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Abstract

This paper generalises Boswijk and Zu (2018)’s adaptive unit root test for time series

with nonstationary volatility to a multivariate context. Persistent changes in the innovation

variance matrix of a vector autoregressive model lead to size distortions in conventional

cointegration tests, which may be resolved using the wild bootstrap, as shown by Cavaliere et

al. (2010, 2014). We show that it also leads to the possibility of constructing tests with higher

power, by taking the time-varying volatilities and correlations into account in the formulation

of the likelihood function and the resulting likelihood ratio test statistic. We find that under

suitable conditions, adaptation with respect to the volatility process is possible, in the

sense that nonparametric volatility matrix estimation does not lead to a loss of asymptotic

local power relative to the case where the volatilities are observed. The asymptotic null

distribution of the test is nonstandard and depends on the volatility process; we show that

various bootstrap implementations may be used to conduct asymptotically valid inference.

Monte Carlo simulations show that the resulting test has good size properties, and higher

power than existing tests. Two empirical examples illustrate the applicability of the tests.

Key words: Adaptive estimation; Nonparametric volatility estimation; Wild bootstrap.

∗An earlier version of this paper was titled “Testing for Cointegration with Nonstationary Volatility”.
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1 Introduction

An important approach to the analysis of cointegrated time series is based on a likelihood analy-

sis of the Gaussian vector autoregressive model, as developed by Johansen (1996). The resulting

estimators and test statistics, although derived under the assumption that the disturbances are

independent and identically normally distributed, can be shown to retain their asymptotic prop-

erties in more general circumstances. Thus, for example, the asymptotic critical values for the

likelihood ratio test for the cointegration rank are still valid in the presence of leptokurtosis

and time-varying volatilities, commonly observed in daily financial time series, as long as the

invariance principle holds. Clearly, the resulting analysis is then based on a misspecified model

and hence on a pseudo-likelihood, such that more efficient procedures may be based on the

true likelihood function, which incorporates these characteristics. For the case of stationary

(generalised) autoregressive-conditional heteroskedastic ((G)ARCH) processes, such procedures

have been developed in the univariate case by Ling and Li (1998, 2003) and Seo (1999), and for

the multivariate (cointegration) case by Li et al. (2001), Wong et al. (2005) and Seo (2007).

Recent developments in the univariate unit root literature, however, have emphasised that

volatility processes may display nonstationary variation, such that the disturbances no longer

satisfy the conditions of an invariance principle, and hence standard unit root tests loose their

asymptotic validity. Possible causes of such nonstationarity include level shifts or other de-

terministic trending patterns in the volatility, see Kim et al. (2002) and Cavaliere (2004), but

also (near-) integrated GARCH dynamics, see Boswijk (2001). Cavaliere and Taylor (2007) and

Beare (2018) develop two alternative approaches to constructing unit root test statistics with

the conventional (Dickey-Fuller) asymptotic null distribution, and Cavaliere and Taylor (2008)

show that application of the wild bootstrap leads to asymptotically valid inference. Boswijk

and Zu (2018) derive the power envelope for unit root tests with observable (nonstationary)

volatility, and show that considerable power gains may be obtained relative to procedures that

do not take the heteroskedasticity into account. They also show that when the volatility is un-

observed, the power envelope may be reached by an adaptive procedure based on nonparametric

volatility estimation.

This paper seeks to extend Boswijk and Zu (2018)’s analysis to a multivariate context,

and hence develop efficient tests for cointegration in the presence of nonstationary multivariate

(unconditional) heteroskedasticity. First, building on the analysis of Hansen (2003), we derive

the likelihood ratio test for cointegration in a vector autoregressive model with observed time-

varying variance matrices and Gaussian errors. Next, we consider the case of unknown volatility,

and propose a two-step procedure where the volatility process is estimated nonparametrically.

Under suitable conditions, this estimator is consistent and hence the resulting cointegration

test has the same asymptotic power function as in the case of known volatility. The asymptotic

null distribution of the test is nonstandard and depends on the volatility function, such that

asymptotic p-values have to be obtained by Monte Carlo simulation or a bootstrap method; we

develop the theory for the wild bootstrap, as well as for the volatility bootstrap (Boswijk and
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Zu, 2018), where the bootstrap errors are based on the non-parametric volatility estimate.

In a related line of research, Cavaliere et al. (2010, 2014) show that application of the wild

bootstrap to the traditional (constant-variance) Gaussian pseudo-likelihood ratio statistic leads

to a correctly sized cointegration test in the presence of nonstationary volatility. They allow

for discontinuous level shifts in the volatility, which are excluded in the present paper because

the nonparametric estimator requires continuous volatility sample paths. Because they focus

on the constant-variance pseudo-likelihood ratio test, their analysis does not exploit the power

gain potential in the presence of nonstationary volatility.

The plan of the paper is as follows. Section 2 presents the model and assumptions, and

characterises the limiting behaviour of the process. In Section 3 we obtain an expression of the

likelihood ratio statistic for the cointegration rank for the case of a known volatility process,

and we derive its limiting distribution, both under the null hypothesis and under a sequence

of local alternatives. Section 4 discusses estimation of the volatility matrix, and its impact on

the resulting test for cointegration rank. Section 5 gives Monte Carlo evidence about the finite

sample performance of the test. Section 6 contains empirical applications of the test to the

S&P 500 and NASDAQ-100 indices in the 1990s, and to the term structure of interest rates in

the US. Section 7 contains some concluding remarks, and proofs of all results are given in the

Appendix.

Throughout the paper, we use the notation Xn
p−→ X for convergence in probability, Xn

w−→
X for convergence in distribution, and Xn

w−→p X for weak convergence in probability, see Giné

and Zinn (1990). Xn(u)
w−→ X(u), u ∈ [0, 1] denotes weak convergence in D[0, 1]k, the product

space of right-continuous functions with finite left limits, under the Skorohod metric. The

notation bxc is used for the largest integer less than or equal to x. For any n × m matrix

A of full column rank m < n, A⊥ denotes an n × (n − m) matrix of full column rank such

that A′⊥A = 0, and Ā = A(A′A)−1. The Euclidean norm of a column vector x is denoted

‖x‖ =
√
x′x, and similarly the Frobenius norm of a matrix A is denoted ‖A‖ =

√
tr(A′A).

2 The model

Consider the vector autoregressive model of order k, written in error correction form, for a

p-variate time series {Xt, t = 1, . . . , n}:

∆Xt = ΠXt−1 +
k−1∑
j=1

Γj∆Xt−j + εt, (1)

where Π and Γj , j = 1, . . . , k − 1 are p × p coefficient matrices, and where εt is a p-variate

disturbance vector with mean zero. The starting values {X1−k, . . . , X0} are considered fixed.

For ease of exposition, we first consider the model with no deterministic components such as a

constant or linear trend; extensions in this direction are discussed at the end of Section 3.

We wish to test the null hypothesis:

H(r) : Π = αβ′,
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where α and β are p× r matrices, 0 ≤ r < p. Note that H(r) may be equivalently formulated

as rank(Π) ≤ r. Under this hypothesis, the vector error correction model (VECM) becomes

∆Xt = αβ′Xt−1 +

k−1∑
j=1

Γj∆Xt−j + εt. (2)

This implies that Xt is integrated of order 1, with cointegration rank r and cointegration matrix

β, provided that the following assumption is satisfied (Johansen, 1996, Theorem 4.2):

Assumption 1 In the model (2), (a) the p × r matrices α and β are of full column rank r,

(b) the characteristic equation
∣∣∣Ip(1− z)−Πz −

∑k−1
j=1 Γjz

j(1− z)
∣∣∣ = 0 has all its roots equal

to one or outside the unit circle, and (c) rank(α′⊥Γβ⊥) = p− r, where Γ = Ip −
∑k−1

j=1 Γj.

Under the assumption that the disturbances {εt}t≥1 are independent and identically dis-

tributed (i.i.d.) Gaussian with mean zero and positive definite variance matrix Σ, the likeli-

hood function for the model under H(r) is maximised by reduced rank regression. From this,

an explicit expression is available for the likelihood ratio test of H(r) in the unrestricted model

H(p), corresponding to (1); see Johansen (1996). Here we consider a deviation from the i.i.d.

assumption, in that we allow for unconditional heteroskedasticity:

Assumption 2 In the model (2), the disturbances satisfy

εt = σtzt, t = 1, . . . , n,

where:

(a) σt = σ(t/n), where σ(·) is a non-stochastic p × p matrix-valued function on [0, 1], such

that σ(u) is non-singular for all u ∈ [0, 1], and continuous in u ∈ [0, 1];

(b) {zt}t≥1 satisfies E(zt|Ft−1) = 0 and E(ztz
′
t|Ft−1) = Ip for all t ≥ 1, where Ft =

σ({zs}ts=1), and supt≥1E(‖zt‖4m) <∞ for some m > 1.

The assumption directly implies E(εt) = 0 and var(εt) = σtσ
′
t =: Σt, a positive definite

variance matrix. We will refer to σt, a matrix square root of Σt, as the volatility matrix of εt.

In the next section, we will analyse the likelihood function derived from the stronger assumption

εt ∼ N(0,Σt), but the asymptotic properties of the resulting procedures will continue to hold

under Assumption 2 with non-Gaussian {zt}t≥1.

If the volatility process were such that the partial averages (un)−1
∑bunc

t=1 Σt converge to

the same positive definite matrix Σ as n → ∞ for all u ∈ [0, 1], then, under suitable technical

conditions, the invariance principle would apply to {εt}t≥1. This in turn would imply that

Johansen’s (pseudo-) likelihood ratio test, based on the Gaussian i.i.d. assumption on {εt}t≥1,

would retain its usual asymptotic properties, even though more efficient tests may obtained

from an analysis of the true likelihood function. Instead, the formulation in Assumption 2 is

motivated by the notion that persistent changes in the volatility should be preserved in the
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limit. In the univariate context, this assumption was used by Cavaliere (2004), Cavaliere and

Taylor (2007) and Beare (2018), inter alia. The multivariate analog was considered by Cavaliere

et al. (2010, 2014) and Boswijk et al. (2016). In particular, Assumption 2 is a specific version of

Assumption 2 of Boswijk et al. (2016), who allow for a countable number of discontinuities in

σij(·), and for conditional heteroskedasticity in {zt}t≥1. The assumption of continuity is made

here to facilitate consistent non-parametric estimation of σ(·), although Xu and Phillips (2008)

show that this could be relaxed for adaptive estimation. For practical purposes, the continuity

assumption can still accommodate large changes in volatility, as discussed in Boswijk and Zu

(2018) for the univariate case. The analysis in the present paper could be extended to allow for

conditional heteroskedasticity, but this is not considered here to simplify the analysis.

Before we consider likelihood-based testing for H(r) in the model (1) under Assumption 2,

we conclude this section with a characterization of the limiting behaviour of the process under

the null H(r), and under a sequence of local alternatives

Hn(r, r1) : Πn = αβ′ + n−1α1β
′
1, (3)

where α and β are the same as before, and α1 and β1 are p× r1 matrices of full column rank,

r1 ≤ p− r, such that [α : α1] and [β : β1] are both of rank r + r1. See Chapter 14 of Johansen

(1996) and Hansen and Johansen (1998) for the analysis of the asymptotic local power of the

likelihood ratio test under the Gaussian i.i.d. assumption and (3). Proofs of all results are given

in the Appendix.

