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Abstract

This paper revisits the credit spread puzzle in bank CDS spreads from the perspective of information

contagion. The puzzle, first detected in corporate bonds, consists of two stylized facts: Structural

determinants of credit risk not only have low explanatory power but also fail to capture common

factors in the residuals (Collin-Dufresne et al., 2001). For the case of banks, we hypothesize that

the puzzle exists because of omitted network effects. We therefore extend the structural models to

account for information spillovers based on bank business model similarities. To capture this channel,

we propose and construct a new intuitive measure for portfolio overlap using the complete asset hold-

ings of the largest banks in the Eurozone. Incorporating the network information into the structural

model for bank credit spreads increases explanatory power and removes a systemic common factor

as well as a North-South common factor from the residuals. Furthermore, neglecting the network

likely overstates the importance of structural determinants.

Keywords: Information contagion, credit spread puzzle, bank business model similarities, portfolio

overlap measure, dynamic network effects model.
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1 Introduction

In this paper, we show that similarities between bank business models constitute an impor-

tant determinant of how markets value bank default risks. Market participants adjust their

credit risk exposures to distressed banks using instruments such as credit default swaps (CDS).

A bank’s CDS price, therefore, reflects its default risk as it is perceived on the secondary mar-

ket. In the empirical asset pricing literature, the credit spreads of corporates or banks are

mainly modeled using company fundamentals and other structural variables, such as equity

returns, the risk-free rate, or the slope of the yield curve. However, the seminal paper by

Collin-Dufresne et al. (2001) and the subsequent empirical work of Bharath and Shumway

(2008); Campbell and Taksler (2003); Ericsson et al. (2009); Fontana and Scheicher (2016);

Zhang et al. (2009) show that these variables have low explanatory power and leave a system-

atic common factor unexplained. The lackluster explanatory power of variables grounded in

economic theory is commonly referred to as the credit spread puzzle. We find the same puzzle

in the CDS spread changes of the 22 largest banks in the Eurozone. Surprisingly, in addi-

tion to the systematic common factor, we also detect a North-South factor, that distinguishes

between the Northern countries (Austria, Belgium, France, Germany and Netherlands) and

Southern countries (Italy and Spain).

As the 2008 great financial crisis has painfully demonstrated, a bank’s financial health may

strongly depend on the health other banks. We therefore augment the structural regression

model with network effects that capture information contagion about the creditworthiness of

banks. Information contagion happens if one bank’s CDS spread changes can be attributed to

changes in another bank’s spread, rather than to its own credit determinants. How informa-

tive and relevant one bank’s CDS dynamics are for other banks depends on how similar the

market perceives their business models to be. To measure business model similarity between

banks, we propose a novel method for constructing portfolio overlap networks based on their

complete asset holdings. We apply this overlap measure to the complete asset holdings of the

largest banks in the Eurozone, comprising more than 240,000 unique ISINs from the quarterly

reported Securities Holdings Statistics (SHS). These data are highly confidential and our anal-

ysis is currently only the second paper cleared for publication. Applying on our new overlap

measure, we construct a portfolio overlap network in which the banks are the network’s while

the degree of portfolio overlap between any two banks is represented by the edges. The higher

the overlap, the more similar the bank business models and the stronger the potential for

information spillovers.

Embedding this network into the regression allows us to capture and distinguish between

two types of effects: structural network effects, which take place if one bank’s CDS changes

are affected by shocks to a neighboring bank’s structural credit determinants; and residual

network effects, which capture the correlation structure among the idiosyncratic shocks of

individual banks. These effects directly address the two stylized facts of the credit spread

puzzle. First, structural network effects increase the average share of explained variance by up
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to 15%. Second, the residual network effects halve the importance of the systematic common

factor and remove its across-the-board nature, while also stripping the dividing characteristic

off the North-South factor. At the same time, the coefficients of structural regressors also lose

statistical and economic significance. These findings indicate that neglecting network effects

likely overstates the importance of structural regressors in the extant literature. Although the

dynamic nature of the DNE model leads to the best performance, most of its benefits can

already be garnered by using constant network effects only.

Bank networks and information contagion

After the 2008 crisis, the systemic risk literature studied credit risk with networks and finan-

cial contagion occupying center stage (Glasserman and Peyton Young, 2015). This literature

stresses that banks are part of an interconnected network where risks can cascade throughout

the system. Banks thus cannot be analyzed in isolation; rather, they must be understood in

relation to other banks. To identify a bank’s peer group, the type of contagion mechanism at

play must be taken into account. For instance, Allen and Gale (2000) model the direct lend-

ing exposure between banks wherein the lending relationships determine relevancy. In such

cases, a bank’s default risk depends on the banks it has loaned money to. If the borrowing

banks face liquidity problems, these problems will ultimately impact the lender. If the lender,

in turn, has also borrowed money from other banks, the process continues up the chain. In

comparison, banks with common asset holdings become the relevant set when contagion is

driven by fire-sales. In Cifuentes et al. (2005), banks facing sudden liquidity needs sell illiquid

assets to satisfy capital requirements. The resulting downward price pressure can impact other

banks with the same illiquid asset on their books, triggering another round of asset sales, and

so on. Duarte and Eisenbach (2018) assess the vulnerability of a bank based on its share

of holdings in illiquid, systemic assets. They isolate fire-sale spillovers as the cross-sectional

aspect of aggregate vulnerability. This is consistent with the fire-sale framework of Greenwood

et al. (2015), who provide an empirical approach to study the indirect vulnerability of banks

following the deleveraging of other banks.1

To understand the credit risk contained in bank CDS spreads, we argue that structural credit

spread models need to account for information contagion. In contrast to the mechanisms

discussed above, this type of contagion is based on perception and beliefs. In terms of Brun-

nermeier et al’s (2013) distinction between rational and psychological channels of contagion,

our channel belongs to the latter. That is, the market’s view on a bank’s creditworthiness not

only depends on its own fundamentals; it also depends on the creditworthiness of other banks

with similar business models, i.e. its peers. A rise in a bank’s CDS premium could therefore

be attributed to an earlier CDS premium increase of another bank, which the market deems to

be similar enough to be relevant. The underlying assumption is that news containing signals

about one bank’s financial health may not only be informative about that bank’s default risk;

1Other notable contributions to the empirical literature on risk arising from bank interconnections include, for
instance, Billio et al. (2012), Blasques et al. (2018), Demirer et al. (2018), and Hautsch et al. (2015).
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the signal may also lead to the reassessment of another bank’s credit risk, which we interpret

as information spillover. The systemic risk literature studies information contagion from sev-

eral aspects. Acharya and Yorulmazer (2008) demonstrate how, when a systematic common

factor exists in loan returns because of investments in similar industries, bad news about one

bank can be informative of the common factor and, in turn, lead to the higher borrowing

costs of another bank. If the common factor is less prevalent, then the costs can increase

even more because the signal is more informative, incentivizing banks to herd and invest in

similar industries. This argument becomes one justification for Ahnert and Georg (2018),

who also find that bad news about one bank can be informative about another bank with

common exposures, leading to higher overall systemic risk. The authors furthermore justify

this type of information spillover based on interbank lending, which we previously discussed

under direct contagion. The type of information contagion we analyze in credit risk follows a

similar rationale.

Deutsche Bank example The Deutsche Bank case clearly illustrates how bad news about

one bank’s financial health spills over to other banks, which, in turn, destabilizes the entire sys-

tem. On January 20, 2016, Deutsche Bank issued a warning that it would not achieve its profit

targets and that it recorded its first loss since 2008. In the following days, Deutsche Bank’s

CDS spreads rose rapidly, and many other large European banks followed suit. This overall

increase of CDS premia reflected the growing concern by investors over the health of European

banks (Kiewiet et al., 2017). These coinciding adjustments in market perceptions are likely

driven by information spillovers, as European banks did not undergo any fundamental changes

that would have warranted the volatile price movements. Furthermore, Deutsche Bank’s CDS

premium peaked simultaneously on February 11, 2016 with 14 other major banks. The buildup

period and the synchronicity of peaks indicate that information cascades happened gradually

over time.

