumbent vacancies to find workers but makes it easier for the unemployed
to generate offers. A striking result of the competitive search equilibrium
literature is that adding one more vacancy causes the wage to adjust in such
a way as to balance these external effects correctly. One way to interpret
this is to say that competition leads to a wage equal to the one that would
be dictated by the Hosios (1990) condition in a Nash bargaining model.
Equivalently, one can say (Moen, 1997, p. 387) that the competitive search
equilibrium wage has the property that the marginal rate of substitution
between labor market tightness and the wage is the same for vacancies as
for workers. The first part of Proposition 5 shows that this result holds
when one uses an explicit urn-ball (¢ = 1) microfoundation for the match-
ing function. However, when workers make multiple applications, the result
that 8** > 6* indicates that the equilibrium level of vacancy creation is too
high. Equivalently, the equilibrium expected wage is below the level that
would be indicated by the Hosios condition. The effects of the marginal va-
cancy are more complicated with multiple applications than in the urn-ball
model. Adding one more vacancy makes it less likely that each incumbent
vacancy will attract any applicants but, conditional on attracting an appli-
cant, makes it more likely that the incumbent vacancy “wins the race” for
that applicant. Adding another vacancy to the market puts upward pres-
sure on the (expected) wage but not to the extent required to achieve the
efficient level of entry.

Proposition 5 lets the labor market get large holding a fixed. In Propo-
sition 6, we consider the question of efficiency letting a get arbitrarily large
along with u and v. Of course, it is unreasonable to assume that each worker
can apply to an infinite number of vacancies. We present Propostion 6 for
the sake of completeness and to allow us to relate our efficiency results to
those of JKK.

13



Proposition 6 Let a,u,v — oo with v/u = 0 and a/v = ¢, where 0 <
¢ < 1. Then 6** = 0%; i.e., the equilibrium level of labor market tightness is
constrained efficient.

Proof. The result is shown by mimicking the proof of Proposition 5, that
is, by comparing mg(6) with #(1 — 7(#)). Using equations (7) and (8),
"0 ). .

Proposition 6 is also shown in JKK (in their Proposition 2.5) for the
case of ¢ = 1. In a companion paper, Julien, Kennes, and King (2002)
show that equilibrium in a finite labor market with a = v is also constrained
efficient if one assumes a particular wage determination mechanism; namely,
vacancies offering jobs to workers who have no other offers receive all of the
surplus (w = 0) but vacancies offering jobs to workers who do have other
offers receive none of the surplus (w = 1). Julien, Kennes, and King (2002)
interpret this result in terms of what they call the Mortensen rule (Mortensen
1982) — that efficiency in matching is attained if the “initiator” of the match
gets the total surplus.” Relative to their result, our contribution is to show
that this assumed wage determination mechanism is in fact the symmetric
equilibrium outcome in a directed search model with wage posting when

mg(0) = e~Y as does

a=v.

Returning to the limiting case, an intuition for why we find constrained
efficiency with ¢ = 1 and as a — oo but not with a fixed, finite number of
multiple applications is that with ¢ = 1 and as a — oo, only one coordination
problem affects the operation of the labor market, whereas with a fixed a €
{2, ..., A}, the urn-ball and the multiple applications coordination problems
operate simultaneously. Adjusting the wage can only solve one coordination
problem at a time.

4 Steady State

We now turn to steady-state analysis for a labor market with directed search
and multiple applications. We work with the limiting case in which u,v — oo

"The intuitions for constrained efficiency (i) in a large labor market when a = 1 and
(ii) when a = v are thus quite different. When a = 1, constrained efficiency is a result
of competition, and competition requires a labor market sufficiently large that individual
vacancies have negligible market power. When a = v, constrained efficiency is a result of
perfect monopoly power — the entire surplus goes to the vacancy if there is no competition
for the applicant it selects and to the worker if he or she winds up having the monopoly
power. The monopoly intuition does not require that the labor market be large.
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with v/u =60 and a € {2, ..., A} fixed. Since only the ratio of v to u matters
in the limiting case, we normalize the labor force to 1; thus, u is interpreted
as the unemployment rate.

