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Abs t rac t  
Expected geometric return is routinely reported as a summary measure of the prospective 
performance of asset classes and investment portfolios.  It has intuitive appeal because 
its historical counterpart, the geometric average, provides a useful annualised measure of 
the proportional change in wealth that actually occurred over a past time series, as if there 
had been no volatility in return.  However, as a prospective measure, expected geometric 
return has limited value and often the expected annual arithmetic return is a more relevant 
statistic for modelling and analysis.   Despite this, the distinction between expected annual 
arithmetic return and expected geometric return is not well understood, both in respect of 
individual asset classes and in respect of portfolios.  This confusion persists even though 
it is explained routinely in finance textbooks and other reference sources.  Even the 
supposedly straightforward calculation of weighted average portfolio return becomes 
somewhat complicated, and can produce counterintuitive results, if the focus of future-
orientated reporting is expected geometric return.  This paper explains these issues and 
applies them in the context of the calculations underlying the projections for the New 
Zealand Superannuation Fund. 
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Geometric Return and Portfol io 
Analysis 

1  In t roduc t ion  
Professional investment practitioners routinely report expected geometric return as a 
summary measure of the prospective performance of asset classes and investment 
portfolios.  Expected geometric return has intuitive appeal because its historical 
counterpart, the geometric average, provides an annualised measure of the proportional 
change in wealth that actually occurred over a past time series, as if there had been no 
volatility in return.  However, as a prospective measure, expected geometric return has 
limited value and often the expected annual (or arithmetic) return is a more relevant 
statistic for modelling and analysis.  Despite this, the distinction between expected 
arithmetic return and expected geometric return is not well understood, both in respect of 
individual asset classes and in respect of portfolios.

1
  This confusion persists even though 

it is explained routinely in finance textbooks and other reference sources.
 2
 

This paper addresses these issues in the context of the financial projections and capital 
contribution calculations for the New Zealand Superannuation Fund.

3
  Section Two 

provides an introduction to the issues by explaining the distinction between expected 
arithmetic return and expected geometric return.  I show that, although average geometric 
return can be a useful measure of historical return, it is of only limited relevance in future-
orientated analyses, where the expected arithmetic return is invariably more relevant.  
Section Three examines measures of portfolio return and illustrates that the portfolio 
geometric return is not (and is greater than) a weighted average of the geometric returns 
of the underlying asset classes.  Indeed, it is possible for the portfolio geometric return to 
be greater than that of all of its constituent asset classes.  Section Four then turns to 
measurement of the expected value of the stock of an investment portfolio, such as the 
New Zealand Superannuation Fund.  Although the intuitive approach would be to 
compound the expected geometric return over time, this understates the expected 
portfolio size, whereas compounding the expected arithmetic return provides the correct 
result.  Section Five shows that the calculation of the required contributions to the New 
Zealand Superannuation Fund also relies on the expected arithmetic return on the Fund�s 
investment portfolio, not the expected geometric return.  Finally, Section Six provides 
some concluding remarks. 

                                                                 
1 For example, see the discussion thread on the Casualty Actuarial Society website at http://casact.org/discuss/discuss2.htm. 
2 For example, see Brealey and Myers (2000 p 157) and Ibbotson (Ibbotson Associates 2002). 
3 For a detailed description of the policy underlying the New Zealand Superannuation Fund, see McCulloch and Frances (2003). 
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In order to derive some of the mathematical results presented below, some assumptions 
are required about the time-series behaviour of returns.  The usual assumptions are that 
returns are stationary (E[rt] is constant), homoscedastic (Var[rt] is constant and finite) and 
serially independent.  The purpose here is not to defend these assumptions and not all of 
them are necessary to derive most of the results presented here.  They are clearly not 
entirely descriptive of reality: expectations change, volatility can vary over time, and some 
serial dependence can be detected in some returns series. Nonetheless, these are 
standard assumptions that are adopted in financial analysis and they produce rigorous 
results.  These assumptions can be relaxed without changing the general tenor of the 
results presented in this paper, but it would be at the cost of unnecessary added 
complexity in the calculations.

4
 

2  Expec ted  geomet r i c  re tu rn  and  expec ted  
a r i thmet ic  re tu rn  

Measures of expected value provide essential information when preparing projections of 
the behaviour of financial investments into the future.  However, there are two measures 
of return over time.  The average of an observed set of returns can be measured either 
arithmetically, by summing the percentage return for each year then dividing by the 
number of years, or geometrically, by compounding the annual returns and putting this to 
the power of the inverse of the number of years. 