Lemma 1 In the model (2) under Assumptions 1–2 and under Hn(r, r1), we have

n−1/2

bunc∑
t=1

εt
w−→
∫ u

0
σ(s)dW (s) =: M(u), u ∈ [0, 1],

where W (·) is a p-variate standard Brownian motion process, and

n−1/2Xbunc
w−→ β⊥(α′⊥Γβ⊥)−1UA(u) =: XA(u), u ∈ [0, 1], (4)

where the (p− r)-variate process UA(·) is given by

UA(s) =

∫ u

0
exp ((u− s)A)σU (s)dW (s), u ∈ [0, 1],

with A = α′⊥α1β
′
1β⊥(α′⊥Γβ⊥)−1 and σU (u) = α′⊥σ(u), such that UA(·) satisfies the stochastic

differential equation

dUA(u) = AUA(u)du+ σU (u)dW (u). (5)

The limit XA(·) of n−1/2Xb·nc is a p-variate process, but of rank p − r, in the sense that

β′XA(u) = 0 (a.s.). Note that UA(·) may be interpreted as a multivariate heteroskedastic

Ornstein-Uhlenbeck process. The limit theory under H(r) is obtained by setting r1 = 0 and

hence A = 0, such that UA(u) reduces to U0(u) = α′⊥M(u).
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Lemma 1 implies that the pseudo-likelihood ratio (PLR) statistic, derived under the constant-

variance assumption, will have a limiting distribution that depends on σ(·). In particular, in the

simple case where k = 1, and we wish to test H(0), then it follows fairly directly from Lemma

1 (see also Cavaliere et al., 2010) that the PLR statistic satisfies, under the null hypothesis,

PLRn(0)

w−→ tr

{(∫ 1

0
Σ(u)du

)−1 ∫ 1

0
dM(u)M(u)′

(∫ 1

0
M(u)M(u)′du

)−1 ∫ 1

0
M(u)dM(u)′

}
.

If and only if σ(·) is a constant matrix σ, such that M(u) = σW (u), the usual limiting distri-

bution tabulated in Johansen (1996) will result.

3 The likelihood ratio test with known volatility

In this section we analyse the likelihood ratio (LR) statistic for H(r) in the model (2) in the

case where {σt}nt=1 is known, and where the standardised innovations {zt}nt=1 are taken to be

i.i.d. N(0, Ip). Although the assumption that {σt}nt=1 is observed is unrealistic in practice, the

asymptotic local power of such a test provides an upper bound1 to the local power of tests in

case {σt}nt=1 is unknown and hence has to be estimated, either based on a parametric model or

nonparametrically.

Define Ψ = [Γ1 : . . . : Γk−1] and Wt = (∆X ′t−1, . . . ,∆X
′
t−k+1)′, such that the model (2)

under Assumption 2 with Gaussian {σt}nt=1 may be expressed more compactly as

∆Xt = αβ′Xt−1 + ΨWt + εt, εt|Xt−1 ∼ N(0,Σt), t = 1, . . . , n, (6)

where Σt = σtσ
′
t as before, and Xt−1 = {Xt−1, . . . , X1, X0, . . . , X1−k}. Recall that the starting

values X0, and hence W1, are observed but treated as fixed. The volatility matrices {σt}nt=1

are also observed, but no specific model (such as multivariate GARCH) is assumed; they are

treated as given. Under this condition, the log-likelihood function is given by

`n(α, β,Ψ) = −np
2

log 2π − 1

2

n∑
t=1

log |Σt|

−1

2

n∑
t=1

(∆Xt − αβ′Xt−1 −ΨWt)
′Σ−1
t (∆Xt − αβ′Xt−1 −ΨWt). (7)

Maximum likelihood estimation in a closely related class of models was studied by Hansen

(2003), who generalised the switching algorithm developed by Boswijk (1995) in various di-

rections, including time-varying variance matrices. The key idea of this so-called generalised

reduced rank regression procedure is that, although no closed-form expression exists for the

maximum likelihood estimator (MLE) (α̃n, β̃n, Ψ̃n), the maximization of `n(α, β,Ψ) over (α,Ψ)

1We confine ourselves to likelihood-ratio-type tests, and hence do not attempt to derive an asymptotic power

envelope for all possible tests of the null hypothesis, which would be defined as the limiting power of a point

optimal invariant test of H(r) against Hn(r, r1).
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for fixed β does lead to a closed-form expression, and similarly the MLE of β for fixed (α,Ψ)

has a closed-form expression. The likelihood may then be maximised, starting from an initial

guess, by switching between maximization over (α,Ψ) and β. Convergence properties of such

switching algorithms have been studied by Sargan (1964) and Oberhofer and Kmenta (1974).

The algorithm requires that just-identifying restrictions are imposed on β. We formulate

these as c′β = Ir, for some known p×r matrix c of full column rank. An equivalent formulation

is β = c̄+ c⊥Φ, where Φ is a (p− r)× r matrix of free parameters, such that

vecβ = vec (c̄+ c⊥Φ) = h+Hφ, (8)

where h = vec c̄ and H = Ir ⊗ c⊥, and φ = vec Φ. Other restrictions are also possible, as long

as they are just-identifying, which implies r2 restrictions and hence r(p− r) free parameters in

β.

Let Zt(β) = (X ′t−1β,W
′
t)
′. Maximization of `n(α, β,Ψ) over (α,Ψ) for fixed β leads to

(Hansen, 2003, Theorem 2)

vec[α̃n(β) : Ψ̃n(β)] =

(
n∑
t=1

[
Zt(β)Zt(β)′ ⊗ Σ−1

t

])−1

vec

(
n∑
t=1

Σ−1
t ∆XtZt(β)′

)
, (9)

whereas the MLE of β for fixed (α,Ψ) is given by

vec β̃n(α,Ψ) = h+H

(
H ′

n∑
t=1

[
α′Σ−1

t α⊗Xt−1X
′
t−1

]
H

)−1

H ′

×
n∑
t=1

{
vec
(
Xt−1(∆Xt −ΨWt)

′Σ−1
t α

)
−
[
α′Σ−1

t α⊗Xt−1X
′
t−1

]
h
}
. (10)

Upon convergence of the switching algorithm, this yields the MLE (α̃n, β̃n, Ψ̃n), and hence

the residuals

ε̃t = ∆Xt − [α̃n : Ψ̃n]Zt(β̃n) = ∆Xt − α̃nβ̃′nXt−1 − Ψ̃nWt, t = 1, . . . , n.

In the special case r = 0 (no cointegration), corresponding to Π = αβ′ = 0, this reduces to

ε̃t = ∆Xt − Ψ̃nWt, with vec Ψ̃n =
(∑n

t=1

[
WtW

′
t ⊗ Σ−1

t

])−1
vec
(∑n

t=1 Σ−1
t ∆XtW

′
t

)
.

The unrestricted model (1), corresponding to H(p), may be expressed as ∆Xt = [Π : Ψ]Zt+

εt, where Zt = Zt(Ip) = (X ′t−1,W
′
t)
′. The corresponding log-likelihood is maximised by

vec[Π̂n : Ψ̂n] =

(
n∑
t=1

[
ZtZ

′
t ⊗ Σ−1

t

])−1

vec

(
n∑
t=1

Σ−1
t ∆XtZ

′
t

)
, (11)

yielding the unrestricted residuals

ε̂t = ∆Xt − [Π̂n : Ψ̂n]Zt = ∆Xt − Π̂nXt−1 − Ψ̂nWt, t = 1, . . . , n. (12)

Using these, the LR statistic for H(r) with known volatility matrix is given by

LRn(r) = −2
[
`n(α̃n, β̃n, Ψ̃n)− `n(Π̂n, Ip+1, Ψ̂n)

]
=

n∑
t=1

(
ε̃′tΣ
−1
t ε̃t − ε̂′tΣ−1

t ε̂t
)
. (13)
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The limiting behaviour of LRn(r) is characterised in Theorem 1. Define

YA(u) =

(
YA,1(u)

YA,2(u)

)
=

(
α′⊥σ(u)′−1

α′σ(u)′−1

)
⊗ UA(u), (14)

and

ZA(u) = YA,1(u)−
∫ 1

0
YA,1(s)YA,2(s)′ds

[∫ 1

0
YA,2(s)YA,2(s)′ds

]−1

YA,2(u). (15)

Theorem 1 In the model (2), under Assumptions 1–2 and under Hn(r, r1), the LR statistic

(13) satisfies, as n→∞,

LRn(r)
w−→

(∫ 1

0
ZA(s)[dW (u) + ZA(u)′ vec(A′)du]

)′(∫ 1

0
ZA(u)ZA(u)′du

)−1

×
(∫ 1

0
ZA(u)[dW (u) + ZA(u)′ vec(A′)du]

)
. (16)

We observe that the limiting distribution under the null hypothesis H(r), such that A = 0,

depends on (the process generating) σ(u), and on α (and hence α⊥). Therefore, no uniformly

applicable tables of critical values can be constructed. Quantiles and p-values of the limiting

distribution can be obtained by Monte Carlo simulation of the limiting expression in (16),

discretising the integrals and replacing α by α̃n. Consistency of α̃n (which follows from the

proof of Theorem 1) guarantees the asymptotic validity of such p-values, as the sample size, the

number of steps in the discretisation and the number of Monte Carlo replications tend to infinity.

Alternatively, bootstrap-based approaches to approximate the asymptotic null distribution are

discussed in the next section.

In the special case of the null hypothesis H(0) (no cointegration), the expression for the

limiting distribution of the LR statistic simplifies somewhat. The representation in Corollary 1

follows directly from (16), with ZA(u) = σ(u)′−1 ⊗ UA(u) and

dUA(u) = σ(u)[dW (u) + σ(u)−1AUA(u)du] = σ(u)[dW (u) + ZA(u)′ vec(A′)du].

Corollary 1 Under the conditions of Theorem 1, the likelihood ratio statistic LRn(0) for r = 0

satisfies, as n→∞,

LRn(0)
w−→

∫ 1

0
dUA(u)′

[
Σ(u)−1 ⊗ UA(u)′

](∫ 1

0
[Σ(u)−1 ⊗ UA(u)UA(u)′]du

)−1

×
∫ 1

0

[
Σ(u)−1 ⊗ UA(u)

]
dUA(u).

We conclude this section with a discussion of the adjustments needed to accommodate a

constant or linear trend term in the model. We focus on models where the process has either

a constant mean or a linearly trending mean in both the stationary and the nonstationary

directions. As is well known (Johansen, 1996, Chapters 5–6), this is accomplished by considering

the following two extensions of (2). To allow for a constant mean, the model becomes

∆Xt = α(β′Xt−1 + ρ0) +
k−1∑
j=1

Γj∆Xt−j + εt

= αβ#′X#
t−1 + ΨWt + εt, (17)

8



where ρ0 is an r-vector, and where β# = (β′, ρ0)′ and X#
t−1 = (X ′t−1, 1)′. A linear trend is

included via

∆Xt = µ+ α(β′Xt−1 + ρ1t) +

k−1∑
j=1

Γj∆Xt−j + εt

= αβ#X#
t−1 + Ψ#W#

t + εt, (18)

where µ is an n-vector and ρ1 is an r-vector, and where now β# = (β′, ρ1)′, X#
t−1 = (X ′t−1, t)

′,

Ψ# = [µ : Ψ] and W#
t = (1,W ′t)

′. The log-likelihood function under Assumption 2 is analogous

to (7), with parameters and regressors replaced by their “#” counterparts.