Finding peers with portfolio overlaps

How vulnerable bank CDS contracts are to each other’s signals, or how relevant their signals

are for each other’s repricing on the secondary market, depends on how similar the market

regards their business model to be. For instance, if a German savings bank runs into financial

trouble, the market is more likely to reassess the creditworthiness of other German savings

banks in response, rather than that of Spanish corporate-oriented banks. Information conta-

gion therefore depends on bank business model similarity. Identifying bank business models,

therefore, has been an important goal of both supervisors and academics. A recent study by

Cernov and Urbano (2018) highlights the importance of measuring these similarities for finan-

cial stability. These measures are crucial for assessing an institution’s riskiness with respect

to its peers, and for studying the possible impact of new regulations. Methods to group bank

business models either rely on quantitative clustering methods, such as k-nearest neighbors,

or on qualitative assessments based on bank activities, legal structures, or expert knowledge.
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For our purpose of understanding information contagion in credit risk, we propose a novel

method for quantifying business model similarities through portfolio overlaps. Because they

have made similar investment, lending, or funding decisions in the past, banks that follow sim-

ilar business models usually share similar balance sheet structures (Roengpitya et al., 2014,

2017). For instance, banks adapt their overall strategies and balance sheets to comply with

new regulatory environments (Cernov and Urbano, 2018). Similarly, the fire-sale literature

studies the implications of the link between asset holdings and business model strategies. Co-

val and Stafford (2007) argue that investors following similar strategies end up with portfolios

that are concentrated in similar securities. Thus, they explain, if a bank liquidates its assets

in a fire-sale then other banks with similar asset exposures will likely be affected. More impor-

tantly, we argue that there is a high likelihood for them to raise liquidity in the same manner,

due to the similar strategies. Hence, only strategy-outsiders are able to absorb these shocks

(Shleifer and Vishny, 1992). In sum, if two banks share almost identical asset holdings, we

can use this similarity as an indicator for similar business models.

Modeling network effects

With knowledge of the underlying overlap network, we return to the original task of finding a

potential answer to the credit spread puzzle. Our econometric model extends the structural

regression model of Collin-Dufresne et al. (2001) with network effects. The main difference is

that we do not only regress a bank’s CDS changes on structural variables; we also regress on a

weighted average of CDS changes of all other banks in the system. The weights correspond to

the portfolio overlaps a bank has with all other banks. A scalar parameter in the unit interval

determines the importance of these added network effects. We interpret this parameter as

network intensity. If the intensity is zero, the model reverts back to Collin-Dufresne et al.’s

structural regression model where CDS prices are independent of each other. Otherwise, in-

formation contagion takes place and CDS prices become functions of one another, depending

their similarities. This functional dependency holds for all CDS contracts, such that negative

beliefs can spillover from bank to bank. To ensure that this spillover process converges, we

assume that its effect attenuates with each round. The speed of convergence is determined by

the network intensity parameter.

In the model, we represent these rounds as successive linear transformations with the portfolio

overlap network as the transformation matrix.2 This iterative nature imitates the learning or

price discovery process studied in the financial literature, where traders act under bounded

rationality and imperfect knowledge. Most relevant to our work, Routledge (1999) shows how

information diffusion based on adaptive or evolutionary learning across multiple periods can

lead to a Grossman and Stiglitz (1980) type rational equilibrium. The success of this process

crucially relies on the monotonic selection dynamic, where traders imitate better strategies

2This transformation matrix can be understood in the same manner as the input-output matrix from the
Leontief model. Instead of sectors producing goods by combining goods from other sectors, our outputs are
CDS prices resulting from the weighted combinations of other CDS prices.
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more frequently than bad ones. Viewing the financial market as a complex system, Hommes

(2008) studies bounded rational traders that improve their strategies either with adaptive

learning or evolutionary selection. Using a simple cobweb model, he shows that the market

price can converge to the rational expectations equilibrium in both cases.

The remainder of this paper is structured as follows. We first introduce the portfolio overlap

measure, in Section 2, and then derive a Network Effects (NE) model and the Dynamic

Network Effects (DNE) model based on a structural regression model in Section 3. Section 4

describes the data and Section 5 presents the empirical results before we conclude.

2 Portfolio overlap

The systemic risk literature has extensively studied portfolio overlaps and common asset ex-

posures, especially in the context of fire-sales. While portfolio overlaps are key in our model,

their main purpose is to model information contagion, not to capture actual fire-sales. How-

ever, if the market believes that one bank is vulnerable to another bank’s rapid deleveraging

efforts, then this belief would again constitute information contagion. The systemic risk liter-

ature is therefore closely related and highly relevant. For instance, Wagener (2010) highlights

that, although portfolio diversification is desirable for individual institutions, it is dangerous

on a macro level as it increases portfolio overlaps among banks and therefore exposes them

to the same risks. Similarly, Caccioli et al. (2014) study a network model with overlapping

portfolios and leverage. In their model, a system may become unstable if a critical thresh-

old for leverage is crossed, resulting in system-wide contagion. Finally, Cont and Schaanning

(2018) use portfolio overlaps to quantify a bank’s mark-to-market losses resulting from the

deleveraging decisions of another bank. Other studies provide empirical models that can be

used for stress-tests. Greenwood et al. (2015), for example, study how banks that are seem-

ingly unrelated can contaminate other banks because of indirect vulnerabilities to deleveraging

externalities. They estimate their model with balance sheet data from the European Banking

Authority. Poledna et al. (2018) also contribute to stress-testing by proposing a new systemic

risk measure that relies on portfolio overlaps, which they calculate using the complete security

holdings of major Mexican banks.

We develop a regression-based overlap measure that quantifies partial correlations between

portfolio structures.3 Intuitively, our measure asks how much the knowledge of one bank’s

portfolio helps in predicting the contents of another bank’s portfolio, relative to all remaining

banks. For instance, the measure would assign a high overlap between two German Landes-

banken and a low overlap between a Landesbank and some other bank type. The outcome for

the measure is because the holdings of one Landesbank is likely to be much more predictive of

3These correlations do not refer to correlations between the portfolios returns. Instead, we are interested in
how similar portfolios are in structure. Thus, we treat portfolios as random vectors and the quantities held
in each asset as a random variables. We then calculate the partial correlations within a set of portfolios or
random vectors.
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another Landesbank’s holdings, compared to banks that follow an entirely different business

model. Our proposed measure has three distinct properties:

Property 1: Non-negativity. The measure is either zero when banks have no assets in

common, or positive if they share at least one asset. A negative overlap has no economic

interpretation.

Property 2: Relativity. The measure varies with banks and assets in the system. A bank

with high overlaps with all other banks may lose its central position once we include new

banks and/or new assets.

Property 3: Asymmetry. If a bank holds a portfolio and all other banks only hold parti-

tions thereof, then that bank can have a larger overlap with regards to one of the other banks

than vice versa.

We define the overlap measure µi,j between banks i and j for a system B = {bank1, ..., bankN}.
Each banki holds a portfolio of assets that is represented by a random vector in an L-

dimensional asset space. In the remainder of this section we derive the overlap measure.

We start with the overlap between two banks and extend the concept for N banks.

Figure 1: Hypothetical financial sector with four banks

Left: A hypothetical financial system with four banks and 30 assets. Each column represents a bank
portfolio and the blue bars indicate the amount a banks holds of a certain asset. Right: The portfolio overlap
matrix W that results from applying Algorithm 1 to the asset holdings on the left panel. We can see that the
W is asymmetric and row-normalized.
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2.1 Derivation

It is instructive to begin with a system with two banks B = {banki, bankj}. An obvious

candidate for the overlap measure is the correlation coefficient between both vectors of observed

holdings, µi,j = ρi,j = corr(banki, bankj). Although this choice is intuitive and simple, it can

violate the desirable non-negativity property.4 As a remedy, we take the squared correlation

coefficient. This is, in fact, the R2 from a simple regression of banki on bankj with no constant.

The overlap measure is then µi,j = ρ2i,j = R2, which is, by definition, always non-negative.

banki = bankjβ + ui.

In a general system with N banks B = {bank1, ..., bankN}, a natural extension is to calculate

µi,j for all i and j pairs. However, this approach results in symmetric overlap measures, that

is µi,j = µj,i. But symmetry is not desirable if the ultimate purpose of the measure is to

capture information contagion among banks. To illustrate, consider the hypothetical system

with four banks in Figure 1, left panel. For this illustration, we abstract from the effects of

exogenous credit spread determinants. If we observe a drop of bank1’s credit spread, then this

drop can only be due to information spillover from bank4. At the same time, if we observe

a deterioration of bank4’s creditworthiness, this information spillover can be partly ascribed

to each of the other three banks. Symmetry would imply that both cases are informationally

equivalent, which is not the case. For a more concrete example for why symmetry is unde-

sirable, recall that perceived vulnerability to fire-sales also constitutes a type of information

contagion. Clearly, bank4 is most central as its portfolio shares common assets with all other

banks while the other banks’ portfolios only hold partitions of bank4. If bank4 suddenly needs

to raise money, it could be a knock-on effect from either of the other banks liquidating their

assets in a fire-sale. Conversely, if one of the other banks has to liquidate its assets, this

portfolio adjustment can only be due to deleveraging efforts of bank4. Asymmetry is therefore

a crucial property of the overlap measure and differs from other proposed measures, such as

Cont and Schaanning (2018).