The difference between arithmetic and geometric historical averages can be seen from a 
simple numerical example.  Suppose returns in two years are +40%, followed by �40%.  
Starting with $100, we have $140 after the first year.  In the second year, we lose 40% 
($56), giving an ending stock of $84.  The arithmetic average return is zero (being the 
simple average of +40% and �40%).  The geometric average return is �8.3% (being 

1
2(1.40 0.60) 1× − ).  In other words, the same ending wealth could have been achieved 

with a constant compounded annual return in both years of �8.3% ($91.70 after year 1, 
then $84 after year 2). 

If returns are not constant and the time period of measurement is greater than one year, 
the geometric average will always be less than the arithmetic average.

5
  The difference 

will be greater the longer the time period and the greater the volatility.  As a purely 
descriptive measure of historical return, the geometric average provides an annualised 
measure of the proportional change in wealth that actually occurred over the time horizon 
being examined, as if the wealth grew at a constant rate of return. 

Like historical averages, the expected value of future returns can also be specified either 
in terms of an annual arithmetic mean or in terms of a geometric mean that is measured 
over a specified time horizon.  This is illustrated in the following example.  Suppose there 
is a 50% probability of a+40% return per year and a 50% probability of �40% per year.  
Starting with $100, the probability tree of possible outcomes over three years is shown in 
Table 1.  After one year, the wealth level is either $140 or $60, giving an expected wealth 
level of $100 and expected return is 0%.  After two years, there are three possible wealth 
                                                                 
4 The analyses presented here also assume that the parameters of the distributions of returns (means, variances and so on) are 
known with certainty.  This is a common assumption in financial analysis even though these parameters usually have to be estimated.  
The potential bias from this further layer of uncertainty has been ignored in the results presented here.  It does not affect the general 
principles being discussed.  This issue is discussed further below. 
5 In the trivial situations where the time period is only one year (N=1) or where returns are constant, the geometric average and the 
arithmetic average will be the same. 
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levels and the expected wealth is still $100.  However, the expected geometric return is 
-4.2% per year over two years and, measuring over a three year time period, the expected 
geometric return declines further to �5.6% per year.  The expected total wealth at any 
time in the future is calculated by compounding the initial wealth ($100) by the expected 
annual arithmetic return.  In this case, that is 0%, so the expected wealth stayed at $100 
over the three years.  The expected annual return does not change with the time horizon.  
However, the expected geometric return does.  It declines as the time horizon increases 
and it is not a particularly meaningful measure of the expected growth of wealth over time. 

Table 1 � A Numerical Example of the Expected Value of Future Returns 

Year 0 Year 1 Year 2 Year 3 

$ $ Prob $ Prob
Geometric 

Return 
Arithmetic 

Return 
$ Prob 

Geometric 
Return 

Arithmetic 
Return 

$100 $140 50% $196 25% 40.0% 40% $274 12.5% 40% 40% 

 $60 50% $84 50% -8.3% 0% $118 37.5% 5.6% 13.3% 

   $36 25% -40.0% -40% $50 37.5% -20.4% -13.3% 

       $22 12.5% -40% -40% 

Expected 
Value: 

$100  $100  -4.2% 0.0% $100  -5.6% 0.0% 

 

This example illustrates how the expected geometric return declines as the time horizon 
over which it is measured increases.  Therefore, if a measure of long-term expected 
geometric return is reported, it will be relevant only to the specific time horizon to which it 
relates.  It will understate expected geometric returns over shorter periods.  In addition, 
the expected growth in wealth over time is obtained by compounding the expected annual 
arithmetic return.  Compounding the expected geometric return will understate the 
expected growth in wealth. This is discussed further in Section Four.  Conversely, when 
discounting back to present value, using the expected geometric return for the discount 
factor will overstate the present value, while using the expected annual arithmetic return 
will give the correct result. 