Adjusting the identification restrictions (8) accordingly, such that vecβ# =

vec
(
c̄# + c#

⊥Φ#
)

with c# of dimensions (p + 1) × r and hence c#
⊥ and Φ# of dimensions

(p+ 1)× (p+ 1− r) and (p+ 1− r)× r, respectively, the switching algorithm based on (9)–(10)

remains the same, with all parameters and vectors replaced by their “#” counterparts. With-

out proof, we state the limiting distribution of the resulting LR test statistic in the following

corollary.

Corollary 2 In the models (17)–(18), under Assumptions 1–2 and under Hn(r, r1), the LR

statistic (13) satisfies, as n→∞,

LRn(r)
w−→

(∫ 1

0
Z#
A (u)[dW (u) + Z#

A (u)′ vec(A#′)du]

)′(∫ 1

0
Z#
A (u)Z#

A (u)′du

)−1

×
(∫ 1

0
Z#
A (u)[dW (u) + Z#

A (u)′ vec(A#′)du]

)
,

where A# = [A : 0] and Z#
A (u) is defined analogously to (14)–(15), with UA(u) replaced by

U#
A (u) = (UA(u)′, 1)′ in the model (17), whereas in the model (18), UA(u) is replaced by U#

A (u) =

(UA(u)′, u)′ and YA(u) is replaced by

Y #
A (u) =

(
α′⊥σ(u)′−1

α′σ(u)′−1

)
⊗ U#

A (u)

−
∫ 1

0

((
α′⊥Σ(s)−1

α′Σ(s)−1

)
⊗ U#

A (s)

)
ds

[∫ 1

0
Σ(s)−1ds

]−1

σ(u)′−1.

4 Adaptive likelihood ratio test

4.1 Volatility estimation

In the previous section we have developed a likelihood ratio test for cointegration when the

volatility process σ(·) is known. In specific applications to financial data, the assumption that

the volatility is observed with negligible measurement error may not be entirely unrealistic,

since high-frequency intra-day data may be used to estimate the daily or weekly volatility with

a high degree of precision; see, e.g., Andersen et al. (2003). In this section, however, we consider

the case where the only data available is {Xt, t = 1−k, . . . , 0, 1, . . . , n}, and hence an estimator
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of the volatility matrix has to be obtained from the data at the same observation frequency as

used to construct the likelihood function and hence the cointegration test.

The volatility matrix σt may be estimated either parametrically or nonparametrically. In the

presence of conditional heteroskedasticity, possible parametric approaches include multivariate

GARCH models, notably the dynamic conditional correlation (DCC) model of Engle (2002).

The likelihood ratio test statistic may then be obtained by full maximization of the likelihood

function for the Gaussian VAR-DCC model, with and without the reduced rank restriction.

The obvious disadvantage of such a parametric approach is that it relies on the assumption of

correct specification of the volatility process.

Alternatively, a two-step approach may be used, where the volatility matrix is estimated

based on the residuals from least-squares estimation of the unrestricted VAR model, and the

resulting estimator Σ̂t is then substituted for Σt in the expressions for the MLE and LR statis-

tic given in the previous section. In this paper we propose to estimate σt by a nonparametric

kernel estimator, generalising the approach of Boswijk and Zu (2018), which in turn is based on

Hansen (1995). It should be noted, however, that as analysed by Nelson (1996), multivariate

GARCH models (with deterministic parameter sequences instead of estimated parameters) may

also be interpreted as nonparametric filters of continuous-time multivariate stochastic volatility

processes. Indeed, Engle (2002) shows via Monte Carlo simulations that the DCC model is

rather successful in recovering time-varying correlation paths that are not generated by a DCC

process. Therefore, in the continuous-time asymptotic framework of Assumption 2, the differ-

ence between parametric and nonparametric approaches is not as essential as it may appear at

first sight.

We extend Hansen (1995)’s nonparametric volatility filter in two directions: we consider

a multivariate version of the estimator, but we also propose a version of the variance matrix

estimator at time t based on leads and lags of the outer product of the residual vector, to increase

efficiency of the estimator. Such an approach to adaptive estimation was also considered by Xu

and Phillips (2008) and Patilea and Räıssi (2012).

Let {et}nt=1 denote the least-squares residual vectors of the model (6) (or of the extended

models (17) or (18)) with r = p, or equivalently the residual vector based on the unrestricted ML

estimator (11)–(12) with Σt = In. Let K(·) be a kernel function and define Kh(x) = K(x/h)/h

with h > 0 a window width. The kernel estimator for Σt is defined as

Σ̂t =

n∑
s=1

Kh

(
t− s
n

)
ese
′
s

n∑
s=1

Kh

(
t− s
n

) . (19)

By choosing different kernel functions, one could consider both one-sided smoothing (or filtering,

where Σ̂t is based on lags of ete
′
t only), or two-sided smoothing (based on leads and lags).

Note, however, that consistency of a one-sided filter for small t would require a boundary value

adjustment to (19), as in Hansen (1995). We do not consider this explicitly, and correspondingly

10



Assumption 3 below imposes two-sided smoothing.

Assumption 3 K is a bounded, continuous and non-negative function defined on the real line,

satisfying
∫∞
−∞K(x)dx = 1,

∫ 0
−∞K(x)dx > 0 and

∫∞
0 K(x)dx > 0.

Define Σ̂n(u) :=
∑n

t=1 Σ̂t1[(t−1)/n,t/n)(u) as the variance matrix process implied by the n

nonparametrically estimated covariance matrices and recall that Σ(u) := σ(u)σ(u)′ is the true

variance matrix process. We next show that the estimated variance matrix process is uniformly

consistent over the compact interval [0, 1].

Lemma 2 Consider the model (2) under Assumptions 1–3. If n → ∞, h → 0 and nh2 → ∞,

then under both the null H(r) and the local alternatives Hn(r, r1),

sup
u∈[0,1]

‖Σ̂n(u)− Σ(u)‖ p−→ 0. (20)

The above uniform consistency result for the estimated process Σ̂n(u) clearly implies uniform

consistency of the nonparametric estimator Σ̂t over t = 1, . . . , n. These consistent estimators

may be used to construct a feasible likelihood ratio test by replacing Σt by Σ̂t in the definition of

the likelihood ratio statistic (13). Denoting the resulting statistic by L̂Rn(r), the next theorem

establishes that the volatility estimation error has an asymptotically negligible effect on the

asymptotic distribution of the likelihood ratio test, under both the null and the local alternatives.

Theorem 2 In the model (2), under Assumptions 1–3 and under Hn(r, r1), as n→∞, h→ 0

and nh2 →∞, L̂Rn(r) has the same limiting distribution as LRn(r) as given in Theorem 1.

This theorem implies that under the stated conditions, adaptive testing is possible: the fact

that the unknown volatility process is not observed but estimated nonparametrically entails no

loss of efficiency.

We now discuss the selection of the window width h. Lemma 2 requires h to decrease with the

sample size at a certain rate, but does not guide us in selecting a window width for a particular

sample. A leave-one-out cross-validation technique may be defined as the h minimising

CVn(h) =

n∑
t=1

‖Σ̂−tt (h)− ete′t‖2, (21)

where Σ̂−tt (h) is given by (19), but with K(0) replaced by 0, such that ete
′
t does not enter the

expression for Σ̂−tt (h).

In a similar context of vector autoregressive models, Patilea and Räıssi (2012) show that the

result of Lemma 2 holds uniformly over h ∈ [hn, hn], with the upper and lower bounds satisfying

the rate condition Lemma 2. This provides an asymptotic justification of a constrained cross-

validation procedure, where CVn(h) in (21) is minimised over [hn, hn]. However, in practice

such rate conditions impose very little on the interval for fixed n, and hence in the applications

below we use unconstrained cross-validation.
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The above estimator uses a common window width to smooth all the elements of the matrix

ese
′
s. In practice, when different components of the underlying volatility matrix have different

degrees of smoothness, it may be preferable to use different window widths for different elements.

In this case, the resulting covariance estimator is still symmetric, but not necessarily positive

definite. As discussed in Fan et al. (2012), one may use a projection method to obtain a positive

definite matrix.

4.2 Bootstrap

The limiting null distribution of the adaptive test depends on the volatility path. In this

sub-section we consider two bootstrap implementations to approximate this distribution. In

both cases, a bootstrap sample {X∗t }nt=1 is generated from the starting values {X∗t = Xt, t =

1− k, . . . , 0} as

∆X∗t = α̃nβ̃
′
nX
∗
t−1 +

k−1∑
j=1

Γ̃jn∆X∗t−j + ε∗t , t = 1, . . . , n,

where α̃n, β̃n, and Γ̃jn are the estimated parameter matrices from the model under the reduced

rank restriction. Based on this bootstrap sample, one then estimates the unrestricted model

and the restricted model, to get corresponding residuals ε̂∗t and ε̃∗t , t = 1, . . . , n, respectively,

such that the bootstrap test statistic is computed as

L̂R
∗
n(r) =

n∑
t=1

(
ε̃∗′t Σ̂−1

t ε̃∗t − ε̂∗′t Σ̂−1
t ε̂∗t

)
.

Following Boswijk and Zu (2018), we propose to use the estimates {Σ̂t}nt=1 from the original

data in the calculation of L̂R
∗
n(r), i.e., we do not re-estimate {Σt}nt=1 for each bootstrap sample.

The two bootstrap methods we consider differ in the method for drawing the bootstrap

errors. In a volatility bootstrap, we take ε∗t = σ̂tz
∗
t , where σ̂t is a matrix square root of Σ̂t, and

z∗t is i.i.d. N(0, Ip). When k = 1, X0 = 0 and the restricted model has rank r = 0, then it can

be shown that this volatility bootstrap may be interpreted as a Monte Carlo simulation of the

asymptotic null distribution of the test statistic, replacing the unknown Σ(u) by its estimate

Σ̂n(u) and discretising the continuous time processes and integrals using n+1 equidistant points

in the unit time interval.

Alternatively, we consider the wild bootstrap, which has been considered in the literature

on unit root and cointegration inference with nonstationary volatility by Cavaliere and Taylor

(2008), Cavaliere et al. (2010, 2014), Boswijk and Zu (2018) and Boswijk et al. (2016), among

others. Here the bootstrap errors are constructed as ε∗t = etw
∗
t , where w∗t is a scalar i.i.d. se-

quence with zero mean and unit variance. (The unrestricted least-squares residuals et could

be replaced by the restricted or unrestricted ML residuals, ε̃t or ε̂t, without affecting the main

properties of the procedure.) The most common implementation in this literature is to take

w∗t ∼ i.i.d. N(0, 1), such that ε∗t ∼ N(0, ete
′
t). This shows that the wild bootstrap may be seen

as the limiting case of the volatility bootstrap as h → 0 (for fixed n), such that Σ̂t → ete
′
t.