In steady-state, workers flow into employment with probabililty m(6; a)
per period. We assume that matches break up exogenously with probability
0, giving the countervailing flow back into unemployment. Similarly, jobs

m(0;a)
0

probability §. Steady-state analysis thus allows us to endogenize vacancies
and unemployment. More importantly, moving to the steady state means
that those unemployed who fail to find an acceptable job in the current
period can wait and apply again in the future. In the case of a = 1, this
isn’t particularly interesting since, in equilibrium, there is no gain to waiting.
However, with multiple applications, the ability of the unemployed to hold
out for a situation in which vacancies engage in Bertrand competition for
their services, albeit at the cost of delay, implies a positive reservation wage.
This leads to a simple and appealing model in which labor market tightness
and the reservation wage are simultaneously determined. On the one hand,
the lower is the reservation wage of the unemployed, the more vacancies
firms want to create. On the other, as the labor market becomes tighter,
i.e., as 0 increases, the unemployed respond by increasing their reservation
wage.

The analysis proceeds as follows. Suppose the unemployed set a reser-
vation wage R. With multiple applications, the wage-posting problem for a
vacancy is qualitatively the same as in the one-period game. Whatever com-
mon wage might be posted at other vacancies, each individual vacancy has
the incentive to undercut. In the one-period game, this implies a monopsony
wage posting of w = 0; in the steady state, this same mechanism implies
a dynamic monopsony wage posting of w = R. In addition, the probability
that an unemployed worker finds a job in any period and the probability
that he or she is hired at the competitive wage, conditional on finding a job,
are the same as in the single-period model; i.e., equations (4) and (6) for
m(0;a) and v(0; a) continue to apply.

We begin by examining the value functions for jobs and for workers. A
job can be in one of three states — vacant, filled paying the competitive wage,
and filled paying R. Let V, J(1), and J(R) be the corresponding values. The
value of a vacancy is

V= et PO by a1 (1) + (1 -0 )T (B + (1 0Dy

Maintaining a vacancy entails a cost ¢, which is incurred at the start of

move from vacant to filled with probability and back again with

15



each period. Moving to the end of the period, and thus discounting at

9.
rate r, the vacancy has hired a worker with probability M. With

probability v(0;a), the worker who was hired had his or her wage bid up

to the competitive level, thus implying a value of J(1). With probability

1 — v(0;a) the worker was hired at w = R, thus implying a value of J(R).

m(0;a)
0

Finally, with probability 1 — , the vacancy failed to hire, in which
case the value V is retained.

Free entry implies V' = 0. Given V' = 0, there is no incentive for vacancies
competing for a worker to drop out of the Bertrand competition before the
wage is bid up to w = 1 (thus justifying the notation J(1)). This in turn
implies that we also have J(1) = 0. Inserting these equilibrium conditions
into the expression for V' gives

m(0; a)

P (1= (8;0) I(R) = (1 + 7).

At the same time, the value of employing a worker at w = R is

J(R) = (1— R) + ——[(1 = §)J(R) + V].

1+7r
Again using V = 0, we have
1+r
= 1—R).
) =0 R
Combining these equations gives the first steady-state equilibrium condition,
m(0;a) 1-R
=—2(1-v(0;a)—=. 15
e =200 ) (15)

A worker also passes through three states — unemployed, employed at

the competitive wage, and employed at R. The value of unemployment is
defined by

1
U= 1 tmBa)ly(Ba)NQ) + (1= v(6;a) N(R)] + (1 —m(f;a))U},
where N (1) and N(R) are the values of employment at w = 1 and w = R,
respectively. These latter two values are in turn defined by

N() = 1+$ (1— §)N(1) + U}
N(R) = R+%+r (1— 6)N(R) + U},
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The reservation wage property, i.e., N(R) = U, then implies

U - HfR
(14 .
N() = s oR)