The above example assumes that returns follow a discrete binomial distribution.  It is more 
common in financial analysis to think of returns as following a continuous distribution.  If 
returns are assumed to follow a lognormal distribution and are serially independent,

6
 then 

the exact relationship between the arithmetic mean (E[r]) and the locus of the geometric 
mean (E[gN]) over time (N) is: 

[ ] [ ]( ) [ ]
[ ]( )

1
2

21 1 1
1

N
N

N

Var r
E g E r

E r

−

 
 = + + −
 + 

 (1) 

                                                                 
6 These are standard assumptions derived from the central limit theorem and market efficiency, respectively (see Appendix Two).  
These assumptions are not necessary for the general conclusions presented in this paper.  They are used here because they add 
some structure to the analysis, and they allow some exact results to be calculated for the illustration that follows. 
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For a given distribution of annual expected return and volatility, the geometric mean is 
smaller the longer the time period (N) that is being examined.  This is illustrated in Figure 
1 using the expected annual return on equities of 12.7% and standard deviation of 20.2% 
reported by Ibbotson Associates (Ibbotson Associates 2002).  The expected annual return 
stays at 12.7%, regardless the time horizon.  However, the expected geometric return 
starts at 12.7% if the time horizon is one year then declines so that for a twenty-year time 
horizon, the expected geometric return is about 11%. 

10.5%

11.0%

11.5%

12.0%

12.5%

13.0%

0 5 10 15 20 25 30 35 40

Years

Arithmetic Geometric Median Incorrect Approximation
 

Figure 1 � Arithmetic and Geometric Measures of Expected Return 

Stocks are more volatile than bonds, so most of this difference is also reflected in the risk 
premium.  From the same source, the risk premium of stocks over bonds measured on an 
arithmetic basis was 7.0%, but the difference between the geometric averages was only 
5.4%.

7
 

There also is a frequently used approximation of the geometric mean.  This is calculated 
as the expected annual arithmetic mean minus half its variance.  This understates the true 
geometric mean for all time horizons, and it is especially wrong for shorter time horizons.  
This incorrect geometric approximation is also illustrated in the example in Figure 1. 

Another central measure of returns is the median.  Under lognormality, the median 
geometric return is a constant that does not decline over time, and it is equal to the 
median arithmetic return.

8
  It is also illustrated in Figure 1.  It is the asymptote that the 

expected geometric return converges to as the time horizon is expanded out infinitely. 

 

Understanding the distinction between geometric and arithmetic return is important 
because both metrics are used by commentators discussing issues of investment returns, 
such as the equity risk premium, and there is scope for confusion about which is relevant 
in any particular situation.  Recognising this, some authors report their analyses on both 
bases (for example, Cornell 1999, Lally and Marsden 2002).  Prospective (that is, future-
                                                                 
7 For further discussion regarding estimation of the expected market equity risk premium, see McCulloch (2002). 
8 See Appendix One for derivation of the median return under standard assumptions. 



 

W P  0 3 / 2 8  |  G e o m e t r i c  R e t u r n  a n d  P o r t f o l i o  A n a l y s i s  5  

orientated) applications, such as the capital asset pricing model
9
 and the assessment of 

the required capital contribution to the New Zealand Superannuation Fund, require an 
unbiased estimate of the expected annual return.

10
  As shown above, the expected 

geometric return over any period greater than one year will understate the expected 
annual return, while the expected arithmetic return provides the appropriate measure for 
this purpose. 

A further complication with using any measure of prospective analysis is that the expected 
values (and other parameters of the return distribution) are not known with certainty and 
so must be estimated.  However, Blume (1974) shows that an arithmetic average provides 
an unbiased and consistent estimate of the expected annual return, while the geometric 
average provides a downward biased estimate and it has a larger sample variance than 
the arithmetic average.  In the related case of estimating discount factors for present value 
calculations, Cooper (1996) shows that both arithmetic and geometric averages provide 
downward biased estimates of the discount factor, and that the arithmetic average is least 
biased.  This holds even if returns are serially correlated. 

3  Expec ted  por t fo l io  re tu rn  
Asset classes are often combined into portfolios and there is a need to calculate 
information about expected long-term portfolio returns.  In order to illustrate the issues that 
this raises, suppose that a portfolio comprises two asset classes, equities and bonds.  
The annual return for the portfolio ( p

tr ) is a weighted average of the annual returns on the 

two asset classes ( e
tr  and b

tr  for equities and bonds, respectively):
11

 

( )1p e b
t t tr r rα α= + −  (2) 

The portfolio can be thought of as a single asset with expected value and variance of 
annual returns being functions of the expected values, variances and covariance of the 
component asset classes: 

( )1p e b
t t tE r E r E rα α     = + −       (3) 

( ) ( )22 1 2 1 ,p e b e b
t t t t tVar r Var r Var r Cov r rα α α α       = + − + −         (4) 

The same relationships between portfolio annual returns and portfolio geometric returns 
apply as described above for single assets.  In particular, the expected geometric return 
over time is less than the expected annual return, the difference becomes greater as 
longer time periods are considered, and the expected portfolio annual return is a more 
meaningful measure of the expected growth in portfolio wealth than the expected 
geometric return. 