12



Comparison of the two bootstrap implementations should therefore provide information about

the usefulness of variance smoothing for simulation of the null distribution of the test statistic.

The asymptotic validity of both bootstrap procedures is stated in the next theorem.

Theorem 3 In the model (2), under Assumptions 1–3 and under both the null H(r) and the

local alternatives Hn(r, r1), as n→∞, h→ 0 and nh2 →∞,

L̂R
∗
n(r)

w−→p

(∫ 1

0
Z0(s)dW (s)

)′(∫ 1

0
Z0(s)Z0(s)′ds

)−1(∫ 1

0
Z0(s)dW (s)

)
.

5 Monte Carlo simulation

In this section we use Monte Carlo simulation methods to compare the finite sample performance

of the two bootstrap versions of the adaptive likelihood ratio test with that of the wild bootstrap

PLR test of Cavaliere et al. (2010, 2014).

The simulation DGP is a VAR(1) process of dimension p = 2:

∆Xt = n−1α1β
′
1Xt−1 + εt, α1 =

(
a

0

)
, β1 =

(
1

0

)
,

with X0 = 0. For a = 0, the model is a vector random walk, and this is used to study the size

of tests for no cointegration, i.e., H(0). We also consider the case a = −30 to study the power

of the test for H(0) against local alternatives Hn(0, 1).

The errors are defined as εt = σtzt, with zt ∼ i.i.d. N(0, I2). Four versions of the uncondi-

tional variance matrix Σt = σtσ
′
t are considered:

Σ
(1)
t = Σ =

[
1 ρ

ρ 1

]
,

Σ
(2)
t = v

(2)
t Σ,

Σ
(3)
t = (v

(3)
t − 1)I2 + Σ,

Σ
(4)
t = v

(4)
t Σ,

which we label Case 1, 2, 3 and 4, respectively. We set ρ = 0.4 (implying a moderate (average)

degree of correlation between the components of εt),

v
(2)
t = v

(3)
t = 0.5 + 2.5× 1[s,1](t/n), (22)

with s = 0.8, and

v
(4)
t = exp(2H(t/n)), dH(u) = −κH(u)du+ ζdB(u), u ∈ [0, 1], (23)

with B(·) a standard Brownian motion, κ = 1 and ζ = 1. Cases 1–3 are inspired by the

simulations in Boswijk et al. (2016); Case 1 corresponds to homoskedasticity, and Cases 2

and 3 involve a deterministically changing Σt, with a late positive shift in the variances and

covariances (Σ
(2)
t ), or in the variances only (Σ

(3)
t ). Note that Cases 2 and 3 do not satisfy
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Assumption 2, because the volatility paths are not continuous. As indicated before, this is not

a fundamental problem, because the indicator function 1[s,1](u) in (22) could be replaced by,

e.g., the cumulative distribution function of the N(s − 3ε, ε2) distribution with a very small ε.

Case 4 corresponds to continuous variation in the variances and covariances, driven by a single

realisation of a log-Ornstein-Uhlenbeck stochastic volatility process.

We analyse results for sample sizes n ∈ {500, 1000}. A restricted constant term is included

in the estimation. All experiments are run over 5000 Monte Carlo replications using B = 499

bootstrap replications. The window width for the volatility matrix estimation is selected using

the leave-one-out cross-validation method. Because this method is rather time-consuming in

a Monte Carlo study, we initially simulate 200 paths of the DGP (both under the null and

under the alternative hypothesis), calculate the cross-validation window widths, and then use

the average of these in all replications. The tables report the empirical size (or actual rejection

frequency under the null, a = 0) and size-corrected power (a = −30) of all tests at the 5%

nominal level. In all tables, PLR-VBS and PLR-WBS indicate the volatility bootstrap and wild

bootstrap versions of the pseudo-LR test (imposing homoskedasticity), respectively, whereas

ALR-VBS and ALR-WBS indicate the volatility and wild bootstrap based adaptive LR tests.

Table 1: Size and power, 5% level

Case n PLR-VBS PLR-WBS ALR-VBS ALR-WBS

size

1 500 0.055 0.053 0.065 0.063

1000 0.049 0.049 0.053 0.054

2 500 0.043 0.039 0.065 0.080

1000 0.053 0.044 0.061 0.068

3 500 0.063 0.042 0.051 0.071

1000 0.062 0.047 0.061 0.065

4 500 0.061 0.052 0.074 0.073

1000 0.047 0.048 0.058 0.072

power

1 500 0.829 0.810 0.826 0.821

1000 0.846 0.842 0.844 0.844

2 500 0.701 0.697 0.806 0.795

1000 0.701 0.708 0.825 0.826

3 500 0.618 0.598 0.748 0.736

1000 0.595 0.603 0.736 0.731

4 500 0.609 0.606 0.795 0.780

1000 0.637 0.631 0.819 0.818

Notes: This table displays rejection frequencies under the null hypothesis (size)

and under the alternative (power), using critical values simulated under the null

hypothesis (size-corrected power). “Case” refers to the four different volatility

specifications explained in the text, and n is the sample size. PLR and ALR are

the pseudo-LR and adaptive LR tests, and VBS and WBS refer to the volatility

and wild bootstrap based tests, respectively.
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Table 1 gives the size and size-corrected power of the tests for each of the 4 cases. Size

distortions appear to be slightly larger for the adaptive test than for the PLR test, but are

moderate in all cases, and clearly decrease with the sample size. The two versions of the

bootstrap seem to lead to similar size and power, although the size distortions appear to be

smallest for the volatility bootstrap. With a few exceptions, the power of the test slightly

increases with the sample size, despite the fact that we are considering local alternatives (the

error correction coefficient in the first equation is −30/n); this may be explained by the reduced

volatility estimation error in larger samples. The adaptive tests are more powerful than the

PLR test when the volatility is time-varying. In Case 1 (constant volatility), the adaptive tests

and PLR tests have similar power, suggesting that there is no serious disadvantage to using the

adaptive test even in such cases.

In the remainder of this section, we investigate the sensitivity of the size and power for

parameter variations in Cases 2 and 4. For Case 2, we consider three possible values of the

break time s; see Table 2. We observe that the break time has little effect on the size of the

three tests. On the other hand, the power of the two adaptive tests decreases slightly as the

break happens towards the end of the sample, while the power of the PLR test decreases more.

This illustrates that the potential for increasing the power relative to the PLR test is highest

for the late positive break, which as shown by Cavaliere (2004) also has the largest effect on the

asymptotic null distribution of PLR tests for a unit root.

Table 2: Size and power, 5% level, Case 2, varying break times s

s n PLR-VBS PLR-WBS ALR-VBS ALR-WBS

size

0.2 500 0.064 0.050 0.042 0.064

1000 0.063 0.051 0.056 0.054

0.5 500 0.068 0.050 0.064 0.068

1000 0.068 0.048 0.063 0.058

0.8 500 0.043 0.039 0.065 0.080

1000 0.053 0.044 0.061 0.068

power

0.2 500 0.867 0.871 0.847 0.840

1000 0.880 0.876 0.864 0.864

0.5 500 0.782 0.778 0.826 0.813

1000 0.801 0.799 0.846 0.845

0.8 500 0.701 0.697 0.806 0.795

1000 0.701 0.708 0.825 0.826

Notes: This table displays rejection frequencies under the null hypothesis (size)

and under the alternative (power), using critical values simulated under the null

hypothesis (size-corrected power). s refers to the fraction of the sample at which

the break occurs in Case 2, and n is the sample size. PLR and ALR are the

pseudo-LR and adaptive LR tests, and VBS and WBS refer to the volatility and

wild bootstrap based tests, respectively.
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Finally, we study the sensitivity of the simulation results for different volatility-of-volatility

parameter values ζ for the log-volatility H(u) in (23), Case 4; see Table 3. We first note that

the size distortion of the wild bootstrap adaptive test becomes more severe as the volatility-

of-volatility parameter gets higher; the volatility bootstrap performs more stably, with more

modest size distortions. The power of the PLR test is very sensitive to the degree of variation

in the volatility: in the high ζ scenario, the power of the PLR test is rather low. Still, the

power of the two adaptive tests seems stable, staying at a high level throughout all scenarios.

Therefore, the high volatility-of-volatility scenario is a clear example where the adaptive tests

outperform the PLR test. In unreported additional simulations, we found similar but less

pronounced effects from varying the mean-reversion parameter κ.

Table 3: Size and power, 5% level, Case 4, varying volatility of volatility ζ

ζ n PLR-VBS PLR-WBS ALR-VBS ALR-WBS

size

0.5 500 0.068 0.052 0.075 0.063

1000 0.059 0.048 0.062 0.059

1.0 500 0.061 0.052 0.074 0.073

1000 0.047 0.048 0.058 0.072

2.0 500 0.045 0.052 0.062 0.102

1000 0.044 0.044 0.056 0.108

power

0.5 500 0.748 0.723 0.792 0.785

1000 0.783 0.763 0.827 0.823

1.0 500 0.609 0.606 0.795 0.780

1000 0.637 0.631 0.819 0.818

2.0 500 0.344 0.331 0.794 0.782

1000 0.347 0.337 0.806 0.809

Notes: This table displays rejection frequencies under the null hypothesis (size)

and under the alternative (power), using critical values simulated under the null

hypothesis (size-corrected power). ζ refers to the volatility of volatility in Case

4, and n is the sample size. PLR and ALR are the pseudo-LR and adaptive LR

tests, and VBS and WBS refer to the volatility and wild bootstrap based tests,

respectively.

In all cases, we find that the size and power properties of the tests does not seem to be

affected too much by varying the sample size, and all tests are considered to perform reasonably

well in a sample size typical for macro-economic applications, examples of which are considered

in the next section.

In summary, the Monte Carlo simulation results in this section indicate that the volatility

bootstrap, based on the non-parametric volatility estimator, performs slightly better than the

wild bootstrap in controlling the size of the adaptive test. Furthermore, we have seen that for

various scenarios, the adaptive tests outperform the wild bootstrap based pseudo-LR test in

terms of power.
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6 Empirical applications

6.1 Revisiting US stock market indices in the 1990s

We illustrate the use of the proposed test in an application to a cointegration analysis of the

S&P 500 index and the NASDAQ-100 index in the 1990s. A cointegration model with stochas-

tic volatility (essentially a constant conditional correlation model) was proposed by Duan and

Pliska (2004), for the purpose of pricing multi-asset (basket) options. They found evidence

of cointegration between the logarithms of these two stock market indices in the period from

January 2, 1991 to May 15, 1998, based on the Engle and Granger (1987) residual-based coin-

tegration test. We will reanalyse this relationship over the same sample period (with n = 1864)

using the Gaussian (constant volatility) likelihood ratio test (the PLR test) and the adaptive

test proposed in this paper. Because the previous section has indicated that the volatility boot-

strap based adaptive test has better size properties than the wild bootstrap version, we focus

on this implementation of the test. More recent data, covering the stock-market run up and

decline around the turn of the millennium and the subsequent financial crisis, reveals that a

constant linear cointegrating relation between these stock market indices will break down even-

tually, in line with statistical arbitrage approaches which tend to find evidence of temporary

and time-varying cointegrating relations. Therefore, we will focus on the 1990s to illustrate the

different outcomes resulting from the treatment of the volatility process.