Inserting these expressions into the expression for U and rearranging gives
the second steady-state equilibrium condition,
__ m(6;a)y(;a)

r+ 4 +m(6;a)v(0;a)

(16)

The final equation for the steady-state equilibrium is the standard flow
(Beveridge curve) condition for unemployment. Since the labor force is
normalized to 1, this is

0

T St mbia)

Equations (16) and (17) show that, as is common in this class of models,

once labor market tightness (6) is determined, the other endogenous vari-

ables — in this case, R and u — are easily determined. Using equation (16)

to eliminate R from equation (15) gives the equation that determines the
steady-state equilibrium value of 8, namely,

_ m(f;a) 1—~(6;a)

T ria+ m(6;a)y(0;a) (18)

(17)

Using our results on the properties of m(6;a) and v(6; a), we can show that

the right-hand side of equation (18) equals 5 8 6 — 0, that it goes to

r+
zero as § — oo, and that its derivative with respect to 6 is negative for all

1
6 > 0. Equation (18) thus has a unique solution for each ¢ € (0, ﬂ]
r
The natural next step is to compare equilibrium steady-state labor mar-
ket tightness with the constrained efficient value of 6. The planner’s problem
is to choose the level of labor market tightness that maximizes the discounted
value of output net of vacancy costs for an infinitely lived economy. That

is, the planner’s problem is to maximize

fi(lir>%1—u,-wmg

t=0

subject to
upr1 — ug = m(0g; a)uy — 6(1 — uy)
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with ug given.
The current-value Hamiltonian for this problem is

HO,u) =1—u—chu+ Am(0;a)u —0(1 —u)]

with necessary conditions

OH
50 = + Amy(0;a)u =0
: OH
rA 5 + cl — A\[m(0;a) + 0]

Evaluating at the steady-state, and eliminating A, gives

(I +ch)my(0;a)
°= 7“+5+m9(0;a)' (19)

Now we can compare the levels of labor market tightness implied by
equations (18) and (19). Using equation (6), equation (18) can be rewritten
as

o(r+ 6+ m(0;a)) = (1 + cB)(1 — 2(1 ema/y)aml(1 — ey (20)

Using equation (12), equation (19) can be rewritten as
c(r+0+m(f;a)) =(1+ch)(1— g(l —e~ /0yl (1—em/0 %efa/e). (21)

As in the single period analysis, let 6* be the constrained efficient level of
labor market tightness, i.e., the value of 6 that solves equation (21), and
let 8** be the equilibrium level of labor market tightness, i.e., the value of
6 that solves equation (20). Comparing equations (20) and (21) yields the
following;:

Proposition 7 Let u,v — oo with v/u =0 and a € {2,..., A} fized. Then
in steady state, 6** > 6*.

Proposition 7 indicates that, as in the single-period analysis, when the
unemployed make a fixed number of multiple applications per period (a €
{2,..., A}), equilibrium is constrained inefficient. Specifically, there is too
much vacancy creation. This result holds even though the ability of the
unemployed to reject offers in favor of waiting for a more favorable outcome
in some future period implies a dynamic monopsony wage above the single-
period monopsony wage of zero.

Finally, for the sake of completeness, we note that the steady-state ana-
logue of Proposition 6 holds.
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Proposition 8 Let a,u,v — 0o with v/u =60 and a/v = ¢, where 0 < ¢ <
1. Then in steady state, the equilibrium level of labor market tightness is
constrained efficient, i.e., 0% = 0**.

Proposition 8 is proven by reworking the steady-state analysis using m/(6)
and ~(0) instead of m(0;a) and v(0;a), i.e., by using equations (7) and (8)
in place of equations (4) and (6).