Equation (2) illustrates that the annual portfolio return is a weighted average of the 
component asset returns.  Similarly, Equation (3) illustrates that the expected annual 

                                                                 
9 Sherris and Wong (2003) examine the merits of  alternative measures of expected return in applications of the capital asset pricing 
model.  They demonstrate that an arithmetic average of returns should be used. 
10 McCulloch and Frances (2001) provides the derivation of the calculation of the required capital contribution rate for the New Zealand 
Superannuation Fund.  The appropriate measure to use in that calculation is addressed below. 
11 Superscripts e, b and p are used to refer to equities, bonds and the whole portfolio, respectively, and the proportion of the portfolio 
held in equities is α.  There is an implicit assumption that the portfolio is rebalanced each period so that α remains a constant over 
time. 
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arithmetic portfolio return is a weighted average of the component assets� expected 
annual arithmetic returns.  However, it is a surprise to many practitioners that the 
geometric portfolio return is not equal to a weighted average of the component assets� 
geometric returns.  It is greater than the weighted average.  That is: 

( ) ( )( )1 1 1 1p e b
n n ng g gα α+ > + + − +  (5) 

This is a common mistake made when computing portfolio returns.  We can see this by 
decomposing each side of this equation. The result is:

12
 

( ) ( )( )( ) ( ) ( ) ( )
1 1 1

1 1 1

1 1 1 1 1 1
n n n

ne b e bn n
t t t t

t t t
r r r rα α α α

= = =

+ + − + + + − +>∏ ∏ ∏  (6) 

This also applies to the calculation of the portfolio expected geometric return.  Therefore, 
if we want to calculate the expected geometric return for a portfolio from the expected 
geometric returns of the individual asset classes, it is necessary to start with the 
component asset classes� expected annual arithmetic returns, and take their weighted 
average to get the expected portfolio annual arithmetic return, then use that result (along 
with the portfolio volatility and time horizon) to derive the expected portfolio geometric 
return for the required time horizon. 

The incorrect calculation of the expected geometric return (using the weighted average of 
the component asset classes� geometric returns) understates the true portfolio expected 
geometric return.  If this incorrect result is then used when the expected annual return is 
more appropriate, the bias is even worse than if the correct geometric calculation had 
been used.  Figure 2 illustrates how the correct and incorrect calculations of portfolio 
returns can vary over time. 

6.50%

7.00%

7.50%

8.00%

0 5 10 15 20 25 30 35 40 45 50

Years

Ex
pe

ct
ed

 R
et

ur
n

Expected Portfolio Geometric Return

Expected Portfolio Annual Return =
Weighted Average of Expected Annual Returns

Weighted Average of Expected Asset Class Geometric Returns (Incorrect)

 

Figure 2 � Alternative Calculations of Expected Portfolio Returns 

                                                                 
12 Jensen�s Inequality can be used to prove this result.  It is a strict inequality so long as n>1 and α is not equal to 0 or 1.  This two-
asset example extends, with the necessary modifications, to the analysis of portfolios comprising multiple asset classes. 
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Another counterintuitive result of the nonlinear relationship between expected geometric 
asset class returns and expected portfolio geometric return is that it is possible for the 
expected portfolio geometric return to be greater than any of the individual asset class 
expected geometric returns.  To illustrate, Figure 3 shows how the portfolio geometric 
return of a two-asset portfolio, comprising bonds and equities, changes as the portfolio 
allocation moves from 0% equities to 100%.  In this example, there is a region of portfolio 
composition, from 55% equities to 100%, in which the portfolio geometric return becomes 
higher than that of either of the individual asset classes.  Of course, this does not always 
happen � it depends on the structure of the return covariance matrix.  Nonetheless, it is 
usual to find that the expected portfolio geometric return is at the upper end of the spread 
of the individual asset class expected geometric returns. 

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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ct
ed

 G
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m
et

ric
 R

et
ur

n

Bonds Expected Geometric Return

Equities Expected Geometric Return

Expected Portfolio Geometric Return 
is Greater than Asset Class

Expected Geometric Returns

 

Figure 3 � Expected Portfolio Geometric Return 

4 Expec ted  fu tu re  s ize  o f  an  inves tment  fund  
The issues discussed above surrounding the relative merits of geometric and arithmetic 
measures of expected return also extend to the calculation of projections of the expected 
size of an investment fund.  Consider a stock that has compounding returns over n 
periods to a value of Sn (with S0=1).  The returns in each period are assumed to be 
random, serially uncorrelated with a constant annual expected value E[rt].  Therefore: 

( ) [ ]( )
1

1 1
n n

n t t
t

S r E r
=

= + = +∏  (7) 

That is, the expected value of a $1 stock that compounds for n periods at an expected 
annual arithmetic rate of E[r] is (1+E[r])n.