Figure 1 displays the original data (not in logs). It is seen that both time series display an

upward trend over this period, which may be common but with a different slope: the average

growth rate of the NASDAQ clearly exceeds that of the S&P 500. To allow for the possibility

that this different slope is partly caused by a different deterministic linear trend in the logs,

we follow Duan and Pliska (2004) in allowing for a restricted linear trend in the cointegrating

relationship (i.e., restricted to exclude the possibility of a quadratic trend in the levels).

Letting Xt = (X1t, X2t)
′ = (log(S&P 500)t, log(NASDAQ-100)t)

′, a first-order vector au-

toregressive model with linear trend appears to be dynamically well-specified: residuals do not

display significant serial correlation, and the lag length of one is selected by the usual infor-

mation criteria. However, residual analysis reveals that a Gaussian i.i.d. assumption on the

errors is likely to be misspecified, since the residuals display heteroskedasticity and leptokurto-

sis. Ignoring these results, and using the Johansen trace test as a pseudo-likelihood ratio test

for H(0) leads to a test statistic of 24.37, with an asymptotic p-value of 0.075 (based on the ap-

proximation method of Doornik (1998)). However, the wild bootstrap p-value, which as shown

by Cavaliere et al. (2014) corrects for both conditional and unconditional heteroskedasticity, is

0.14, indicating only very weak evidence for cointegration. The estimated cointegrating relation

is (heteroskedasticity-consistent standard errors in parentheses)

β̂#′X#
t = X1t − 0.922

(0.079)
X2t + 1.976

(0.677)
× 10−4t,

which includes a linear trend coefficient that is significantly different from zero at the usual

significance level. The estimated error correction coefficients are α̂1 = −0.001 (0.004) and

17



1992 1993 1994 1995 1996 1997 1998
200

400

600

800

1000

1200
S&P 500 
NASDAQ−100 

Figure 1: S&P 500 and NASDAQ-100 index, 02/01/1991 – 15/05/1998.

α̂2 = 0.020 (0.007), suggesting that most of the error correction is done by the NASDAQ.

Figure 2 shows the estimated volatilities and the covariance and correlation based on a

Gaussian kernel, with the window width h = 0.0026 chosen by leave-one-out cross validation.

The resulting estimates might seem undersmoothed; this can be explained by the fact that the

errors in this model are likely to contain a combination of long-run (unconditional) volatility

changes and short-run (GARCH-type) volatility clustering, and since the latter is not explicitly

modelled, it is also picked up by the nonparametric volatility estimates. It should be emphasised,

however, that the cross-validation criterion function (21) is quite flat for values of h higher than

the minimiser. We will investigate the robustness of the adaptive cointegrating testing result

to variations in the window width. From both estimates, we observe that the correlation may

display stationary variation around a mean of about 0.75, but the volatilities and covariance

appear to have a lower mean-reversion. Therefore it seems reasonable to apply the type of

asymptotics implied by Assumption 2.

The adaptive likelihood ratio statistic for no cointegration based on {Σ̂t}nt=1 has a value of

33.66, with a volatility bootstrap p-value of 0.001, indicating much stronger support for the

cointegration hypothesis. As mentioned above, the cross-validation criterion function is quite

flat, suggesting that the optimal value of h is hard to determine, and may lead to undersmooth-

ing. We have also carried out the test with h = 0.005 and h = 0.01, leading to p-values of 0.015

and 0.043, respectively, which suggest that the evidence in favour of cointegration is reasonably

robust. Increasing the window width further will eventually lead to a flat volatility pattern and

hence the same p-value as for the constant-volatility pseudo-likelihood ratio test.
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Figure 2: Estimated volatilities, covariance and correlation of e1t and e2t.

The resulting cointegrating relation, based on {Σ̂t}nt=1 now becomes

β̂#′X#
t = X1t − 0.956

(0.083)
X2t + 2.227

(0.656)
× 10−4t,

which is quite similar to the relation found from the Gaussian constant-volatility pseudo-

likelihood (as well as the estimates based on {Σ̂t}). Similarly, the adjustment coefficients

α̂1 = −0.00007 (0.003) and α̂2 = 0.019 (0.006) are hardly affected.

In summary, this empirical example illustrates that empirically relevant volatility patterns

may lead, on the one hand, to size distortions of conventional cointegration tests, and on the

other hand, to more efficient estimators and more powerful tests derived from an appropriate

likelihood function that allows for time-varying volatilities.

6.2 Revisiting the US term structure of interest rates, 1970–2009

Boswijk et al. (2016) provide a cointegration analysis of the term structure of interest rates in

the US, showing that allowing for heteroskedasticity affects inference on the cointegration rank,

as well as on structural hypotheses on the cointegrating vectors and the adjustment coefficients.

Their analysis is based on wild bootstrap versions of Wald and likelihood ratio tests based a

Gaussian i.i.d. pseudo-likelihood. We will investigate to what extent their empirical results

change if we use adaptive tests as developed in this paper.
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Figure 3: Estimated volatilities based on residuals of an unrestricted VAR(2).

We analyse the same time series Xt = (X1t, . . . , X5t)
′ of monthly zero yields, 1970:1–2009:12,

for maturities equal to 3 months (X1t), 1 year (X2t), 3 years (X3t), 5 years (X4t), and 10 years

(X5t). Following Boswijk et al. (2016), we estimate a VAR(2) model with a constant term

for Xt, using observations on the first two months of 1970 as starting values; hence n = 478.

The lag order k = 2 is selected by the Hannan-Quinn information criterion, and supported by

(wild bootstrap) residual serial correlation tests. Further details on the source of the data are

provided by Boswijk et al. (2016).

Before we present the cointegration test results, Figure 3 displays the nonparametric esti-

mates of the time-varying volatilities σit of Xit, i = 1, . . . , 5. The window width chosen by

cross-validation is h = 0.0217. We observe similar patterns in all five volatilities, with the

most pronounced variation in the short-maturity interest rate. Most striking is the high volatil-

ity period around 1980, and the lower volatility after 1985, the period known as the Great

Moderation.

To calculate the cointegration test statistics and their bootstrap p-values, we have imple-

mented the switching algorithm discussed in Section 3 to implement the restricted maximum

likelihood estimation. The tolerance level used for the switching algorithm is 10−6, which means

that we stop the algorithm when the increase in the likelihood function is smaller than 10−6.

The results, based on B = 999 bootstrap replications, are given in Table 4; the final column

(the wild bootstrap p-value of the constant-variance PLR statistic) is taken from Boswijk et al.

(2016).

We observe that using the adaptive test leads to a higher cointegration rank: whereas the

PLR test would lead us to select a cointegrating rank r = 3 only if we are willing to use a

significance level of 10%, the adaptive tests lead to the conclusion of r = 4 even if we use
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Table 4: Volatility and wild bootstrap p-values of ALR and PLR tests for cointegration rank.

r ALR-VBS ALR-WBS PLR-WBS

0 0.000 0.000 0.000

1 0.000 0.000 0.000

2 0.000 0.001 0.087

3 0.038 0.011 0.286

4 0.172 0.124 0.795

Notes: This table displays p-values based on the

volatility bootstrap (VBS) and wild bootstrap (WBS)

of the adaptive (ALR) and pseudo-likelihood ratio

(PLR) tests for cointegration rank in the US term

structure data.

the conventional 5% significance level. This implies a single stochastic trend driving the five

different yields. The adaptive ML estimators of α and β for r = 4 (with β normalised on

X2t, . . . , X5t) together with QMLE standard errors, are as follows:

α̂ =



0.282
(0.085)

−0.030
(0.143)

−0.019
(0.131)

0.003
(0.051)

−0.234
(0.092)

0.356
(0.162)

−0.231
(0.149)

0.035
(0.055)

−0.125
(0.083)

−0.022
(0.157)

0.009
(0.143)

0.040
(0.050)

−0.178
(0.077)

0.113
(0.149)

−0.111
(0.133)

0.058
(0.044)

−0.149
(0.071)

−0.114
(0.134)

0.218
(0.121)

−0.085
(0.041)


,

β̂ =



−1.092
(0.040)

−1.213
(0.128)

−1.238
(0.173)

−1.227
0.213)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

We may be interested in the hypothesis that the first row of β are all −1’s; this corresponds

to the hypothesis that the single stochastic trend affects only the height, and not the slope or

curvature of the yield curve (so that all spreads are stationary). The adaptive likelihood ratio

statistic for this hypothesis is 14.650 with volatility and wild bootstrap p-values of 0.030 and

0.012, respectively, indicating that this hypothesis is rejected. Note that the asymptotic theory

for adaptive likelihood ratio tests for hypotheses on β has not been developed in this paper, but

following the analysis of Boswijk et al. (2016), we expect the bootstrap to yield asymptotically

valid inference again.
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7 Discussion

In this paper we have proposed a new class of cointegration tests, which have higher power than

existing tests by exploiting time variation in the unconditional error variance matrix. Monte

Carlo simulations have indicated that a bootstrap implementation of the test has good size and

power properties for moderately sized samples. Two examples have illustrated that applying our

newly developed tests can indeed lead to stronger evidence for cointegration than alternative

tests. These applications relate to the equity market and the fixed income market, but the

method could also be applied to exchange rate models (spot-forward relations, purchasing power

parity). In principle the approach could also be used with macro-data, but the non-parametric

kernel estimator cannot be expected to give very accurate estimates when data are observed

infrequently, and in such cases it may be advisable to adopt a parametric model for the changing

volatilities and correlations.

The theory and methods used in this paper can be extended in various directions. First, we

have excluded discontinuities in the time variation of volatilities and correlations, but this has

been mainly to simplify the analysis. As discussed by, e.g., Xu and Phillips (2008), adaptive

estimation based on nonparametric volatility estimation is still possible in the presence of a

finite number of jumps. This is supported by our Monte Carlo simulations, although we do not

give an explicit theoretical analysis of this case.

The paper has focussed on time-variation in the unconditional variance matrix. The analysis

could be extended to also allow for conditional heteroskedasticity, but this would lead to a more

complicated likelihood analysis (e.g. of a DCC-VAR model), and furthermore one would need

to allow for the time-varying unconditional variance matrix in the estimation and identification

of the conditional variance process.

Finally, we have considered here tests based on a Gaussian likelihood function. In prac-

tice one often observes that standardised financial returns still display excess kurtosis. The

asymptotic results in this paper are robust to this type of nonnormality, but in such cases more

powerful tests could be derived from, e.g., a Student’s t likelihood.

Appendix

Proof of Lemma 1. The starting point is that under Assumption 2, by the multivariate

invariance principle for martingale difference sequences (mds),

Wn(u) := n−1/2

bunc∑
t=1

zt
w−→W (u), (A.1)

with W a p-variate standard Brownian motion. Next, defining the discretised version σn(u) =∑n
t=1 σ(t/n)1[(t−1)/n,t/n)(u) of σ(u), we have

n−1/2

bunc∑
t=1

εt = n−1/2

bunc∑
t=1

σtzt =

∫ u

0
σn(s)dWn(s).
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Under the assumptions on σ(·), it follows that as n → ∞, σn(·) → σ(·) in D[0, 1]p×p, jointly

with (A.1). Using a multivariate version of Hansen (1992)’s Theorem 2.1, it follows that∫ u
0 σn(s)dWn(s)

w−→
∫ u

0 σ(s)dW (s) in D[0, 1]p, jointly with (A.1), because σn(·) is non-stochastic

and {zt}t≥1 is an mds with constant (conditional) variance and finite fourth moment.