5 Concluding Remarks

In this paper, we construct an equilibrium search model in which workers,
after observing all posted wages, submit a fixed number of applications,
a € {1,...v}, to the vacancies that they find most attractive. We derive the
symmetric equilibrium matching function and the common posted wage.
When a = 1, our analysis is a labor market version of BSW. However, when
a € {2,...v}, i.e., when workers make multiple applications, the symmetric
equilibrium of our model is radically different. With multiple applications,
the expected number of matches in our model reflects the interplay of two
coordination failures — an urn-ball failure among workers and a multiple-
application failure among vacancies — and our model thus offers new insights
into the microfoundations of the matching function. In addition, when work-
ers make more than one application, all vacancies post the monopsony wage,
but there is dispersion in wages paid. Workers who receive only one job of-
fer are paid the monopsony wage, but those who receive multiple offers get
the competitive wage. The limiting equilibrium when workers make a single
application is constrained efficient, but when workers make a finite num-
ber of multiple applications, too many vacancies are posted. These results,
both positive and normative, carry over from the single-period model to a
steady-state framework.

Directed search is an appealing way to model equilibrium unemploy-
ment and wage dispersion. In reality, workers do direct their applications to
attractive vacancies, but unemployment nonetheless persists as a result of
coordination failures on both sides of the labor market. In addition, those
workers who are lucky enough to generate competition for their services
do in fact have their wages bid up. The contribution of this paper is to
show that these realistic features can be captured in a tractable equilibrium
model.
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6 Appendix

Proof of Proposition 2:

Let D denote the potential deviant, posting a wage of w?”, and let N
denote the nondeviant vacancies, posting the common, putative equilibrium
wage, w”. Let k be the probability that any individual applies to D. In
symmetric equilibrium, & must be the same for all workers. Let ¢” be the
probability that a worker is offered the D job, conditional on applying for
that job, and let ¢V be the probability that a worker is offered any particular
N job, conditional on applying for that job.

The expected profit of D as a function of w?, taking w

r(w?;w") = (1—w?)(1— (1 - k)*)(1 - ") (A1)

N as given, is

To understand (A1) note that when D posts a wage of w”, there are 3
possible outcomes.
(1) No one applies to this vacancy. This occurs with probability (1 — k).
In this case, D’s profit is zero.
(2) D receives at least one application and the applicant to whom D offers
its job has at least one other offer. This occurs with probability [1 — (1 —
k)1 — (1 — ¢N)e~1]. In this case, Bertrand competition bids the wage up
to w =1, and D’s profit is again zero.
(3) D receives at least one application and the applicant has no other offers.
This occurs with probability [1 — (1 — k)“](1 — ¢™)%~!. In this case, the
applicant accepts D’s offer of w”, leading to a profit of 1 — w?.

Using this notation, a symmetric equilibrium wage is a w such that

w solves maz w(w”;w).
wDP >0

To proceed, we need explicit expressions for ¢” and ¢’V and an implict
expression for k. The derivation of ¢ is as follows. The probability that a
particular worker is offered the D job is k¢P. At the same time, given that
all workers choose the same value of k, each worker has an equal chance of
being offered the D job, so the probability that the worker is offered this job
equals the probability that this vacancy has at least one applicant divided
by uw. That is, kqP = 1—(1u7—k:)“ or
p_1-(—-k"

N ku '

¢V is derived in a similar fashion. There are v — 1 N vacancies. Each
worker sends a — 1 applications to the N vacancies and sends his or her a'"

q (A2)
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application to an N vacancy with probability 1 — k. The probability that

(a—1)+(1—k)

a worker applies to any particular N vacancy is thus 1 =
v —

—k
a T so the probability that an N vacancy has at least one applicant is

a—k
v—1

v —

1—(

). The probabililty that a worker gets a particular N job is
—k
T O et U v
< ) T ; thus,

v—1 U

a—k
1—(1- w
N _ ( ’U—l). (A3)

4 <a—k>
U
v—1

For future reference, we note that

9qP  ku(l—k) 1 —(1—(1—k)Y)
ok k2u

(A4)

and

an<Ul>u<1 Ul)”((ﬂf) (i)

ok U k)2

(AD)
To derive an implicit expression for k, note that each worker has two
possible application strategies:

1. Send a — 1 applications to randomly selected N vacancies and also
apply to D;
2. Send all a applications to randomly selected N vacancies.