13
  This was illustrated in the numerical example 

of expected returns in Section Two.
14

 

                                                                 
13 Another way to show this result would be with the Law of Iterated Expectations. 
14 In that example, E[r]=0 and so E[Sn]=100 for all n. 
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In particular, the expected compounded value of the stock after n periods is not the 
expected geometric return over that time horizon to the power of n.  That would be an 
understatement of the expected value of the stock (because the expected geometric 
return is less than the expected annual return).  Similarly, the expected geometric return is 
not the nth root of the expected value of the stock at period n (because that would yield 
the expected annual arithmetic return). 

This result that the expected size of a stock over time is calculated by compounding the 
expected annual arithmetic return over the time horizon has been applied in the 
projections of the expected growth of the New Zealand Superannuation Fund over time as 
illustrated in the Treasury�s spreadsheet model of the New Zealand Superannuation Fund 
and in McCulloch and Frances (2001).  Consistent with the above analysis, the expected 
Fund size is calculated by compounding the Fund balance (adjusted for capital 
contributions and withdrawals) by the expected annual arithmetic return. 

5  Ca lcu la t ion  o f  the  requ i red  cap i ta l  
con t r ibu t ion  ra te  fo r  the  New Zea land  
Superannuat ion  Fund  

The New Zealand Superannuation Act 2001 requires the Treasury annually to determine 
the capital contribution required to be made from the Crown to the Fund for the next 
financial year.  This must be set so that, if that same proportion of forecast GDP were to 
be made to the Fund each year for the succeeding forty years, the Fund balance plus 
accumulated returns would be just sufficient to meet the expected net cost of entitlement 
payments over those forty years.  This can be expressed as:

15
 

( ) ( ) ( )0 0 1
1 11 1 1

1 1 1 0
H H HH H

t t i t i
t tt i t i t

E B r k G r P r
= == = + = +

 + + + − + = 
 

∑ ∑∏ ∏ ∏  (8) 

where: 

B0 = Fund balance at the beginning of year 1. 
H = time horizon for the calculation.  This is set at forty years. 
rt = rate of return on the Fund in year t. 
k1 = total contribution rate for year 1 as a proportion of GDP. 
Gt = GDP for year t. 
Pt = forecast entitlement payments in year t. 

And the required capital contribution for the next period (in $) is: 

1 1 1 1CapitalContribution k G P= −  (9) 

                                                                 
15 This is a simplified version being used here to explain the principles at issue.  A more detailed version is used for the actual 
calculation, taking into account such things as the fortnightly payment structure (McCulloch and Frances 2001). 
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Solving the above expectation equation for the total contribution rate (k1) gives:
16

 

[ ]( )

[ ]( )

0
1

1

1

1

1

H
t

t
t

H
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t

P B
E r
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E r

−
=

−
=

−
+

=

+

∑

∑
 (10) 

The summation terms in both the numerator and the denominator in this equation are 
analogous to present value calculations and the appropriate discount rate is E[r], which is 
the expected annual arithmetic return on the investment portfolio of the Fund.

17
  If the 

expected geometric return were to be used in this calculation, the required contribution 
rate would be misstated. 

6  Conc lus ion  
Expected geometric return is routinely reported as a summary measure of the prospective 
performance of asset classes and investment portfolios.  It has intuitive appeal because 
its historical counterpart, the geometric average, provides a useful descriptive measure of 
the annualised proportional change in wealth that actually occurred over a past time 
series, as if there had been no volatility in return.  However, for applications that involve 
future projections or other prospective analyses, expected geometric return has limited 
value and often the expected annual arithmetic return is a more relevant statistic for 
modelling and analysis.   Despite this, the distinction between expected annual arithmetic 
return and expected geometric return is not well understood, both in respect of individual 
asset classes and in respect of portfolios.  This confusion persists even though it is 
explained routinely in finance textbooks and other reference sources. 