The proof of (4) is based on the moving average representation implied by (1) under

Hn(r, r1). For the homoskedastic case, this has been analysed in detail in Theorem 14.1 and

Exercise 14.1 of Johansen (1996), and the corresponding solution to Exercise 14.1 given in

Hansen and Johansen (1998). Consider the model in companion form, for the stacked vector

Xt = (X ′t, . . . , X
′
t−k+1)′:

Xt =
(
Ikp + AB′ + n−1A1B′1

)
Xt−1 + Fεt, (A.2)

where

A =


α Γ1 · · · Γk−1

0 Ip 0 0
...

. . .
. . . 0

0 · · · 0 Ip

 , B =


β Ip 0 0

0 −Ip
. . . 0

...
. . .

. . . Ip

0 · · · 0 −Ip

 ,

and where A1 = (α′1, 0
′
(k−1)p)

′, B1 = (β′1, 0
′
(k−1)p)

′, and F = (Ip, 0p×(k−1)p)
′. Note that A′⊥ =

α′⊥[Ip : −Γ1 : · · · : −Γk−1] and B′⊥ = β′⊥[Ip : Ip : · · · : Ip], and hence

A′⊥A1 = α′⊥α1, B′1B⊥ = β′1β⊥, A′⊥B⊥ = α′⊥Γβ⊥.

Let Φn = Ikp + AB′ + n−1A1B′1. Backward substitution in (A.2) gives the solution

Xt = Φt
nX0 +

t∑
j=1

Φt−j
n Fεj .

It will be convenient to work with the decomposition Xt = A(B′A)−1B′Xt +B⊥(A′⊥B⊥)−1A′⊥Xt;
we consider the behaviour of B′Xt (the stable linear combinations) and A′⊥Xt (the non-stationary

linear combinations) separately. Assumption 1 requires that all eigenvalues of the matrix

Ir+(k−1)p + B′A are less than one in absolute value, and this implies for the stable linear com-

binations, by Theorem 14.1 of Johansen (1996),

B′Xt = (Ir+(k−1)p + B′A)tB′X0 +
t∑

j=1

(Ir+(k−1)p + B′A)t−jB′Fεj +R~βt
,

with R~βt
= op(1), such that n−1/2B′Xbsnc

p−→ 0. For the nonstationary linear combinations, we

find

A′⊥Xt = A′⊥Φt
nX0 +

t∑
j=1

A′⊥Φt−j
n Fεj .

Defining Φn(u) = Φ
bunc
n , we therefore find

n−1/2A′⊥Xbunc = n−1/2A′⊥Φn(u)X0 + A′⊥Φn(u)

∫ u

0
Φn(−s)Fσn(s)dWn(s).
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Theorem A.14 of Johansen (1996) implies Φn(u)→ B⊥(A′⊥B⊥)−1 exp(uA)A′⊥, and hence

Φn(−u)Fσn(u) −→ B⊥(A′⊥B⊥)−1 exp(uA)σU (u), u ∈ [0, 1],

jointly with Wn(·) w−→ W (·). Because zt is an mds with constant variance, Hansen (1992)’s

Theorem 2.1 again implies

n−1/2A′⊥Xbunc
w−→
∫ u

0
exp ((u− s)A)σU (s)dW (s) = UA(u), u ∈ [0, 1].

The stochastic differential equation (5) follows from Itô’s formula, writing UA(u) = exp(uA)U∗A(u)

= f(u, U∗A(u)), with dU∗A(u) = exp(−uA)σU (u)dW (u). Finally,

n−1/2Xbunc = n−1/2F ′B⊥(A′⊥B⊥)−1A′⊥Xbunc + op(1)

= β⊥(α′⊥Γβ⊥)−1n−1/2A′⊥Xbunc
w−→ β⊥(α′⊥Γβ⊥)−1UA(u), u ∈ [0, 1],

which concludes the proof of (4). �

Proof of Theorem 1. Let θ = vec[Π : Ψ], and define the residual function εt(θ) = ∆Xt − [Π :

Ψ]Zt = ∆Xt− [Z ′t⊗ Ip]θ. It will be convenient to start analysing (twice) the log-likelihood ratio

function relative to the unrestricted estimators, i.e.,

Λn(θ) = −2
[
`n(Π, Ip,Ψ)− `n(Π̂n, Ip, Ψ̂n)

]
=

n∑
t=1

(
εt(θ)

′Σ−1
t εt(θ)− ε̂′tΣ−1

t ε̂t
)
.

Using εt(θ) = ε̂t + [Z ′t ⊗ Ip](θ̂n − θ), and
∑n

t=1[Zt ⊗ Σ−1
t ]ε̂t = 0, we find

Λn(θ) = (θ̂n − θ)′
n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ](θ̂n − θ). (A.3)

Note that LRn = minθ∈Θr Λn(θ), where Θr is the restricted parameter space

Θr = {θ ∈ Rkp
2

: Π = αβ′; (α, β,Ψ) ∈ Rp×r × Rp×r × Rp×(k−1)p}.

Let θ0 denote the true value under H(r), and let θn = θ0 + Dnτ denote a sequence of

parameter values, where τ ∈ Rp(kp+1) is a fixed vector and Dn a sequence of non-singular

norming matrices, chosen such that the corresponding probability measures Pnθ0 and Pnθn are

contiguous. In the present situation, this requires that D′n
∑n

t=1[ZtZ
′
t⊗Σ−1

t ]Dn and D−1
n (θ̂n−θ0)

converge in distribution, and a choice of Dn that satisfies this requirement is

Dn =

[
n−1Γ′α⊥ n−1/2β 0

0 0 n−1/2Ik(p−1)

]
⊗ Ip, (A.4)

such that

D′n[Zt ⊗ Ip] = n−1/2

(
n−1/2α′⊥ΓXt−1

Zt(β)

)
⊗ Ip.

Here α⊥, β and Γ correspond to the true value θ0.
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The local alternative H(r, r1) corresponds to a particular choice of the non-centrality pa-

rameter τ , which is seen as follows. First, the condition rank(α′⊥Γβ⊥) = p − r (Assumption

1 (c)) implies that the matrix [β : Γ′α⊥] has full rank. A projection of β1 on sp(β : Γ′α⊥) is

given by β1 = βa + Γ′α⊥b, where [a′ : b′]′ = [β : Γ′α⊥]−1β1. Because Πn = αβ′ + n−1α1β
′
1 =

α†nβ′ + n−1α1β
†′
1 , with α†n = α + n−1α1a

′ and β†1 = Γ′α⊥b, the part of β1 that lies in sp(β)

may be absorbed in αβ′. Note also that for the asymptotic analysis, only β′⊥β1 = β′⊥Γ′α⊥b

is relevant, cf. Lemma 1. Therefore we may set a = 0 and hence confine ourselves to local

alternatives with β1 = Γ′α⊥b, with b = (β′⊥Γ′α⊥)−1β′⊥β1. This implies

θn = vec [Πn : Ψ0] = vec [Π0 : Ψ0] + vec
[
n−1α1β

′
1 : 0

]
= θ0 +Dnτ̌ , (A.5)

with τ̌ = (vec(α1b
′)′, 0′pr+(k−1)p)

′.

Lemma 1 implies that both under the null and under local alternatives, n−1/2α′⊥ΓXbunc
w−→ UA(u), u ∈ [0, 1]. Under the null hypothesis, Granger’s representation theorem implies that

Zt(β) is a mean-zero linear process
∑∞

j=1Cjεt−j , with exponentially decaying weight matrices

Cj . From Chapter 14 of Johansen (1996) and Hansen and Johansen (1998), we know that under

local alternatives, Zt(β) may be decomposed into the same linear process and an additional term,

which is asymptotically negligible. Using a multivariate generalization of the asymptotic theory

for stationary linear processes with non-stationary volatility, cf. Hansen (1995) and Phillips and

Xu (2006), it follows that, under both the null and local alternatives,

D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn
w−→

[ ∫ 1
0

[
UA(u)UA(u)′ ⊗ Σ(u)−1

]
du 0

0
∫ 1

0

[
Ω(u)⊗ Σ(u)−1

]
du

]

=:

[
J1 0

0 J2

]
= J, (A.6)

where Ω(u) =
∑∞

j=1CjΣ(u)Cj .

For the unrestricted estimator θ̂n, we find

D−1
n (θ̂n − θ0) =

(
D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn

)−1

D′n

n∑
t=1

[Zt ⊗ Σ−1
t ]εt(θ0), (A.7)

where under H(r), εt(θ0) = εt, whereas under the local alternative H(r, r1), εt(θ0) = εt + [Z ′t ⊗
Ip]Dnτ̌ . Under both hypotheses, we find, again generalising the results of Hansen (1995) and

Phillips and Xu (2006),

D′n

n∑
t=1

[Zt ⊗ Σ−1
t ]εt(θ0)

w−→

( ∫ 1
0

[
UA(u)⊗ Σ(u)−1

]
(dM(u) + [UA(u)′du⊗ Ip]τ̌1)∑∞

j=1

∫ 1
0 [Cjσ(u)⊗ σ(u)′−1]dBj(u)

)

=:

(
S1

S2

)
= S, (A.8)

where τ̌1 = vec(α1b
′), a p(p − r)-vector consisting of the first rows of the value of τ̌ in (A.5),

and where {Bj(·)}∞j=1 are mutually independent p2-vector Brownian motion processes, obtained
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as the limit in distribution of the partial sum processes of vec(ztz
′
t−j). Because σ(·) is non-

stochastic, the bottom right-hand side expression of (A.8) has a normal distribution with mean

zero and variance
∫ 1

0

[
Ω(u)⊗ Σ(u)−1

]
du. Note that under the null, τ̌1 = 0 and UA(u) = U0(u) =

α′⊥M(u) in (A.6) and (A.8).

The representation (A.7), together with the limit results (A.6) and (A.8), implies that

D−1
n (θ̂n−θ0) = Op(1) under both the null and local alternatives, such that θ̂n is consistent under

both hypotheses. Generalising the argument explained fully in Theorem A1 of Johansen (1997),

this implies that the restricted MLE θ̃n is also consistent, andD−1
n (θ̃n−θ0) = Op(1). This implies

that for the derivation of the limiting distribution of the LR statistic LRn = minθ∈Θr Λn(θ), we

may confine ourselves to the behaviour of Λn(θ) for sequences θn = θ0 +Dnτ . In particular, let

Tr,n = {τ ∈ Rkp2 : θ0 +Dnτ ∈ Θr}, such that LRn = minτ∈Tr,n Λn(θ0 +Dnτ). We will show that

Λn(θ0 + Dnτ)
w−→ Λ(τ) uniformly on compact sets, and that the restricted parameter space

Tr,n converges to a limit Tr. Because τ̃n = D−1
n (θ̃n − θ0) is Op(1), this will then imply, by the

argmax theorem (Van der Vaart, 1998, Corollary 5.58), D−1
n (θ̃n− θ0)

w−→ arg minτ∈Tr Λ(τ) and

LRn
w−→ minτ∈Tr Λ(τ).