Note that if a = v, only the first strategy is possible and k£ = 1.
Given w? and w!, the expected payoff to the first strategy is

g”(1 - g™) " wP +¢P(1— (1 - ¢V
¢”)(a—1)gV (1 = ¢M)* 2wV
D)( —(1=¢M)* = (a—1)g" (1 —¢V)*2).

The first term in this expression reflects the fact that a worker who follows
the first strategy is offered only the D job with probability ¢” (1 —¢™¥)*~1; in

(1-—
+(1—
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this case, a payoff of w” is realized. With probability ¢” (1 — (1 —¢™)e1),
the worker’s application to D is accepted along with at least one of his or
her applications to the N vacancies; in this case the worker’s payoff is 1.
With probability (1 — ¢?)(a — 1)¢™N (1 — ¢™)?2, the worker is rejected at
D and accepted at exactly one of the N vacancies; the resulting payoff is
w™. With probability (1 —¢”)(1 — (1 —¢™V)? ! — (a — 1)gN (1 — ¢"V)*2),
the worker is rejected at D but gets 2 or more offers at w!; in this case, a
payoff of 1 is realized. The only other possibility is that all of the worker’s
applications are rejected, implying a payoff of zero.
The expected payoff to the second strategy is

agV(1—g") N + 1 - (1—¢V)* —ag™ (1 —¢V)* .

The first term reflects the fact that the probability of being offered only one
N jobis ag™ (1 — ¢™V)*~1. In this case, the worker receives w!¥. The second
term gives the probability that the worker is offered more than one job in
which case the worker receives 1. For k € (0,1), the expected payoffs from
the two strategies must be equal giving the indifference condition,

1—¢") (¢"w” —¢" +ag" (1 —w")) = (1= ¢")(a—1)¢" (1 —w™) =0.
(A6)

Holding w" fixed, this can differentiated with respect to w®. Solving for
ok

&U—Dgives
ok —¢P(1-4")
owP M ’ (AT)
where
&]D D N N N
M = —-w (1-¢")+(@-1)¢ (1 -w")
an N N D, D D N
top (1 =2¢7) (1 —a(l —w?)) —¢"w” = (1 -¢")(a—-1)(1 —w™)]

D’s choice of wP can now be determined The derivative of D’s expected

profit (equation (A1)) with respect to w” is

7TU)D"U}N
o) o @R ) (1w
u(l — k' (1 — gt
N
-1 - g2 qmpyy | AV

ok

23



Claim 1: For a = 1, there is a unique w € (0, 1), namely, the wage given by

a .
equation (2), such that % =0.
om(w; w)

Claim 2: For a € {2,...,v}, ~5uD < 0 for all w € [0, 1].
w

or(wP;w™)

To establish these claims, 5 must be evaluated at wP” = wV =
w
w. When D posts the same wage as the other vacancies, we have
k= z : ]f =a/v
1—(1—-Fk)"
P =N = (k ) =gq
U
8qN v 1
=— 1—Fk)" " —
oy ao—1) (1—k) q)
oo
ok ok
ok —a(v—1)g(1 —q)

owP (1= k)*~ = q)(w(l — ag) + (a —1)q)’
Note that (i) (1—k)* "t —q < 0% and (i) w(1 —aq)+(a—1)g > 0 Vw € [0,1]°.

. . . : dg™ dq”
These inequalities, which are used below, imply e > 0, ok < 0, and
ok
9wh > (, as expected.
When a =1,
or(w; w) 1—w 1 (v—1)q
————=—1-(1-k") - — 1—k)* .
OwD ( ( )") w (u( ) v2((1 = k)»—1—q)

(A9)
Setting this expression equal to zero and substituting for k£ and ¢ gives the
wage in text equation (2).
The situation when a € {2,..,v} is more complicated. In this case,

% S [ )
ok (1= 11— g
+(1 —w)aw—D (a— 1)<1_q)a2%(1— (1-k)")

8Proof: Let X be a binomial random variable with parameters u > 1 and k € (0, 1).