Returning to the derivation, the coefficient of determination serves as a useful starting point

for constructing such an asymmetric measure. Similar to the two-bank situation above, we

can calculate the R2
i from a multiple regression of each banki on all remaining banks,

banki =
∑
j 6=i

bankjβj + ui.

This coefficient R2
i measures how well banki’s portfolio is jointly explained by the portfolios

of all other banks. However, we are interested in the individual contributions of the banks on

4For example, if banki = [1, 1, 1, 0, 0, 0] and bankj = [0, 0, 0, 1, 1, 1], the correlation is exactly -1. For a more
elaborate example, consider the hypothetical system in the Appendix. The correlation between bank4 and
bank5 would violate the non-negativity property as well, since ρ4,5 = corr(bank4, bank5) < 0.
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the right-hand side. A decomposition of the R2
i into N − 1 separate partial-R2

i,j would reflect

the relative importance of bankj in explaining banki, compared to its peers. Denoting the

decomposition function with d, we have d(R2
i ) := [R2

i,1, ..., R
2
i,j, ..., R

2
i,N ]. Note that we define a

bank’s overlap with itself as zero, R2
i,i = 0. These partial-R2 capture the essence of our portfolio

overlap measure. They are, by construction, non-negative; allow the overlap measure to be

asymmetric; and depend on which banks and assets are considered in their calculation.5 To

compute the overlap relationships for the entire system, we repeat this exercise for all banks.

Each repetition yields a row vector of partial-R2. Stacking these results in the portfolio overlap

matrix W , which will play a key role in the contagion modeling.

W :=



d(R2
1)

...

d(R2
i )

...

d(R2
N)


=



[ 0 · · · R2
1,j · · · R2

1,N ]
...

...

[R2
i,1 · · · 0 · · · R2

i,N ]
...

...

[R2
N,1 · · · R2

N,j · · · 0 ]


(1)

3 Analytical framework

In this section, we construct a framework that embeds W into established credit spread models.

After introducing the baseline regression model, we extend it with constant network effects

and later on, introduce time-variation in these effects.

3.1 Baseline model

We start with a model similar to the structural regression of Collin-Dufresne et al. (2001).

∆CDSi,t = γ1iR
EU
t + γ2i ∆slopeEU

t + γ3i ∆volaEU
t

+ δ1iR
C
t + δ2i ∆slopeCt + δ3i ∆yieldCt (2)

+ θ1iRi,t + θ2i levi,t + consti + ei,t, with ei,t ∼ N(0, σ2
i ).

The explanatory variables are described in Table 2 in the data section and are grouped in

three categories: European-wide, country-wide, and bank-specific. To simplify notation, we

stack the N equations and collect all K regressors in one regressor matrix:

yt = Xtβ + et, with et ∼ N(0,Σ). (3)

Note that β contains bank-specific regression coefficients as in Collin-Dufresne et al. (2001)

and that the covariance matrix is heteroskedastic with Σ = diag(σ2
1, ..., σ

2
N). Furthermore, the

5While R2 decomposition is not a trivial task, the statistical literature on relative importance and variable
selection has proposed several methods for it. We refer the reader to the Appendix for the algorithm and
accompanying technical discussion of our overlap measure.
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empirical application also includes the lagged variables yt−1, Xt−1 as regressors.

3.2 Network effects model

As discussed in the introduction, we distinguish between two types of network effects, namely

structural network effects and residual network effects. Correspondingly, we introduce the

same portfolio overlap network W into the baseline model (2) in the different two ways.

Structural network effects refer to changes in one bank’s credit risk that are due to

changes in a neighboring bank’s credit risk. To incorporate this effect, we extend the baseline

model (2) by allowing yi,t to be influenced by other yj,t, according to the similarities in ρW :

yt = ρWyt +Xtβ + et. (4)

Here, ρ ∈ [0, 1) is the structural network intensity. If ρ = 0, the structural network effects

model (4) reverts back to the baseline (2). The overlap matrix W is calculated according to

Algorithm 1, described in the Appendix. By repeatedly inserting (4) into itself, it becomes

clear how information spillovers happen through W .

yt = ρWyt +Xtβ + et

= ρW (ρWyt +Xtβ + et) +Xtβ + et

= ρW (ρW (ρWyt +Xtβ + et) +Xtβ + et) +Xtβ + et (5)

= · · · = lim
m→∞

m∑
n=1

[ρW ]n(Xtβ + et)

The process in equation (5) converges to a fixed point if the largest eigenvalue of ρW is smaller

than one in absolute value. Since W is row-stochastic by construction, its largest eigenvalue

is exactly equal to one and, therefore, the invertibility condition reduces to |ρ| < 1. In this

case, we can express the model in explicit form.

yt = (IN − ρW )−1Xtβ + (IN − ρW )−1et

yt = ZXtβ + Zet (6)

yt = ZXtβ + εt with εt ∼ N(0, ZΣZ>)

Here, Z = (IN − ρW )−1 is the structural network component. Note that it affects both

regressors and errors. We also define εt = Zet as dirty model errors, as their covariance

matrix ZΣZ> is not diagonal. This differentiates them from clean model errors et.

Economic interpretation The last line in equations (5) contains the keystone of our model:

In the limit, the endogenous structure vanishes and the dependent variable can be isolated

from the independent variables. Economically, this model stipulates that the observed CDS
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prices are the consensus prices of the market participants. This consensus finding process is

driven by the information contagion about the underlying banks. The course of the spillover

process is determined by the portfolio overlap network W , while its duration is controlled by

the network intensity ρ. Thus, (4) stipulates that one bank’s CDS price depends on the CDS

prices of its peers. But if we follow this logic to the end, then the price in (6) ultimately

depends on both the exogenous credit determinants of its peers and their idiosyncratic er-

rors. The dependence on peers’ risk determinants has two important implications. First, this

framework establishes a new channel between one bank’s credit risk and another bank’s credit

determinant. Secondly, even though the clean model errors et are independently distributed

with diagonal covariance matrix Σ, the dirty model errors εt are ‘tainted’ from the contagion

process and have a covariance structure ZΣZ>. The resulting heteroskedasticity and cross-

correlations between individual idiosyncratic shocks is determined by the overlap matrix W .

To isolate both effects, we can also model the effects in the residuals separately.

Residual network effects While structural network effects introduce contagion into both

regressors and residuals, the residual network effects model only does so for the latter. The

mechanism is as described before and relies on the same overlap matrix W . To differentiate,

we use λ to denote the residual network intensity.

yt = Xtβ + ut with ut = λWut + et (7)

Under the condition that |λ| < 1 we can write the model into explicit form.

yt = Xtβ + (IN − λW )−1et

yt = Xtβ + Λet (8)

yt = Xtβ + εt with εt ∼ N(0,ΛΣΛ>)

Here, Λ = (IN − ρW )−1 denotes the residual network component. Note that the structural

network effects and residual network effects are identical if the data-generating process does

not contain any exogenous determinants.