For the limit of the log-likelihood ratio, we find

Λn(θ0 +Dnτ) =
(
D−1
n (θ̂n − θ0)− τ

)′
D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn

(
D−1
n (θ̂n − θ0)− τ

)
,

which by (A.6)–(A.8) converges in distribution to Λ(τ) = (S − Jτ)′J−1(S − Jτ). Because both

Λn(·) and Λ(·) are quadratic, this convergence is uniform on compact sets.

For the restricted parameter space, we use the fact that Π = αβ′ = α(c̄′ + Φ′c′⊥), such that

vec(Πn −Π0) = vec
(
αn[c̄′ + Φ′nc

′
⊥]− α[c̄′ + Φ′c′⊥]

)
= vec

(
[αn − α]β′ + α[Φn − Φ]′c′⊥ + [αn − α][Φn − Φ]′c′⊥

)
= [β ⊗ Ip] vec(αn − α) + [c⊥ ⊗ Ip][Ip−r ⊗ α] vec(Φ′n − Φ′) +Rn,

where the remainder term Rn is O(‖αn − α‖ ‖Φn − Φ‖), and where (α,Φ, β) now denote the true

values, corresponding to Π0. Note that c may be freely chosen, as long as c′β is non-singular,

which is equivalent to the condition that [β : c⊥] should be of full rank. Using the fact that

[β : Γ′α⊥] has full rank p, we find that we may choose c⊥ = Γ′α⊥. This in turn means that, if

we let vec(Ψn − Ψ0) = n−1κψ, vec(αn − α) = n−1/2κα and vec(Φ′n − Φ′) = n−1κφ, then in the

restricted parameter space Θr, we have

θn = θ0 +Dn


[Iq ⊗ α]κφ

κα

κψ

+

(
Rn

0

)
,

such that

τ = D−1
n (θn − θ0) =


Iq ⊗ α 0 0

0 Ir ⊗ Ip 0

0 0 I(k−1)p ⊗ Ip




κφ

κα

κψ

+ o(1) = Gκ+ o(1).
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where q = p− r. Therefore, the limiting null space for τ is the linear subspace Tr = {τ = Gκ :

κ ∈ Rl}, where l = qr + pr + (k − 1)p2, the dimension of the restricted parameter space.

Combining these results, we find

LRn
w−→ min

τ∈Tr
Λ(τ) = S′J−1S − S′G(G′JG)−1G′S

= S′J−1G⊥(G′⊥J
−1G⊥)−1G′⊥J

−1S,

where

G⊥ =

[
Iq ⊗ α⊥

0

]
.

It follows that LRn
w−→ S′1J

−1
1 G⊥1(G′⊥1J

−1
1 G⊥1)−1G′⊥1J

−1
1 S1, where G⊥1 = Iq ⊗ α⊥.

LetKmn denote the commutation matrix of appropriate order, such that vec(A′) = Kmn vec(A)

for an m× n matrix A, see Magnus and Neudecker (1988). We will use the properties K ′mn =

K−1
mn = Knm, and Kpm(A⊗ B) = (B ⊗ A)Kqn for matrices A and B of dimensions m× n and

p× q, respectively. We find

G⊥1 = Iq ⊗ α⊥ = Kqp(α⊥ ⊗ Iq)Kqq = Kqp ([Iq : 0]⊗ Iq) ([α⊥ : ᾱ]⊗ Iq)Kqq.

Without loss of generality, α⊥ may be chosen such that α′⊥α⊥ = Iq, and hence [α⊥ : ᾱ]−1 =

[α⊥ : α]′. Therefore, we find

G′⊥1J
−1
1 G⊥1 = Kqp ([Iq : 0]⊗ Iq)

(∫ 1

0
Y (u)Y (u)′du

)−1 (
[Iq : 0]′ ⊗ Iq

)
Kpq

= Kqp

(∫ 1

0
Z(u)Z(u)′du

)−1

Kpq.

Similarly, using

S1 = Kqp

∫ 1

0

[
σ(u)′−1 ⊗ UA(u)

] (
dW (u) + [σ(u)−1 ⊗ UA(u)′]duKpq τ̌1

)
= Kqp ([α⊥ : ᾱ]⊗ Iq)

∫ 1

0
Y (u)

(
dW (u) + Y (u)′du

(
[α⊥ : ᾱ]′ ⊗ Iq

)
Kpq τ̌1

)
= Kqp ([α⊥ : ᾱ]⊗ Iq)

∫ 1

0
Y (u)

(
dW (u) + Y (u)′du vec(A′ : bα′1ᾱ)

)
,

we obtain

G′⊥1J
−1
1 S1 = Kqp ([Iq : 0]⊗ Iq)

(∫ 1

0
Y (u)Y (u)′du

)−1

×
∫ 1

0
Y (u)[dW (u) + Y (u)′du vec(A′ : bα′1ᾱ)]

= Kqp

(∫ 1

0
Z(u)Z(u)′du

)−1 ∫ 1

0
Z(u)[dW (u) + Z(u)′ vec(A′)du].

This leads to the required result. �

Proof of Lemma 2. We first show the preliminary uniform consistency result max1≤t≤n ‖Σ̂t−
Σt‖

p−→ 0 for the nonparametric estimator Σ̂t, and then strengthen the result to the estimated

process over the compact interval [0, 1].
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The proof for this preliminary step generalises Theorem 2 in Hansen (1995), in three di-

rections: (i) we use a multivariate instead of univariate volatility estimator, (ii) we consider

residuals from a regression with I(1) instead of I(0) regressors, and (iii) a general (double-

sided) kernel function is used.

First note that the kernel estimator can be written as Σ̂t =
∑n

s=1wstese
′
s, with weights

wst = Kh(t−s)/ (
∑n

s=1Kh(t− s)) summing to 1 by construction. It is convenient to decompose

the difference Σ̂t − Σt into three terms, as follows:

Σ̂t − Σt = Rat +Rbt +Rct ,

where

Rat =
n∑
s=1

wst(Σs − Σt),

Rbt =

n∑
s=1

wstσs(zsz
′
s − Ip)σ′s

Rct =
n∑
s=1

wst(ese
′
s − εsε′s).

The asymptotic negligibility of Rat relates to continuity of Σt, and Rct refers to the estimation

error in the residuals. We will show that the maximum over t = 1, . . . , n of each of these terms

will converge in probability to zero (in Frobenius norm), such that max1≤t≤n ‖Σ̂t − Σt‖
p−→ 0

(using the triangle inequality).

For the first term, continuity of Σ(·) implies ‖Rat ‖ → 0 as n → ∞, which follows by the

argument of Xu and Phillips (2008, proof of Theorem 2). For the second term, note that

‖ztz′t−Ip‖ is an mds with finite moments up to order 2m > 2. Following the argument in Hansen

(1995) this implies that max1≤t≤n
∑n

s=1wst‖zsz′s − Ip‖ = op(1). And because max1≤t≤n ‖σt‖ <
max0≤u≤1 ‖σ(u)‖ is finite, this in turn implies

max
1≤t≤n

‖Rbt‖ ≤ max
1≤t≤n

‖σt‖2 × max
1≤t≤n

n∑
s=1

wst‖zsz′s − Ip‖ = op(1).

For the third term, we write the unrestricted model as ∆Xt = BZt + εt, where in the

notation of the proof of Theorem 1, θ = vecB. The least-squares residuals are given by

et = εt − (B̄n − B)Zt, where B̄n = B +
∑n

t=1 εtZ
′
t (
∑n

t=1 ZtZ
′
t)
−1. Expressing Dn in (A.4)

as Dn = [D̄n⊗ Ip], the proof of Theorem 1 implies that (D̄′n
∑n

t=1 ZtZ
′
tD̄n), (D̄′n

∑n
t=1 Ztε

′
t) and

D̄−1
n (B̄n −B)′ are all Op(1). This is useful in the following decomposition of Rct :

Rct = −

(
n∑
s=1

wsεsZ
′
sD̄n

)
D̄−1
n (B̄n −B)′ − (B̄n −B)D̄′−1

n

(
n∑
s=1

wsD̄
′
nZsε

′
s

)

+(B̄n −B)D̄′−1
n

(
n∑
s=1

wsD̄
′
nZsZ

′
sD̄n

)
D̄−1
n (B̄n −B)′.

Because of the convergence of the sample moments,
∑n

s=1wsD̄
′
nZsε

′
s = op(1) and∑n

s=1wsD̄
′
nZsZ

′
sD̄n = Op(n

−1) = op(1). This in turn implies that max1≤t≤n ‖Rct‖ = op(1).
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The steps above together imply

max
1≤t≤n

‖Σ̂t − Σt‖
p−→ 0. (A.9)

We now strengthen the results to the estimated process Σ̂n(u), u ∈ [0, 1]. Define the

discretised version Σn(·) of Σ(·) by Σn(u) =
∑n

t=1 Σ(t/n)1[(t−1)/n,t/n)(u) for u ∈ [0, 1) and

Σn(1) = Σ(1). Because a continuous function on a bounded interval is uniformly continuous,

the continuity assumption implies

sup
u∈[0,1]

‖Σn(u)− Σ(u)‖ = max
1≤t≤n

sup
u∈[(t−1)/n,t/n)

‖Σ(t/n)− Σ(u)‖ → 0

as n → ∞. The definition of Σn(u) and Σ̂n(u) implies that ‖Σ̂n(u) − Σn(u)‖ = ‖Σ̂t − Σt‖ for

u ∈ [(t− 1)/n, t/n). Therefore,

sup
u∈[0,1]

‖Σ̂n(u)− Σ(u)‖ ≤ sup
u∈[0,1]

‖Σ̂n(u)− Σn(u)‖+ sup
u∈[0,1]

‖Σn(u)− Σ(u)‖

= max
1≤t≤n

‖Σ̂t − Σt‖+ sup
u∈[0,1]

‖Σn(u)− Σ(u)‖

p−→ 0,

which completes the proof. �

Proof of Theorem 2. We will show that the convergence results (A.6) and (A.8) still apply

when Σt is replaced by Σ̂t. Combining these results in the unrestricted log-likelihood ratio (A.3),

using (A.7), will imply that Λ̂n(θ0+Dnτ) converges to Λ(τ) = (S1−J1τ1)′J−1
1 (S1−J1τ1)+Λ2(τ2),

uniformly on compact sets. The remainder of the proof is analogous to the proof of Theorem 1.

Define

Vt−1 := α′⊥ΓXt−1 ⊗ σ′−1
t ,

and similarly V̂t−1 (obtained by replacing σt by a matrix square root of Σ̂t). Lemma 1 implies

n−1/2Vbunc
w−→ V (u) := UA(u)⊗ σ(u)′−1, u ∈ [0, 1],

under both the null hypothesis and local alternatives. The continuous mapping theorem, to-

gether with Lemma 2, then implies n−1/2V̂bunc
w−→ V (u), u ∈ [0, 1]. Partitioning Dn = [D1n :

D2n] conformably with S and J , the continuous mapping theorem further implies that

D′1n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D1n =
1

n2

n∑
t=1

V̂t−1V̂
′
t−1

w−→
∫ 1

0
V (u)V (u)′du = J1. (A.10)

Furthermore, the stochastic orders of the second diagonal block and the off-diagonal block of

(A.6), together with Σ̂n(s) = Op(1), imply

D′2n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D2n = Op(1), D′1n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D2n = op(1).