Even the supposedly straightforward calculation of weighted average portfolio return 
becomes somewhat complicated, and can produce counterintuitive results, if the focus of 
reporting is expected geometric return.  Simply calculating the portfolio expected 
geometric return for a particular time horizon as being the weighted average of the 
expected geometric returns of each asset class for that time horizon will understate the 
expected portfolio geometric return.  The weighted average calculation should be carried 
out starting with the expected annual arithmetic returns of the individual asset classes.  
The true expected portfolio geometric return will be at the upper end of (and could 
possibly exceed) the spread of individual asset class expected geometric returns. 

The issues are also interpreted in the context of the analysis underlying the New Zealand 
Superannuation Fund.  Projections of the expected size of the Fund should be based on 
compounding the expected arithmetic return over time, not the geometric return.  
Similarly, calculation of the capital contributions the Crown is required to make to the Fund 
is a function of the expected arithmetic return on the Fund, not of the expected geometric 
return. 

                                                                 
16 This solution is explained in detail in McCulloch and Frances (2001). 
17 Note that the summation terms are not actually calculations of the present values of the cashflow streams, Pt and Gt.  That would 
require the use of discount rates that reflected the risk inherent in those cashflow streams, and not the expected return on the 
investment portfolio. 
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Append ix  One:   Der iva t ion  o f  Med ian  Retu rns  
Let Xi=1+ri, where ri is the return in period i. 

Assume that returns are distributed lognormally and are serially independent (which are 
standard assumptions supported by the Central Limit Theorem and market efficiency, 
respectively). 

Therefore, ( ) ( )2ln ~ ,iX N µ σ  (A1) 

Geometric return over N years is defined as:  
1
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So its log is:  ( ) ( )1
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The expected value of this is: 
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 + = 
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∑  (A4) 

ln(1+gN) is normally distributed (because it is the sum of ln(Xi), which are normally 
distributed).  Therefore it has a symmetrical distribution and so its median equals its 
mean.  So: 

( )ln 1 NM g µ + =   (A5) 

That is, half of the distribution of ln(1+gN) is below µ.  Therefore, half of the distribution of 
(1+gN) is below eµ:  Hence: 

[ ]1 NM g eµ+ =    and   [ ] 1NM g eµ= −  (A6) 

Therefore, although the expected geometric return declines as the time horizon increases, 
the median geometric return is a constant, invariant to the time horizon.  It is the same as 
the median arithmetic return (because g1=r1), and it is less than both the expected 
geometric and expected arithmetic return. 

It was noted above that the expected size of a stock over time (E[Sn]) is calculated by 
compounding the expected annual arithmetic return over the time horizon: E[Sn]=(1+E[r])n.  
A corresponding derivation to that used in this appendix can be used to show that the 
median stock also grows exponentially:   M[Sn]=enµ. 
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Append ix  Two:   Lognorma l  D is t r ibu t ion  o f  
Annua l  Re tu rns  

Stochastic analysis of investments requires an understanding of the statistical properties 
of returns.  The assumption that annual returns follow a lognormal distribution is relatively 
robust.  It is based on the Central Limit Theorem as follows. 

Suppose that a year is made up of  many (say x=200) trading days, with daily returns 
(dyear,day) that are serially independent and of finite variance, but the form of the distribution 
is unspecified.  Daily returns compound into annual returns (ryear): 

,
1

1 (1 )
x

t t i
i

r d
=

+ = +∏  (A7) 

Taking the log of each side: 

[ ] ,
1

log 1 log (1 )
x

t t i
i

r d
=

 + = + ∑  (A8) 

According to the Central Limit Theorem, the sum of n independent random variables with 
finite variance converges to a normal distribution when n is large.  Since dt,I is an 
independent series with finite variance, so is log[1+dt,I].  And 200 is large.  Thus, log[1+rt] 
is approximately normally distributed and so [1+rt]  approximately follows the 
corresponding lognormal distribution. 

[ ] ( )2log 1 ~ ,tr N µ σ+  (A9) 

This result requires no assumption about the shape of the distribution of daily returns.  If 
daily returns, themselves, are lognormally distributed, then the annual returns will be 
exactly lognormally distributed (being the product of independent lognormally distributed 
variables). 

The variable, log[1+rt], is also known as the continuously compounded rate of return. 

The mean and variance of rt can be expressed in terms of µ and σ2 using the moment 
generating function of a normally distributed (1+rt).

18
 

[ ] [ ] 21
21 1 exp 1t tE r E r µ σ = + − = + −   (A10) 

[ ] [ ] [ ] ( )2 21 1 exp 1t t tVar r Var r E r σ = + = + −   (A11) 

                                                                 
18 See Aitchison and Brown (1957) for a detailed treatment on the lognormal distribution and its application in economics. 
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