Lastly, we define a network effects (NE) model that contains both network effects.

yt = ρWyt +Xtβ + ut with ut = λWut + et (9)

Under the same invertibility conditions we can reformulate (9) into the explicit form

yt = (IN − ρW )−1Xtβ + (IN − ρW )−1(IN − λW )−1et

yt = ZXtβ + ZΛet (10)

yt = ZXtβ + εt with εt ∼ N(0, ZΛΣΛ>Z>)
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Figure 2: Timeline overview of DNE model

This figure outlines the three frequencies in the DNE model. The overlap matrix W , which proxies the bank
business model similarities, is calculated at the beginning of each quarter, the CDS spreads are daily, and the
contagion process takes place within each day. The bar charts depict the geometric convergence behind the
network effects from (5). The left panel (t = 1), describes how network effects (black) are added to the
initial, exogenous value X1β until the total effects (white) converge to the observed CDS price y1.
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3.3 Dynamic network effects model

Since we suspect that the intensity of information contagion does not remain constant across

time, we introduce time variation in the network effects ρtWt and λtWt, respectively. We

assume that the time dynamics are primarily driven by the intensity parameters ρt and λt. In

fact, they vary on the same daily frequency as the credit spreads yt, while Wt varies only on a

quarterly frequency. See Figure 2 for an overview of the temporal structure in the model. This

frequency is primarily dictated by the data availability. However, even if a daily frequency

were available, we would still have used a lower frequency for two reasons: First, banks are not

likely to change their profiles significantly over time. Roengpitya et al. (2014) point out that

most of the 108 banks they investigate remain in the same classification. Commercial banks

switched between retail to wholesale funding before and after the crisis, but this happened

within a period of six years. In their subsequent study about model popularity and transitions,

Roengpitya et al. (2017) use the bank-year as their time unit and find that in the period from

2006 to 2015, European banks switched business models on average 1.25 times. Thus, even

though models are not static, they certainly do not shift from one day to the next. Second,

if Wt were to change daily along with ρt and λt, we would face an endogeneity problem in

the estimation. The data-generating process assumes that information contagion happens for

given perceptions of the bank similarities.

However, if the underlying similarities can change as a result of information spillovers, then

simultaneity will lead to biased estimates of the network effects. To model and estimate the

dynamic intensity parameters ρt and λt we treat them as latent state variables within a state-

space framework (Durbin and Koopman, 2012). For the network models to be invertible we

need to ensure that ρt and λt ∈ [0, 1). Hence, we do not model the time-dynamics directly but

instead model two state variables α1
t , α

2
t . These, in turn, drive the intensities ρt = Φ(α1

t ) and

λt = Φ(α2
t ) through a logistic transformation function Φ : R → [0, 1). The final state-space

model is described below.
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Dynamic network effects (DNE) model

Observation equation

yt = ZtXtβ + εt with εt ∼ N(0, ZtΛtΣΛ>tZ
>
t ),

with Zt = (I − ρtWt)
−1 and Λt = (I − λtWt)

−1 and covariance matrix Σ = σ2IN .

State equations

α1
t = c1 + T1α

1
t−1 + η1t with η1t ∼ N(0, σ2

1),

α2
t = c2 + T2α

2
t−1 + η2t with η2t ∼ N(0, σ2

2),

with ρt = Φ(α1
t ) and λt = Φ(α2

t ) where Φ : R→ [0, 1) is a logistic transformation.

Estimation methodology While the Kalman filter can estimate the linear baseline model,

with regression coefficients as constant state variables, the DNE model is highly nonlinear due

to the contagious process in the observation equation. Furthermore, the model includes het-

eroskedasticty and stochastic volatility, since the time-varying network effects also affect the

residuals. These properties make the estimation a challenging task and linear estimators like

the Kalman filter are not applicable. Approximating nonlinear filters, such as the extended

or unscented Kalman filter, do not perform satisfactorily either, mostly due to the stochastic

volatility5. Therefore, we estimate our nonlinear state-space model with a smooth marginal-

ized particle filter, based on the smooth particle filter (Malik and Pitt, 2011; Doucet et al.,

2001) and the marginalized particle filter (Schön et al., 2006). This simulation-based filter is

able to cope with all of the DNE model’s properties and has the best performance of all filters

we have examined. We discuss details of this estimator’s performance and its finite sample

properties using an extensive simulation study in the companion paper Wang et al. (2018).

4 Data

We study contagion among the 22 largest banks or banking groups with headquarters in

the Eurozone for the period from January 01, 2014, to June 30, 2016. These banks are

located in seven countries: Austria, Belgium, France, Germany, Italy, Netherlands, and Spain.

To maintain confidentiality, we present results for Austria and Germany as AT, DE and

Belgium and Netherlands as BE, NL. We use the daily 5-year senior, full-restructuring CDS

spreads for the dependent variable, as they are the most commonly traded credit derivative

contract (Augustin et al., 2014).6 The set of structural regressors can be broken down into

three groups: 1) Europe-wide, 2) country-wide, and 3) bank-specific. Measures included are,

6See Ericsson et al. (2009) for the advantages of using CDS spreads over calculated credit spreads.
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amongst others, the slope of the yield curve, stock market performance and leverage (see

Table 2). We interpolate the quarterly available data to match the daily frequency of other

regressors. To calculate the portfolio overlap network according to Algorithm 1, we use the

reported holdings data from the Securities Holdings Statistics (SHS). This data is reported on

a quarterly basis and covers each of the 22 banks’ holdings in about 250,000 unique securities,

identified by their International Securities Identification Number (ISIN). For confidentiality

reasons, the calculated networks cannot be shown here. The networks experience only slight

variations between quarters and have many within-country but few between-country overlaps.

5 Empirical analysis

We begin by estimating the benchmark model and replicating the two established stylized

facts of the credit spread puzzle: First, the low explanatory power of the structural regressors

in terms of R2; and, second, the presence of a common factors in the regression residuals.

Next, we estimate a model with constant network effects (NE) model to see if this improves

model performance. Finally, we analyse a Dynamic Network Effects (DNE) model which can

show us how much we gain through time-variation in the network effects.

5.1 Baseline model

Table 3 presents the regression results of the linear baseline model. Due to the confidentiality

reasons, we present the results as group averages. We also present the anonymized regression

coefficients in density plots (Figure 5a and 8a, upper halves) and the associated p-values in

histograms (Figure 5b and 8b, upper halves).

For Europe-wide regressors, we find that the sign and magnitude of the group averages are

mostly homogeneous. In line with previous research, higher equity returns and proxy for the

yield curve slope are associated with lower credit spreads while the opposite holds for volatil-

ity indicators.7 Similarly, the bank-specific regressors have the same signs across each group.

The constant is insignificant for all banks while equity returns are significantly negative for

half of the banks, most notably for Spain and Italy. For country-specific regressors, the group

averages are more heterogeneous. Once again, we rediscover a North-South division where

Italian and Spanish bank spreads respond similarly to their countries’ 10-year bond yields and

yield curve slopes, while the Austria, Belgium, France, Germany and Netherlands point to

the opposite direction. Leverage is insignificant, most clearly seen in the p-value histograms

(Figure 5b and 8b). This is likely due to its low, quarterly frequency in contrast to the high,

daily frequency of the spread changes.

7Note that the parentheses contain average p-values for each group and hence cannot used directly for the
rejection of the null hypothesis.
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Table 1: Bank groups and data availability

Bank Abbreviation Country CDS data Stock price

KBC Bank NV kbc BE 01 Jan 2014 01 Jan 2014
ABN AMRO Bank NV abn NL 01 Jan 2014 20 Nov 2016
ING Group ing NL 01 Jan 2014 01 Jan 2014
Rabobank rabo NL 01 Jan 2014 Not listed

BNP Paribas bnpp FR 01 Jan 2014 01 Jan 2014
Groupe BPCE bpce FR 02 Jul 2015 Not available
Crédit Agricole cagricole FR 01 Jan 2014 01 Jan 2014
Crédit Mutuel cmutuel FR 01 Jan 2014 Not available
Société Generale socgen FR 01 Jan 2014 01 Jan 2014

Erste Bank Group AG erste AT 01 Jan 2014 01 Jan 2014
Bayerische Landesbank bayernlb DE 01 Jan 2014 Not listed
Commerzbank AG commerz DE 01 Jan 2014 01 Jan 2014
Deutsche Bank AG deutsche DE 01 Jan 2014 01 Jan 2014
Deutsche Pfandbriefbank AG dpbb DE 01 Jan 2014 01 Jan 2014
DZ Bank AG dzbank DE 01 Jan 2014 Not listed
Landesbank Baden-Württemberg lbbw DE 01 Jan 2014 Not listed
Norddeutsche Landesbank nordlb DE 09 May 2014 Not listed

Banca Monte dei Paschi di Siena SpA bmps IT 01 Jan 2014 01 Jan 2014
Intesa Sanpaolo SpA intesa IT 01 Jan 2014 01 Jan 2014
UniCredit SpA unicredit IT 01 Jan 2014 01 Jan 2014