Given the limiting block-diagonality, the actual limit of the second diagonal block will not be

needed.
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For the result corresponding to (A.8), the main task is to derive the limit of

D′1n

n∑
t=1

[Zt ⊗ Σ̂−1
t ]εt = n−1

n∑
t=1

V̂ 0
t−1zt, (A.11)

where V̂ 0
t−1 = [α′⊥ΓXt−1 ⊗ Σ̂−1

t σt] = V̂t−1[Iq ⊗ σ̂−1
t σt], such that the continuous mapping the-

orem again implies n−1/2V̂ 0
bunc

w−→ V (u), u ∈ [0, 1]. To show that (A.11) converges weakly to

the stochastic integral
∫ 1

0 V (u)dW (u), we cannot apply Hansen (1992)’s Theorem 2.1, because

{V̂ 0
t }t≥1 is not adapted to the filtration {Ft}t≥1, with respect to which {zt}t≥1 is an mds. This

is caused by the fact that Σ̂t depends on the full sample. For the same reason, we cannot

decompose zt into a martingale part and a remainder, a technique that is often useful to deal

with dependent processes, see Hansen (1992). Instead, we will follow the approach by Chan and

Wei (1988), Theorem 2.4, which was extended by Davidson (1994) and De Jong and Davidson

(2000).

Let Vn(u) = n−1/2V̂ 0
bunc and note that (Vn,Wn)

w−→ (V,W ) in D[0, 1]qp×p × D[0, 1]p where

the limit (V,W ) has continuous sample paths. The Skorohod representation theorem implies the

existence of sequences (V n,Wn) in D[0, 1]qp×p ×D[0, 1]p, defined on an underlying probability

space (Ω,F , P ), such that (V n,Wn)
a.s.−→ (V,W ) in D[0, 1]qp×p × D[0, 1]p. This implies that,

given ε > 0, there exists an event Ωε ⊂ Ω such that P (Ωε) ≥ 1− ε and

sup
ω∈Ωε

d ((V n,Wn)(ω)− (V,W )(ω)) = δn → 0,

where d(·, ·) is the uniform metric.

Let {kn, n ∈ N} be an increasing integer subsequence, such that kn/n → 0 and knδ
2
n → 0.

For each kn, choose integers 0 = n0 < n1 < n2 < . . . < nkn = n, corresponding to a partition

0 = u0 =
n1

n
< u1 =

n1

n
< u2 =

n2

n
< . . . < ukn =

nkn
n

= 1,

with min1≤j≤kn |nj − nj−1| → ∞ and max1≤j≤kn |uj − uj−1| → 0 as n → ∞. Consider the

decomposition∫ 1

0
Vn(u)dWn(u) = n−1

n∑
t=1

V̂ 0
t−1zt

=

kn∑
j=1

Vn (uj−1) [Wn(uj)−Wn(uj−1)] +
1

n

kn∑
j=1

nj∑
t=nj−1+2

(V̂ 0
t−1 − V̂ 0

nj−1
)zt

=: Gn +Qn.

Analogous to the arguments in Chan and Wei (1988) and Davidson (1994), Gn
w−→
∫ 1

0 V (u)dW (u)

follows from Gn
p−→
∫ 1

0 V (u)dW (u), where

Gn =

kn∑
j=1

V n (uj−1) [Wn(uj)−Wn(uj−1)] .
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For the remainder term Qn, we note that

Qn =
1

n

kn∑
j=1

nj∑
t=nj−1+2

(V̂ 0
t−1 − V̂ 0

nj−1
)zt

=
1

n

kn∑
j=1

nj∑
t=nj−1+2

(Vt−1 − Vnj−1)zt

+
1

n

kn∑
j=1

nj∑
t=nj−1+2

[
(V̂ 0
t−1 − Vt−1)− (V̂ 0

nj−1
− Vnj−1)

]
zt

=: Q1n +Q2n.

Q1n = op(1) because it converges to a stochastic integral with respect to W (u), where the

integrand is the limit of the difference between n−1/2Vbunc and a discretised version thereof

(which changes values only at times u = nj/n); and this difference converges to 0. Using the

uniform consistency result of Lemma 2, Q2n = op(1) because it is the average over n terms,

each of which is op(1). Therefore, Qn = op(1), such that

D′1n

n∑
t=1

[Zt ⊗ Σ̂−1
t ]εt =

∫ 1

0
Vn(u)dWn(u)

w−→
∫ 1

0
V (u)dW (u)

=

∫ 1

0

[
UA(u)⊗ Σ(u)−1

]
dM(u). (A.12)

The corresponding result for D′1n
∑n

t=1[Zt ⊗ Σ̂−1
t ]εt(θ0) under local alternatives follows from

combining (A.10) with (A.12).

The results obtained so far can also be used to show that D′2n
∑n

t=1[Zt ⊗ Σ̂−1
t ]εt = Op(1).

Combining these results implies

Λ̂n(θ0 +Dnτ)
w−→ (S1 − J1τ1)′J−1

1 (S1 − J1τ) + Λ2(τ2),

uniformly on compact sets. Following the same steps as the proof of Theorem 1, this implies

L̂Rn
w−→ minτ∈Tr Λ(τ), such that L̂Rn has the same limiting distribution as LRn. (Note that

the exact form of the quadratic function Λ2(τ2) is irrelevant.) �

Proof of Theorem 3. The starting point is a conditional invariance principle for the bootstrap

errors ε∗t . For the volatility bootstrap, consider

M∗n(u) := n−1/2

bunc∑
t=1

σ̂tz
∗
t , u ∈ [0, 1],

which conditional on the data is a Gaussian process with independent increments and variance

matrix n−1
∑bunc

t=1 Σ̂t =
∫ u

0 Σ̂n(s)ds. Uniform consistency of Σ̂n(·) implies that
∫ u

0 Σ̂n(s)ds

converges in probability to
∫ u

0 Σ(s)ds uniformly in u ∈ [0, 1], and this in turn implies that

M∗n(u)
w−→p M(u), u ∈ [0, 1]. (A.13)

For the wild bootstrap, we use M∗n(u) = n−1/2
∑bunc

t=1 etw
∗
t , and taking w∗t to be i.i.d. N(0, 1),

this is a Gaussian process with independent increments and variance matrix n−1
∑bunc

t=1 ete
′
t
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conditional on the data. Using the notation and the results from the proof of Lemma 2 regarding

the least-squares residuals et = εt − (B̄n −B)Zt, we find

1

n

bunc∑
t=1

ete
′
t =

1

n

bunc∑
t=1

εtε
′
t − (B̄n −B)

1

n

bunc∑
t=1

Ztε
′
t −

1

n

bunc∑
t=1

εtZ
′
t(B̄n −B)′

+
1

n
(B̄n −B)

bunc∑
t=1

ZtZ
′
t(B̄n −B)′

=
1

n

bunc∑
t=1

εtε
′
t + op(1)

p−→
∫ u

0
Σ(s)ds,

uniformly in u ∈ [0, 1]; see Lemma A.5 of Cavaliere et al. (2010) for the final result. Therefore,

(A.13) also applies to the wild bootstrap.

The next step is to prove the bootstrap version of Lemma 1, under the null hypothesis, i.e.,

with A = 0. We follow the approach of the proof of this lemma, noting that the bootstrap

observations {X∗t }t≥1 satisfy

X∗t = Φ̃t
nX0 +

t∑
j=1

Φ̃t−j
n Fε∗j ,

where X∗t = (X∗′t , . . . , X
∗′
t−k+1)′ and Φ̃n = Ikp + ÃnB̃′n, with Ãn and B̃n the restricted ML

estimators of A and B, respectively. Because it follows from the proof of Theorem 2 that these

estimators are consistent (both under H(r) and under Hn(r, r1)), it also follows that for n large

enough, all eigenvalues of the matrix Ir+(k−1)p + B̃′nÃn will be less than one in absolute value,

such that

n−1/2B̃′nX∗bunc = n−1/2(Ir+(k−1)p + B̃′nÃn)buncB̃′nX0

+n−1/2

bunc∑
j=1

(Ir+(k−1)p + B̃′nÃn)bunc−jB̃′nFε∗j + op(1)

p−→ 0,

and, using consistency of (α̃n, Ψ̃n) and hence Ãn⊥,

n−1/2Ã′n⊥X∗bunc = n−1/2Ã′n⊥Φ̃buncn X0 + n−1/2

bunc∑
j=1

Ã′n⊥Φ̃bunc−jn Fε∗j

w−→ U0(u) = α′⊥M(u), u ∈ [0, 1], (A.14)

analogously to the proof of Lemma 1.

From these results, the proof of the theorem proceeds by following the steps of the proofs of

Theorems 1–2. Because the bootstrap statistics L̂R
∗
n are based on the volatility matrix estimates

{Σ̂t}nt=1 obtained from the the original data, the proof of the bootstrap versions of (A.10) and

the limit of (A.11) follows directly from combining these steps with (A.13) and (A.14). Results

for the score and information for the parameters characterising the stable dynamics (S2 and J2)

follow analogously to the proof of Proposition 4.1 of Patilea and Räıssi (2012). �
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Patilea, V. and H. Räıssi (2012), “Adaptive estimation of vector autoregressive models with

time-varying variance: Application to testing linear causality in mean,” Journal of Statistical

Planning and Inference 142, 2891–2912.

Phillips, P. C. B. and K.-L. Xu (2006), “Inference in autoregression under heteroskedasticity,”

Journal of Time Series Analysis 27, 289–308.

Sargan, J. D., “Wages and prices in the United kingdom: A study in econometric methodol-

ogy,” in Hart, P. E., G. Mills and J. K. Whitaker (eds.), Econometric Analysis for National

Economic Planning, pp. 25–63. London: Butterworth.

Seo, B. (1999), “Distribution theory for unit root tests with conditional heteroskedasticity,”

Journal of Econometrics 91, 113–144.

Seo, B. (2007), “Asymptotic distribution of the cointegrating vector estimator in error correction

34



models with conditional heteroskedasticity,” Journal of Econometrics 137, 68–111.

Van der Vaart, A. W. (1998), Asymptotic Statistics. Cambridge: Cambridge University Press.

Wong, H., W. K. Li and S. Ling (2005), “Joint modeling of cointegration and conditional

heteroskedasticity with applications,” Annals of the Institute of Statistical Mathematics 57,

83–103.

Xu, K.-L. and P. C. B. Phillips (2008), “Adaptive estimation of autoregressive models with

time-varying variances,” Journal of Econometrics 142, 265–280.

35


	Introduction
	The model
	The likelihood ratio test with known volatility
	Adaptive likelihood ratio test
	Volatility estimation
	Bootstrap

	Monte Carlo simulation
	Empirical applications
	Revisiting US stock market indices in the 1990s
	Revisiting the US term structure of interest rates, 1970–2009

	Discussion