Then (1— k)1 — g = FeL=R)"— Q=@ =-k") PIX=0+PX=1]-1

ku ku
9Proof: The inequality holds at w = 0 and at w = 1, and the expression is linear in
w.
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N

Using 1 — (1 — k)" = kug and substituting for gu_kD and % gives

o (w; w) ( 1—w <(v— (1 —q)(1— k)1 ))
IR — fug (—1+ —(a—1
N -+ @D\ g-@-met @7
(A10)
Since w(1—aq)+(a—1)g > 0 Vw € [0, 1], the inequality we want to establish
reduces to

vt = ag) + (a = 1)q) > (1= w) (L=DEZ O o)

(A11)
Note that this inequality is (i) true for w = 1 and (ii) linear in w. Thus, if
this inequality holds at w = 0, then it is true Vw € [0,1]. That is, we need

to show
(v=1D(1—q)(1 = k)1
q— 1=kt

Since ¢ — (1 — k)“~! > 0, this can be rewritten as

v(a—1)g > —(a—1)q. (A12)
(w+1)(a—1)g(g— (1 —k)"™) = (v—-1)(1-g)(1 k)" >0.

If this inequality holds for a = 2, then it holds for a € {3, ..,v}, so let a = 2.
The inequality is then

(w+Dglg— (1=K =(w-1)1-q)(1-k)"*">0
(@ —(1=k)" D +1 -1 —k)" " +qlg—(1-k")>0.

Since the second and third terms on the left-hand side of this inequality are
positive, it suffices to show ¢? — (1 — k)*~1 >0, i.e.,

(1—(1—k)"?2 -k -kt >0. (A13)
The proof of this final inequality is as follows.'? First,
1—-(1=k)*=k(1+ 1 —k)+..+ 1=Kk,
so the RHS of (A13) can be expressed as

B (1+ (1 —k)+.o+ 1=k )2 —a?(1— k)" ).

10We are extremely grateful to Harald Lang for this argument.
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Next, since

1

%(1+(1—k)+...+(1 SR > (1 x (1= k) x o x (1= R)" 1),

i.e., the arithmetic mean is at least as large as the geometric mean, and

w1 u(u—1)
Ix(I-k)x..x(Q=-k)""7"=0-k) =

we have

A+1 =k +. . +0 -k —u?Q-k)"1>0 0

Proof of Proposition 3:
The probability that an unemployed worker finds a job is

M (u,v;a)

SRS (- (1))

Taking the limit as u,v — oo with v/u = 6 and «a fixed gives

mB:a) =1 (1= 21— Tim (1 L)) =1 — (1= 2(1 — exp(~2))"
Similarly,
lv—1/v—-1\"
w(f;1) = lim b v < ! >
’  wu—oov — 1 v—1\" 1 v—1
v _< v ) (@ v )
(1/6) exp(=1/0)
1 —exp(=1/0)

1—(1—q)" —aq(l—q)*!
1—(1-gq)"

The expression for v(0;a) is derived using v =

and lim ¢ = g(l —e%%), giving

U,V—00

1—(1—2(1—e %)) —g(1 —e2/9)(1 — &(1 — e=a/%))o—1

(
1—(1—2(1—ea/f))e - .

v(0;a) =
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Proof of Proposition 4:
The probability that an unemployed worker finds a job is

M ; 0
L TN DLV L B I )
a,u,v—00 u a,u,v—00 (Z)U
a
1—(1—q)* — ag(1 — g)o 1-(1-=)
Recall that v = ( %) aq( %) andg= ———Y—and 1 —
1—-(1—-¢q) au/v
1-(1-9)" . : _0 : 1
g=1—————Using lim (1—¢)*=e""and lim ag(1—¢)* ' =
gf)u a,u,v—00 a,u,v—00

0e=? we have
1—e?—@ge?

[— o0 [

v(0)
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