Banco Bilbao Vizcaya Argentaria SA bbva ES 01 Jan 2014 01 Jan 2014
BFA Tenedora de Acciones SAU bfa ES 01 Jan 2014 01 Jan 2014
CaixaBank SA caixa ES 01 Jan 2014 01 Jan 2014
Santander Group santander ES 01 Jan 2014 01 Jan 2014

Table 2: Data of independent variables

Variable Description Freq. Source

Europe-wide

REU
t Log-returns of EuroStoxx50 D Bloomberg

slopeEU
t Difference between 10-year Euro swap rate and 3-month EURI-

BOR
D Bloomberg

volaEU
t EuroStoxx50 Volatility (VSTOXX) D Bloomberg

Country-wide

RC
t Log-returns of ATX, BEL20, DAX, IBEX35, CAC40, FTSE MIB,

AEX
D Bloomberg

yieldCt 10-year sovereign bond yield D Bloomberg
slopeCt Difference between 10-year and 2-year sovereign bond yields D Bloomberg

Bank-specific

Ri,t Log-differences of stock prices, if available (see Table 1) D Bloomberg
levi,t Leverage ratio levi,t = Tier 1 captiali,t/Total exposure measurei,t Q Bloomberg
consti Constant term – –
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Furthermore, we confirm the two stylized facts of the credit spread puzzle: Higher than what

Collin-Dufresne et al. (2001) found for U.S. corporate bonds, the group R2 values range from

22.32% (Austria, Germany) to 43.16% (Italy) with an total average of 28.39%. To determine

whether this indicates a good model performance we turn our attention to the residuals, which

we assume to be orthogonal. In Figure 3, we find the reverse in a systematic common factor

across all banks. This factor alone explains 40.41% of the residual variance, while the first

four components together make up 56.78%. Interestingly, the second component seems to

capture country-specific effects, even though the regression model already includes country-

specific regressors. Upon closer inspection, the component draws a line between Northern

and Southern Eurozone members. Thus, the residuals curiously still reflect the North-South

divide, even though it was already a feature of the country-specific regressors. Fontana and

Scheicher (2016) find a similar division for European sovereign CDS spreads.

Figure 3: Principal components analysis of baseline residuals

This graph presents the coefficients of the four largest principal components of the baseline model residuals.
We see that the first component is a systematic factor that affects all banks. Furthermore, the second
component is a North-South factor that assigns positive values to Austria, Belgium, Germany, France,
Netherlands and negative values to Italy, Spain.
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Table 3: Regression results of baseline model

This table presents the regression coefficients of each country group (see Table 1). For confidentiality
reasons, we present group averages. Note that the parentheses contain average p-values and therefore do not
lend themselves for hypothesis testing. The bottom rows present the average R2 coefficient of each group.

Average Country group

Scope Variable All banks BE,NL ES FR AT,DE IT

Europe eurostoxx50 -0.9941 -0.7913 -0.6494 -1.7427 -0.9150 -0.9102
(0.2142) (0.1788) (0.3120) (0.0093) (0.3414) (0.1076)

slopeEU -0.1433 0.0839 -0.3774 -0.0396 -0.0705 -0.4424
(0.3728) (0.3784) (0.2595) (0.4953) (0.4416) (0.1928)

vstoxx 0.1274 -0.1201 0.2596 0.1098 0.1208 0.3200
(0.4765) (0.2050) (0.4552) (0.5802) (0.6646) (0.2900)

L.eurostoxx50 -0.3548 -0.0904 -0.2708 -0.6272 -0.5620 0.0272
(0.3983) (0.3196) (0.6357) (0.2077) (0.3419) (0.5722)

L.slopeEU -0.0354 -0.1858 -0.0470 0.1676 -0.0297 -0.1037
(0.5642) (0.5037) (0.7718) (0.4604) (0.4956) (0.6663)

L.vstoxx 0.2378 0.1894 0.3182 0.1152 0.2844 0.2499
(0.3856) (0.3780) (0.3312) (0.5488) (0.3490) (0.3358)

Country bond10yC 0.0081 -0.0714 0.4490 -0.6194 -0.2207 0.8971
(0.2386) (0.1831) (0.1645) (0.2035) (0.3773) (0.1342)

eqidxC -0.1525 -0.4413 -0.4494 0.6270 -0.2518 -0.1792
(0.3531) (0.2924) (0.5201) (0.1266) (0.3277) (0.5728)

slopeC 0.2081 0.0967 -0.0333 0.5915 0.3620 -0.1917
(0.1727) (0.2408) (0.0686) (0.0920) (0.2764) (0.0868)

L.bond10yC -0.0177 0.3144 -0.3465 -0.2802 0.1354 -0.0296
(0.4311) (0.5123) (0.4270) (0.4634) (0.3497) (0.4752)

L.eqidxC 0.2054 -0.0580 0.0738 0.3724 0.4843 -0.1415
(0.3549) (0.3848) (0.5307) (0.1539) (0.2897) (0.5006)

L.slopeC 0.0400 -0.2118 0.3306 0.2564 -0.1460 0.1335
(0.4629) (0.5322) (0.4247) (0.3078) (0.4915) (0.5615)

Bank const 0.0698 0.0522 0.0837 0.0738 0.0427 0.1329
(0.6016) (0.7364) (0.5759) (0.4346) (0.7511) (0.3298)

eq -0.3464 -0.1974 -0.5461 -0.2850 -0.1672 -0.7793
(0.3267) (0.4380) (0.0206) (0.2285) (0.6342) (0.0000)

lev -0.0048 -0.0133 0.0271 0.0343 -0.0489 0.0147
(0.5220) (0.3922) (0.4670) (0.7427) (0.4481) (0.6463)

L.cds -0.2820 -0.1956 -0.3766 -0.0672 -0.5371 0.0380
(0.2660) (0.3877) (0.2765) (0.2833) (0.1800) (0.2673)

L.eq -0.1281 -0.0605 -0.0599 -0.1782 -0.2056 -0.0614
(0.4457) (0.6376) (0.4818) (0.2439) (0.5496) (0.1683)

R2 Baseline 0.2839 0.2582 0.3072 0.2816 0.2232 0.4316

Observations 22 4 4 4 7 3
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5.2 Network effects model

In this section, we present the results from the NE model and compare them with the baseline

model. In contrast to the baseline model, we also obtain estimates for the latent network

intensity parameters, ρ̂ = 0.244 and λ̂ = 0.351. These correspond to a structural multiplier

effect of 1.324 and residual multiplier effect of 1.542.

Our first main result focuses on how the regression coefficients adjust in response to the

network effects. The violin plots in Figure 5a visualize this difference for each coefficient and

Figure 5b displays their change in statistical significance.8

After including network effects, the coefficient averages generally decrease in absolute value.

The density distributions tend to become less dispersed and move closer to zero. Compared

to the baseline model, bank-specific regressors become more significant as a higher fraction of

them falls below the 5% significance threshold, such as leverage or lagged credit spreads. The

volatility indicator also becomes more significant. Across all scopes, equity-related regressors

lose economic significance. At the same time, they also become statistically less significant,

with the exception of lagged country-level equity index returns. Thus, neglecting the network

effects potentially overstates the importance of structural regressors.

The better fit is also reflected by the strictly higher share of explained variances.9 The R2
dirty

based on prediction errors ranges from 22.79% (AT, DE) to 32.45% (IT) with a total average

of 28.86%, which is only slightly higher than in the baseline model. We do not expect this

improvement to be large, because the prediction errors, or dirty model residuals, still contain

the contagion effects. After filtering out the contagion component, the R2
clean based on clean

residuals ranges from 33.11% (BE, NL) to 68.14% (IT) with an average of 42.86%, which is

by 13.0% higher than in the baseline model.

Figure 4 depicts our second main result: After accounting for network effects, the largest

component in the clean residuals only accounts for 19.94% of residual variance, less than half

of its baseline counterpart. Furthermore, all four components account jointly for 41.12%, com-

pared to 56.78% in the baseline. Most importantly, the first component loses its systematic

nature. Its loadings are not strictly positive for all banks anymore, and some of them are very

close to zero. Moreover, the second, North-South component loses its dividing character as its

8More detailed results are reported in Table 4, Appendix.
9The R2 depends on how we compute sum of squared residuals. In the baseline model, we compute the R2

using the sum of squared residuals, which are based on the prediction errors, êt = yt − ŷt. In the NE model,
however, prediction errors contain network effects (see equation (10)). We refer to them as ‘dirty’ model
residuals, ε̂t. Filtering out these effects yields ‘clean’ model residuals, êt.

dirty model residuals (prediction errors) ε̂t = yt − ŷt = ẐtΛ̂têt

clean model residuals êt = Λ̂−1
t Ẑ−1

t ε̂t

The two types of residuals lead to two corresponding R2
dirty and R2

clean.
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values become more erratic with no clear pattern. This means that the overlap network both

explains most of the unobserved, systematic residual component and accounts for country-

specific effects that eluded the regressors.

We examine further residual diagnostics in Figure 11, Appendix. The left panel of Figure

12a shows how the average correlation of a bank’s residuals with all other banks drops from

0.353 to 0.099 while also becoming less dispersed. On the right panel of Figure 12a we see a

more pronounced effect for the squared residuals, dropping from 0.187 to 0.103. In the cen-

ter, Figure 12b, we plot the p-values of a Ljung-Box test for autocorrelation across different

lag horizons. The results show that the residuals become significantly more autocorrelated

after including network effects. We examine the autocorrelation structure and find that the

autoregressive coefficients become (more) negative for all banks. At the bottom, Figure 12c

displays the p-values of an ARCH-LM test for conditional heteroskedasticity. In contrast to the

increasing serial autocorrelation, we find ambiguous effects of including the network. While

we find less statistical evidence for residual clustering for some banks, it increases for others

while some remain largely unchanged. This suite of tests leads us to conclude that including

network effects mostly affects the cross-sectional characteristics, as seen in the drop in average

(sqaured) residual correlation.

Figure 4: Principal components analysis of NE residuals

This graph presents the coefficients of the four largest principal components of the NE model residuals. We
see that the first component loses its systematic nature and explains half of the residual variance (19.94%),
compared to its baseline counterpart (40.41%). Furthermore, the second component loses its North-South
factor structure. The banks are anonymized and their position randomized within each group.
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Figure 5: Regression results of baseline vs. NE models

The top, gray (bottom, white) halves of each plot depict the baseline (NE) model results. (a) presents the
estimated coefficients as violin plots, where each thin black line marks the anonymized coefficient value of
one bank. The triangles locate the average coefficient. (b) presents histograms of the corresponding p-values.
The red line demarcates the 5% significance level. The triangles locate the average p-value.
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5.3 Dynamic network effects model

Arguably, if network effects exist, they are unlikely to remain constant over time. Figure

6 shows the estimated intensity parameters for both structural and residual network effects.

The averages of both parameters (Ê[ρ̂t] = 0.181 and Ê[λ̂t] = 0.404) are close to their constant

counterparts (ρ̂ = 0.244 and λ̂ = 0.351). These correspond to a structural multiplier effect of

1.221 and residual multiplier effect of 1.676. Their stationary nature also indicates that the

added time-variation does not drastically alter the model results in relation to the constant

case. Nonetheless, the plots reveal that the residual correlations according to the overlap ma-

trix can vary significantly over time. The structural network effects in contrast amplify the

structural component in a constant and moderate fashion. In the remainder of this section,

we discuss the implications of the dynamic nature of the network effects.

As with the constant network effect model, we present the estimated coefficients in a vio-

lin plot (Figure 8a) and histograms for p-values (Figure 8b).10 The results reproduce most

of the findings of the constant network effects model. The coefficients move closer to zero

and become less dispersed. However, the notable exception is the volatility index. Instead of

decreasing in importance under constant network effects, it in fact becomes more significant

in both economic and statistical senses. Table 5 reveals that this is primarily driven by the

Southern banks.

The coefficients of determination also paint a similar picture as the constant case. The R2
dirty

ranges from 22.79% (AT, DE) with an average of 28.86%, which is 14.47% higher than in the

baseline model. The R2
clean ranges from 33.11% (BE, NL) with an average of 42.86%, which is

almost 13.0% higher than in the baseline model. Thus, allowing the network effects to follow

a stochastic process generally increases explanatory power. But this extension can also entail

decreases, as in the case of the R2
clean of Belgium and Netherlands.

This residual component analysis leads to only minor improvements as well (Figure 7). After

accounting for dynamic network effects, the largest residual component accounts for 18.25% of

residual variance, compared to 19.94% in the constant case. Furthermore, all four components

account for 40.34% jointly, compared to 41.12% in the baseline. As before, the first and second

components lose their distinct systemic and country structures. This leads us to conclude that

dynamic network effects do improve model performance, but only marginally.

Table 11, Appendix presents further residual diagnostics. The DNE model lowers average

(squared) residual correlations (Figure 12a) further than the NE model, but the improve-

ments are almost indistinguishable from the constant specification. The same holds for the

tests for serial autocorrelation (Figure 12b) and conditional heteroskedasticity (Figure 12c).

10Further results are shown in Table 5, Appendix.
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Figure 6: Estimated network intensities ρt and λt

Estimated intensity parameters of the DNE model using a smooth marginalized particle filter: Structural
network effects ρt (top, red) and residual network effects λt (bottom, blue). The 90% (50%) asymmetric
confidence interval is demarcated with the light (dark) areas.
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Figure 7: Principal components analysis of DNE residuals

This graph presents the coefficients of the four largest principal components of the DNE model residuals. We
see that the first component loses its systematic nature and explains half of the residual variance (18.25%),
compared to its NE counterpart (19.94%) or baseline counterpart (40.41%). Furthermore, the second
component loses its North-South factor structure. The DNE model does outperform the NE model, but only
slightly. The banks are anonymized and their position randomized within each group.
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Figure 8: Regression results of baseline vs. DNE models

The top, gray (bottom, white) halves of each plot depict the baseline (DNE) model results. (a) presents the
estimated coefficients as violin plots, where each thin black line marks the anonymized coefficient value of
one bank. The triangles locate the average coefficient. (b) presents histograms of the corresponding p-values.
The red line demarcates the 5% significance level. The triangles locate the average p-value.
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6 Conclusion

In this paper, we investigate whether incorporating business model similarities into the mod-

eling of the credit spreads of the 22 largest banks in the Eurozone improves risk capture.

Earlier models explain the credit spread based on structural regressors only, such as equity

returns, market volatilities, and spot rates. These models suffer from low explanatory power

and fail to capture a systemic common factor. We attribute their poor empirical performance

– the credit spread puzzle – to the omission of contagion effects in the models. Such conta-

gion could be driven by business model similarities, either real or perceived by the market.

However, including such effects into linear regressions is challenging because contagion mech-

anisms are self-reinforcing and nonlinear. To address this limitation, we augment the existing

models with a portfolio overlap network, positing that common asset exposures of banks are

a reasonable measure of business model similarity. We construct the network by applying an

R2-decomposition method on the banks’ complete holdings data. This leads to two exten-

sions, the Network Effects (NE) model and Dynamic Network Effects (DNE) model. Both

incorporate the overlap network and measure how important it is with intensity parameters.

The difference is that the DNE model has time-varying intensities. If the network represents

the vehicle that credit risk uses to spread from bank to bank, then the intensity represents

the fuel that determines how far the vehicle can go. We obtain several surprising results with

this modeling approach.

First, while the traditional model yields an R2 for the European banks of 28.39% on av-

erage, the NE model leads to a higher R2 for each bank, averaging 28.86%. After removing

contagion effects in the residuals, the resulting average ‘clean’ R2 goes up to 42.86%, an in-

crease of 14.47% compared to the baseline model. We attribute the increased explanatory

power to the NE’s structural network effects. These effects include other banks as endogenous

regressors, which ultimately still depend on the structural variables through the network. In

addition, we find that the structural regressors of the NE become less important compared to

the baseline. The DNE model, which has time-varying network effects, improves these findings

even further, albeit only slightly. The average R2
clean amounts to 43.02%. Surprisingly, while

the regression coefficients generally become less relevant as in the NE model, the volatility in-

dex increases in importance under the DNE model. Thus, neglecting network effects, whether

constant or dynamic, likely overstates the importance of most structural regressors. It is in-

teresting to note that, although banks are presumably unaware of how much portfolio overlap

they have with other banks, CDS premia nonetheless seem to correctly price this contagion

risk. It should therefore be in the interest of regulators to monitor this risk channel.

Second, the residuals of traditional models contain uncaptured common factors. A princi-

pal component analysis reveals that the first component is a systematic factor that affects

all banks, responsible for 40.41% of the remaining variance. The second component contains
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country-specific blocks, which is surprising since the structural regressors already contain

country-specific determinants. Upon closer inspection, this component differentiates between

Northern countries (AT, BE, FR, DE, NL) and Southern countries (ES, IT). The NE and

DNE models are constructed to capture these residual network effects. A subsequent residual

component analysis confirms that the first component loses its systematic nature and only

explains 19.94% (NE) and 18.25% (DNE) of the remaining variance, and the North-South

factor component also loses its country-block structure. The largest four components jointly

explain 41.12% (NE) and 40.34% (DNE) compared to 56.78% in the baseline. These findings

imply that the portfolio overlap network helps us shed light on an aspect of credit risk that

has eluded the structural regressors.

Lastly, the DNE allows us to measure the importance of the network effects over time. The

structural network intensity oscillates around a constant mean of about Ê[ρ̂t] = 0.181 (corre-

sponding to a multiplier of 1.221). At the same time, the residual network intensity revolves

around Ê[λ̂t] = 0.404 (multiplier of 1.676). This intensity reaches 0.65 (multiplier of 2.85)

during the market stress period of early 2016. The time-varying nature tells us that network

effects respond to or predict periods of financial distress. The intensities also help us under-

stand the contagion mechanism in details, for instance, by tracking how shocks to individual

banks or Europe-wide variables find their way through the system during calm or volatile times.

In conclusion, we find that the portfolio overlap network and the NE/DNE frameworks are

useful tools for understanding financial contagion and the credit spread puzzle, as well as their

intricate relationship. The DNE model performs better than the NE model in every regard,

as it allows for network effects to vary over time. But the improvements are slight, indicating

that accounting for constant network effects is already sufficient to realize almost all of the

benefits. Furthermore, it is likely that variables of market illiquidity will have explanatory

power for the credit spreads as well. Doubtlessly, other contagion channels, such the interbank

lending channel, play crucial roles in contagion as well. Thus, our results highlight the need

for more research on the network effects in credit risk.
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Blasques, F., Bräuning, F., and van Lelyveld, I. (2018). A Dynamic Stochastic Network Model
of the Unsecured Interbank Lending Market. Journal of Economic Dynamics & Control,
90:310–342.

Brunnermeier, M., Clerc, L., Gabrieli, S., Kern, S., and Memmel, C. (2013). Assessing Con-
tagion Risks from the CDS market. ESRB Occasional Paper Series, 4.

Caccioli, F., Shrestha, M., Moore, C., and Farmer, J. D. (2014). Stability Analysis of Financial
Contagion due to Overlapping Portfolios. Journal of Banking and Finance, 46(1):233–245.

Campbell, J. Y. and Taksler, G. B. (2003). Equity Volatility and Corporate Bond Yields.

Cernov, M. and Urbano, T. (2018). Identification of EU Bank Business Models. EBA Staff
Paper Series.

Cifuentes, R., Ferrucci, G., and Shin, H. S. (2005). Liquidity Risk and Contagion. Journal of
the European Economic Association, 3:556–566.

Collin-Dufresne, P., Goldstein, R. S., and Martin, J. S. (2001). The Determinants of Credit
Spread Changes. Journal of Finance, 56(6):2177–2207.

Cont, R. and Schaanning, E. (2018). Monitoring Indirect Contagion. SSRN Electronic Journal.

Coval, J. and Stafford, E. (2007). Asset Fire Sales (and Purchases) in Equity Markets. Journal
of Financial Economics, 86(2):479–512.

Demirer, M., Diebold, F. X., Liu, L., and Yilmaz, K. (2018). Estimating Global Bank Network
Connectedness. Journal of Applied Econometrics, 33(1):1–15.

Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag New York.

Duarte, F. and Eisenbach, T. M. (2018). Fire-Sale Spillovers and Systemic Risk. New York
Fed Staff Reports, 645.

26



Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford
University Press.

Ericsson, J., Jacobs, K., and Oviedo, R. (2009). The Determinants of Credit Default Swap
Premia. Journal of Financial and Quantitative Analysis, 44(1):109–132.

Fabbris, L. (1980). Measures of Predictor Variable Importance in Multiple Regression: an
Additional Suggestion. Quality and Quantity, 14(6):787–792.

Fontana, A. and Scheicher, M. (2016). An Analysis of Euro Area Sovereign CDS and their
Relation with Government Bonds. Journal of Banking and Finance, 62:126–140.

Genizi, A. (1993). Decomposition of R2 in Multiple Regression with Correlated Regressors.
Statistica Sinica, 3:407–420.

Glasserman, P. and Peyton Young, H. (2015). How Likely is Contagion in Financial Networks?
Journal of Banking and Finance, 54(642):383–399.

Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable Banks. Journal of Financial
Economics, 115(3):471–485.
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7 Appendix

A Portfolio overlap measure

The statistical literature on relative importance and variable selection has proposed several
methods for R2 decomposition.11 In multiple regression analysis, these methods help us under-
stand how much explanatory power a regressor contributes in relation to all other regressors.
Essentially, we are interested in how similar a particular bank’s portfolio is to a stressed bank’s
portfolio, relative to the portfolios of all other banks. Translated into a variable selection prob-
lem, we are interested in the predictive power of a bank’s portfolio regarding the stressed bank
portfolio structure, compared to the remaining portfolios.

Algorithm 1 (Portfolio overlap measure). ˙
Let y = banki be the S×1 regressand and X = [bankj]j 6=i the S×(N−1) regressor matrix.

1. Calculate RXX = 1
S
X>X and RXy = 1

S
X>y.

2. Estimate c = R
−1/2
XXRXy where R

1/2
XX denotes the matrix square root of RXX .

3. Calculate raw overlap measure for all regressors bankj with j 6= i.

µ∗i,j =
N−1∑
k=1

[RXX ]2j,kc
2
k

4. Set overlap measure between banki and bankj to zero if they are disjoint.

µi,j =

{
µ∗i,j if y>Xj 6= 0,

0 otherwise.

5. Collect overlap measures in 1×(N−1) row vector and normalize with µ̄i =
∑

k 6=i µi,k.

µi =
1

µ̄i

[µi,1, · · · , µi,N−1].

A.1 Algorithm

Algorithm 1 details the steps to compute the portfolio overlap measure µi,j. The basic idea
is best illustrated in the context of a multiple regression of y on X: If the columns of X are
mutually disjoint, then the R2 of this regression is simply the sum of the R2 of regressing y
on each column of X, separately. However, this does not hold when the columns of X are
not orthogonal. The idea is instead to use the nearest orthogonal matrix Z of X.12 Since
Z is orthogonal by definition, we can apply the same logic as before and regress y on Z, the
orthogonal counterpart of X. However, this will give us the contributions of Z. Since were
are interested in the contributions of X, the algorithm involves a further projection of X onto
Z. For more details we refer to Zuber and Strimmer (2011).

11For a review of such methods we refer to Grömping (2015). Our measure is closest to Genizi (1993) as
discussed in Zuber and Strimmer (2011).

12The closeness between two matrices is measured using the Forbenius norm. The matrix Z can be determined
either using singular value decomposition (Fabbris, 1980) or by using the matrix square root (Genizi, 1993).
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Figure 9: Hypothetical financial sector with six banks

Left: A hypothetical financial system with six banks and 40 assets. Each column represents a bank portfolio
and the blue bars indicate the amount a banks holds of a certain asset. Right: The portfolio overlap matrix
that results from applying Algorithm 1 to the asset holdings on the left panel. We can see that the resulting
matrix is asymmetric and row-normalized.
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Figure 10: Visual representation of contagion process

This visualization depicts the contagion process of equation (5) for the portfolio overlap network of Figure 9.
Each column represents one round of contagion. The assumed network intensity is ρ = 0.7.

(a) Chord diagram (b) Contagion process
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To obtain the portfolio overlap matrix W , we repeat Algorithm 1 as described in equation (1).
The result for the hypothetical portfolios is presented in Figure 1 and 9, right panels. Note
that the matrix satisfies all desired properties 1-3 and is by construction row-stochastic, i.e.
each row adds up to one. This system is constructed to have three distinct features. First, the
holdings of bank1-bank3 and bank4-bank6 form two disjoint groups. Second, the holdings of
bank1,bank2 (bank4,bank5) are positively (negatively) correlated. Third, the holdings of bank3
and bank6 are randomly drawn: Their first halves follow U [0, 10] while their second halves
follow U [10, 20].
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We visualize this contagion process in Figure 10. Panel (a) is the graphical representation
of the portfolio overlap network from Figure 9 while panel (b) demonstrates how a bank’s
demise spreads to its neighbors in an iterative fashion, according to the portfolio distances.
With each round the network intensity decays geometrically. Panel (b) can also be viewed as
the impulse response function of the network for a given shock.13

13An interactive visualization can be found at http://dieter.wang/contagionchain.
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B Regression outputs of network models

Table 4: Regression results of network effects model

This table presents the regression coefficients of each country group (see Table 1). For confidentiality
reasons, we present group averages. Note that the parentheses contain average p-values and therefore do not
lend themselves for hypothesis testing. The bottom rows present the average R2 coefficient of each group.

Average Country group

Scope Variable All banks BE,NL ES FR AT,DE IT

Europe eurostoxx50 -0.5829 -0.4597 -0.3119 -1.1624 -0.4561 -0.6318
(0.2246) (0.2753) (0.1823) (0.0767) (0.3269) (0.1720)

slopeEU -0.0992 0.1544 -0.3479 -0.0165 -0.0266 -0.3854
(0.3456) (0.4133) (0.2166) (0.5475) (0.3432) (0.1639)

vstoxx 0.0882 -0.1874 0.2678 0.0822 0.0612 0.2873
(0.4408) (0.2269) (0.3486) (0.4833) (0.6826) (0.2282)

L.eurostoxx50 -0.2613 -0.0278 -0.1584 -0.5266 -0.4333 0.0456
(0.4300) (0.3930) (0.7478) (0.2022) (0.3488) (0.5490)

L.slopeEU -0.0235 -0.1387 -0.0557 0.1434 -0.0232 -0.0504
(0.5279) (0.5707) (0.6906) (0.4567) (0.4409) (0.5517)

L.vstoxx 0.1767 0.1046 0.2836 0.0399 0.2312 0.1858
(0.3909) (0.2800) (0.3433) (0.5816) (0.3860) (0.3591)

Country bond10yC 0.0118 -0.1764 0.4389 -0.5010 -0.1917 0.8521
(0.2888) (0.4046) (0.1895) (0.2549) (0.3700) (0.1225)

eqidxC -0.1495 -0.3879 -0.3710 0.5101 -0.3455 0.0418
(0.3043) (0.3205) (0.5355) (0.1404) (0.2278) (0.3716)

slopeC 0.1646 0.1277 -0.0615 0.4684 0.3007 -0.2073
(0.2279) (0.3058) (0.0848) (0.2645) (0.3262) (0.0371)

L.bond10yC -0.0219 0.2513 -0.3577 -0.2111 0.1372 -0.0574
(0.4486) (0.5811) (0.4349) (0.5468) (0.2990) (0.5084)

L.eqidxC 0.1806 -0.0691 0.0722 0.3167 0.4211 -0.0847
(0.3687) (0.5819) (0.5257) (0.1635) (0.2593) (0.4044)

L.slopeC 0.0455 -0.1851 0.3599 0.2336 -0.1498 0.1389
(0.4277) (0.5910) (0.4455) (0.2386) (0.4202) (0.4562)

Bank const 0.0482 0.0245 0.0681 0.0534 0.0244 0.1019
(0.6089) (0.7054) (0.5755) (0.4866) (0.7606) (0.3341)

eq -0.3242 -0.1819 -0.4611 -0.2576 -0.1389 -0.8523
(0.3598) (0.5388) (0.0499) (0.2411) (0.6566) (0.0000)

lev -0.0043 -0.0285 0.0550 0.0412 -0.0563 0.0094
(0.4417) (0.3636) (0.2957) (0.6670) (0.3948) (0.5500)

L.cds -0.2191 -0.0795 -0.2774 -0.0319 -0.5014 0.0818
(0.2198) (0.3669) (0.2340) (0.2318) (0.1874) (0.0643)

L.eq -0.1197 -0.0525 -0.0465 -0.1627 -0.1951 -0.0737
(0.4237) (0.7213) (0.3047) (0.2356) (0.5427) (0.1585)

R2 Baseline 0.2839 0.2582 0.3072 0.2816 0.2232 0.4316
NE, dirty 0.2886 0.2601 0.3105 0.2922 0.2279 0.4345
NE, clean 0.4286 0.3311 0.4865 0.4015 0.3583 0.6814

Observations 22 4 4 4 7 3

32



Table 5: Regression results of dynamic network effects model

This table presents the regression coefficients of each country group (see Table 1). For confidentiality
reasons, we present group averages. Note that the parentheses contain average p-values and therefore do not
lend themselves for hypothesis testing. The bottom rows present the average R2 coefficient of each group.

Average Country group

Scope Variable All banks BE,NL ES FR AT,DE IT

Europe eurostoxx50 -0.6284 -0.4899 -0.4160 -1.1646 -0.4491 -0.8000

(0.1975) (0.2398) (0.2189) (0.0689) (0.2970) (0.0519)

slopeEU -0.1516 0.1028 -0.3672 -0.1183 -0.0925 -0.3856

(0.3429) (0.4726) (0.1825) (0.4245) (0.3991) (0.1440)

vstoxx 0.2554 0.0139 0.4314 0.2299 0.2293 0.4375

(0.2604) (0.1959) (0.1523) (0.3070) (0.4237) (0.0472)

L.eurostoxx50 -0.2900 -0.0325 -0.1794 -0.5488 -0.4976 0.0486

(0.4134) (0.3546) (0.7047) (0.1954) (0.3518) (0.5382)

L.slopeEU -0.0805 -0.2040 -0.1138 0.0942 -0.0814 -0.1026

(0.5291) (0.5189) (0.5856) (0.5974) (0.4716) (0.5101)

L.vstoxx 0.2125 0.1612 0.3235 0.0760 0.2535 0.2189

(0.3489) (0.3222) (0.2904) (0.5116) (0.3396) (0.2671)

Country bond10yC 0.1521 -0.0262 0.5171 -0.2798 -0.0073 0.8512

(0.3467) (0.2769) (0.2666) (0.4624) (0.4278) (0.2030)

eqidxC -0.1429 -0.3251 -0.3235 0.4709 -0.3704 0.0531

(0.3723) (0.5180) (0.5758) (0.1662) (0.2326) (0.5076)

slopeC 0.0660 0.0305 -0.1145 0.3325 0.1667 -0.2364

(0.2257) (0.2150) (0.0858) (0.2306) (0.3776) (0.0657)

L.bond10yC 0.0167 0.2845 -0.2801 -0.1953 0.1824 -0.0488

(0.4170) (0.4877) (0.3794) (0.5608) (0.2865) (0.4854)

L.eqidxC 0.1690 -0.0914 0.0427 0.3151 0.4346 -0.1302

(0.3703) (0.5174) (0.5297) (0.1547) (0.2616) (0.5027)

L.slopeC 0.0461 -0.1734 0.3328 0.2375 -0.1511 0.1610

(0.4120) (0.5948) (0.3753) (0.2452) (0.4112) (0.4414)

Bank const 0.0557 0.0294 0.0890 0.0541 0.0295 0.1098

(0.5787) (0.7319) (0.4744) (0.4850) (0.7341) (0.2757)

eq -0.2662 -0.1420 -0.4418 -0.2369 -0.0854 -0.6586

(0.3442) (0.5538) (0.0618) (0.3032) (0.5568) (0.0000)

lev 0.0007 -0.0131 0.0397 0.0482 -0.0475 0.0161

(0.4569) (0.4205) (0.2478) (0.7308) (0.3767) (0.6060)

L.cds -0.2625 -0.1342 -0.3497 -0.0502 -0.5274 0.0175

(0.2440) (0.3722) (0.2416) (0.2059) (0.1835) (0.2685)

L.eq -0.1421 -0.0959 -0.0704 -0.1815 -0.1987 -0.1150

(0.3719) (0.5428) (0.3013) (0.2331) (0.5203) (0.0768)

R2 Baseline 0.2839 0.2582 0.3072 0.2816 0.2232 0.4316

DNE, dirty 0.2966 0.2726 0.3161 0.2993 0.2337 0.4456

DNE, clean 0.4302 0.3142 0.4988 0.3885 0.3649 0.7016

Observations 22 4 4 4 7 3
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C Residual diagnostics

Figure 11: Residual tests

(a) Average correlations of residuals and squared residuals
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(b) Ljung-Box test for residual autocorrelation (p-values)
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(c) ARCH-LM test for residual heteroskedasticty (p-values)
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